US006850236B2
a2 United States Patent (10) Patent No.: US 6,850,236 B2
Deering (45) Date of Patent: Feb. 1, 2005
(54) DYNAMICALLY ADJUSTING A 5757375 A 5/1998 Kawaseoocoown... 345/429
SAMPLE-TO-PIXEL FILTER IN RESPONSE 6,687,407 B2 * 2/2004 Peters ...o.ocovvvrevereenn.. 382/232

TO USER INPUT AND/OR SENSOR INPUT

FOREIGN PATENT DOCUMENTS
(75) Inventor: Michael F. Deering, Los Altos, CA

(US) WO 00/49574 8/2000
WO 00/49577 3/2000
(73) Assignee: Sun Microsystems, Inc., Santa Clara,
CA (US) * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this

patent 15 extended or adjusted under 35

Pri Examiner—Phu K. N
U.S.C. 154(b) by 400 days. rimary txdnuney u guyen

(74) Attorney, Agent, or Firm—Meyertons Hood Kivlin
Kowert & Goetzel, P.C.; Jefirey C. Hood; Mark K.
Brightwell

(21) Appl. No.: 09/751,665
(22) Filed: Dec. 29, 2000

(65) Prior Publication Data
US 2002/0003543 Al Jan. 10, 2002

(57) ABSTRACT

A graphics system capable of super-sampling and perform-
ing real-time convolution. The graphics system may com-
Related U.S. Application Data prise a graphics processor, a sample bufler, and a sample-

to-pixel calculation unit. The graphics processor receives

(63) Continuation-in-part of application No. 09/251,840, filed on ographics data and generates a plurality of samples for each

Feb. 17. 1999 now Pat. No. 6.717.578. : -
? ? A of a plurality of frames. The sample buffer stores the
(60) Provisional application No. 60/175,384, filed on Jan. 11, P Y P

2000, and provisional application No. 60/074,836, filed on samples. The sample-to-pixel calculation unit 1s operable to

Feb. 17, 1998. generate output pixels by filtering the rendered samples
(51) Imt. Cl” GO6T 15/00 using a filter. A display device then recerves and displays the
) U S Ci .. e output pixels. A user may observe the displaved image and

adjust properties of the filter according to the user’s personal
visual preferences. A display-monitoring device may be
configured to capture the displayed image. The graphics
(56) References Cited system may then analyze the captured image and, in
response to the captured image, perform filter adjustments.

(58) Field of Search 345/418, 419,
345/426, 428, 619

U.S. PATENT DOCUMENTS

5557339 A * 9/1996 Dadourian 348/586 52 Claims, 35 Drawing Sheets
GEOMETRY DATA 350 /352
VERTEX #1 X, Y, Z, COLOR. ETC.
VERTEX#2 | X, Y,Z COLOR. ETC. y DRAW/RENDER
VERTEX #3 X,Y,Z, COLOR, ETC. |V PROCESS
112
SAMPLE COORDINATES /N
v
SAMPLE N _SUPER-SAMPLED SAMPLE BUIFFER / 162
POSITION BIN #| BIN #2
MEMOR Y SAMPLE #1 RG,B.Z.ot | SAMPLE #1 R.G.B.Z o
354 SAMPLE - ‘
y FH SAMPLE #2 R,G.B,2,0c | SAMPLE #2 R.G.B.7.01
y . SAMPLE AN RG,B,Z,a | SAMPLE /N R.G.B.2.a
!
BIN #
/o N 3 N #3 BIN #4 BIN N
) ; \ an SAMPLE #]1 R,G,B,2,ct | SAMPLE #1 R G.B.7. SAMPLE #1 R.G.B.7 ol
/ \ SAMPLE R S AMPL: B
. N EH MPLE #2 R,G,B,2,00 | SAMPLE #2 R,G.B.Z.q SAMPLE /2 R.G.13.7.00
,r SAMPLLE # ; ;
:‘f f x.\ N PLE#NR,G,B,Z,c | SAMPLIE #N R,G.B,Z;Ei SAMPLE #N R,G,B,7,0
/ ! % \"‘..\
R . - BINS (E.G., 1. 2x
/ / \ \ SAMPLE i (i 1, 2x2, dxd)
OFFSETS FOR BIN#H| COORDINATES v
SAMPLE 41 | SAMPLE #2 | SAMPLEAN SAMPLE-TO-PIXEL | 360
REG. GRID| OFFSETS | OFFSETS | OFFSETS CALCULATION |” « | DISPLAY PIXEL
X, Y X, Y X, Y PROCESS /
‘ : : DISPLAY DE .
PERT SAMPLE #1 | SAMPLE #2 SAMPLE#N { eTIeE
OFFSETS | OFFSETS | OFFSETS
REG.
GRID| "~y "y X, Y X, ¥ >
STO. | SAMPLE#1 | SAMPLE #2 | SAMPLEAN 84
cHASTIC | OFFSETS | OFFSETS | OFFSETS R
X, Y XY X,y

US 6,850,236 B2

Sheet 1 of 35

Feb. 1, 2005

U.S. Patent

FIG. 1

¢ DI

US 6,850,236 B2

8

20IAna(q Agjdsiq

-

=

= ZLl

m Wia)SAQ

/10)el9|800Yy
sSolydels

=

S

S

e

701

o0l

Alowa ulep

U.S. Patent

20l
NdO IsoH

US 6,850,236 B2

Sheet 3 of 35

00 <

Feb. 1, 2005

U.S. Patent

aost
UM
bulispuay

b8 21A3(] Kejdsi] o, ¢ DIA
INQ 03PIA

O

L] V8LI

ao’l o
Hun uonendies |l i uonenoen L

|aX14-0 | -ojdwes 19XI4-0 | -8|dWeS
—===h=m==
4

d0. 1 V0Ll
Jun uolenoleD [yl lun uonenoien

|axid-0 | -aidweg 9XId-0 | -8|dwWweg
mmmmmm—rmmmmmmm
v

k4 \J

| N i i
@; POWVYEAE | U yonvdae | L vowvyae| U yanvyas
NO9 |
pSh
Jlun 8Npaydsg O9PIA
azs! 0zl aes)
J] .]
3061 " G0GT 0 T
11V T e I un 3 n
buliapuay " Buiepuay N Buuspuay

vl
}un [ohuog

¥9
sng paadg yaij

PN:

US 6,850,236 B2

Sheet 4 of 35

Feb. 1, 2005

U.S. Patent

v DI

US 6,850,236 B2

Sheet 5 of 35

Feb. 1, 2005

U.S. Patent

4 - 9 DId Y T o
A X A X A DILSVID
SLASAIO | SIASLIO | SIS0 OIS
- N#ITIAVS | THETTTAVS | TH TT0AVS ,
A X A X A X .
- — | SLASAIO | SIASI0 | SIASAIO Ew_%_uwmx
n 4 NHTTIAVS | THTTIAVS | TETTIINVS
dDIATA AV1dSId SSHI0Ud | fﬁ.mu w,x _; RIS Oy
SLASAIO | SIASII0 | SLASHI0 07
. aer ! NOILVINDTVD - A .
THXId AVIdSIA 09¢ 7 TIXI4-O LA VS NFTIINVS | TETINVS | TETTIRVS |
T~ SLLVNIQI00D | HNTE A0 SLASLO | |
.,. C _- SRRIANA N \ / \
(PXp “TXT 1 “D'2) SNI < S o
N
_ - . \ \ / /
D7D NI HTANYS | DU DM N TINVS | 02U N# T IdINVS AN AN \ /
| —] LY L 4 L & r - & - - L o g &k & ._.4... \\
7O T T IdAVS OZ DU ANANVS | D2 DN TH T TdINVS . \ I
4 £ % : R ' b w4 ¢ N / _
07D [# A TdINVYS O OU 1 ATdINVS | OZH DU LT INYS N \ !
\ /
N# NIt b NI€] i NIE AN A
N /
D0 DU NS ATIAVS | 07909 N# TN VS K K
N
O DU T ATIAVS | 0200 TH TNV PG ¢
|
V7O I ATAANVS | D200 14 F1dINVS AdOWHWN
NI L1t NI€] F NOLLISOd
> | - — ATdNVS
CO1 AHAANY HTdAVS AT TANVS UL NS
(\\ SALVNIAYOO0D ATdNVS
Cll | Y
— S _2LI ™OT0D Z A X £4 XLYIA
a ..1 4 ..v 4 € &
| | yadNawm NG 213 070D ZAX C# XALYAA
i , DL WOTOD 7 ‘A X # XALYIA |
zce 0S¢~ VLIVA ALLANOLD

US 6,850,236 B2

Sheet 6 of 35

Feb. 1, 2005

U.S. Patent

z5¢

| .
73
| - — - — 4 r— -
AT LA T {|_ B ..m_u,%_) __
IDIAHA AV1dSIA 55400
_ . A NOILVINOTVD |e—0 — -
TdX1d AV1dSId 09t TAXId-OL-9TdIAVS SALVNITIOOD |
B~ — T1dNYS | apse
_ =
(PXP “TXZ ‘1 “O71) SNIY
ﬂ V280N NIt A T1dINVS V7AW N# ATINVS | 074D N# A TdINVS
DU DN T T IdINVYS OZ QDU ATINVS | OGO 28 T TdNVS _
L0 1 A1dNYS | D7D [ATINVS | DZDDY 14 1 1dAVS |
—_— i ﬁ
N# NI¢l | Pit NI Cf NI€
DO N# A TINVYS | 024D N# H 1dINVS
VU O THATINVS | 079D oH J1dINVS
DO 1 E A1dAVS | V2D 1#ATdAVS
_
| CH NI L NI €] | j)
4 h - — — —— ‘ VSt
9l ALY HTdIWVS A TAAVS-UAANS AAONTIN
N NOLLISOd
| HTdNVS
/K L SHLVNIQ¥MOOD H1dIANVS
CLI | ¥ - — -
- m.ﬁuomﬂ_) | OLANMOT00 Z A X | o4 XALWAA
NAANT WM VI ,uE w_o”_ou .ﬂN _..> ,x H XINNAA
] L QLHYMOTOD Z ‘A ‘X L XEHLLAYA

0S€ 7~ VIVA ALLANOID

U.S. Patent Feb. 1, 2005 Sheet 7 of 35 US 6,850,236 B2

QD
ni
as o0
2 <)
5 2 :
— B
O
A\ ;%
9
o
C 5
—
o
~T
=

IE |
~
&
~
<
-
O
ad
~

U.S. Patent Feb. 1, 2005 Sheet 8 of 35 US 6,850,236 B2

—
O
L b
Q “——
= o0 ;Eig
= o N
A
O
N

FIG. 9

PERTURBED
REGULAR GRID

US 6,850,236 B2

Sheet 9 of 35

Feb. 1, 2005

U.S. Patent

19SHO-A 921 {

19SHO-X el

~ ——— . ,0dctl

C

col

Aldo dv1No4d
d3dddN.1lddd

U.S. Patent

188

l

Col.

Col. 3
AL

Feb. 1, 2005

162

B

y

Y ANV AAN YT
AV AAV YAV
IEEIEFZIHsz
Jl’ﬁ?fﬂ!lﬁﬂz
ANV ANV YAV
ANV AV YA AT

K”M“EEEQ&“REEE

AP A XD AP
GBENHV\HE&
\HQLH‘SER1\\
\\Bmﬂnﬁvﬂﬂ\k
SNSRI VRS
EBS\E\\B&\\E
&\ngsgasnahg
AP AT I ANS

3

ﬂ?

Khﬁﬁﬁﬁﬁﬂﬂﬂﬂkﬂﬁ

AV A YAV
ANVAANVIA N YA
’ﬂl’ﬂd‘lﬂzﬁl
ﬂl’ﬂ??ﬂ!!ﬂlz
AN XAV IAANT A7
AV IANV YAV YA

/’ﬂ@ﬁﬁ@ﬁﬁﬂﬁ&ﬁa

X IIIAAPCIADIOL X
VRSN RN R YNNRY
AN BN RN RN
NINODE SN R NNRN
B‘GEESERSK\\
VRSN SCENSAN
SUSSEERARASS

YO
Col. 2

Sheet 10 of 35

~
Col. 4

a
O
[“-...
=
&
<
8

CACHE 1768

<
\O
r~
==
O
<
O

Convolve

Convolve

Convolve

Unit

Convolve

US 6,850,236 B2

84

22

DN
77

m

FI1G. 11

US 6,850,236 B2

Sheet 11 of 35

Feb. 1, 2005

U.S. Patent

urq sy ul

VII DI

1D MIUOS IIIUID

FOP S11 S8y pamndwod Juiaq AJJus.1anos [ox1]

Alepunog uwnjo.

cly
AA|OAUO)) Y3

AJOWIDA] QUI{URIS UTE
oI unuod sajdweg

iy -
sojdwes 91-1 Jo uiq v

90V «_

SUO[IN[OAU0J JuaNnDbasqns Jo uonoali(]

00

301
UOHN[OAUOD JULIND JOJ

Papaau 93eIO)S Ulq $XG :ayIed Uig

)

Olv
Papaau 9q 1a3uoj

OU [{1m Yyoiym sojduieg

[QUIY I3}[1,] UOTINJOAUOY)

ety

s
ry

s
’
o
’
/s
kg
7

40}
AIBPUNOE UWN[O)

JAJOAUO]) 1JaT]

U.S. Patent Feb. 1, 2005 Sheet 12 of 35 US 6,850,236 B2

EEEEEEEEEEEE
EEEEEPaEREN

EEEEVAEEEEAN
EEENANEEEEEA
EEEEEEEEEEED
EEENUEEEET AN
EERENEEEPARY;
TN T
—
—
—
—

-

QOUTSIDE BIN

43

FIG. 11B

HERERASdE=4
HEEEV4dEENE
HEEV4EEENE
HEVdENEREE

400

432
CONVOLUTION KERNEL

"MIRROR" INSIDE BIN

U.S. Patent

Feb. 1, 2005
Recelve graphics 200
commands and data
Route graphics datato | 202
rendering units

204

grapnics data
ompressed?

NO

Converting, Lighting, 208A
Transforming

Determine which regions
Intersect each triangle
(this may determine the
density of samples to be
calculated)

2088

210

IS
rilangle containec
within a single
region?

Divide triangle into one or
more smaller triangles
along region boundaries

224

sample buffer

FIG. 12

Sheet 13 of 35

Render samples and store
them (via schedule unit) in

YES
Decompress graphics data 200

Select one of the sample

. 214
patterns in the sample
pattern memory
Determine which bins may | 044
contain samples that will
contribute to the polygon
Read offsets for samples in} »4g

the selected bins from
sample position table

Determine which samples | ooq
fall within the polygon

being rendered

US 6,850,236 B2

US 6,850,236 B2

Sheet 14 of 35

Feb. 1, 2005

U.S. Patent

X+

vel DIA

Jofews-A"-"+ | 1ofew-A'- -

lolew-x"-"+ o)

lofew-x'+'+]

jolew-A'+ 4+ |1olew-A" + -

A+

Jolew-x'-"-

lolew-x '+ -

U.S. Patent

Feb. 1, 2005

Read a stream of bins from |~ 250
the sample buffer
Store one or more scan 252
lines worth of bins in cache

Determine whi

ch bins may

contain samples that 254
contribute to the pixel
currently being convolved
256

Examine each sample in
the selected bins

208

IS

sample . .
within limits of NO m?eeit ;s]ta?;pzlers
convolution J er0

filter?

YES

Calculate weighting factor
for sample (e.g., based on
distance from center of
pixel to sample)

FIG. 13

Sheet 15 of 35

US 6,850,236 B2

Multiply sample's values | oo,
(e.g., color and alpha) by
_welignting factor
Sum weighted values 200

Accumulate total sample | 268

welights

Divide by cumulative
welgnhting factor to
normalize the pixel

Output final pixel value 2/

270

US 6,850,236 B2

Sheet 16 of 35

Feb. 1, 2005

U.S. Patent

LSLI=¥1/096C =V

LSS=v1/08L=4
VILT=%1/00pC =D
6 Ctl=¥1/7000C =1

TAAXId FDAELDO
UHZTI'TVINHON
Cle
095C = 840061+
P08 1+

Cx091+
0x0S1 =V

U3L = 8409+
Px05+
Cx05+
00t = ¢

00¥C = 8+0L 1+
V0L 1+
Cx08 [+
0+£00C =D

000C = 840t1+
P0G+
Cx0t]
0«0C1 =7

TAXId INdINO
AdZITYIARIONNN

Olt

1 DIA

bl =8+V+7+0 = HN'IVA
NOLLVZITVIARION

30¢

061 =V
09 =4
0Ll =D
A LTI OFl =1

| 3 =AMTTVA

961 9jdwieg

081 =V

0S¢ =4

P=HIVA 0Ll =D
NIGRMIE! 0G| =73

P61 oduieg

0§51 =V
Ov =t
0=HNTVA D0C =D
JdLIA OCl =1

061 ojduweg

00¢

0 =ANTVA UL D

—— N
C=dNIVA AL L V/

b =dNTVA AAL 11 g

8 = AN IVA UAL L %

U.S. Patent Feb. 1, 2005 Sheet 17 of 35 US 6,850,236 B2

Peripheral 350

FIG. 15

peripheral top
350A

medial top
352A

mEdIal foveal all medlal
left 154 right
352D 33528

medtal bottom
352C

peripheral
left

350D

peripheral
right

53508

162

peripheral bottom
350C
FIG. 16
Peripheral
162

US 6,850,236 B2

Sheet 18 of 35

Feb. 1, 2005

U.S. Patent

d81 DI

JLOHRILNOOD AVIN A TdIAVS 2€ = TV.LOL

NIE ¥ SHHONOL SNIAVY NOLLOTOANOD
NI UAd SHTIAVS 8 = NOIDH TVAAOd N

ALNGRLLNOD AVIN A1dAVS 1 = TVIOL
SNIEl [STHONOL SNIAVY NOLLOTOANOD
NIt Ydd ATdAVS 1 = NOIDHY IVIAHIRA] D

ALOYRIINOD AVIN 4 TdINVS | = TV.LOL.

NIE I SHHONOL SNIAVY NOILLNTOANOD
NIt ¥dd A TdJAVS 1 = NOIDTY TVSHA R B

bO¢
STAz
SRATMIIA
ﬁ 29¢
RN NOLLV:IAO:I
AN 10 LN1OJ

OLt

I |
CSIVIAAN b8

g

dIIANA AVIdSIA

— ek ——

06t "TVIAHdRIA]

V31l "DId

ALOERLINOD AVIN HTdINVS | = TV.LOL
NIt [SHHONOL SNIAVY NOLLN TOANOD
NIt d:dd ATdANVS = NOIDTY TVHIHIRIH

JLOHILENOD AVIA STTdAVS 91 = TV.LOL
SNIH ¥ SHHONO.L SNIAVY NOLLNTOANOD
NIt ddd SATdNVS ¥ = NOIDTY TVIAHdIA

ALNYTRIINOD AVIN ST TJINVS 2€ = TVIOL
SNIt ¥ SHHONOL SNIAVI NOLLNTOANOD
NIt ddd STdAVS 8 = NOIDTY TVIAQ]

12543
SelAC
Sl dMATA

>

Yt
NOLLVHAQI
10 LNI1Od

P8 HOIAHNA AVIdSId

Ly,

Lt

—— CLY
pse| X
OLL

_ "IVAAOA

7S¢ TVIAQANI

0S¢ TVAHARIA

09¢ A01A4d gd)

ONIADVAL AVEH MO dAA%

U.S. Patent

Feb. 1, 2005 Sheet 19 of 35

DISPLAY DEVICE 84

PERIPHERAL

US 6,850,236 B2

FOCAL POINT 402 MAIN
CHARACTER
362
FI1G. 19A

DISPLAY DEVICE 84

MEDIAL PERIPHERAL

| FOVEAL FOCAL POINT
¥ 402

MAIN

CHARACTER
_ 362

FIG. 19B

U.S. Patent Feb. 1, 2005 Sheet 20 of 35 US 6,850,236 B2

| |
L S

FI1G. 20

500 —\

US 6,850,236 B2

“ c09 119D
o

S

—

~

a 001

&

& I.
h .
p

I g

—

—

@\

1....,

S 9ZI1S __mo

=

U.S. Patent

|2 84nbi4

(Aanebau ainjosge winwixey Jo o "a'1)
obejuaolad 3_>:m,mm.c |IaXid

09
aZIS ||8)

009
190

9ZIS |19

US 6,850,236 B2

Sheet 22 of 35

Feb. 1, 2005

U.S. Patent

o __mo

gc b4

[g'V) w0y ayl Jo sanjea Alailebau
|ox1d Jo sabuel e Aq pauljep |99 yoe3

P __mo ¢ __mo £ 118D

7 119D

[P-g- [8-'91-) 91-'2€-)

slieD YIPIM Aleulg yum wesboisiH AiiniebeN

9215 1190

US 6,850,236 B2

Sheet 23 of 35

Feb. 1, 2005

U.S. Patent

18ju89 Jayjlj woli} snipey

T " - e e s — T

—r ¥ 0-

G} |

G0

e T BN SFEL A) TR

i8)|14 ouIS paleount] vyegeg B

G|

SnNjeA 19}jid

U.S. Patent Feb. 1, 2005 Sheet 24 of 35 US 6,850,236 B2

5

N
; f
i
|
| ; l
!
i :
il !
| o
|
;
|
| i | |
r l
QD | | -
> | : L
— | ¢
Ll | =
- | &
O * —
n | pe
— ; —
) -
- o
>t -
0 | |
’p
®, | =
©
4
C
m ~—
)
A\ |
=2
Li
W0
-
| |
—— m— - - $ 4 —
o - 0 © <t oV - o
*—- OO o O - CI:}

an|eA 18}

U.S. Patent Feb. 1, 2005 Sheet 25 of 35 US 6,850,236 B2

L _Ll"J
i - U merr————— Al
| |
i ; r N
1 |
|
!
| |
|
Eg)
Q ’ T s
C o
= a 5
|
O
U.J -
0 | Q@
& i T
5 ’ 5
O
- _-—
@ | %
L | =
| T
QN ; L —
: j |
) | |
£
LL |
i |
E
i
Le3
; -
]
| — . - - T . - O
™ © L ~ ok N - <
o - - - o o -,

anjeA 191

U.S. Patent Feb. 1, 2005 Sheet 26 of 35 US 6,850,236 B2

\ .
Anisotropy

0.6 \

Ringing

B quamz'\‘br

&
|~

0.3 1

12]Ua2 13)|Ij Wl snipey

US 6,850,236 B2

-.V.OI
_ — — — — e e —— — e ————— — -N.OI
alz Z Gl F G0 |

I | e O
\f)
¢
o

S S - — S 20
~
o)
-

&) o o)) .

2 e 70
g p

_ S - — P - — — - _ _ . . m.o
\f)
—
S

X e — - - = 1 80
oy
o
=

i : — . ;

——— ——— Z'

(L°0) 18} ljleAes}sN-[|ISUONUIN O’
‘au||ds o1|gno |eulpie) Jgg bi-

U.S. Patent

anjeA 18}l

US 6,850,236 B2

Sheet 28 of 35

Feb. 1, 2005

U.S. Patent

19]Ud9 19)|1I} WoJj snipey

Gl !

G0

¢ 0

- 80

-+ 2

J8}|14 OUIS pejedunl | pue payiys piemdn g b1

I’

¢ 0

ONEA 18}l

US 6,850,236 B2

Sheet 29 of 35

Feb. 1, 2005

U.S. Patent

Gg ‘b4

(S)a21Aa AedsiQ

oJi

L . . B B W TR —

081
NON

o

doLl

N
F
—

N ___

N0dlS

3 L] F = "= 9 e — T EEEEE——— R, [————

T

VOLlL

NodlS

-

lalhg ajdweg

_ G81
Alows|y 18114
_

Y Y
D0LL 90/
NOdLlS ¥ NOdlS
P o
29l

—

06 Ewwmoo_n_
solydels

wesalg ejeq soiydels

IIIIIIIII

U.S. Patent Feb. 1, 2005 Sheet 30 of 35 US 6,850,236 B2

Read Samples from
Sample Buffer 622

|
i
b
|
i

| P

4

Filter the samples using !

current filter to generate a (, / Filter Memory
piurality of output pixels - 185
for the frame 624 /
/N

Il]

h 4

Compute a frame
— negativity value for the fe——
current frame 628 |

Frame
negativity magnitude
above the negativity
threshold? 630 .

Adjust the filter in

Yes | suchawayasto |
reduce the frame

negativity value 632

Fig. 26

U.S. Patent Feb. 1, 2005 Sheet 31 of 35 US 6,850,236 B2

T\

84

Filter Control
Interface 702

900
Controls
704
82
\
User —
700

86

88

Fig. 27

STAN

US 6,850,236 B2

G8l

(s)eoinaq Aeldsig
oL G

Sheet 32 of 35

Feb. 1, 2005

s a0 LA 00 TG 0 SN SO

Al

dOLL
NJdlS

.81

L

WM 0U0Q |
IESNE

U.S. Patent

AIOWBIA 18}|14 R
—

Y Y
J0L1L A d0/1
N0dlS NOdlS
PEN =

VOLl

NOdlS

29l

18)jng sjdwes

1

06

108598204
solydein

Wesals ejeq solydels

sindu|
[e¥)[¥elg'
195N

U.S. Patent Feb. 1, 2005 Sheet 33 of 35 US 6,850,236 B2

/ Wait for us-;r \

control input(s)

N

l

Determine adjusted filter
values/parameters to
reflect the user control

Read Samples from | nput(s) 762 _

Sample Buffer 752

|

e Y 7
Filter the samples using / Ciltar
|__|current filter to generate a <___ Mermory
plurality of output pixels 185
: for the frame 754 / —

Fig. 29

U.S. Patent Feb. 1, 2005 Sheet 34 of 35 US 6,850,236 B2

@‘1‘ 82

Display-
Monitoring
Device 765

Figure 30

U.S. Patent

Yes

Feb. 1, 2005 Sheet 35 of 35

.

Read Samples from Sample
Buffer
172

) 4

Filter the samples using
current fiiter to generate a
plurality of output pixels for

the current frame 774

US 6,850,236 B2

/

/ Filter Memory

A 4

device 776

QOutput the pixels to a display

h 4

Capture the image of the
display device using a

» display-monitoring device to

obtain a captured iImage
1738

/

185

=<0

<

h 4 _—

.

Compute Similarity Value for
captured image with respect
to output pixels 780

s
similarity value larger

No

than minimum?
/82

—>»

Adjust the filter in order to|
maintain the captured
image within the desired

imits 790

Fig. 31

US 6,350,236 B2

1

DYNAMICALLY ADJUSTING A
SAMPLE-TO-PIXEL FILTER IN RESPONSE
1O USER INPUT AND/OR SENSOR INPUT

CROSS-REFERENCE TO RELATED
APPLICATTONS

This application claims the benefit of U.S. Provisional
Application No. 60/175,384, filed on Jan. 11, 2000, and
fitled “Photorealistic Hardware Anftialiasing”.

This application 1s a continuation-in-part of co-pending
U.S. application Ser. No. 09/251,840 titled “A Graphics

System With A Variable-Resolution Sample Buffer”, filed
Feb. 17, 1999, now U.S. Pat. No. 6,717,578, invented by
Michael F. Deering, and which was assigned to SUN
MICROSYSTEMS, INC., which claims the benefit of U.S.
Provisional Application No. 60/074,836, filed Feb. 17, 1998.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This 1invention relates generally to the field of computer
graphics and, more particularly, to high performance graph-
ICs systems.

2. Description of the Related Art

A computer system typically relies upon 1its graphics
system for producing visual output on the computer screen
or display device. Early graphics systems were only respon-
sible for taking what the processor produced as output and
displaying that output on the screen. In essence, they acted
as simple translators or interfaces. Modem graphics systems,
however, incorporate graphics processors with a great deal
of processing power. They now act more like coprocessors
rather than simple translators. This change i1s due to the
recent increase 1n both the complexity and amount of data
being sent to the display device. For example, modem
computer displays have many more pixels, greater color
depth, and are able to display 1images that are more complex
with higher refresh rates than earlier models. Similarly, the
images displayed are now more complex and may involve
advanced techniques such as anfti-aliasing and texture map-
ping.

As a result, without considerable processing power in the
ographics system, the CPU would spend a great deal of time
performing graphics calculations. This could rob the com-
puter system of the processing power needed for performing,
other tasks associated with program execution and thereby
dramatically reduce overall system performance. With a
powerful graphics system, however, when the CPU 1s
mstructed to draw a box on the screen, the CPU 1s freed from
having to compute the position and color of each pixel.
Instead, the CPU may send a request to the video card
stating: “draw a box at these coordinates”. The graphics
system then draws the box, freeing the processor to perform
other tasks.

Generally, a graphics system 1n a computer (also referred
to as a graphics system) is a type of video adapter that
contains 1ts own processor to boost performance levels.
These processors are specialized for computing graphical
transformations, so they tend to achieve better results than
the general-purpose CPU used by the computer system. In
addition, they free up the computer’s CPU to execute other
commands while the graphics system 1s handling graphics
computations. The popularity of graphical applications, and
especially multimedia applications, has made high perfor-
mance graphics systems a common feature of computer
systems. Most computer manufacturers now bundle a high
performance graphics system with their systems.

10

15

20

25

30

35

40

45

50

55

60

65

2

Since graphics systems typically perform only a limited
set of functions, they may be customized and therefore far
more cflicient at graphics operations than the computer’s
general-purpose central processor. While early graphics sys-
tems were limited to performing two-dimensional (2D)
oraphics, their functionality has increased to support three-
dimensional (3D) wire-frame graphics, 3D solids, and now
includes support for three-dimensional (3D) graphics with
textures and special effects such as advanced shading,
fogeing, alpha-blending, and specular highlighting.

The processing power of 3D graphics systems has been
improving at a breakneck pace. A few years ago, shaded
images of simple objects could only be rendered at a few
frames per second, while today’s systems support rendering
of complex objects at 60 Hz or higher. At this rate of
increase, 1n the not too distant future, graphics systems will
literally be able to render more pixels than a single human’s
visual system can perceive.

While the number of pixels 1s an important factor in
determining graphics system performance, another factor of
equal 1mport 1s the quality of the image. For example, an
image with a high pixel density may still appear unrealistic
if edges within the image are too sharp or jagged (also
referred to as “aliased”). One well-known technique to
overcome these problems is anti-aliasing. Anti-aliasing
involves smoothing the edges of objects by shading pixels
along the borders of graphical elements. More specifically,
anti-aliasing entails removing higher size components from
an 1mage before they cause disturbing visual artifacts. For
example, anti-aliasing may soften or smooth high contrast
edges 1n an 1mage by forcing certain pixels to intermediate
values (e.g., around the silhouette of a bright object super-
imposed against a dark background).

Another visual effect used to increase the realism of
computer 1images 1s alpha blending. Alpha blending 1s a
technique that controls the transparency of an object, allow-
ing realistic rendering of translucent surfaces such as water
or glass. Another technique used to improve realism 1is
fogemg. Fogging obscures an object as 1t moves away from
the viewer. Simple foggeing 1s a special case of alpha
blending 1n which the degree of alpha changes with distance
so that the object appears to vanish into a haze as the object
moves away from the viewer. This simple fogging may also
be referred to as “depth cueing” or atmospheric attenuation,
1.€., lowering the contrast of an object so that it appears less
prominent as 1t recedes. Types of fogging that are more
complex go beyond a simple linear function to provide
relationships that are more complex between the level of
translucence and an object’s distance from the viewer.
Current state of the art software systems go even further by
utilizing atmospheric models to provide low-lying fog with
improved realism.

While the techniques listed above may dramatically
improve the appearance of computer graphics 1mages, they
also have certain limitations. In particular, they may intro-
duce their own aberrations and are typically limited by the
density of pixels displayed on the display device.

As a result, a graphics system 1s desired which 1s capable
of utilizing increased performance levels to increase not
only the number of pixels rendered but also the quality of the
image rendered. In addition, a graphics system 1s desired
which 1s capable of utilizing 1ncreases 1in processing power
to 1mprove graphics effects such as anti-aliasing.

Prior art graphics systems have generally fallen short of
these goals. Prior art graphics systems use a conventional
frame buffer for refreshing pixel/video data on the display.

US 6,350,236 B2

3

The frame builer stores rows and columns of pixels that
exactly correspond to respective row and column locations
on the display. Prior art graphics system render 2D and/or
3D 1mages or objects into the frame buifer 1n pixel form, and
then read the pixels from the frame buifer during a screen
refresh to refresh the display. Thus, the frame buflfer stores
the output pixels that are provided to the display. To reduce
visual artifacts that may be created by refreshing the screen
at the same time as the frame bulfer 1s being updated, most

ographics systems’ frame bulflers are double-buifered.

To obtain 1mages that are more realistic, some prior art
graphics systems have gone further by generating more than
one sample per pixel. As used herein, the term “sample”
refers to calculated color information that indicates the
color, depth (z), transparency, and potentially other
information, of a particular point on an object or image. For
example, a sample may comprise the following component
values: a red value, a green value, a blue value, a z value, and
an alpha value (e.g., representing the transparency of the
sample). A sample may also comprise other information,
c.g., a z-depth value, a blur value, an intensity value,
brighter-than-bright mformation, and an indicator that the
sample consists partially or completely of control informa-
tion rather than color information (i.e., “sample control
information”). By calculating more samples than pixels (i.e.,
super-sampling), a more detailed image is calculated than
can be displayed on the display device. For example, a
graphics system may calculate four samples for each pixel to
be output to the display device. After the samples are
calculated, they are then combined or filtered to form the
pixels that are stored 1n the frame buffer and then conveyed
to the display device. Using pixels formed in this manner
may create a more realistic final 1mage because overly
abrupt changes 1n the 1image may be smoothed by the
filtering process.

These prior art super-sampling systems typically generate
a number of samples that are far greater than the number of
pixel locations on the display. These prior art systems
typically have rendering processors that calculate the
samples and store them 1nto a render buifer. Filtering hard-
ware then reads the samples from the render buifer, filters
the samples to create pixels, and then stores the pixels 1 a
traditional frame buffer. The traditional frame builer 1s
typically double-buffered, with one side being used for
refreshing the display device while the other side 1s updated
by the filtering hardware. Once the samples have been
filtered, the resulting pixels are stored 1n a traditional frame
buffer that 1s used to refresh the display device. These
systems, however, have generally suffered from limitations
imposed by the conventional frame buifer and by the added
latency caused by the render buifer and filtering. Therefore,
an 1mproved graphics system 1s desired which includes the
benelits of pixel super-sampling while avoiding the draw-
backs of the conventional frame buffer.

A graphics system configured to overcome these draw-
backs was proposed 1 U.S. patent application Ser. No.
09/251,840 titled “A GRAPHICS SYSTEM WITH A
VARIABLE-RESOLUTION SAMPLE BUFFER” which 1s

incorporated herein by reference in its entirety.

Although the effects of filtering yield 1mages that are
typically pleasing to the eye, filtering may also generate
undesirable artifacts. In some situations, a filter having
negative weights as well as positive weights may be used.
For example, filters such as the windowed Sinc f{ilter, the
Mitchell-Netravali filter, etc. have negative lobes as well as
one or more positive lobes. A negative lobe 1s a portion of
the filter where the filter function attains negative values. A

10

15

20

25

30

35

40

45

50

55

60

65

4

positive lobe 1s a portion of the filter where the filter function
attains positive values.

Low-pass filters may be used to remove high spatial
frequencies 1n a sampled 1mage. The 1deal low-pass filter
corresponds to an infinite Sinc function in the X-Y domain,
and a cylinder 1n the spatial frequency domain. The spatial
width (e.g. the width of the main positive lobe) of the Sinc
function primarily determines the cutoff spatial frequency of
the low-pass filter. Many low-pass filters have negative
lobes 1n an attempt to emulate some of the structure of the
Sinc function over a finite support. Of course, all realizable
filters have finite support (i.e. extent in the X-Y domain).

As a result of using filters with negative lobes and finite
support, pixels with negative intensity values may be gen-
crated. Negative intensity values cannot be realized on a
display device. A typical solution to these negative 1ntensity
values 1n prior art systems 1s to clip these values to zero,
which means representing the pixel as black. As a result of
this clipping, undesirable artifacts may become apparent,
such as ringing or fringing (i.e. either light or dark bands
echoing the edges of large transitions in intensities). Thus, a
oraphics system 1s desired that retains the benefits of real-
time filtering of samples while reducing or eliminating the
undesirable effects of negative lobes.

In addition to negative lobes, another impediment to
realistic 1mages 1s the variable nature of current display
devices. Different displays (e.g., differing by display
technology, age, or manufacturer) have different character-
istics. For example, a CRT may have pixels that have more
of a Gaussian 1ntensity spread around the pixel. On the other
hand, LCDs may have more of a square intensity distribution
in their pixels. Furthermore, this situation 1s further com-
plicated by different users having different preferences for
the visual appearance of displayed images. For example,
what might appear as an acceptably sharp 1mage to one user
may appear to another user as excessively smoothed. Thus,
a graphics system 1s desired that can dynamically adjust the
filter type, filter function and/or the filter support 1n response
to user mput. In addition, a graphics system 1s desired with
the ability to detect the output of the display device and
dynamically adjust the filter in response thereto.

SUMMARY OF THE INVENTION

A computer graphics system that utilizes a graphics
processor, a sample bufler and one or more sample-to-pixel
calculation units for refreshing a display 1s contemplated.
The graphics processor generates a plurality of samples in
response to an input stream of 3D graphics data, and stores
the samples into the sample buifer. The graphics processor
preferably generates and stores more than one sample for at
least a subset of the pixel locations on the display. Thus, the
sample bufler may be a Super-sampled sample buffer which
stores a number of samples that, in some embodiments, may
be far greater than the number of pixel locations on the
display. In other embodiments, the total number of samples
may be closer to, equal to, or even less than the total number
of pixel locations on the display device, but the samples may
be more densely positioned 1n certain areas and less densely
positioned 1n other areas.

The sample-to-pixel calculation units are configured to
read the samples from the super-sampled sample buffer and
filter or convolve the samples to generate output pixels. The
output pixels are then provided to refresh the display. Note
that, as used herein, the term “filter” refers to mathemati-
cally manipulating one or more samples to generate a pixel
(e.g., by averaging, convolving, summing, applying a filter-

US 6,350,236 B2

S

ing function, weighting the samples and then manipulating
them, applying a randomized function, etc.). The sample-
to-pixel calculation units select one or more samples and
filters them to generate an output pixel. Note that the number
of samples selected and/or filtered by the a given sample-
to-pixel calculation unit may be one or, as 1n the preferred
embodiment, greater than one.

In some embodiments, the graphics system may operate
without a conventional frame buffer. In other words, the
output pixel stream generated by the sample-to-pixel calcu-
lation units may be supplied to the display device without an

intervening frame buffer. Note that some displays may have
internal frame buffers, but these are considered an integral
part of the display device, not the graphics system. Thus, the
sample-to-pixel calculation units may calculate each pixel
for each screen refresh on a real-time basis. As used herein,
the term “real-time” refers to a function that 1s performed at
or near the display device’s refresh rate. “On-the-fly” means
at, near, or above the human visual system’s perception
capabilities for motion fusion (how often a picture must be
changed to give the illusion of continuous motion) and/or
flicker fusion (how often light intensity must be changed to
give the illusion of continuous illumination). These concepts
are Turther described 1n the book “Spatial Vision” by Russel

L. De Valois and Karen K. De Valois, Oxford University
Press, 1988.

In some embodiments, the graphics system may be oper-
able to dynamically adjust the filter used for generating the
output pixels 1n response to a subset of the output pixels
having negative values. Pixels with negative values may be
generated, for example, as a result of using a filter with
negative lobes. The graphics system may include a negativ-
ity computation unit configured to receive the output pixels
from the sample-to-pixel calculation units, and to compute
a frame negativity value based on the negative pixels (or a
subset of the negative pixels) in a frame. The negativity
computation unit may compute the frame negativity value in
parallel with the generation of the output pixels.

In one set of embodiments, the negativity computation
unit first generates a histogram of the negative pixel values.
A conventional histogram may be used or a histogram
having binary cell widths may be used. The frame negativity
value may be computed by forming a weighted average of
all the cell sizes 1n the histogram. Cell sizes corresponding
to cells of low negativity may be weighted less than cell
sizes corresponding to cells of high negativity. The frame
negativity value may be compared against a predetermined
negativity threshold. Note that the frame negativity value, as
referred to herein, 1s a positive number. The current filter
may remain in force if the frame negativity value 1s less than
the threshold. When the frame negativity value 1s above the
threshold value, the graphics system may dynamically adjust
the filter 1n order to reduce the negativity value for subse-
quent frames.

In one embodiment, the sample-to-pixel calculation units
may apply the adjusted filter to the filtration of samples
starting with the next frame. In other embodiments, the
sample-to-pixel calculation units may apply the adjusted
filter to the filtration of samples starting with the frame after
next frame, or more generally, with the N? subsequent
frame. In some embodiments, the graphics system may
employ a level of hysteresis to prevent flickering.

The graphics system may continue to monitor the frame
negativity value and continue to re-adjust the filter. In one
embodiment, the graphics system may modily the filter
coellicients 1n response to the frame negativity value con-
tinuing to 1ncrease.

10

15

20

25

30

35

40

45

50

55

60

65

6

In some embodiments, the filter may be dynamically
adjusted 1n response to receiving user input. Different users
may have different preferences as to the quality of an 1mage.
Certain users may prefer, for example, an 1mage that 1s
sharper, whereas other users may prefer an 1mage that 1s less
sharp and softer. Furthermore, different displays may have a
different response to the same pixel values. For example, a
CRT has a Gaussian intensity distribution about each pixel,
while an LCD has a square intensity distribution with a sharp
cut-ofl 1n 1ntensity about every pixel. Thus, a user may be
able to obtain the same visual effect from a CRT and from
an LCD, for example, by dynamically adjusting the filter
type, the filter function and/or the filter support.

In one embodiment, the user may be able to change the
filter type, filter function and/or filter support on a per region
basis. For example, a background scene may be more
appropriately displayed using a softer filter than the fore-
cground portions of the scene.

In a second embodiment, the graphics system may be
operable to dynamically adjust the filter type, filter function
and/or the filter support in response to measurements
obtained by a display-monitoring system coupled to the
ographics system. An example of a display-monitoring sys-
tem may be a video camera conifigured to capture the image
displayed by the display device. In one embodiment, after
capturing the i1mage frames from the video camera, the
graphics system computes a sharpness value for each of the
captured frames. The graphics system may also compute a
sharpness value for every other frame, every other two
frames, etc. 1f computational power 1s limaited.

The graphics system may be further configured to com-
pare the calculated sharpness value to a desired sharpness
value. In response to the calculated sharpness value being
above or below the desired value, the graphics system may
dynamically adjust the filter type, the filter function and/or
the filter support 1n order to return the sharpness value within
a certain percentage of the desired value. For example, the
graphics system may accomplish this by choosing different
filter types and/or by adjusting the filter parameters, such as
raising or lowering the filtering coefficients, adjusting the

width of the filter, or extending or restricting the support of
the filter (i.e., the bounds of the filter).

In another embodiment, the graphics system may be
configured to compute a similarity value for each frame by
comparing the captured image provided by the display-
monitoring device to the generated output pixels. The graph-
ics system may be further configured to compare the simi-
larity value to a desired similarity value. In response to the
similarity value being below a desired threshold, the graph-
ics system may dynamically adjust the filter type and/or the
filter parameters 1n order to obtain a similarity value for
subsequent frames that 1s above the desired threshold.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing, as well as other objects, features, and
advantages of this invention may be more completely under-
stood by reference to the following detailed description
when read together with the accompanying drawings in

which:

FIG. 1 illustrates one embodiment of a computer system
that includes one embodiment of a graphics system;

FIG. 2 1s a simplified block diagram of the computer
system of FIG. 1;

FIG. 3 1s a block diagram 1llustrating more details of one
embodiment of the graphics system of FIG. 1;

FIG. 4 1s diagram 1illustrating traditional pixel calculation;

US 6,350,236 B2

7

FIG. 5A 1s diagram 1llustrating one embodiment of super-
sampling;

FIG. 5B 1s diagram 1illustrating a random distribution of
samples;

FIG. 6 1s a diagram 1illustrating details of one embodiment
of a graphics system having one embodiment of a variable
resolution super-sampled sample buffer;

FIG. 7 1s a diagram 1illustrating details of another embodi-
ment of a graphics system having one embodiment of a
variable resolution super-sampled sample bulifer;

FIG. 8 1s a diagram 1llustrating details of three different
embodiments of sample positioning schemes;

FIG. 9 1s a diagram 1llustrating details of one embodiment
of a sample positioning scheme;

FIG. 10 1s a diagram illustrating details of another
embodiment of a sample positioning scheme;

FIG. 11 1s a diagram illustrating details of method of
converting samples to pixels in parallel;

FIG. 11A 1s a diagram 1illustrating more details of the
embodiment from FIG. 11;

FIG. 11B 1s a diagram 1llustrating details of one embodi-
ment of a method for dealing with boundary conditions;

FIG. 12 1s a flowchart 1llustrating one embodiment of a
method for drawing samples 1nto a super-sampled sample

buffer;

FIG. 12A 1s a diagram illustrating one embodiment for
coding triangle vertices;

FIG. 13 1s a diagram illustrating one embodiment of a
method for calculating pixels from samples;

FIG. 14 1s a diagram 1illustrating details of one embodi-
ment of a pixel convolution for an example set of samples;

FIG. 15 1s a diagram illustrating one embodiment of a
method for dividing a super-sampled sample buifer into
regions;

FIG. 16 1s a diagram 1llustrating another embodiment of
a method for dividing a super-sampled sample buffer into
regions;

FIG. 17 1s a diagram 1llustrating yet another embodiment
of a method for dividing a super-sampled sample buffer into
regions;

FIGS. 18A—B are diagrams illustrating one embodiment
of a graphics system configured to utilize 1input from an eye
tracking or head tracking device;

FIGS. 19A-B are diagrams illustrating one embodiment
of a graphics system configured to vary region position
according to the position of a cursor or visual object;

FIG. 20 1s a diagram of one embodiment of a computer
network connecting multiple computers;

FIG. 21 shows one embodiment of a histogram of pixel
negativity values used to compute the frame negativity value
for a current frame;

FIG. 22 shows another embodiment of a histogram having
cell boundaries at successive powers of two;

FIG. 23A shows one embodiment of a truncated sinc filter
as a function of radius;

FIG. 23B shows one embodiment of a Catmull-Rom filter
as a function of radius;

FIG. 23C shows one embodiment of a cubic B-spline

filter;

FIG. 23D illustrates a parameter square for the Mitchell-
Netravali filter family;

FIG. 23E 1illustrates a cardinal cubic spline filter, 1.e. a
Mitchell-Netraval filter with parameters B=0; and C=1;

10

15

20

25

30

35

40

45

50

55

60

65

3

FIG. 24 illustrates an upward shifted and truncated sinc
filter, which the minimum of the filter has be raised to the

level of the horizontal axis;

FIG. 25 1llustrates one embodiment of a graphics system
configured to dynamically adjust the sample-to-pixel calcu-
lation filter based on frame negativity;

FIG. 26 shows a flowchart describing one embodiment of
a method for adjusting the filter in response to the magnitude

of the frame negativity value being above a certain thresh-
old;

FIG. 27 shows a computer system, wherein a user, using,
filter control interface 702, may adjust the filter type, filter
function and/or filter support;

FIG. 28 shows one embodiment of a graphics system
enabling a user to dynamically control the filter type, filter
function and/of filter support;

FIG. 29 shows a flowchart describing one embodiment of
a method for adjusting the filter type, the filter function
and/or the filter support 1n response to receiving user mput;

FIG. 30 shows one embodiment of a display monitoring
system for capturing displayed images, and adjusting filter
properties 1n response to the captured 1mages;

FIG. 31 shows a flowchart describing one embodiment of
a method for adjusting the filter type, filter function and/or
the filter support in response to a display-monitoring device
capturing displayed images.

While the i1nvention 1s susceptible to various modifica-
tions and alternative forms, specific embodiments thercof
arec shown by way of example in the drawings and will
herein be described 1n detail. It should be understood,
however, that the drawings and detailed description thereto
are not intended to limait the invention to the particular forms
disclosed, but on the contrary, the mtention 1s to cover all
modifications, equivalents and alternatives falling within the
spirit and scope of the present invention as defined by the
appended claims. Please note that the section headings used
herein are for organizational purposes only and are not
meant to limit the description or claims. The word “may”™ 1s
used in this application in a permissive sense (1.€., having the
potential to, being able to), not a mandatory sense (i.c.,
must). Similarly, the word include, and derivations thereof,
are used herein to mean “including, but not limited to.”

DETAILED DESCRIPTION OF SEVERAL
EMBODIMENTS
Computer System—FIG. 1

FIG. 1 shows one embodiment of a computer system 80
that includes a three-dimensional (3-D) graphics system.
The computer system may be comprised 1n any of various
systems, 1ncluding a traditional PC, network PC, Internet
appliance, a television, including HDTV systems and inter-
active television systems, set top boxes, game console,
personal digital assistants (PDAs), and other devices which
display 2D and or 3D graphics, among others.

As shown, the computer system 80 comprises a system
unit 82 and a video monitor or display device 84 coupled to
the system unit 82. The display device 84 may be any of
various types of display monitors or devices (e.g., a CRT,
L.CD, or gas-plasma display). Various input devices may be
connected to the computer system, including a keyboard 86
and/or a mouse 88, or other input device (e.g., a trackball,
digitizer, tablet, six-degree of freedom input device, head
tracker, eye tracker, data glove, body sensors, etc.). Appli-
cation software may be executed by the computer system 80
to display 3-D graphical objects on display device 84. As
described further below, the 3-D graphics system 1n com-

US 6,350,236 B2

9

puter system 80 includes a super-sampled sample bufler
with a programmable real-time sample-to-pixel calculation
unit to improve the quality and realism of 1mages displayed
on display device 84.

Computer System Block Diagram—FIG. 2

Referring now to FIG. 2, a simplified block diagram
illustrating the computer system of FIG. 1 1s shown. Ele-
ments of the computer system that are not necessary for an
understanding of the present invention are not shown for
convenience. As shown, the computer system 80 includes a
central processing unit (CPU) 102 coupled to a high-speed
memory bus or system bus 104 also referred to as the host
bus 104. A system memory 106 may also be coupled to
high-speed bus 104.

Host processor 102 may comprise one or more processors
of varying types, €.g., mICroprocessors, multi-processors
and CPUs. The system memory 106 may comprise any
combination of different types of memory subsystems,
including random access memories, (€.g., static random
access memories or “SRAMSs”, synchronous dynamic ran-
dom access memories or “SDRAMSs”, and Rambus dynamic
access memories or “RDRAM”, among others) and mass
storage devices. The system bus or host bus 104 may
comprise one or more communication or host computer
buses (for communication between host processors, CPUs,
and memory subsystems) as well as specialized subsystem
buses.

A 3-D graphics system or graphics system 112 according
to the present invention i1s coupled to the high-speed
memory bus 104. The 3-D graphics system 112 may be
coupled to the bus 104 by, for example, a crossbar switch or
other bus connectivity logic. It 1s assumed that various other
peripheral devices, or other buses, may be connected to the
high-speed memory bus 104. It 1s noted that the 3-D
graphics system may be coupled to one or more of the buses
in computer system 80 and/or may be coupled to various
types of buses. In addition, the 3D graphics system may be
coupled to a communication port and thereby directly
receive graphics data from an external source, e.g., the
Internet or a network. As shown 1 the figure, display device
84 1s connected to the 3-D graphics system 112 comprised
in the computer system 80.

Host CPU 102 may transfer information to and from the
graphics system 112 according to a programmed input/
output (I/O) protocol over host bus 104. Alternately, graph-
ics system 112 may access the memory subsystem 106
according to a direct memory access (DMA) protocol or
through intelligent bus mastering.

A graphics application program conforming to an appli-
cation programming interface (API) such as OpenGL® or
Java 3D™ may execute on host CPU 102 and generate
commands and data that define a graphics primitive
(graphics data) such as a polygon for output on display
device 84. As defined by the particular graphics interface
used, these primitives may have separate color properties for
the front and back surfaces. Host processor 102 may transfer
these graphics data to memory subsystem 106. Thereafter,
the host processor 102 may operate to transfer the graphics
data to the graphics system 112 over the host bus 104. In
another embodiment, the graphics system 112 may read 1n
geometry data arrays over the host bus 104 using DMA
access cycles. In yet another embodiment, the graphics
system 112 may be coupled to the system memory 106
through a direct port, such as the Advanced Graphics Port
(AGP) promulgated by Intel Corporation.

The graphics system may receive graphics data from any
of various sources, including the host CPU 102 and/or the

10

15

20

25

30

35

40

45

50

55

60

65

10

system memory 106, other memory, or from an external
source such as a network, e¢.g., the Internet, or from a
broadcast medium, e.g., television, or from other sources.

As will be described below, graphics system 112 may be
coniigured to allow more efficient microcode control, which
results 1n increased performance for handling of incoming
color values corresponding to the polygons generated by
host processor 102. Note that while graphics system 112 1s
depicted as part of computer system 80, graphics system 112
may also be configured as a stand-alone device (e.g., with its
own built-in display) or as part of another device, such as a
PDA, television, or any other device with display capabili-
ties. Graphics system 112 may also be configured as a
single-chip device or as part of a system-on-a-chip or a
multi-chip module.

Graphics System—FIG. 3

Referring now to FIG. 3, a block diagram illustrating
details of one embodiment of graphics system 112 1s shown.
As shown 1n the figure, graphics system 112 may comprise
one or more graphics processors 90, one or more super-
sampled sample buffers 162, and one or more sample-to-
pixel calculation units 170A-D. Graphics system 112 may
also comprise one or more digital-to-analog converters
(DACs) 178 A—-B. Graphics processor 90 may be any suit-
able type of high performance processor (e.g., specialized
graphics processors or calculation units, multimedia
processors, DSPs, or general purpose processors). In one
embodiment, graphics processor 90 may comprise one or
more rendering units 150A-D. In the embodiment shown,
however, graphics processor 90 also comprises one or more
control units 140, one or more data memories 152A-D, and
onc or more schedule units 154. Sample buffer 162 may
comprises one or more sample memories 160A—160N as
shown 1n the figure.

A. Control Unit

Control unit 140 operates as the interface between graph-
ics system 112 and computer system 80 by controlling the
transfer of data between graphics system 112 and computer
system 80. In embodiments of graphics system 112 that
comprise two or more rendering units 150A—D, control unit
140 may also divide the stream of data received from
computer system 80 1nto a corresponding number of parallel
strecams that are routed to the individual rendering units
150A-D. The graphics data may be received from computer
system 80 1n a compressed form. This may advantageously
reduce the bandwidth requirements between computer sys-
tem 80 and graphics system 112. In one embodiment, control
unit 140 may be configured to split and route the data stream
to rendering units 150A-D 1n compressed form.

The graphics data may comprise one or more graphics
primitives. As used herein, the term graphics primitive
includes polygons, parametric surfaces, splines, NURBS
(non-uniform rational B-splines), sub-divisions surfaces,
fractals, volume primitives, and particle systems. These
graphics primitives are described in detail 1n the text book
entitled “Computer Graphics: Principles and Practice” by
James D. Foley, et al., published by Addison-Wesley Pub-
lishing Co., Inc., 1996. Note polygons are referred to
throughout this detailed description for simplicity, but the
embodiments and examples described may also be used with
graphics data comprising other types of graphics primitives.
B. Rendering Units

Rendering units 1S0A-D (also referred to herein as draw
units) are configured to receive graphics instructions and
data from control unit 140 and then perform a number of
functions, depending upon the exact implementation. For
example, rendering units 150A-D may be configured to

US 6,350,236 B2

11

perform decompression (if the data is compressed),
transformation, clipping, lighting, texturing, depth cueing,
transparency processing, setup, and screen space rendering
of various graphics primitives occurring within the graphics
data. Each of these features 1s described separately below.

Depending upon the type of compressed graphics data
received, rendering units 150A—D may be configured to
perform arithmetic decoding, run-length decoding, Huffman
decoding, and dictionary decoding (e.g., LZ77, LZSS,
[LZ78, and LZW). In another embodiment, rendering units
150A-D may be configured to decode graphics data that has
been compressed using geometric compression. Geometric
compression of 3D graphics data may achieve significant
reductions 1n data size while retaining most of the image
quality. Two methods for compressing and decompressing
3D geometry are described 1n

U.S. Pat. No. 5,793,371, application Ser. No. 08/511,294,
(filed on Aug. 4, 1995, entitled “Method And Apparatus
For Geometric Compression Of Three-Dimensional
Graphics Data,”) and

U.S. patent application Ser. No. 09/095,777, filed on Jun.
11, 1998, entitled “Compression of Three-Dimensional
Geometry Data Representing a Regularly Tiled Surface
Portion of a Graphical Object,”).

In embodiments of graphics system 112 that support
decompression, the graphics data received by each rendering
unit 150 1s decompressed 1nto one or more graphics “primi-
tives” which may then be rendered. The term primitive
refers to components of objects that define its shape (e.g.,
points, lines, triangles, polygons 1n two or three dimensions,
polyhedra, or free-form surfaces in three dimensions). Ren-
dering units 150 may be any suitable type of high perfor-
mance processor (€.g., specialized graphics processors or
calculation units, multimedia processors, DSPs, or general
pPUrpoOSE Processors).

Transformation refers to manipulating an object and
includes translating the object (i.e., moving the object to a
different location), scaling the object (i.e., stretching or
shrinking), and rotating the object (e.g., in three-dimensional
space, or “3-space”).

Lighting refers to calculating the 1llumination of the
objects within the displayed image to determine what color
and or brightness each individual object will have. Depend-
ing upon the shading algorithm being used (e.g., constant,
Gourand, or Phong), lighting may be evaluated at a number
of different locations. For example, 1f constant shading is
used (i.e., each pixel of a polygon has the same lighting),
then the lighting need only be calculated once per polygon.
If Gourand shading is used, then the lighting 1s calculated
once per vertex. Phong shading calculates the lighting on a
per-pixel basis.

Clipping refers to the elimination of graphics primitives
or portions of graphics primitives that lie outside of a 3-D
view volume 1n world space. The 3-D view volume may
represent that portion of world space that 1s visible to a
virtual observer situated 1n world space. For example, the
view volume may be a solid truncated pyramid generated by
a 2-D view window and a viewpoint located in world space.
The solid truncated pyramid may be imagined as the union
of all rays emanating from the viewpoint and passing
through the view window. The viewpoint may represent the
world space location of the virtual observer. Primitives or
portions of primitives that lie outside the 3-D view volume
are not currently visible and may be eliminated from further
processing. Primitives or portions of primitives that lie
inside the 3-D view volume are candidates for projection
onto the 2-D view window.

10

15

20

25

30

35

40

45

50

55

60

65

12

In order to simplify the clipping and projection
computations, primitives may be transformed 1nto a second,
more convenient, coordinate system referred to herein as the
viewport coordinate system. In viewport coordinates, the
view volume maps to a canonical 3-D viewport that may be
more convenient for clipping against.

Graphics primitives or portions of primitives that survive
the clipping computation may be projected onto a 2-D
viewport depending on the results of a visibility determina-
tion. Instead of clipping 1n 3-D, graphics primitives may be
projected onto a 2-D view plane (which includes the 2-D
viewport) and then clipped with respect to the 2-D viewport.

Screen-space rendering refers to the calculations per-
formed to actually calculate the data used to generate each
pixel that will be displayed. In prior art systems, each pixel
1s calculated and then stored 1n a frame buifer. The contents
of the frame buffer are then output to the display device to
create the final image. In the embodiment of graphics system
112 shown 1n the figure, however, rendering units 150A-D
calculate “samples” 1nstead of actual pixel data. This allows
rendering units 150A-D to “super-sample” or calculate
more than one sample per pixel. Super-sampling 1s described
in greater detail below. The rendering units 150A—D may
also generate a greater arca of samples than the viewable
arca of the display 84 for various effects such as panning and
zooming. Note that rendering units 150A—B may comprises
a number of smaller functional units, €.g., a separate set-
up/decompress unit and a lighting unait.

More details on super-sampling are discussed in the
following books:

“Principles of Digital Image Synthesis” by Andrew S.
Glassner, 1995, Morgan Kaufman Publishing (Volume
1);

The Renderman Companion” by Steve Upstill, 1990,
Addison Wesley Publishing; and

“Advanced Renderman: Beyond the Companion™ by
Anthony A. Apodaca.

C. Data Memories

Each rendering unit 150A-D may be coupled to an
instruction and data memory 152A-D. In one embodiment,
cach data memory 152A—D may be configured to store both
data and instructions for rendering units 150A-D. While
implementations may vary, in one embodiment each data
memory 152A—D may comprise two 8 MByte SDRAMSs
providing a total of 16 MBytes of storage for each rendering
unit 150A-D. In another embodiment, RDRAMs (Rambus
DRAMSs) may be used to support the decompression and
set-up operations of each rendering unit, while SDRAMSs
may be used to support the draw functions of rendering units

150A-D.
D. Schedule Unait

Schedule unit 154 may be coupled between the rendering,
units 150A-D and the sample memories 160A—N. Schedule
unit 154 1s configured to sequence the completed samples
and store them 1 sample memories 160A—N. Note 1 larger
configurations, multiple schedule units 154 may be used 1n
parallel. In one embodiment, schedule unit 154 may be
implemented as a crossbar switch.
E. Sample Memories

Super-sampled sample buffer 162 comprises sample
memories 160A—160N, which are configured to store the
plurality of samples generated by the rendering units. As
used herein, the term “sample buffer” refers to one or more
memories that store samples. As previously noted, samples
are rendered into the sample bufler 162 at positions in the
sample buffer which correspond to locations in screen space
on the display. The positions may be calculated using

US 6,350,236 B2

13

various methods, such as grid-based position generation,
stochastic position generation, or perturbed grid position
generation, among others. The positions may be calculated
or programmatically determined on a per frame basis, a per
bin basis, or even a per sample basis. In one embodiment,
sample position information 1s stored with the samples 1n the
sample buffer.

One or more samples are then filtered to form each output
pixels (i.e., pixels to be displayed on a display device). The
number of samples stored may be greater than, equal to, or
less than the total number of pixels output to the display
device to refresh a single frame. Each sample may corre-
spond to one or more output pixels. As used herein, a sample
“corresponds” to an output pixel when the sample’s mfor-
mation contributes to final output value of the pixel. Note,
however, that some samples may contribute zero to their
corresponding output pixel after filtering takes place.

Stated another way, the sample bufler stores a plurality of
samples that have positions that correspond to locations 1n
screen space on the display, 1.e., the samples contribute to
one or more output pixels on the display. The number of
stored samples may be greater than the number of pixel
locations, and more than one sample may be combined in the
convolution (filtering) process to generate a particular output
pixel displayed on the display device. Any given sample
may conftribute to one or more output pixels.

Sample memories 160A—160N may comprise any of a
number of different types of memories (e.g., SDRAMs,
SRAMs, RDRAMs, 3DRAMs, or next-generation
3DRAMSs) in varying sizes. In one embodiment, each sched-
ule unit 154 1s coupled to four banks of sample memories,
wherein each bank comprises four 3ADRAM-64 memories.
Together, the 3DRAM-64 memories may form a 116-bit
deep super-sampled sample buffer that stores multiple
samples per pixel. For example, in one embodiment, each
sample memory 160A—160N may store up to sixteen
samples per pixel.

3DRAM-64 memories are specialized memories config-
ured to support full internal double buffering with single
buffered Z in one chip. The double buffered portion com-
prises two RGBX bulfers, wherein X 1s a fourth channel that
can be used to store other information (e.g., alpha).
3DRAM-64 memories also have a lookup table that takes 1n
window ID information and controls an internal 2-1 or 3-1
multiplexer that selects which buffer’s contents will be
output. 3ADRAM-64 memories are next-generation 3DRAM
memories that may soon be available from Mitsubishi
Electric Corporation’s Semiconductor Group. In one
embodiment, 32 chips used in combination are sufficient to
create a double-buffered 1280x1024 super-sampled sample
buffer.

Since the memories are internally double-buffered, the
input pins for each of the two frame buffers 1n the double-
buffered system are time multiplexed (using multiplexers
within the memories). The output pins may similarly be time
multiplexed. This allows reduced pin count while still pro-
viding the benefits of double buffering. 3DRAM-64 memo-
ries further reduce pin count by not having z output pins.
Since z comparison and memory bufler selection 1s dealt
with internally, this may simplify sample buffer 162 (c.g.,
using less or no selection logic on the output side). Use of
3DRAM-64 also reduces memory bandwidth since informa-
fion may be written 1into the memory without the traditional
process of reading data out, performing a z comparison, and
then writing data back in. Instead, the data may be simply
written into the 3DRAM-64, with the memory performing,
the steps described above internally.

10

15

20

25

30

35

40

45

50

55

60

65

14

However, 1n other embodiments of graphics system 112,
other memories (e.g., SDRAMs, SRAMs, RDRAMSs, or
current generation 3DRAMs) may be used to form sample

bufter 162.

Graphics processor 90 may be configured to generate a
plurality of sample positions according to a particular
sample-positioning scheme (e.g., a regular grid, a perturbed
regular grid, stochastic, etc.). The sample position informa-
tion for each of the samples may be stored for later use by
the sample-to-pixel calculation unit(s). For example, the
ographics processor 90 may store the sample position 1nfor-
mation 1n the sample bufler with the samples, or may store
the sample position information 1n a separate sample posi-
tion memory. Alternatively, the sample positions (or position
information (e.g., offsets that are added to regular grid
positions to form the sample positions) may be pre-
determined or pre-computed using one of the above schemes
and simply read from the sample position memory (e.g., a
RAM/ROM table). The sample position information may be
pre-computed by the graphics processor, by the host CPU, or
by other logic.

The sample position information may comprise coordi-
nate values relative to a sample buffer coordinate system,
¢.g., coordinate values relative to the display screen space.
The sample position information may also comprise offset
values, wherein the offset values are relative to pre-defined
locations 1n the sample builer, such as a pre-defined regular
or1d, pre-defined bins, or pixel center coordinates.

Upon receiving a polygon that 1s to be rendered, graphics
processor 90 determines which samples reside within the
polygon based upon the sample position information.
Graphics processor 90 renders the samples that reside within
the polygon and stores rendered samples 1n sample memo-
ries 160A—N. Note that as used herein the terms “render”
and “draw” are used interchangeably and refer to calculating
color values for samples. Depth samples, including one or
more of color values, depth values, alpha values, blur values,
and other per-sample values may also be calculated in the
rendering or drawing process.

F. Sample-to-pixel Calculation Units

Sample-to-pixel calculation units 170A-D (sometimes
collectively referred to as sample-to-pixel calculation unit
170) may be coupled between sample memories 160A—N
and DACs 178A—-B. Sample-to-pixel calculation units
170A—-D are configured to read selected samples from
sample memories 160A—N, wherein the 160A-N samples
arc selected based on the position information of the
samples, and then perform a convolution (e.g., a filtering and
welghting function or a low pass filter) on the samples to
generate the output pixel values which are output to DACs
178A—B. The sample-to-pixel calculation units 170A-D
may be programmable to allow them to perform different
filter functions at different times, depending upon the type of
output desired.

In one embodiment, the sample-to-pixel calculation units
170A-D may implement a super-sample reconstruction
band-pass filter to convert the super-sampled sample bufler
data (stored in sample memories 160A—-N) to single pixel
values. The support of the band-pass filter may cover a
rectangular areca M pixels high and N pixels wide. Thus, the
number of samples covered by the band-pass filter is
approximately equal to M-N-S, where S 1s the number of
samples per pixel. A variety of values for M, N, & S are
contemplated. For example, in one embodiment of the
band-pass filter M=N=5. It 1s noted that with certain sample
positioning schemes, the number of samples that fall within
the filter support may vary as the filter center (i.e., pixel
center) moves.

US 6,350,236 B2

15

In other embodiments, calculation units 170A—D may
filter a selected number of samples to calculate an output
pixel. The selected samples may be multiplied by a spatial
welghting function that gives weights to samples based on
their position with respect to the center of the pixel being
calculated.

The filtering operations performed by sample-to-pixel
calculation units 170 may use any of a variety of {ilters,
cither alone or 1 combination. For example, the filtering
operations may comprise convolution with a box filter, a tent
filter, a cylindrical filter, a cone filter, a Gaussian filter, any
filter in the Mitchell-Netravali family (e.g. the Catmull-Rom
filter), a windowed Sinc filter, etc. Furthermore, the support
of the filters used by sample-to-pixel calculation units 170
may be circular, elliptical, rectangular (e.g., square),
triangular, hexagonal, etc.

Sample-to-pixel calculation units 170A—D may also be
coniigured with one or more of the following features: color
look-up using pseudo color tables, direct color, 1nverse
gamma correction, filtering of samples to pixels, and con-
version of pixels to non-linear light space. Other features of
sample-to-pixel calculation units 170A—D may include pro-
crammable video timing generators, programmable pixel
clock synthesizers, cursor generators, color space
converters, and crossbar functions. Once the sample-to-pixel
calculation units have manipulated the timing and color of
cach pixel, the pixels are output to DACs 178 A—B.

G. DACs

DACs 178 A—B operate as the final output stage of graph-
ics system 112. The DACs 178A—B serve to translate the
digital pixel data received from cross units 174A—B 1nto
analog video signals that are then sent to the display device.
Note 1n one embodiment DACs 178A—B may be bypassed
or omitted completely in order to output digital pixel data in
lieu of analog video signals. This may be useful when
display device 84 is based on a digital technology (e.g., an
LCD-type display, LCOS display, or a digital micro-mirror
display).

Super-Sampling—FIGS. 4-5

Turning now to FIG. 4, an example of traditional, non-
super-sampled pixel value calculation 1s illustrated. Each
pixel has exactly one data point calculated for it, and the
single data point 1s located at the center of the pixel. For
example, only one data point (i.e., sample 74) contributes to
value of pixel 70.

Turning now to FIG. SA, an example of one embodiment
of super-sampling 1s 1llustrated. In this embodiment, a
number of samples are calculated. The number of samples
may be related to the number of pixels or completely
independent of the number of pixels. In this example, there
arec 18 samples distributed 1 a regular grid across nine
pixels. Even with all the samples present 1n the figure, a
simple one to one correlation could be made (e.g., by
throwing out all but the sample nearest to the center of each
pixel). However, the more interesting case 1s performing a
filtering function on multiple samples to determine the final
pixel values. Also, as noted above, a single sample can be
used to generate a plurality of output pixels, 1.e., sub-
sampling.

A circular filter 72 1s 1illustrated in the figure. In this
example, samples 74A—B both contribute to the final value
of pixel 70. This filtering process may advantageously
improve the realism of the 1mage displayed by smoothing
abrupt edges in the displayed image (i.e., performing anti-
aliasing). Filter 72 may simply average samples 74A—B to
form the final value of output pixel 70, or it may increase the
contribution of sample 74B (at the center of pixel 70) and

10

15

20

25

30

35

40

45

50

55

60

65

16

diminish the contribution of sample 74A (i.e., the sample
farther away from the center of pixel 70). Circular filter 72
1s repositioned for each output pixel being calculated so the
center of filter 72 coincides with the center position of the
pixel being calculated. Other filters and filter positioning
schemes are also possible and contemplated.

Turning now to FIG. 5B, another embodiment of super-
sampling 1s illustrated. In this embodiment, however, the
samples are positioned randomly. More speciiically, differ-
ent sample positions are selected and provided to graphics
processor 90 (and render units 150A—D), which calculate
color information to form samples at these different loca-
tions. Thus the number of samples falling within filter 72
may vary from pixel to pixel.

Super-Sampled Sample Buff
Convolution—FIGS. 6-13

FIGS. 6A, 6B, 7A and 7B illustrate possible configura-
tions for the flow of data through one embodiment of
ographics system. As the figures show, geometry data 350 1s
received by graphics system 112 and used to perform draw
or render process 352. The draw process 352 1s implemented
by one or more of control unit 140, rendering units 150,
memories 152, and schedule unit 154. Geometry data 350
comprises data for one or more polygons. Each polygon
comprises a plurality of vertices (e.g., three vertices in the
case of a triangle), some of which may be shared. Data such
as X, y, and z coordinates, color data, lighting data and
texture map 1nformation may be included for each vertex.

In addition to the vertex data, draw process 352 (which
may be performed by rendering units 150A—D) also receives
sample position information from a sample position memory
354. Draw process 352 selects the samples that fall within
the polygon currently being rendered and calculates a set of
values (e.g. red, green, blue, z, alpha, and/or depth of field
information) for each of these samples based on their
respective positions within the polygon. For example, the z
value of a sample that falls within a triangle may be
interpolated from the known z values of the three vertices.
Each set of computed sample values are stored into sample

buifer 162.

In one embodiment, sample position memory 354 1s
embodied within rendering units 150A-D. In another
embodiment, sample position memory 354 may be realized
as part of memories 152A—152D, or as a separate memory.

Sample position memory 354 may store sample positions
in terms of their sample (virtual) screen coordinates (X, Y).
Alternatively, sample position memory 354 may be config-
ured to store only offsets dX and dY for the samples with
respect to positions on a regular grid. Storing only the offsets
may use less storage space than storing the entire coordi-
nates (X, Y) for each sample. The sample position informa-
fion stored 1n sample position memory 354 may be read by
a dedicated sample-position calculation unit (not shown) and
processed to calculate sample positions for graphics pro-
cessing unit 90.

In another embodiment, sample position memory 354
may be configured to store a table of random numbers.
Sample position memory 354 may also comprise dedicated
hardware to generate one or more different types of regular
orids. This hardware may be programmable. The stored
random numbers may be added as offsets to the regular grid
positions generated by the hardware. In one embodiment,
sample position memory 354 may be programmable to
access or “unfold” the random number table 1n a number of
different ways, and thus may deliver more apparent random-
ness for a given length of the random number table. Thus, a
smaller table may be used without generating the visual
artifacts caused by simple repetition of sample position
oifsets.

er with Real-Time

US 6,350,236 B2

17

Sample-to-pixel calculation process 360 uses the same
sample positions as draw process 352. Thus, in one
embodiment, sample position memory 354 may generate a
sequence of random offsets to compute sample positions for
draw process 352, and may subsequently regenerate the
same sequence of random offsets to compute the same
sample positions for sample-to-pixel calculation process
360. In other words, the unfolding of the random number
table may be repeatable. Thus, 1t may not be necessary to
store sample positions at the time of their generation for
draw process 352.

As shown 1 FIGS. 6A and 6B, the sample position
information may be stored 1n a separate sample position
memory 354. For example, the sample position information
(c.g., offsets that are added to regular grid positions to form
the sample positions) may be pre-determined or pre-
computed using one of the above schemes and read from the
sample position memory 354 (e.g., a RAM/ROM table)
during rendering. The sample positions may be pre-
computed by the graphics processor 90, by the host CPU, or
by other logic as noted above. Alternatively, the graphics
processor 90 may generate the sample position information
during rendering and store the sample position information
In one embodiment, sample position memory 354 may
comprisc a RAM/ROM that contains stochastic sample
points (or locations) for different total sample counts per bin.
As used herein, the term “bin” refers to a region or area in
screen-space and contains however many samples are 1n that
area (e.g., the bin may be 1x1 pixels in area, 2x2 pixels in
area, etc.). The use of bins may simplify the storage and
access of samples 1n sample buffer 162. A number of
different bin sizes may be used (e.g., one sample per bin,
four samples per bin, etc.). In the preferred embodiment,
cach bin has an xy-position that corresponds to a particular
location on the display. The bins are preferably regularly
spaced. In this embodiment, the bins” xy-positions may be
determined from the bin’s storage location within sample
buffer 162. The bins’ positions correspond to particular
positions on the display. In some embodiments, the bin
positions may correspond to pixel centers, while 1 other
embodiments the bin positions correspond to points that are
located between pixel centers. The specific position of each
sample within a bin may be determined by looking up the
sample’s offset in the RAM/ROM table (the offsets may be
stored relative to the corresponding bin position). However,
depending upon the implementation, not all bin sizes may
have a unique RAM/ROM entry. Some bin sizes may simply
read a subset of the larger bin sizes’ entries. In one
embodiment, each supported size has at least four different
sample-position scheme variants, which may reduce final
image artifacts due to repeating sample positions.

In one embodiment, position memory 354 may store pairs
of 6-bit numbers, each pair comprising an x-offset and a
y-offset (other possible offsets are also possible, e€.g., a time
offset, a z-offset, etc.). When added to a bin position, each
pair defines a particular position 1n screen space. The term
“screen space” refers generally to the coordinate system of
the display device. To improve read times, memory 354 may
be constructed 1n a wide/parallel manner so as to allow the
memory to output more than one sample location per clock
cycle.

Once the sample positions have been read from sample
position memory 354, draw process 352 selects the sample
positions that fall within the polygon currently being ren-
dered. Draw process 352 then calculates the z and color
information (which may include alpha or other depth of field
information values) for each of these samples and stores the

10

15

20

25

30

35

40

45

50

55

60

65

138

data mto sample buffer 162. In one embodiment, the sample
buffer may only single-buffer z values (and perhaps alpha
values) while double buffering other sample components
such as color. Unlike prior art systems, graphics system 112
may double buffer all samples (although not all sample
components may be double-buffered, 1.e., the samples may
have components that are not double-buffered). In one
embodiment, the samples are stored into sample buffer 162
in bins. In some embodiments, the size of bins, 1.e., the
quantity of samples within a bin, may vary from frame to
frame and may also vary across different regions of display
device 84 within a single frame. For example, bins along the
edges of display device may comprise only one sample,
while bins corresponding to pixels near the center of display
device 84 may comprise sixteen samples. Note the area of
bins may vary from region to region. The use of bins will be
described 1n greater detail below 1n connection with FIG. 11.

In parallel and independently of draw process 352, filter
process 360 1s configured to read samples from sample
buffer 162, filter (i.e., filter) them, and then output the
resulting output pixel to display device 84. Sample-to-pixel
calculation units 170 implement filter process 380. Thus, for
at least a subset of the output pixels, the filter process 1s
operable to filter a plurality of samples to produce a respec-
tive output pixel. In one embodiment, filter process 360 is
configured to: (1) determine the distance from each sample
to the center of the output pixel being filtered; (i1) multiply
the sample’s components (e.g., color and alpha) with a filter
value that is a specific (programmable) function of the
distance; (ii1) sum all the weighted samples that contribute
to the output pixel, and (iv) normalize the resulting output
pixel. The filter process 360 1s described 1n greater detail
below (see description accompanying FIGS. 11, 12, and 14).
Note the extent of the filter function need not be circular
(i.e., it may be a function of x and y instead of the distance),
but even 1if the extent 1s circular, the filter function need not
be circularly symmetrical. The filter’s “extent” 1s the area
within which samples can influence the particular pixel
being calculated with the filter.

Turning now to FIG. 7, a diagram 111ustrat1ng an alternate
embodiment of graphics system 112 1s shown. In this
embodiment, two or more sample position memories 354A
and 3548 arc utilized. Thus, the sample position memories
354A—B are essentially double-buffered. If the sample posi-
tions are kept the same from frame to frame, then the sample
positions may be single buffered. However, 1f the sample
positions may vary from frame to frame, then graphics
system 112 may be advantageously configured to double-
buffer the sample positions. The sample positions may be
double buffered on the rendering side (i.e., memory 354A
may be double buffered) and or the filter/convolve side (i.e.,
memory 354B may be double buffered). Other combinations
are also possible. For example, memory 354A may be
single-buffered, while memory 354B 1s doubled bufiered.
This configuration may allow one side of memory 354B to
be used for refreshing (i.c., by filter/convolve process 360)
while the other side of memory 354B 1s used being updated.
In this configuration, graphics system 112 may change
sample position schemes on a per-frame basis by shifting the
sample positions (or offsets) from memory 354A to double-
buffered memory 354B as each frame is rendered. Thus, the
positions used to calculate the samples (read from memory
354A) are copied to memory 354B for use during the
filtering process (i.e., the sample-to-pixel conversion
process). Once the position information has been copied to
memory 354B, position memory 354A may then be loaded
with new sample position offsets to be used for the second

US 6,350,236 B2

19

frame to be rendered. In this way the sample position
information follows the samples from the draw/render pro-
cess to the filter process.

Yet another alternative embodiment may store tags to
offsets with the samples themselves 1n super-sampled
sample buffer 162. These tags may be used to look-up the
oifset/perturbation associated with each particular sample.
Sample Positioning Schemes

FIG. 8 1llustrates a number of different sample positioning,
schemes. In regular grid positioning scheme 190, each
sample 1s positioned at an intersection of a regularly-spaced
orid. Note however, that as used hercin the term “regular
orid” 1s not limited to square grids. Other types of grids are
also considered “regular” as the term 1s used herein,
including, but not limited to, rectangular grids, hexagonal
orids, triangular grids, logarithmic grids, and semi-regular
lattices such as Penrose tiling.

Perturbed regular grid positioning scheme 192 1s based
upon the previous definition of a regular grid. However, the
samples 1n perturbed regular grid scheme 192 may be offset
from their corresponding grid intersection. In one
embodiment, the samples may be offset by a random angle
(e.g., from 0° to 360%) and a random distance, or by random
X and y offsets, which may or may not be limited to a
predetermined range. The offsets may be generated in a
number of ways, €.g., by hardware based upon a small
number of seeds, looked up from a table, or by using a
pseudo-random function. Once again, perturbed regular gird
scheme 192 may be based on any type of regular grid (e.g.,
square, or hexagonal). A rectangular or hexagonal perturbed
orid may be particularly desirable due to the geometric
properties of these grid types.

Stochastic sample positioning scheme 194 represents a
third potential type of scheme for positioning samples.
Stochastic sample positioning mnvolves randomly distribut-
ing the samples across a region (e.g., the displayed region on
a display device or a particular window). Random position-
ing of samples may be accomplished through a number of
different methods, e.g., using a random number generator
such as an internal clock to generate pseudo-random num-
bers. Random numbers or positions may also be pre-
calculated and stored 1n memory.

Turning now to FIG. 9, details of one embodiment of
perturbed regular grid scheme 192 are shown. In this
embodiment, samples are randomly offset from a regular
square grid by x- and y-offsets. As the enlarged area shows,
sample 198 has an x-offset 134 that specifies its horizontal
displacement from 1ts corresponding grid intersection point
196. Similarly, sample 198 also has a y-ofiset 136 that
specifles 1ts vertical displacement from grid intersection
point 196. The random offset may also be specified by an
angle and distance. As with the previously disclosed
embodiment that utilized angles and distances, x-offset 134
and y-oifset 136 may be limited to a particular minimum and
or maximum value or range of values.

Turning now to FIG. 10, details of another embodiment of
perturbed regular grid scheme 192 are shown. In this
embodiment, the samples are grouped mnto “bins” 138A-D.
In this embodiment, each bin comprises nine (i.e., 3x3)
samples. Different bin sizes may be used in other embodi-
ments (€.g., bins storing 2x2 samples or 4x4 samples). In the
embodiment shown, each sample’s position 1s determined as
an offset relative to the position of the bin. The position of
the bins may be defined as any convenient position related
to the grid, e.g., the lower left-hand corners 132A-D as
shown 1n the figure. For example, the position of sample 198
1s determined by summing x-offset 124 and y-offset 126 to

10

15

20

25

30

35

40

45

50

55

60

65

20

the x and y coordinates of the corner 132D of bin 138D. As
previously noted, this may reduce the size of the sample
position memory used 1n some embodiments.

Turning now to FIG. 11, one possible method for rapidly
converting samples stored 1n sample buffer 162 into pixels
1s shown. In this embodiment, the contents of sample buifer
162 are organized into columns (e.g., Cols. 1-4). Each
column 1n sample buffer 162 may comprise a two-
dimensional array of bins. The columns may be configured
to horizontally overlap (e.g., by one or more bins), and each
column may be assigned to a particular sample-to-pixel
calculation unit 170A-D for the convolution process. The
amount of the overlap may depend upon the extent of the
filter being used. The example shown 1n the figure 1llustrates
an overlap of two bins (each square such as square 188
represents a single bin comprising one or more samples).
Advantageously, this configuration may allow sample-to-
pixel calculation units 170A-D to work independently and
in parallel, with each sample-to-pixel calculation unit
170A-D receiving and converting its own column. Over-
lapping the columns will eliminate visual bands or other
artifacts appearing at the column boundaries for any opera-
tors larger than a pixel 1n extent.

Turning now to FIG. 11A, more details of one embodi-
ment of a method for reading the samples from a super-
sampled sample buffer are shown. As the figure 1llustrates,
the convolution filter kernel 400 travels across column 414
(see arrow 406) to generate output pixels. One or more
sample-to-pixel calculation units 170 may implement the
convolution filter kernel 400. A bin cache 408 may used to
provide quick access to the samples that may potentially
contribute to the output pixel. As the convolution process
proceeds, bins are read from the super-sampled sample
buffer and stored 1n bin cache 408. In one embodiment, bins
that are no longer needed 410 are overwritten 1n the cache
by new bins 412. As each pixel 1s generated, convolution
filter kernel 400 shifts. Kernel 400 may be visualized as
proceeding 1n a sequential fashion within the column 1n the
direction indicated by arrow 406. When kernel 400 reaches
the end of the column, 1t may shift down one or more rows
of samples and then proceed agamn. Thus the convolution
process proceeds 1n a scan line manner, generating one
column of output pixels for display.

Turning now to FIG. 11B, a diagram 1llustrating potential
border conditions 1s shown. In one embodiment, the bins
that fall outside of sample window 420 may be replaced with
samples having predetermined background colors specified
by the user. In another embodiment, bins that fall outside the
window are not used by setting their weighting factors to
zero (and then dynamically calculating normalization
coefficients). In yet another embodiment, the bins at the
inside edge of the window may be duplicated to replace
those outside the window. This 1s 1ndicated by outside bin
430 being replaced by mirror 1nside bin 432.

FIG. 12 1s a flowchart of one embodiment of a method for
drawing or rendering sample pixels into a super-sampled
sample buffer. Certain of the steps of FIG. 12 may occur
concurrently or 1n different orders. In this embodiment, the
graphics system receives graphics commands and graphics
data from the host CPU 102 or directly from main memory
106 (step 200). Next, the instructions and data are routed to
one or more rendering units 150A-D (step 202). If the
graphics data is compressed (step 204), then the rendering
units 150A-D decompress the data into a useable format,
e.g., triangles (step 206). Next, the triangles are processed,
e.g., converted to screen space, lit, and transformed (step
208A). If the graphics system implements variable resolu-

US 6,350,236 B2

21

tion super sampling, then the triangles are compared with the
sample density region boundaries (step 208B). In variable-
resolution super-sampled sample buffer implementations,
different regions of the display device may be allocated
different sample densities based upon a number of factors
(c.g., the center of the attention on the screen as determined
by eye or head tracking). Sample density regions are
described in greater detail below (see section entitled Vari-
able Resolution Sample buffer below). If the triangle crosses
a region boundary (step 210), then the triangle may be
divided into two smaller polygons along the region bound-
ary (step 212). This may allow each newly formed triangle
to have a single sample density. In one embodiment, the
graphics system may be configured to simply use the entire
triangle twice (i.€., once in each region) and then use a
bounding box to effectively clip the triangle.

Next, one of the sample position schemes (e.g., regular
orid, perturbed regular grid, or stochastic) are selected from
the sample position memory 184 (step 214). The sample
position scheme will generally have been pre-programmed
into the sample position memory 184, but may also be
selected “on the 1ly”. Based upon this sample position
scheme and the sample density of the region containing the
triangle, rendering units 150A—D determine which bins may
contain samples located within the triangle’s boundaries
(step 216). The offsets for the samples within these bins are
then read from sample position memory 184 (step 218).
Each sample’s position 1s then calculated using the ofisets
and 1s compared with the triangle’s vertices to determine 1f
the sample 1s within the triangle (step 220). Step 220 is
discussed 1n greater detail below.

For each sample that 1s determined to be within the
triangle, the rendering unit draws the sample by calculating
the sample’s color, alpha and other attributes. This may
involve lighting calculation and interpolation based upon the
color and texture map information associated with the
vertices of the triangle. Once the sample 1s rendered, it may
be forwarded to schedule unit 154, which then stores the
sample in sample buffer 162 (step 224).

Note the embodiment of the method described above 1s
used for explanatory purposes only and i1s not meant to be
limiting. For example, in some embodiments the steps
shown 1n the figure as occurring serially may be imple-
mented 1n parallel. Furthermore, some steps may be reduced
or eliminated 1n certain embodiments of the graphics system
(c.g., steps 204-206 in embodiments that do not implement
geometry compression or steps 210-212 in embodiments
that do not 1implement a variable resolution super-sampled
sample buffer).

Determination of Which Samples Reside Within the Poly-
cgon Being Rendered

The comparison may be performed 1 a number of dit-
ferent ways. In one embodiment, the deltas between the
three vertices defining the triangle are first determined. For
example, these deltas may be taken in the order of first to
second vertex (v2-v1)=d12, second to third vertex (v3-v2)=
d23, and third vertex back to the first vertex (vl1-v3)=d3l.
These deltas form vectors, and each vector may be catego-
rized as belonging to one of the four quadrants of the
coordinate plane (e.g., by using the two sign bits of its delta
X and Y coefficients). A third condition may be added
determining whether the vector 1s an X-major vector or
Y-major vector. This may be determined by calculating
whether abs(delta_ x) i1s greater than abs(delta_ y).

Using these three bits of information, the vectors may
cach be categorized as belonging to one of eight different
regions of the coordinate plane. If three bits are used to

10

15

20

25

30

35

40

45

50

55

60

65

22

define these regions, then the X-sign bit (shifted left by two),
the Y-sign bit (shifted left by one), and the X-major bit, may
be used to create the eight regions as shown 1n FIG. 12A.

Next, three edge equations may be used to define the
inside portion of the triangle. These edge equations (or
half-plane equations) may be defined using slope-intercept
form. To reduce the numerical range needed, both X-major
and Y-major equation forms may be used (such that the
absolute value of the slope value may be 1n the range of O
to 1). Thus, the two edge equations are:

X-major:y—-m-x—b<0, when the point 1s below the line

Y-major:x—my-b<0, when the point 1s to the left of the line

The X-major equations produces a negative versus posi-
tive value when the point in question 1s below the line, while
the Y-major equation produces a negative versus positive
value when the point 1n question 1s to the left of the line.
Since which side of the line 1s the “accept” side 1s known,
the sign bit (or the inverse of the sign bit) of the edge
cequation result may be used to determine whether the
sample 1s on the “accept” side or not. This 1s referred to
herein as the “accept bit”. Thus, a sample 1s on the accept
side of a line 1f:

X-major:(y-mx—b<0)<x or>accept
Y-major:(x—m-y-b<0)<x or>accept

The accept bit may be calculated according to the fol-
lowing table, wherein cw designates whether the triangle 1s
clockwise (cw=1) or counter-clockwise (cw=0):

. accept=lcw
. accepl=cw
. acceplt=cw
. acceplt=cw
. accept=cw
. accept=lcw
. accept=lcw
. accept=lcw

Tie breaking rules for this representation may also be
implemented (e.g., coordinate axes may be defined as
belonging to the positive octant). Similarly, X-major may be
defined as owning all points that tie on the slopes.

In an alternate embodiment, the accept side of an edge
may be determined by applying the edge equation to the
third vertex of the triangle (the vertex that is not one of the
two vertices forming the edge). This method may incur the
additional cost of a multiply-add, which may not be used by
the technique described above.

To determine the “faced-ness” of a triangle (i.e., whether
the triangle is clockwise or counter-clockwise), the delta-
directions of two edges of the triangle may be checked and
the slopes of the two edges may be compared. For example,
assuming that edge 12 has a delta-direction of 1 and the
second edge (edge23) has a delta-direction of 0, 4, or 5, then
the triangle 1s counter-clockwise. If, however, edge23 has a
delta-direction of 3, 2, or 6, then the triangle 1s clockwise. If
edge23 has a delta-direction of 1 (i.e., the same as edgel2),
then comparing the slopes of the two edges breaks the tie
(both are x-major). If edgel2 has a greater slope, then the
triangle 1s counter-clockwise. If edge23 has a delta-direction
of 7 (the exact opposite of edgel2), then again the slopes are

compared, but with opposite results 1n terms of whether the
triangle 1s clockwise or counter-clockwise.

W o SN ~d D O

US 6,350,236 B2

23

The same analysis can be exhaustively applied to all
combinations of edgel2 and edge2d delta-directions, 1n
every case determining the proper faced-ness. If the slopes
are the same 1n the tie case, then the triangle 1s degenerate
(i.c., with no interior area). It can be explicitly tested for and
culled, or, with proper numerical care, it could be let through
as 1t will cause no pixels to render. One special case 1s when
a triangle splits the view plane, but that may be detected
earlier in the pipeline (e.g., when front plane and back plane
clipping are performed).

Note 1n most cases only one side of a triangle 1s rendered.
Thus, after the faced-ness of a triangle 1s determined, if the
face 1s the one to be rejected, then the triangle can be culled
(i.e., subject to no further processing with no pixels
generated). Further note that this determination of faced-
ness only uses one additional comparison (i.e., of the slope
of edgel2 to that of edge23) beyond factors already com-
puted. Many traditional approaches may utilize more com-
plex computation (though at earlier stages of the set-up
computation).

FIG. 13 1s a flowchart of one embodiment of a method for
filtering samples stored in the super-sampled sample buifer
to generate output pixels. First, a stream of bins are read
from the super-sampled sample buffer (step 250). These may
be stored 1n one or more caches to allow the sample-to-pixel
calculation units 170 easy access during the convolution
process (step 252). Next, the bins are examined to determine
which may contain samples that contribute to the output
pixel currently being generated by the filter process (step
254). Each sample that 1s in a bin that may contribute to the
output pixel 1s then individually examined to determine if
the sample does indeed contribute (steps 256—258). This
determination may be based upon the distance from the
sample to the center of the output pixel being generated.

In one embodiment, the sample-to-pixel calculation units
170 may be configured to calculate this distance (i.e., the
extent of the filter at sample’s position) and then use it to
index into a table storing filter weight values according to
filter extent (step 260). In another embodiment, however, the
potentially expensive calculation for determining the dis-
tance from the center of the pixel to the sample (which
typically involves a square root function) is avoided by
using distance squared to index into the table of filter
welghts. Alternatively, a function of X and y may be used in
lieu of one dependent upon a distance calculation. In one
embodiment, this may be accomplished by utilizing a float-
ing point format for the distance (e.g., four or five bits of
mantissa and three bits of exponent), thereby allowing much
of the accuracy to be maintained while compensating for the
increased range 1n values. In one embodiment, the table may
be 1implemented 1n ROM. However, RAM tables may also
be used. Advantageously, RAM tables may, in some
embodiments, allow the graphics system to vary the filter
coellicients on a per-frame basis. For example, the filter
coellicients may be varied to compensate for known short-
comings of the display or for the user’s personal preferences.
The graphics system can also vary the filter coeflicients on
a screen area basis within a frame, or on a per-output pixel
basis. Another alternative embodiment may actually calcu-
late the desired filter weights for each sample using special-
ized hardware (e.g., multipliers and adders). The filter
welght for samples outside the limits of the convolution
filter may simply be multiplied by a filter weight of zero
(step 262), or they may be removed from the calculation
entirely.

Once the filter weight for a sample has been determined,
the sample may then be multiplied by its filter weight (step

10

15

20

25

30

35

40

45

50

55

60

65

24

264). The weighted sample may then be summed with a
running total to determine the final output pixel’s color value
(step 266). The filter weight may also be added to a running,
total pixel filter weight (step 268), which is used to normal-
1ze the filtered pixels. Normalization advantageously pre-
vents the filtered pixels (e.g., pixels with more samples than
other pixels) from appearing too bright or too dark by
compensating for gain mtroduced by the convolution pro-
cess. After all the contributing samples have been weighted
and summed, the total pixel filter weight may be used to
divide out the gain caused by the filtering (step 270). Finally,
the normalized output pixel may be output for gamma
correction, digital-to-analog conversion (if necessary), and
eventual display (step 274).

FIG. 14 illustrates a simplified example of an output pixel
convolution. As the figure shows, four bins 288A—D contain
samples that may possibly contribute to the output pixel. In
this example, the center of the output pixel 1s located at the
boundary of bins 288A-288D. Each bin comprises sixteen
samples, and an array of 2 four bins (2x2) is filtered to
generate the output pixel. Assuming circular filters are used,
the distance of each sample from the pixel center determines
which filter value will be applied to the sample. For
example, sample 296 1s relatively close to the pixel center,
and thus falls within the region of the filter having a filter
value of 8. Similarly, samples 294 and 292 fall within the
regions of the filter having filter values of 4 and 2, respec-
tively. Sample 290, however, falls outside the maximum
filter extent, and thus receives a filter value of 0. Thus,
sample 290 will not contribute to the output pixel’s value.
This type of filter ensures that the samples located the closest
to the pixel center will contribute the most, while pixels
located the far from the pixel center will contribute less to
the final output pixel values. This type of filtering automati-
cally performs anti-aliasing by smoothing any abrupt
changes in the image (e.g., from a dark line to a light
background). Another particularly useful type of filter for
anti-aliasing 1s a windowed sinc {filter. Advantageously, the
windowed sinc filter contains negative lobes that re-sharpen
some of the blended or “fuzzed” 1image. Negative lobes are
arcas where the filter causes the samples to subtract from the
pixel being calculated. In contrast, samples on either side of
the negative lobe add to the pixel being calculated.

Example values for samples 290-296 are illustrated in
boxes 300-308. In this example, each sample comprises red,
oreen, blue and alpha values, 1n addition to the sample’s
positional data. Block 310 illustrates the calculation of each
pixel component value for the non-normalized output pixel.
As block 310 indicates, potentially undesirable gain 1s
introduced into the final pixel values (i.e., an out pixel
having a red component value of 2000 1s much higher than
any of the sample’s red component values). As previously
noted, the filter values may be summed to obtain normal-
1zation value 308. Normalization value 308 1s used to divide
out the unwanted gain from the output pixel. Block 312
illustrates this process and the final normalized example
pixel values.

The filter presented mm FIG. 14 has been chosen for
descriptive purposes only and 1s not meant to be limiting. A
wide variety of filters may be used for pixel value compu-
tations depending upon the desired filtering effect(s). It is a
well-known fact that the sinc filter realizes an 1deal band-
pass lilter. However, the sinc filter takes non-zero values
over the whole of the X-Y plane. Thus, various windowed
approximations of the sinc filter have been developed. Some
of these approximations such as the cone filter or Gaussian
filter approximate only the central lobe of the sinc filter, and

US 6,350,236 B2

25

thus, achieve a smoothing effect on the sampled 1mage.
Better approximations such as the Mitchell Netravali filter
(including the Catmull-Rom filter as a special case) are
obtained by approximating some of the negative lobes and
positive lobes that surround the central positive lobe of the
sinc filter. The negative lobes allow a filter to more eflec-
fively retain spatial frequencies up to the cutofl frequency
and reject Spatlal frequencies beyond the cutoff frequency. A
negative lobe 1s a portion of a filter where the filter values
arc negative. Thus, some of the samples residing in the
support of a filter may be assigned negative filter values (i.e.
filter weights).

A wide variety of filters may be used for the pixel value
convolutions including filters such as a box filter, a tent filter,
a cylinder filter, a cone filter, a Gaussian filter, a Catmull-
Rom filter, a Mitchell-Netravali filter, any windowed
approximation of a sinc filter, etc. Furthermore, the support
of the filters used for the pixel value convolutions may be
circular, elliptical, rectangular (e.g. square), triangular,
hexagonal, etc.

Full-Screen Anti-aliasing

The vast majority of current 3D graphics systems only
provide real-time anfti-aliasing for lines and dots. While
some systems also allow the edge of a polygon to be
“fuzzed”, this technmique typically works best when all
polygons have been pre-sorted 1n depth. This may defeat the
purpose of having general-purpose 3D rendering hardware
for most applications (which do not depth pre-sort their
polygons). In one embodiment, graphics system 112 may be
configured to 1mplement full-screen anti-aliasing by sto-
chastically sampling up to sixteen samples per output pixel,
filtered by a 5x5-convolution {ilter.

Variable Resolution Super-Sampling

Currently, the brute force method of utilizing a fixed
number of samples per pixel location, €.g., an 8xsuper-
sampled sample bufler, would entail the use of eight times
more memory, eight times the fill rate (i.e., memory
bandwidth), and a convolution pipe capable of processing
eight samples per pixel.

In one embodiment, graphics system 112 may be config-
ured to overcome these potential obstacles by implementing,
variable resolution super-sampling. In this embodiment,
graphics system 112 mimics the human eye’s characteristics
by allocating a higher number of samples per pixel at one or
more first locations on the screen (e.g., the point of foveation
on the screen), with a drop-off in the number of samples per
pixel for one or more second locations on the screen (e.g.,
areas farther away from the point of foveation). Depending
upon the implementation, the point of foveation may be
determined in a variety of ways. In one embodiment, the
point of foveation may be a predetermined area around a
certain object displayed upon the screen. For example, the
arca around a moving cursor or the main character in a
computer game may be designated the point of foveation. In
another embodiment, the point of foveation on the screen
may be determined by head-tracking or eye-tracking. Even
if eye/head/hand-tracking, cursor-based, or main character-
based points of foveation are not implemented, the point of
foveation may be fixed at the center of the screen, where the
majority of viewer’s attention 1s focused the majority of the
fime. Variable resolution super-sampling is described in
oreater detail below.

Variable-Resolution Super-Sampled Sample Bu
15-19

A traditional frame buifer 1s one rectangular array of
uniformly sampled pixels. For every pixel on the final
display device (CRT or LCD), there is a single pixel or

tfer—FIGS.

10

15

20

25

30

35

40

45

50

55

60

65

26

location of memory storage in the frame buffer (perhaps
double buffered). There is a trivial one-to-one correspon-
dence between the 2D memory address of a given pixel and
its 2D sample address for the mathematics of rendering.
Stated another way, 1n a traditional frame buffer there 1s no
separate notion of samples apart from the pixels themselves.
The output pixels are stored 1n a traditional frame bufler in
a row/column manner corresponding to how the pixels are
provided to the display during display refresh.

In a variable-resolution super-sampled sample buifer, the
number of computed samples per output pixel varies on a
regional basis. Thus, output pixels 1n regions of greater
interest are computed using a greater number of samples,
thus producing greater resolution 1n this region, and output
pixels 1n regions of lesser interest are computed using a
lesser number of samples, thus producing lesser resolution
in this region.

As previously noted, in some embodiments graphic sys-
tem 112 may be configured with a variable resolution
super-sampled sample buffer. To implement variable reso-
lution super-sampling, sample buffer 162 may be divided
into smaller pieces, called regions. The size, location, and
other attributes of these regions may be configured to vary
dynamically, as parameterized by run-time registers on a
per-frame basis.

Turning now to FIG. 15, a diagram of one possible
scheme for dividing sample buifer 162 1s shown. In this
embodiment, sample buifer 162 1s divided 1nto the following
three nested regions: foveal region 354, medial region 352,
and peripheral region 350. Each of these regions has a
rectangular shaped outer border, but the medial and the
peripheral regions have a rectangular shaped hole 1n their
center. Each region may be configured with certain constant
(per frame) properties, €.g., a constant density sample den-
sity and a constant size of pixel bin. In one embodiment, the
total density range may be 256, 1.¢., a region could support
between one sample every 16 screen pixels (4x4) and 16
samples for every 1 screen pixel. In other embodiments, the
total density range may be limited to other values, ¢.g., 64.
In one embodiment, the sample density varies, either lin-
carly or non-linearly, across a respective region. Note 1n
other embodiments the display may be divided into a
plurality of constant sized regions (¢.g., squares that are 4x4
pixels in size or 40x40 pixels in size).

To simply perform calculations for polygons that encom-
pass one or more region corners (e.2., a foveal region
corner), the sample buffer may be further divided into a
plurality of subregions. Turning now to FIG. 16, one
embodiment of sample buffer 162 divided into sub-regions
1s shown. Each of these sub-regions are rectangular, allow-
ing graphics system 112 to translate from a 2D address with
a sub-region to a linear address 1n sample buffer 162. Thus,
in some embodiments each sub-region has a memory base
address, indicating where storage for the pixels within the
sub-region starts. Each sub-region may also have a “stride”
parameter associated with its width.

Another potential division of the super-sampled sample
buffer 1s circular. Turning now to FIG. 17, one such embodi-
ment 15 1llustrated. For example, each region may have two
radii associated with it (i.e., 360-368), dividing the region
into three concentric circular-regions. The circular-regions
may all be centered at the same screen point, the fovea center
point. Note however, that the fovea center-point need not
always be located at the center of the foveal region. In some
instances it may even be located off-screen (i.e., to the side
of the visual display surface of the display device). While the
embodiment 1llustrated supports up to seven distinct

US 6,350,236 B2

27

circular-regions, 1t 1s possible for some of the circles to be
shared across two different regions, thereby reducing the
distinct circular-regions to five or less.

The circular regions may delineate areas of constant
sample density actually used. For example, in the example
illustrated 1n the figure, foveal region 354 may allocate a
sample buifer density of 8 samples per screen pixel, but
outside the mnermost circle 368, 1t may only use 4 samples
per pixel, and outside the next circle 366 1t may only use two
samples per pixel. Thus, 1n this embodiment the rings need
not necessarily save actual memory (the regions do that), but
they may potentially save memory bandwidth into and out of
the sample buffer (as well as pixel convolution bandwidth).
In addition to 1indicating a ditferent effective sample density,
the rings may also be used to indicate a different sample
position scheme to be employed. As previously noted, these
sample position schemes may stored 1n an on-chip RAM/
ROM, or 1 programmable memory.

As previously discussed, 1n some embodiments super-
sampled sample buifer 162 may be further divided into bins.
For example, a bin may store a single sample or an array of
samples (e.g., 2x2 or 4x4 samples). In one embodiment,
cach bin may store between one and sixteen sample points,
although other configurations are possible and contem-
plated. Each region may be configured with a particular bin
size, and a constant memory sample density as well. Note
that the lower density regions need not necessarily have
larger bin sizes. In one embodiment, the regions (or at least
the inner regions) are exact integer multiples of the bin size
enclosing the region. This may allow for more efficient
utilization of the sample buffer 1 some embodiments.

Variable-resolution super-sampling imnvolves calculating a
variable number of samples for each pixel displayed on the
display device. Certain areas of an 1mage may benelit from
a greater number of samples (e.g., near object edges), while
other areas may not need extra samples (e.g., smooth areas
having a constant color and brightness). To save memory
and bandwidth, extra samples may be used only 1n areas that
may benefit from the increased resolution. For example, 1f
part of the display is colored a constant color of blue (e.g.,
as in a background), then extra samples may not be particu-
larly usetul because they will all stmply have the constant
value (equal to the background color being displayed). In
contrast, 1f a second area on the screen 1s displaying a 3D
rendered object with complex textures and edges, the use of
additional samples may be useful in avoiding certain arti-
facts such as aliasing. A number of different methods may be
used to determine or predict which areas of an 1image would
benelit from higher sample densities. For example, an edge
analysis could be performed on the final image, and with that
information being used to predict how the sample densities
should be distributed. The software application may also be
able to indicate which areas of a frame should be allocated
higher sample densities.

A number of different methods may be used to implement
variable-resolution super sampling. These methods tend to
fall into the following two general categories: (1) those
methods that concern the draw or rendering process, and (2)
those methods that concern the convolution process. Ren-
dering process methods include methods which render
samples 1nto sample buffer 162 with a variable sample
density. For example, sample density may be varied on a
per-region basis (e.g., medial, foveal, and peripheral), or on
a scan-line basis (or on a small number of scan lines basis).
Varying sample density on a scan-line basis may be accom-
plished by using a look-up table of densities. For example,
the table may specify that the first five pixels of a particular

10

15

20

25

30

35

40

45

50

55

60

65

23

scan line have three samples each, while the next four pixels
have two samples each, and so on. Convolution process
methods include methods which filter samples based on a
uniform convolution filter, a continuously variable convo-
lution filter, or a convolution filter operating at multiple
spatial frequencies.

A uniform convolve filter may, for example, have a
constant extent (or number of samples selected) for each
pixel calculated. In contrast, a continuously variable convo-
lution filter may gradually change the number of samples
used to calculate a pixel. The function may be vary con-
finuously from a maximum at the center of attention to a
minimum 1n peripheral areas.

Different combinations of these methods (both on the
rendering side and convolution side) are also possible. For
example, a constant sample density may be used on the
rendering side, while a continuously variable convolution
filter may be used on the samples.

Different methods for determining which areas of the
image will be allocated more samples per pixel are also
contemplated. In one embodiment, i1f the image on the
screen has a main focal point (e.g., a character like Mario in
a computer game), then more samples may be calculated for
the area around Mario and fewer samples may be calculated
for pixels in other areas (e.g., around the background or near
the edges of the screen).

In another embodiment, the viewer’s point of foveation
may be determined by eye/head/hand-tracking. In head-
tracking embodiments, the direction of the viewer’s gaze 1s
determined or estimated from the orientation of the viewer’s
head, which may be measured using a variety of mecha-
nisms. For example, a helmet or visor worn by the viewer
(with eye/head tracking) may be used alone or in combina-
tion with a hand-tracking mechanism, wand, or eye-tracking
sensor to provide orientation information to graphics system
112. Other alternatives include head-tracking using an infra-
red reflective dot placed on the user’s forehead, or using a
pair of glasses with head- and or eye-tracking sensors built
in. One method for using head- and hand-tracking 1s dis-
closed 1n

U.S. Pat. No. 5,446,834 (entitled “Method and Apparatus
for High Resolution Virtual Reality Systems Using,
Head Tracked Display,” by Michael Deering, issued
Aug. 29, 1995),

which 1s incorporated herein by reference in its entirety.
Other methods for head tracking are also possible and
contemplated (e.g., infrared sensors, electromagnetic
Sensors, capacitive sensors, video cameras, sonic and ultra-
sonic detectors, clothing based sensors, video tracking
devices, conductive ink, strain gauges, force-feedback
detectors, fiber optic sensors, pneumatic sensors, magnetic
tracking devices, and mechanical switches).

As previously noted, eye-tracking may be particularly
advantageous when used 1n conjunction with head-tracking.
In eye-tracked embodiments, the direction of the viewer’s
gaze 1S measured directly by detecting the orientation of the
viewer's eyes 1n relation to the viewer’s head. This
information, when combined with other information regard-
ing the position and orientation of the viewer’s head in
relation to the display device, may allow an accurate mea-
surement of viewer’s point of foveation (or points of fove-
ation i1f two eye-tracking sensors are used). One possible
method for eye tracking i1s disclosed mn U.S. Pat. No.
5,638,176 (entitled “Inexpensive Interferometric Eye Track-
ing System”). Other methods for eye tracking are also
possible and contemplated (e.g., the methods for head track-
ing listed above).

US 6,350,236 B2

29

Regardless of which method 1s used, as the viewer’s point
of foveation changes position, so does the distribution of
samples. For example, if the viewer’s gaze 1s focused on the
upper left-hand corner of the screen, the pixels correspond-
ing to the upper left-hand corner of the screen may each be
allocated eight or sixteen samples, while the pixels 1n the
opposite corner (i.e., the lower right-hand corner of the
screen) may be allocated only one or two samples per pixel.
Once the viewer’s gaze changes, so does the allotment of
samples per pixel. When the viewer’s gaze moves to the
lower right-hand corner of the screen, the pixels 1n the upper
left-hand corner of the screen may be allocated only one or
two samples per pixel. Thus, the number of samples per
pixel may be actively changed for different regions of the
screen 1n relation the viewer’s point of foveation. Note 1n
some embodiments, multiple users may each have head/eye/
hand tracking mechanisms that provide input to graphics
system 112. In these embodiments, there may conceivably
be two or more points of foveation on the screen, with
corresponding areas of high and low sample densities. As
previously noted, these sample densities may affect the
render process only, the filter process only, or both pro-
CESSES.

Turning now to FIGS. 18A-B, one embodiment of a
method for apportioning the number of samples per pixel 1s
shown. The method apportions the number of samples based
on the location of the pixel relative to one or more points of
foveation. In FIG. 18A, an eye- or head-tracking device 360
is used to determine the point of foveation 362 (i.e., the focal
point of a viewer’s gaze). This may be determined by using
tracking device 360 to determine the direction that the
viewer’s eyes (represented as 364 in the figure) are facing.
As the figure 1llustrates, 1 this embodiment, the pixels are
divided into foveal region 354 (which may be centered
around the point of foveation 362), medial region 352, and
peripheral region 350.

Three sample pixels are indicated in the figure. Sample
pixel 374 1s located within foveal region 314. Assuming,
foveal region 314 i1s configured with bins having cight
samples, and assuming the convolution radius for each pixel
touches four bins, then a maximum of 32 samples may
contribute to each pixel. Sample pixel 372 1s located within
medial region 352. Assuming medial region 352 1s config-
ured with bins having four samples, and assuming the
convolution radius for each pixel touches four bins, then a
maximum of 16 samples may contribute to each pixel.
Sample pixel 370 1s located within peripheral region 350.
Assuming peripheral region 370 1s configured with bins
having one sample each, and assuming the convolution
radius for each pixel touches one bin, then there 1s a one
sample to pixel correlation for pixels in peripheral region
350. Note these values are merely examples and a different
number of regions, samples per bin, and convolution radius
may be used.

Turning now to FIG. 18B, the same example 1s shown, but
with a different point of foveation 362. As the figure
illustrates, when tracking device 360 detects a change 1n the
position of point of foveation 362, 1t provides input to the
graphics system, which then adjusts the position of foveal
region 354 and medial region 352. In some embodiments,
parts of some of the regions (e.g., medial region 352) may
extend beyond the edge of display device 84. In this
example, pixel 370 1s now within foveal region 354, while
pixels 372 and 374 are now within the peripheral region.
Assuming the sample configuration as the example i FIG.
18A, a maximum of 32 samples may contribute to pixel 370,
while only one sample will contribute to pixels 372 and 374.

10

15

20

25

30

35

40

45

50

55

60

65

30

Advantageously, this configuration may allocate more
samples for regions that are near the point of foveation (i.e.,
the focal point of the viewer’s gaze). This may provide a
more realistic 1mage to the viewer without the need to
calculate a large number of samples for every pixel on
display device 84.

Turning now to FIGS. 19A-B, another embodiment of a
computer system configured with a variable resolution
super-sampled sample buffer 1s shown. In this embodiment,
the center of the viewer’s attention 1s determined by position
of a main character 362. Medial and foveal regions are
centered on main character 362 as 1t moves around the
screen. In some embodiments, the main character may be a
simple cursor (e.g., as moved by keyboard input or by a
MOouse).

In still another embodiment, regions with higher sample
density may be centered around the middle of display device
84°s screen. Advantageously, this may require less control
software and hardware while still providing a shaper image
in the center of the screen (where the viewer’s attention may
be focused the majority of the time).

Computer Network—FIG. 20

Referring now to FIG. 20, a computer network 500 1s
shown comprising at least one server computer 502 and one
or more client computers S06A—N. (In the embodiment
shown 1n FIG. 4, client computers 506 A—B are depicted).
One or more of the client systems may be configured
similarly to computer system 80, with each having one or
more graphics systems 112 as described above. Server 502
and client(s) 506 may be joined through a variety of con-
nections 504, such as a local-area network (LAN), a wide-
area network (WAN), or an Internet connection. In one
embodiment, server 502 may store and transmit 3-D geom-
etry data (which may be compressed) to one or more of
clients 506. The clients 506 receive the compressed 3-D
geometry data, decompress it (if necessary), and then render
the geometry data. The rendered 1image 1s then displayed on
the client’s display device. The clients render the geometry
data and display the 1mage using super-sampled sample
buffer and real-time filter techniques described above. In
another embodiment, the compressed 3-D geometry data
may be transferred between client computers 506.
Dynamically Adjusting the Sample-to-Pixel Filter

The graphics system may be further operable to dynami-
cally adjust the filter used for generating output pixels in
response to a subset of the output pixels having negative
values. Pixels with negative values may be generated, for
example, as a result of using a filter with negative lobes.

In one set of embodiments, the graphics system may be
coniigured to examine the color values for pixels 1n a frame,
and to compute a pixel negativity value for each pixel having,
one or more negative color values. For example, if any of the
colors R, G, or B for a given pixel attains a negative value,
the pixel negativity value for the given pixel may be
computed as (a) a sum of those color components (R, G
and/or B) which achieve negative values, (b) an average of
those color components which achieve negative values, (¢)
the color component which achieves the most negative
value, or (d) any function of one or more of the color
components which achieve negative values. The present
invention contemplates a wide variety of methodologies for
computing the pixel negativity value based on the negative-
valued color components of a pixel.

A pixel 1s said to be “negative” when one or more of 1ts
color components are negative. A pixel 1s said to be “red
negative” when its red component 1s negative. A pixel 1s said
to be “green negative” when 1ts green component 1S nega-

US 6,350,236 B2

31

five. A pixel 1s said to be “blue negative” when 1ts blue
component 1s negative. The process of scanning pixel color
values to determine negative pixels 1s referred to herein as
negative pixel scanning. The negative pixel scanning may be
performed on all the pixels 1 a frame, or a subset of the
pixels 1n a frame. The pixel negativity computation may be
performed on those pixels determined to be negative by the
negative pixel scanning.

In one embodiment, the negative pixel scanning and/or
pixel negativity computation may be performed by one or
more sample-to-pixel calculation units. In another
embodiment, the negative pixel scanning and/or pixel nega-
fivity computation may be performed by a separate nega-
tivity computation unit (NCU) which receives the pixel data
streams generated by the one or more sample-to-pixel cal-
culation units.

The above discussion of negative pixel scanning and the
pixel negativity computation naturally generalizes to any
desired color system, 1.e., 1t 1s not necessary to use the RGB
color system. In addition, a pixel may include other
attributes such as alpha which may attain a negative value.
Thus, the negative pixel scanning and pixel negativity
computation may be expanded to include additional pixel
attributes.

Based on the pixel negativity values of the negative
pixels, the graphics system may compute a frame negativity
value for the given frame. The frame negativity value may
be (1) a sum of the pixel negativity values, (2) an average of
the pixel negativity values, (3) a statistic computed on the
population of pixel negativity values, or (4) the extreme of
the pixel negativity values (i.e. the pixel negativity value
which represents the most negative pixel), etc. For example,
the graphics system may generate a histogram of the pixel
negativity values and operate on the histogram values (i.e.
the population values) to determine the frame negativity
value. Thus, the frame negativity value measures the amount
of “negativity” present in a given frame. The frame nega-
tivity value may be computed for every trame or every N,
frames, where N.1s a positive integer.

It 1s noted that the graphics system may be configured for
use with monochrome displays. In other words, the graphics
processor 90 may be configured to generate a single 1nten-
sity value per sample. Thus, sample-to-pixel calculation
units 170 may correspondingly generate a single intensity
value per pixel. In this case, the pixel negativity value may
not require a special computation, 1.¢. the single 1ntensity
value, when it 1s negative, may be the pixel negativity value.

In some embodiments, a separate frame negativity value
may be computed for each color (or, more generally, for each
pixel attribute). The red (green, blue) frame negativity value
may be computed based on the red (green, blue) values of
those pixels which are red (green, blue) negative. For
example, the red frame negativity value may be computed as
(1) a sum of the red values of the red negative pixels, (2) an
average of the red values of the red negative pixels, (3) a
statistic computed on the population of red values of the red
negative pixels, (4) the extreme of the red values of the red
negative pixels, or (5) any function of the red values of the
red negative pixels. The per-color frame negativity values
may be computed by one or more of the sample-to-pixel
calculation units or by the negativity computation unit.

In one set of embodiments, the per-color frame negativity
values are computed based on corresponding histograms.
For example, the red frame negativity value may be com-
puted based on a histogram of the red components of the red
negative pixels. This histogram 1s referred as the “red
histogram”. A weighted sum of the red histogram values

10

15

20

25

30

35

40

45

50

55

60

65

32

may determine the red frame negativity value. Thus, the
oraphics system may generate a red histogram, a green
histogram and a blue histogram for a given frame, and
compute each of the per-color frame negativity values from
the corresponding histogram. The graphics system may
compute the per-color histograms and frame negativity
values for every frame or for every N, frames of video output
where N, 1s a positive teger.

In one set of embodiments, an average (or sum) of the
pixel attribute values (e.g. R, G and B) may be formed to
determine whether a pixel 1s negative. In this embodiment,
the pixel 1s said to be “negative” when the attribute average
1s negative. Also, the pixel negativity value may be defined
as this attribute average.

As noted above, only a portion of the pixels in a frame
may be subject to the negative pixel scanning (i.e. examined
to determine positive/negative status). For example, only
pixels within a certain window or pixels within a certain
region of the screen may be examined. In addition, the
ographics system may examine a certain subset of the pixels
in the frame, for example, pixels on a grid (i.e. pixels at the
intersections of vertical and horizontal grid lines), one out of
every two pixels, every three pixels, or every N_. pixels
where N__ 1s a positive integer. The graphics system may
also examine random pixels.

FIG. 21 illustrates one embodiment of a pixel negativity
histogram. The horizontal axis of the histogram represents
pixel negativity percentage, 1.€.

((pixel negativity)/(maximum pixel negativity)[x100.

The maximum pixel negativity for a given filter may be
achieved when the all samples 1n the negative-valued por-
tions of the filter have maximally positive color intensities,
and all the samples 1n the positive-valued portions of the
filter have zero color intensities. The histogram comprises a
plurality of cells, each extending from a low negativity
percentage to a high negativity percentage. Each cell has a
corresponding size value. The cell size represents the num-
ber of pixels with negativity percentages between the cell’s
low and high percentage boundaries. For example, cell 600
has a cell size 604 that equals the number of pixels (or some
function of the number of pixel) having negativity percent-
age between 0 and 10 percent.

FIG. 22 1llustrates another embodiment of a histogram of
pixel negativity values with cells defined by intervals the
form (=2"*', =2"] where index n varies from zero to an upper
limit N, which depends on the number of bits allocated to
the pixel negativity value. In other words, the n” cell of the
histogram 1s defined as the interval of pixel negativity values
X given by the inequality -2"*'<X=-2". The following
table 1llustrates the pixel negativity ranges for cells 1
through 5. The left and right pixel negativity limits for each
cell are indicated 1n both decimal and 2s complement
notation.

TABLE 1

Binary-Aligned Histogram Cells

Cell Left Limait Right Limit
(non-inclusive) (inclusive) Width
1 -2 = 111110 -1 =111111 1
2 -4 = 111100 -2 = 111110 2
3 -8 = 111000 -4 = 111100 4

US 6,350,236 B2

33

TABLE 1-continued

Binary-Aligned Histogram Cells

Cell Left Limait Right Limit
(non-inclusive) (inclusive) Width
4 —-16 = 110000 -8 = 111000 8
5 —-32 = 100000 -16 = 110000 16

Because the limits of the cell ranges occur at powers of two,
the assignment of each pixel negativity value to the cell
range 1n which 1t resides may be performed with increased
efficiency. (The most significant one bit of [X|, i.e. the
absolute value of the frame negativity value, determines the
cell number.) While the embodiment of FIG. 22 assumes that
the pixel negativity value X 1s represented by a six-bit word
in 2s complement form, the principles inherent i1n this
example naturally generalize to any number of bits or any
numeric representation scheme.

It 1s noted that the probability of achieving a pixel
negativity value X may often be a decreasing function of |X]|.
Thus, 1t may be desirable to define the cell ranges so the cell
resolution decreases (1.e. so that the cell width increases)
with 1ncreasing magnitude of the pixel negativity. The cell
ranges 1n the embodiment of FIG. 22 realize this desired
property by having widths which are successive powers of
two. More cells (higher resolution) are provided at low
negative values, and fewer cells (coarser resolution) are
provided at high negative values.

In some embodiments, a frame negativity value may be
determined by computing a weighted average (or weighted
sum) of the cell sizes. The size of a cell 1s typically the
number of pixels (or pixel components) in the cell. The cell
sizes corresponding to cells of low pixel negativity may be
welghted less than the cell sizes corresponding to cells of
high pixel negativity. (Pixel negativity is said to be “low”
when the absolute value of pixel negativity 1s small, and
“high” when the absolute value of pixel negativity is large.)
For example, referring back to FIG. 21, cell size 604 may be
ogrven less weight than cell size 606. In the embodiment of
FIG. 22, the size of cell n may be weighted by 27", and thus,
a welghted sum of the cells sizes corresponds to a population
average.

The calculated frame negativity value may then be com-
pared against a negativity threshold. In some embodiments,
the negativity threshold may be a user-adjustable value. For
example, the user may adjust the threshold through a graphi-
cal user interface that executes on host CPU 102 and/or
ographics system 112. In one embodiment, the user may
change the threshold via one or more physical controls (e.g.
buttons, knobs and/or sliders) on or coupled to system unit
82, display device 84 and/or graphics system 112.

In one set of embodiments, the graphics system may
adjust the sample-to-pixel filter (e.g. the filter function
and/or the filter support) in response to the frame negativity
value of a current frame being unacceptably large as defined
by the negativity threshold. The current frame negativity
value may be declared unacceptably large when 1ts magni-
tude (1.e. absolute value) is larger than the negativity thresh-
old. The filter 1s adjusted so as to reduce the frame negativity
value of subsequent frames. The graphics system may
include dedicated circuitry and/or a processor operable to
execute program code for 1mplementing the filter
adjustment(s). In one embodiment, the filter adjustment may
be implemented by the negativity computation unit (NCU)
external to the sample-to-pixel calculation units. For
example, the NCU may update one or more filter coeflicient

10

15

20

25

30

35

40

45

50

55

60

65

34

tables from which the sample-to-pixel calculation units
derive their filter coetlicient values.

Conversely, the graphics system may continue to use the
current filter for one or more subsequent frames if the
current frame negativity value 1s acceptably small, ¢.g., 1f
the absolute value of the current frame negativity 1s smaller
than the threshold value. It 1s noted that the frame negativity
value has been described above as a non-positive quantity
(i.e. typically negative in sign). However, in some
embodiments, the frame negativity value may be a non-
negative quantity. For example, the frame negativity value
may be computed from a histogram of the absolute value of
the pixel negativity values.

In some embodiments, any filter adjustments induced by
the current frame may be applied to the filter used (by the
sample-to-pixel calculation units) in subsequent frames, i.e.
the current frame 1s not affected. In other embodiments, any
filter adjustments induced by the current frame are applied
to the filter used in frames after the first subsequent frame,
second subsequent frame, etc.

FIG. 23A 1llustrates one embodiment of a truncated sinc
filter plotted with respect to radius from the filter center.
FIG. 23B illustrates one embodiment of a Catmull-Rom
filter plotted with respect to radius from the filter center.
Both filters are depicted with a maximum radius of two pixel
units. If either filter were used to filter sample values, the
resulting pixels may attain negative values due to the
negative lobe 1n the range of radn between 1 and 2 pixel
units. FIG. 23C illustrates one embodiment of a cubic
B-spline filter. The cubic B-spline filter 1s similar 1s shape to
the Gaussian filter and has no negative lobes. If this filter
were used to filter sample values, the resulting pixel values
may advantageously avoid the problem of attaining negative
values. However, the resulting pixilated 1mage may appear
blurry.

It 1s noted that the Catmull-Rom and cubic B-spline filters
are special case filters in the Mitchell-Netravali family of
filters. The Mitchell-Netravali family of filters 1s parameter-
1zed by two parameters referred to herein as B and C. Each
parameter takes a value in the interval [0,1]. Thus, the
parameters space 1s a unit square. An ordered pair (B,C)
which resides 1n the unit square defines a particular filter in
the Mitchell-Netravali family. The Catmull-Rom filter cor-
responds to the ordered pair (0,1/2). The cubic B-spline
corresponds to the ordered pair (1,0). Please refer to “Prin-
ciples of Digital Image Synthesis” by Andrew S. Glassner,
©1995, Morgan Kaulfman Publishing, Volume 1, pages
531-536 for a definition and discussion of the Mitchell-
Netravali family. The parameter space may be partitioned
into regions based on the filtering effect of the corresponding
filters as suggested by FIG. 23D. Filters in the neighborhood
of the cubic B-spline (1,0) may have only a small amount of
energy in their negative lobes (if they have negative lobes at
all). The frame negativity value resulting from use of such
filters may be small or zero. Unfortunately, however, these
filters may produce 1mages that are unacceptably blurry to
most VIEWers.

Filters in the neighborhood of the (0,1) filter in the
parameter space may have a significant amount of energy in
their negative lobes. Thus, the 1mages generated by such
filters may have an unacceptable amount of ringing (e.g. at
the boundaries of objects), and the frame negativity values
may have larger magnitudes. FIG. 23E illustrates the (0,1)
Mitchell-Netravali filter.

Another neighborhood 1n the parameter space may give
filters which generate satisfactory images (i.e. images which
appear satisfactory on average to most viewers). However,

US 6,350,236 B2

35

even within the satisfactory neighborhood of the parameter
space, there may be variations 1n sharpness versus
blurriness, ringing versus non-ringing, etc. Filters along the
parameter curve 2C+B=1 are generally satisfactory filters.

In some embodiments, the sample-to-pixel filter may be
changed 1n response to the magnitude of the frame negativ-
ity value being above the negativity threshold. For example,
the current filter may be replaced with a filter having less
energy in the negative lobe(s) or no negative lobes at all.
Succeeding frames generated with the new filter should have
frame negativity values with smaller magnitude due to the
reduced negative lobes of the new filter. The graphics system
may apply adjustments to the sample-to-pixel filter as long
as the magnitude of the frame negativity value exceeds the
threshold. Furthermore, the graphics system may apply a
control strategy which measures the amount deltaX by
which the frame negativity exceeds threshold, and deter-
mines a new filter (or filter adjustment) based on the amount
deltaX, a numerical derivative of deltaX, a numerical inte-
ogration of deltaX, a discrete-time {iltration of deltaX, or
some combination thereof.

In one embodiment, the graphics system (e.g. a sample-
to-pixel calculation unit or the negativity computation unit)
may add a positive constant to the filter function to shift the
filter function upwards 1n response to the frame negativity
exceeding the negativity threshold. The upward shifted filter
function has less energy in its negative lobe(s). FIG. 24
illustrates a truncated sinc function which has been shifted
upward so that its absolute minimum rests on the horizontal
axis, and thus, the negative lobes of the truncated sinc have
been completely eliminated. The amount of the upward shift
(or delta shift) may depend on the amount by which the
frame negativity exceeds threshold. The filter function may
be represented 1n graphics system 112 by a table of filter
coefficients indexed by radius (or radius squared). Thus, the
upward shift in the filter function may be realized by adding,
a positive constant to the tabulated filter coefficients. In
another embodiment, instead of shifting the filter function
upwards, the graphics system may replace the current filter
with a filter such as a truncated Gaussian filter which has no
negative lobes, and restore the original filter having negative
lobes after the frame negativity has dropped below thresh-
old. In a third embodiment, the graphics system may adjust
the current filter 1n the direction of decreasing negative lobe
energy within a family of filters (such as the Mitchell-
Netravali family) in response to the frame negativity exceed-
ing threshold.

As used herein, the negative lobe energy of a filter may be
defined as the negation of the sum of the negative coelli-
cients of the filter, or equivalently, as the sum of the absolute
values of the negative coeflicients of the filter.

In some embodiments, the graphics system may maintain
an upper and lower negativity threshold, and may invoke
adjustments of the sample-to-pixel filter when the frame
negativity strays outside the mterval bounded by the lower
and upper thresholds. The control adjustments seek to drive
the frame negativity back towards the threshold which has
been violated, 1.e. back towards the interior of the interval.

FIG. 25 1llustrates one embodiment of graphics system
112 which 1s configured to implement dynamic filter adjust-
ments based on the frame negativity values. The graphics
system 1ncludes graphics processor 90, sample buifer 162,
one or more sample-to-pixel calculation units 170, negativ-
ity computation unit 180 and filter memory 185. Graphics
processor 90 may render samples 1n response to a stream of
received graphics data. The rendered samples may be stored
in sample buffer 162. The one or more sample-to-pixel

10

15

20

25

30

35

40

45

50

55

60

65

36

calculation units 170 may read samples from sample butfer
162, and filter the samples to generate a stream of output
pixels. The stream of output pixels may be passed to a
display device for presentation to a user/viewer. In addition,
the stream of output pixels may be passed to negativity
computation unit 180 for computation of a frame negativity
value for the current frame. In response to the frame
negativity value being larger in magnitude than a negativity
threshold, the negativity computation unit 180 may 1mple-
ment a filter adjustment by modifying the values 1n filter

memory 185. Filter memory 185 may store computed values
of the filter function at a fixed set of radius wvalues.

Alternatively, filter memory 185 may store a set of param-
eters from which values of the filter function may be readily
computed.

The sample-to-pixel calculation units 170 may read the
filter values and/or filter parameters from the filter memory
185, and use the filter values and/or parameters to perform
the sample-to-pixel filtering. In one embodiment, each of the
sample-to-pixel calculation units has a dedicated filter
memory. Thus, the negativity computation unit 180 may
update some or all of the dedicated filter memories.

FIG. 26 1s a flowchart describing one embodiment of a
method for adjusting the filter. In step 622, one or more
sample-to-pixel calculation units may read samples from
sample buffer 162. Each sample-to-pixel calculation unit
may receive a corresponding stream of samples from sample
buffer 162, and may filter the samples of the corresponding
stream to generate output pixels as indicated 1n step 624. The
filter used by the sample-to-pixel calculation units may be
defined by the filter values and/or filter parameters stored in
filter memory 183. Filter values and/or filter parameters for
a default filter having one or more negative lobes may be
mnitially stored in filter memory 185. The output pixels
generated by each sample-to-pixel calculation unit may be
integrated 1nto an output pixel stream as suggested by FIG.
25. The output pixel stream 1s transmitted to one or more
display devices. In some embodiments, the operations of (a)
reading samples from sample buffer 162 and (b) filtering the
samples to generate output pixels are performed concur-
rently. Graphics processor 90 may continuously update
sample buffer 162 with rendered samples 1n response to a
received stream of graphics data (e.g. triangle data).
Similarly, sample-to-pixel calculation units 170 may con-
tinuously read bins of sample data according to a raster scan
pattern (or approximately a raster scan pattern) from sample
buffer 162, and may filter the sample data to generate output
pixels, for one frame after another.

In step 628, the graphics system (e.g. negativity compu-
tation unit 180) may receive the output pixel stream and
compute a frame negativity value for the current frame. It 1s
noted that the computation of the frame negativity may be
initiated as soon as the first pixels of the current frame
become available.

In step 630, the graphics system (e.g. the negativity
computation unit 180) may compare the frame negativity
value of the current frame to the threshold value. If the frame
negativity value 1s larger in magnitude than the threshold
value, step 632 may be performed. In step 632, the graphics
system may adjust the filter so that the frame negativity
values of future frames may be reduced in magnitude. In
some embodiments, the amount of the filter adjustment may
depend on the amount by which the frame negative value
exceeds the threshold 1n magnitude. In other embodiments,
the graphics system may incorporate information about the
rate of change of the frame negativity value and the past
history of the frame negativity value (in previous frames) to
determine the filter adjustment.

US 6,350,236 B2

37

Filter adjustments may be realized by updating the filter
values and/or parameters stored 1n filter memory 185. For
example, negativity computation unit 180 may compute
filter values for the adjusted filter at the fixed set of radi, or
may compute adjusted values of the Mitchell-Netravali
parameters B and C, and store these filter values/parameters
in filter memory 185. In one set of embodiments, the filter
memory 185 may be updated before the start of the next
frame so that the sample-to-pixel calculation units 170 may
use the updated filter for the output pixel computations of the
next frame. After the filter has been adjusted, the computa-
tion of the frame negativity value (1.€. step 628) may be
initiated for the next frame as soon as the output pixel data
for the next frame 1s available.

If, 1n the comparison of step 630, the frame negativity
value 1s determined to be smaller in magnitude than the
threshold value, the filter adjustment may be bypassed.
Thus, the same f{ilter, as defined by the contents of filter
memory 185, may be used 1 the next frame.

It 1s noted that a wide variety of filter adjustments are
contemplated. For example, the filter function may be (a)
shifted up by the addition of a constant, (b) morphed in the
direction of decreasing negative lobe energy 1n a parameter-
ized family of filters, (c) replaced with a filter of a different
type having little or no negative lobes, (d) modified by
clamping the negative coefficients (i.e. coefficients in the
negative lobes) of the current filter to zero, (€) modified by
attenuating the negative coefficients of the current filter (1.c.
by moving them closer to zero), or (f) any combination of
the preceding operations. After the frame negativity 1s
reduced in magnitude to a value below the threshold, filters
having increased negative lobe energy may be used once
again. For example, an original default filter may be restored
once the frame negativity magnitude drops below threshold.

In one set of embodiments, the graphics system 1s con-
figured to use a separate filter for each color. Thus, a red
filter function may be used to filter the red components of
samples, a green filter function may be used to filter the
ogreen components of samples, and a blue filter function may
be used to filter the blue components of samples. As
described above, the graphics system may compute a frame
negativity value for each color. The filter function (and/or
support) for each color may be adjusted based on the
corresponding color frame negativity value. FIG. 26 may be
interpreted as a method for adjusting any of the color filters
in response to the corresponding color frame negativity
value.

FIG. 27 shows one embodiment of a computer system 80
comprising system unit 82, display device 84, keyboard 86,
and pointing device 88. User 700 i1s operating computer
system 80 and 1s viewing display 84. In one embodiment, the
ographics system 112 may mitially use a default filter for
generating output pixels from the rendered samples. User
700 may then adjust the filter according to his/her personal
preferences with respect to the quality of the 1mage. The user
may dynamically adjust the filter by manipulating controls
704 located on filter-control interface 702. The filter adjust-
ments may be implemented in real-time, and thus, the user
may 1mmediately observe the effects of his/her control
adjustments on the displayed image quality.

While filter-control interface 702 1s depicted as having
three controls, 1n other embodiments, the filter-control inter-
face may comprise a greater or lesser number of controls. In
addition, controls 704 are intended to represent any desired
combination of controls such as knobs, buttons, sliders,
joysticks and balls. Filter-control interface 702 may be an
external physical device as suggested by FIG. 27. In this

10

15

20

25

30

35

40

45

50

55

60

65

33

case, filter-control mterface 702 may couple to an mput port
on graphics system 112 or device port on system unit 82.

In another embodiment, filter-control interface 702 may
be implemented 1n software through which the user may be
able to control the filter properties (e.g., in an operating
system or windows system or application control panel). For
example, host CPU 102 may execute program code which
supports a graphical filter-control interface. In this
embodiment, controls 704 are realized by graphical controls,
and an external (1.e. physical) filter-control interface may not
be needed. In other embodiments, the functionality of the
filter control interface may be implemented as a combination
of physical device interface and software interface.

The graphics system may be configured to control several
properties of the sample-to-pixel filter, and more generally,
properties of the filtering process that generates the output
pixels from the rendered samples, 1n response to adjustments
of controls 704. In one embodiment, one or more of the
controls 704 enable a user to select a filter type. Examples
of filter types that a user may be able to select include: a box
filter, a tent filter, a cylindrical filter, a cone filter, a truncated
Gaussian filter, a Catmull-Rom filter (or more generally, a
Mitchell-Netravali filter), a windowed Sinc filter and a cubic
spline.

Additionally, one or more of the controls may be config-
ured to control movement of the current filter along (or
within) a one, two or N-parameter family of filters. For
example, having selected the Mitchell-Netravali family as
the filter type, the user 700 may manipulate one or more of
controls 704 to slide along the B and C parameter directions
of the Mitchell-Netravali parameter space, or one of controls
704 to slide along the curve 2C+B=1 in the Mitchell-
Netravali parameter space. In one embodiment, an 1mage of
a parameter space (e.g. the Mitchell-Netravali parameter
square as suggested by FIG. 23D) may be displayed on the
screen 1n a conflguration mode, and the user may drag a
superimposed selection cursor (or cross-hairs) to a desired
location 1n the parameter space. The location of the selection
point determines the parameters of the filter to be used by the
sample-to-pixel calculation units. The graphics system may
implement the filter adjustments 1n response to displace-
ments of the selection point 1n real-time. Thus, the user may
immediately observe the effects of his/her parameter dis-
placements on the output video quality.

In some embodiments, the user 700 may define an arbi-
trary N-parameter family by selecting filter functions which
realize the extremes of the family 1n each parameter direc-
tion and/or by supplying one or more functional expressions
defining the family.

Some of the controls may enable a user to control the
geometry and extent of the filter support, 1.e., the shape and
size of the support area about the filter center. The filter
support defines the samples which are included in the
filtering process. In one embodiment, one control may be
used to select the shape of the support area. Examples of
support arca shapes a user may be able to select are: a
triangle, a rectangle, a hexagon, a circle, etc. Another control
(or controls) may be used to control the extent of the filter
support. A radial support control may be used for adjusting
the radius of the filter support. A horizontal support control
may be used for adjusting the extent of the filter support in
the horizontal direction, and a vertical support control may
be used for adjusting the extent of the filter support 1n the
vertical direction. In the cases, for example, where the
selected filter has a circular support, the horizontal control
may be used to expand or contract the filter support 1n the
horizontal direction, and the vertical control may be used to

US 6,350,236 B2

39

expand or contract the filter support in the vertical direction,
thus enabling the user to change the filter support from a
circle to an ellipse which 1s more elongated 1n the vertical or
horizontal directions. Similarly, a user may be able to
expand or contract a rectangular support in the vertical or
horizontal directions.

Other controls may be used to translate the filter function
up or down, and/or, to expand or contract the filter function
in the radial, horizontal and/or vertical directions of screen
space. It 1s noted that the filter function may be represented
in {ilter memory 185 as a table of function values evaluated
at a set of radu spanning the interval from zero to some
upper limit. The sample-to-pixel calculation units may deter-
mine the filter function for arbitrary radii based on interpo-
lation of the tabulated values. One method to achieve a
scaling (i.e. expansion or contraction) of the filter function
in the radial direction 1s to multiply the sample radius by a
constant before accessing the filter function table. In another
embodiment, the function table may be populated with
function values at X-Y positions surrounding the {ilter
center. In this case, a sample-to-pixel calculation unit may
compute the X and Y displacement of a sample with respect
to the filter center and use these displacements to the access
the function table. Thus, scaling of the filter function 1n the
X and/or Y direction may be achieved by multiplying the X
displacement and/or Y displacement by respectively con-
stants before accessing the function table. The constants are
controlled by the user 1puts.

In another embodiment, the user may be able to change
the filter (e.g. filter type, filter function, filter support geom-
etry and filter support extent) on a per region basis. For
example, a background scene may be more appropriately
displayed using a softer filter than the foreground of the
scene. Filter-control interface 702 may allow the user to first
specily a region on the display and then make filter adjust-
ments specific to that region.

Ditferent users may have different preferences as to the
quality of an 1mage. Certain users may prefer, for example,
an 1mage that 1s sharper, whereas other users may prefer an
image that 1s softer (1.e. more smoothed). Thus, one of the
controls 704 may be a sharpness/smoothness control
whereby the user 700 may adjust the amount of smoothing
to applied 1n the sample filtering. In other words, the
sharpness/smoothness control may induce the morphing of
the sample-to-pixel filter in the direction of increased
smoothing or increased acuity within a parameterized family
of filters.

Furthermore, different displays may have different
responses to the same pixel values. For example, a CRT
typically has a Gaussian intensity distribution about each
pixel, while an LCD typically has a square intensity distri-
bution with a sharp cut-off in intensity about each pixel.
Such differences may be especially apparent when different
types of displays (or projectors) are used in a multi-display
system. In some embodiments, graphics system 112 may use
a different filter for each display, and filter control interface
702 may be configured to allow filter control adjustments
per display (and/or per projector). By manipulating controls
704, the user 700 may be able to reconcile the appearance
between multiple display devices. For example, user 700
may specily more smoothing for an LCD display, and less
smoothing for a CRT display, so that the displayed video on
cach display may look more consistent. Alternatively, graph-
ics system 112 may automatically apply the multi-display
image reconciliation by selecting appropriate filters for each
display based on knowledge of the characteristics of each
display. The user (or system configuration personnel) may

10

15

20

25

30

35

40

45

50

55

60

65

40

enter characterizing information for each display such as
display type, manufacturer and/or model number.

Furthermore, the user 700 may not be satisfied with the
nominal appearance of the video output from a given
display, and thus, may be interested 1n compensating the
undesirable display-related etfects on the video output from
the given display, or in making the video output of the given
display emulate (or more closely resemble) the typical
appearance of another display (or display type). Thus, filter
control interface 702 may include one or more controls to
perform display compensation and/or display emulation.

In some embodiments, the host CPU 102 may support a
graphical user interface (GUI) through which the user may
open, close and manipulate display windows on one or more
screens. Graphics processor 90 may receive independent
streams of graphics data for each window, and may render
samples for each window into sample buffer 162. Each
sample written into sample buffer 162 may be tagged with
a window ID of the window to which 1t belongs. Sample-
to-pixel calculation units 170 may operate on each window’s
samples using a different filter. Thus, filter memory 185 may
have sufficient storage to support multiple filter data records,
one record for each active window. Each filter data record
specifies the filter values and/or filter parameter which
define the filter to be used on the corresponding window.
Thus, 1 addition to control mnputs which specity a filter or
filter adjustment, filter control unit 187 may receive a
window indicator (¢.g. a window ID) defining the window to
which the control inputs pertain. The filter control 1nterface
702 may be part of the graphical user interface (GUI).

FIG. 28 1llustrates one embodiment of graphics system
112 which 1s configured to implement dynamic filter adjust-
ments 1n response to control mputs provided by the user
through the filter control interface 702. Graphics system 112
includes graphics processor 90, sample buffer 162, one or
more sample-to-pixel calculation units 170, filter control
unit 187 and filter memory 185. Graphics processor 90 may
render samples 1n response to a stream of received graphics
data. The rendered samples may be stored in sample buifer
162. Each of the sample-to-pixel calculation units 170 may
read samples from sample buffer 162, and filter the received
samples to generate output pixels. The output pixels gener-
ated by each sample-to-pixel calculation unit may be inte-
orated mto an output pixel stream and passed to a display
device for presentation to a user. Filter control unit 187
receives user control inputs from filter control interface 702.
In the case where filter control interface 702 1s a graphical
interface, filter control unit 187 may receive user control
inputs from the operating system (executing on host com-
puter 102) via system bus 104.

Filter control unit 187 may implement filter adjustments
consistent with the user control inputs. Filter control unit
187 may perform any necessary computations to determine
an adjusted set of filter values and/or filter parameters 1n
response to the user control imputs, and may store the
adjusted set of filter values and/or filter parameters 1n filter
memory 185. The set of filter values and/or filter parameters
stored in filter memory 185 determine the filter (i.e. the filter
function and/or filter support) used by the sample-to-pixel
calculation units. In other words, the sample-to-pixel calcu-
lation units may read the filter values and/or filter parameters
from filter memory 185 to determine the geometry and
extent of the filter support and to compute the filter weight
for each sample falling in the filter support. For example,
filter memory 185 may store values of the filter function
evaluated at a set of radi1 spanning the interval from zero up
to the maximum filter radius. In one embodiment, each of

US 6,350,236 B2

41

the sample-to-pixel calculation units has a dedicated filter
memory. Thus, filter control unit 187 may update some or all
of the dedicated filter memories 1n response to the user
control 1nputs.

FIG. 29 shows a flowchart describing one embodiment of
a method for adjusting the filter in response to user control
input(s). In step 752, the one or more sample-to-pixel
calculation units 170 may read samples from sample buifer
162. Each sample-to-pixel calculation unit may receive a
corresponding stream of samples from sample buffer 162,
and may filter the samples of the corresponding stream to
generate output pixels as mdicated in step 754. The filter
used by the sample-to-pixel calculation units may be defined
by the filter values and/or filter parameters stored 1n filter
memory 185. Filter values and/or filter parameters for a
default filter may be 1nitially stored in filter memory 1835.
The output pixels generated by each sample-to-pixel calcu-
lation unit may be integrated 1nto an output pixel stream as
suggested by FIG. 28. The output pixel stream 1s transmitted
to one or more display devices. In some embodiments, the
operations of (a) reading samples from sample buffer 162
and (b) filtering the samples to generate output pixels are
performed concurrently. Graphics processor 90 may con-
tinuously update sample buffer 162 with rendered samples in
response to a received stream of graphics data (e.g. triangle
data). Stmilarly, sample-to-pixel calculation units 170 may
continuously read bins of sample data according to a raster
scan pattern (or a distorted raster scan pattern) from sample
buffer 162, and may {ilter the sample data to generate output
pixels, for one frame after another.

In step 760, the filter control unit 187 may wait for control
inputs asserted by the user 700 through filter control inter-
face 702. In response to receiving user control input(s), filter
control unit 187 may perform step 762. In step 762, filter
control unit 187 may compute filter values and/or filter
parameters for an adjusted filter consistent with the user
control inputs, and store these values/parameters in filter
memory 185. After the filter memory 185 1s updated, filter
control unit 762 may return to wait state 760, and the
sample-to-pixel calculation units 170 may filter pixels 1n
succeeding frames with the adjusted filter.

In some embodiments, the filter-control interface 702 may
be configured for a multi-user environment. Thus, filter
control mterface 702 or host CPU 102 may store the filter
configuration data that each user develops 1n a graphics
session, and may restore the filter configuration data when
the user returns for a future graphics session. For example,
in one embodiment, 1n a sign-on procedure, the user may
enter information 1dentifying himself/herself to the system,
¢.2. a username, password and/or ID number. In another
embodiment, the user may simply select his/her ID number
using an ID selection control of the filter control interface
702. Host CPU 102 or graphics system 112 may then restore
the user’s filter configuration data from memory.

In one set of embodiments, the graphics system 1s con-
figured to use a separate filter for each color. In other words,
a red filter may be used to filter the red components of
samples, a green filter may be used to filter the green
components of samples, and a blue filter may be used to filter
the blue components of samples. Thus, the filter control
interface 702 and graphics system 112 may allow the user to
independently change/adjust each of the per-color filters.
For example, the user may select a color, adjust parameters
of the filter function and/or filter support for the correspond-
ing color filter, select another color, and so on.

In another embodiment, the graphics system may be
operable to dynamically adjust the sample-to-pixel filter

10

15

20

25

30

35

40

45

50

55

60

65

42

(e.g. the filter function and/or filter support) 1n response to
measurements obtained by a display-monitoring system that
1s connected to the graphics system. An example of a
display-monitoring system 1s camera 765 shown 1n FIG. 30.
Camera 765 is focused on display 84 (or some portion
thereof) in order to capture the sequence of image frames
that are presented on display 84. In one embodiment, camera
765 may be a digital camera able to capture and output the
displayed 1image frames in digital format to the graphics
system. For example, the camera may be configured to
output a plurality of captured pixels. In an embodiment
where camera 765 1s an analog camera, an analog-to-digital
converter (ADC) may be used to convert the camera output
signal to digital format 1n order to obtain the captured pixels.
In another embodiment, the graphics system may perform
the conversion of the camera output signal from analog to
digital. Camera 765 preferably captures images at a resolu-
fion that 1s equal to or higher than the resolution of display
84. Furthermore, camera 765 may capture 1mages at a
frames/second rate that 1s equal to the refresh rate of display
84. In another embodiment, the refresh rate of display 84
may be an integer multiple of the frames/second rate at
which camera 765 may be able to capture images. In another
embodiment, camera 765 may capture 1images at a frames/
second rate that 1s an integer multiple of the refresh rate of
display 84. In one embodiment, camera 765 receives syn-
chronization information from the graphics system 1n order
to remain synchronized with the 1mages displayed on dis-
play 84.

The 1mage captured by camera 765 contains information
on how the sample-to-pixel filter has affected the displayed
image. In addition, the captured image contains information
on how display 84 has affected the color mtensity distribu-
fion of the displayed output pixels. As mentioned before, an
LCD displays each pixel with a relatively square distribution
in color intensity, whereas a CRT displays each pixel with a
Gaussian distribution. Therefore, such a display monitoring,
system may be used to dynamically adjust the sample-to-
pixel filter (e.g. the filter function and/or filter support) such
that an 1mage may appear the same or close to the same on
different types of displays.

The graphics system may receive a succession of captured
image frames 1n the form of captured pixels from the display
monitoring device 765. The graphics system may compute a
sharpness value for each of the captured frames. The graph-
ics system may also compute a sharpness value for every
other frame, every two frames, etc. in cases where the
computational power 1s limited. The sample-to-pixel calcu-
lation unit may compute the sharpness value internally or the
computation of the sharpness value may be computed by a
sharpness-computation unit or by the host CPU.

In one embodiment, the graphics system may be config-
ured to output a test image (or a series of test images) to
display 84. The test image may have, for example, a
pre-determined sharpness value to assist in the “tuning” of
the sample-to-pixel filter for a given display. The graphics
system may perform a comparison of the parameters of the
captured 1mage to the parameters of the displayed test image
and then accordingly adjust parameters of the sample-to-
pixel filter.

The test 1mage may have a neighborhood in which all
display pixels are turned off except for a single central pixel
which 1s turned on. The camera may capture the neighbor-
hood at high resolution. Thus, the captured pixels may
characterize the display’s intensity distribution for the single
pixel. A sharpness value may be computed from an analysis
of the captured pixels.

US 6,350,236 B2

43

In another embodiment, the graphics system may com-
pute the sharpness value of each frame by examining the
spatial frequency spectrum (e.g. an FFT or DCT) of the
captured 1mage. The amount of energy in the frequency
spectrum at high spatial frequencies 1s an indicator of the
sharpness of a displayed image.

The graphics system 1s further configured to compare the
sharpness value to a desired sharpness value. In response to
the sharpness value being above or below the desired value,
the graphics system may dynamically adjust the sample-to-
pixel filter (e.g. the filter function and/or the filter support)
in order to maintain the sharpness value within a certain
percentage of the desired value. For example, the graphics
system may adjust the filter by (a) choosing a different type
of filter, (b) adjusting parameters of the filter within a
parameterized family of filters (such as the Mitchell-
Netravali family), (c) expanding or contracting the width of
the filter function along the radial direction, the x direction
and/or the y direction, or (d) raising or lowering the coef-
ficients of the filter function. In addition, the graphics system
may change the filter support, €.g. by extending or contract-
ing the filter support 1n the x direction, the y direction and/or
the radial direction. The desired sharpness value may be a
user-adjustable parameter.

In another embodiment, the graphics system may be
configured to compute a similarity value by comparing the
set of captured pixels provided by the display-monitoring
device to the output pixels generated by the sample-to-pixel
calculation units. The similarity value may be computed by
the sample-to-pixel calculation units or by a similarity
computation unit. The similarity value may range, for
example, from O to 1, wherein the similarity value 1s 0 for
two completely dissimilar images and 1 for two i1dentical
images. Existing image-comparison algorithms may be used
to compare the two 1mages and compute the similarity value.

The graphics system may be further configured to com-
pare the similarity value to a minimum similarity value. In
response to the similarity value being below the minimum
similarity value, the graphics system may dynamically
change or adjust the sample-to-pixel filter (e.g. parameters
of the filter function and/or the filter support) in order to
maintain the similarity value above the minimum value. For
example, the graphics system may adjust the filter param-
cters within a parameterized filter family 1n a direction
known to 1nduce increased similarity or reconstruction accu-
racy. In addition, the graphics system may expand or con-
tract the filter function and/or the filter support 1n the radial,
horizontal, and/or vertical screen space directions. In one
embodiment, the graphics system may replace the current
filter with a different type of filter which 1s known to mnduce
increased similarity. The minimum similarity value may be
adjustable by the user/viewer.

FIG. 31 shows a flowchart describing a method for
adjusting the filter according to one embodiment. In step
772, the one or more sample-to-pixel calculation units 170
may read samples for a current frame from the sample buifer
162. In step 774, the sample-to-pixel calculation units may
operate on the samples with the filter determined by filter
memory 185 to generate a plurality of output pixels for the
current frame. Steps 772 and 774 may operate concurrently
in a pipelined fashion, 1.e. the sample-to-pixel calculation
units may continuously read and filter samples for one frame
after another. In step 776, a display device receives and
displays the output pixels. In step 778, a display-monitoring
device captures the 1mage displayed by the display device.

In step 780, the similarity computation unit within the
ographics system may compute a similarity value for the

10

15

20

25

30

35

40

45

50

55

60

65

44

captured 1mage with respect to the output pixels of the
current frame. In step 782, the graphics system determines
if the similarity value 1s lareger than a minimum similarity
value. If the similarity value 1s greater than the minimum
similarity value, the filter remains unchanged for the filter-
ing of subsequent frames. If the similarity value 1s less than
the minimum similarity value, 1 step 790, the graphics
system adjusts the sample-to-pixel filter (e.g. the filter
function and/or the filter support) in order to increase the
similarity of a subsequent captured image with respect to the
corresponding frame of output pixels. After adjusting the
sample-to-pixel filter (or perhaps, while adjusting the
sample-to-pixel filter), step 778 may be initiated for the next
displayed frame.

Although the embodiments above have been described 1n
considerable detail, other versions are possible. Numerous
variations and modifications will become apparent to those
skilled 1n the art once the above disclosure 1s fully appre-
ciated. It 1s intended that the following claims be interpreted
to embrace all such vanations and modifications. Note that
the headings used herein are for organizational purposes
only and are not meant to limit the description provided
herein or the claims attached hereto.

What 1s claimed 1s:

1. Amethod for generating pixels for a display device, the
method comprising:

receiving graphics data;

rendering a first plurality of samples 1n response to the
oraphics data;

filtering said first plurality of samples using a first filter to
generate a first set of output pixels;

transferring said first set of output pixels to the display
device; and

adjusting said first filter 1n response to user mput.
2. The method of claim 1, further comprising;:

rendering a second plurality of samples 1n response to
additional graphics data;

filtering said second plurality of samples using the
adjusted filter to generate a second set of output pixels;
and

transferring the second set of output pixels to the display

device.

3. The method of claim 1, wherein said dynamically
adjusting said first filter comprises adjusting one or more
support parameters 1n response to the user input, wherein the
support parameters determine a support region of the
adjusted first filter.

4. The method of claim 3, wherein said one or more
support parameters determine an extent of the support region
of the adjusted first filter.

S. The method of claim 3, wherein said one or more
support parameters determine a geometry for the support
region of the adjusted first filter.

6. The method of claam 1, wheremn said dynamically
adjusting said first filter comprises changing one or more
filter parameters of the first filter in a parameter space in
response to the user input, wherein the parameter space
corresponds to a parameterized family of filters.

7. The method of claim 1, wherein said dynamically
adjusting said first filter comprises:

receving said user mput indicating a user’s choice of a
different filter type; and

changing the first filter to the different filter type.

8. The method of claim 1, wherein said dynamically
adjusting said first filter comprises scaling the first filter
along a radial dimension in response to the user input.

US 6,350,236 B2

45

9. The method of claim 1, wherein said dynamically
adjusting said first filter comprises scaling the first filter
along a screen-space axis 1n response to the user input,
wherein the screen space axis 15 selected from the group
comprising the horizontal screen-space axis and the vertical
SCreen-space axis.

10. The method of claim 1 further comprising receiving
said user mput from a filter control interface, wherein said
filter control interface comprises one or more user-
adjustable controls.

11. The method of claim 10, wherein the filter control
interface 1s implemented as a graphical user interface.

12. The method of claim 10, wherein a first one of said
adjustable controls selects a {filter type for said first filter, a
second one of adjustable controls selects a value of a filter
parameter for said first filter, and a third one of said
adjustable controls selects a width of said first filter.

13. The method of claim 1, wherein said filtering com-
prises (a) filtering a first attribute of said first plurality of
samples with the first filter to generate a first component of
the output pixels of the first set, and (b) filtering a second
attribute of said first plurality of samples with a second filter
to generate a second component of the output pixels of the

first set;

the method further comprising dynamically adjusting said

second filter 1n response to user input.

14. The method of claim 13, wherein the first attribute and
the second attribute are selected from the group consisting of
red, green, blue and alpha.

15. The method of claim 1, wherein said dynamically
adjusting said filter further comprises dynamically adjusting
said filter on a per display region basis.

16. A method for generating pixels for a display device,
the method comprising:

receiving graphics data;

rendering a plurality of samples 1nto a sample bu
a frame based on the graphics data;

filtering said plurality of samples using a filter to generate
a plurality of output pixels for said frame;

transterring said plurality of output pixels to the display
device, wherein the display device forms a display
image for said frame in response to said plurality of
output pixels;

capturing an 1image of said display 1image using a display-
monitoring device, wherein the captured image com-
prises a plurality of captured pixels; and

dynamically adjusting said filter 1n response to said plu-
rality of captured pixels.
17. The method of claim 16, wheremn said display-
monitoring device comprises a video camera.
18. The method of claim 16, wherein said display image
1s a predetermined test 1mage.
19. The method of claim 16, further comprising;:
computing a similarity value by comparing said plurality
of captured pixels with said plurality of output pixels;
and

dynamically adjusting said filter in order to maintain said
similarity value above a threshold similarity.
20. The method of claim 16, further comprising

computing a sharpness value for said plurality of captured
pixels; and
dynamically adjusting said filter in order to maintain said
sharpness value with a neighborhood of a desired
sharpness value.
21. A computer program embodied on a computer-
readable memory medium, wherein the computer program 1s
executable to:

ter for

10

15

20

25

30

35

40

45

50

55

60

65

46

receive graphics data;

render a first plurality of samples in response to the
oraphics data;

filter said first plurality of samples using a first filter to
generate a first set of output pixels;

transfer said first set of output pixels to the display device;
and

dynamically adjust said first filter 1n response to user

input.

22. The computer program of claam 21, wherein the
computer program 1s further executable to:

render a second plurality of samples 1 response to

additional graphics data;

filter said second plurality of samples using the adjusted

filter to generate a second set of output pixels; and
transfer the second set of output pixels to the display
device.

23. The computer program of claim 21, wherein said
dynamically adjusting said first filter comprises adjusting
one or more support parameters in response to the user mnput,
wherein the support parameters determine a support region
of an adjusted first filter.

24. The computer program of claim 23, wherein said one
or more support parameters determine an extent of the
support region of the adjusted first filter.

25. The computer program of claim 23, wherein said one
or more support parameters determine a geometry for the
support region of the adjusted first filter.

26. The computer program of claim 21, wherein said
dynamically adjusting said first filter comprises changing
one or more filter parameters of the first filter 1n a parameter
space 1n response to the user input, wherein the parameter
space corresponds to a parameterized family of filters.

27. The computer program of claim 21, wherein said
dynamically adjusting said first filter comprises:

receiving said user input indicating a user’s choice of a

different filter type; and

changing the first filter to the different filter type.

28. The computer program of claim 21, wherein said
dynamically adjusting said first filter comprises scaling the
first filter along a radial dimension in response to the user
input.

29. The computer program of claim 21, wherein said
dynamically adjusting said first filter comprises scaling the
first filter along a screen-space axis 1n response to the user
input, wherein the screen space axis 1s selected from the
ogroup comprising the horizontal screen-space axis and the
vertical screen-space axis.

30. The computer program of claim 21, wherein the
computer program 1s further executable to receive said user
mput from a filter control interface, wherein said filter
control interface comprises one or more user-adjustable
controls.

31. The computer program of claim 30, wherein the filter
control mterface 1s implemented as a graphical user inter-
face.

32. The computer program of claim 30, wherein a first one
of said adjustable controls selects a filter type for said first
filter, a second one of adjustable controls selects a value of
a filter parameter for said first filter, and a third one of said
adjustable controls selects a width of said first filter.

33. The computer program of claim 21, wherein said
filtering comprises (a) filtering a first attribute of said first
plurality of samples with the first filter to generate a first
component of the output pixels of the first set, and (b)
filtering a second attribute of said first plurality of samples
with a second filter to generate a second component of the
output pixels of the first set;

US 6,350,236 B2

47

wherein the computer program 1s further executable to
dynamically adjust said second filter 1n response to user
inpult.

34. The computer program of claim 33, wherein the first
attribute and the second attribute are selected from the group
consisting of red, green, blue and alpha.

35. The computer program of claim 21, wheremn said
dynamically adjusting said filter further comprises dynami-
cally adjusting said filter on a per display region basis.

36. A graphics system comprising:

a rendering unit operable to receive graphics data and

render a first plurality of samples 1n response to said
ographics data;

a sample buffer coupled to said rendering unit and con-
figured to store said first plurality of samples;

a sample-to-pixel calculation unit coupled to said sample
buffer, wherein said sample-to-pixel calculation unit 1s
operable to filter said first plurality of samples using a
first filter to generate a first set of output pixels, and
transmit said first set of output pixels to a display
device;

a filter-control unit configured to adjust said first filter 1n

response to user mput.

37. The graphics system of claim 36, wherein the render-
ing unit 1s further operable to render a second plurality of
samples 1n response to additional graphics data, wherein the
sample-to-pixel calculation unit 1s further operable to filter
said second plurality of samples using the adjusted first filter
to generate a second set of output pixels, and to transmit the
second set of output pixels to the display device.

38. The graphics system of claim 36, further comprising
a filter memory, wherein the sample-to-pixel calculation unit
1s configured to read values from the filter memory and
determine filter weights for filtering said first plurality of
samples from said values, wherem the filter-control unit 1s
configured to update said values in the filter memory 1n
response to the user mput.

39. The graphics system of claim 36, wherein said filter-
control unit 1s configured to dynamically adjust one or more
support parameters 1n response to the user input, wherein the
support parameters determine a support region of the
adjusted first filter.

40. The graphics system of claim 39, wherein said one or
more support parameters determine an extent of the support
region of the adjusted first filter.

41. The graphics system of claim 39, wherein said one or
more support parameters determine a geometry for the
support region of the adjusted first filter.

42. The graphics system of claim 36, wherein said filter-
control unit 1s configured to dynamically adjust one or more
filter parameters of the first filter 1n a parameter space 1n
response to the user input, wherein the parameter space
corresponds to a parameterized family of filters.

43. The graphics system of claim 36, wherein said filter-
control unit 1s configured to dynamically adjust said first

filter by:

receiving said user mput indicating a user’s choice of a
different filter type; and

changing the first filter to the different filter type.

10

15

20

25

30

35

40

45

50

55

43

44. The graphics system of claim 36, wherein said filter-
control unit 1s configured to dynamically scale the first filter
along a radial dimension in response to the user input.

45. The graphics system of claim 36, wherein said filter-
control unit 1s configured to dynamically scale the first filter
along a screen-space axis 1n response to the user mput,
wherein the screen space axis 1s selected from the group
comprising the horizontal screen-space axis and the vertical
SCreen-space axis.

46. The graphics system of claim 36 further comprising a
filter control interface having one or more user-adjustable
controls which allow user to provide said user inputs,
wherein the filter control interface 1s configured to transfer
said user inputs to the filter control unit.

47. The graphics system of claim 46, wherein the filter
control mterface 1s implemented as a graphical user interface
on a host computer.

48. The graphics system of claim 46, wherein a first one
of said adjustable controls selects a filter type for said first
filter, a second one of adjustable controls selects a value of
a lilter parameter for said first filter, and a third one of said
adjustable controls selects a width of said first filter.

49. The graphics system of claim 36, wherein said
sample-to-pixel calculation unit is configured to (a) filter a
first attribute of said first plurality of samples with the first
filter to generate a first component of the output pixels of the
first set, and (b) filter a second attribute of said first plurality
of samples with a second filter to generate a second com-
ponent of the output pixels of the first set;

wherein the filter-control unit 1s further configured to
dynamically adjust said second f{ilter 1n response to
additional user nput.

50. The graphics system of claim 49, wherein the first
attribute and the second attribute are selected from the group
consisting of red, green, blue and alpha.

51. The graphics system of claim 36, wherein said filter-
control unit 1s configured to dynamically adjust said first
filter on a per display-region basis.

52. A graphics system comprising:

a rendering unit operable to receive graphics data and

render a plurality of samples in response to said graph-
1cs data;

a sample buifer coupled to said rendering unit, wherein
said sample buifer 1s operable to store said plurality of
samples;

a sample-to-pixel calculation unit coupled to said sample
buffer, wherein said sample-to-pixel calculation unit 1s
operable to (a) filter said plurality of samples using a
filter to generate a plurality of output pixels for a frame
and (b) transmit the plurality of output pixels to a
display device, wherein the display device 1s coniig-
ured generate a display image from the plurality of
output pixels; and

a display-monitoring device configured to capture said
display 1image as a plurality of captured pixels;

a filter adjustment unit configured to receive the plurality
of captured pixels and to adjust said filter 1n response
to said plurality of captured pixels.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

