(12) United States Patent
Nishikado et al.

US006847975B2

US 6,847,975 B2
Jan. 25, 2005

(10) Patent No.:
45) Date of Patent:

(54) PROXY PROCESSING METHOD

(75) Inventors: Takashi Nishikado, Ebina (JP);
Kouzou Hatakeyama, Ayase (JP);
Masahiko Nakahara, Machida (JP);
Yasuhiro Takahashi, Kawasaki (JP);
Fumio Noda, Kodaira (JP)
(73) Assignee: Hitachi, Ltd., Tokyo (JP)
(*) Notice: Subject to any disclaimer, the term of this
patent 15 extended or adjusted under 35
U.S.C. 154(b) by 215 days.
(21) Appl. No.: 10/201,960
(22) Filed: Jul. 25, 2002
(65) Prior Publication Data
US 2003/0028515 Al Feb. 6, 2003
(30) Foreign Application Priority Data
Jul. 30, 2001 (JP) cererrieiiiiiieirrree e 2001-229722
(51) Int. CL7 oo, GO6F 17/30
(52) US.CL ..., 707/101; 707/10; 717/109;
710/100

(58) Field of Search 707/101, 10; 710/100;

717/109

(56) References Cited
U.S. PATENT DOCUMENTS
6,665,565 Bl * 12/2003 Stomberg et al. 607/31

* cited by examiner

Primary Fxaminer—Charles Rones
(74) Attorney, Agent, or Firm—Antonelli, Terry, Stout &
Kraus, LLP

(57) ABSTRACT

A proxy processing method to flexibly add/modity custom-
1zed operations, such as customized user authentication and
accounting, 1s provided. A state transition engine stores state
information and moves processing forward by updating
states. It has the following characteristics. (1) a state tran-
sition table indicating a proxy processing procedure 1s
generated from a state definition file at start-up (1-(1)). (2) A
state transition engine 1implements proxy processing accord-
ing to the state transition table (1-(2)). (3) A feature is
provided to add an extended region for extended features to
the session management table. (1(3)). Also, with regard to
extended logging: (1) An extended log definition file indi-
cates extended log information to be logged (2-(1)). (2)
Extended log information based on the extended log defi-
nition is stored in the session management table (2-(2)). (3)
Each access log provides two types of separate information,
a fixed-length standard log and a variable-length extended
log.

20 Claims, 19 Drawing Sheets

Web-caching proxy processing for each HT TP session from a Web client

1) Establish requested connection
2} Recetve request

3) Analyze request
4} Check cache

___-_'-!-_-——d—-_-q_“.—_

Not in cache

5) Establish connection to server
6) Forward reguest to server

7) Receive response from server
8) Check response from server
9) Save response to cache

10; Reply to client

11) Terminate HT TP session

hent 1 l
results

1

X | cache

15) Read response from cache q
%16 Reply with cache .
(17) Terminate HTTP session | ‘k

I Independent processin

L] 1S needed for each HTT
session from a Web client

Web
server

Folward request
" Yveb-caching —
rox *
ProxXy Results >
Red Il., 4
Cache N3

US 6,347,975 B2

Sheet 1 of 19

Jan. 25, 2005

U.S. Patent

14

J9AIDS
dsMA

JUSID gaAA B WOJ) UOISSaS

1114 1oFa 1o, pbposu st (] LOISS2S AL el
./- _ Janas woly asuodsal %3y (g
/l A UOISSaS 41 {H areuwuay (/1) JAAJI3S WOY 9SU0dSal BAIR23Y (/£
\ ~ ayoe?d MES A dey erw 1aM13s 0} jsanbal pjemiod (9
aYoBd WOolj asuodsal peay (G} JaAISS 0] UONDI3UUOD Ysi|geisd (G
ayoed uj

ayaed ul .ozh_w

ay2ed ¥03yoH Mv
1Sanbal azAleuy (€

1sanbal aniavay MN
uol}oauu0d paisanbal ysigeis3 (|

JUDI[D GIAA B WOL) UOISSSS 41 | H yoea Joj buissadosd Axosd butyaea-qapa

L Ol

US 6,847,975 B2

Sheet 2 of 19

Jan. 25, 2005

U.S. Patent

a1N}aNAS 3jGe} aiNPoA

lIIIIII

LonduUNy uonounj co;ocE uonouny
uonjeuiwls) | uonezieniur | uonesnbiyuod BuISS390) aweu a1.)S | gl 31eis fo—
U0ISSaSg UOISSaG alels d

I D S A S .
] . Jeems¥o] ¢
- 1 [] - luemswo.| 0

Gonouny Gonoun] Gonouny
uoneulwls) | uonezieniul |uoneinbyuos mm___mmwm_%
LOISSAS AEIS d

UOISSaS

—_— e _—— b — o — s .. lLEAEm e W . — - —_— -

|

Ii
nI L
+l+
r &
I
]

POWPIS.,

JPOW 8yoen,

_Lpop_uondo, |

uoneuwoul| |

9|del SINPOA

¢ Ol

WU 2]elS (1l =AABlS I~

W

US 6,347,975 B2

Sheet 3 0of 19

Jan. 25, 2005

U.S. Patent

‘3|ly UonIuap 8)els ay) ut

pa}edIpuUl SaWweU 3)e)s Yiim saujus buiAdod pue
dn Buiyoo| AQ }jInq SI 8|ge} uolISuel) 8)els ay |
'S31IJUd 3|ge)} uoljIsuel] ajels au)

SE WJO} SWEeS 3y} Ul aJe 1SI| SIY} Ui sauuad sy |

‘a|npow au} Aq papiroid SSJELS JO 1S uoljewojul 83e;lS 4O “m_._

aweu 3|nNpPoN 3aweu aNPo

Soudiosec — e

S31)JUd S|ae) 8|NPOW Ul UOIBWIIOUI UIB|N

¢ Il

US 6,847,975 B2

Sheet 4 of 19

Jan. 25, 2005

U.S. Patent

ajly uoniuap alels o ajdwex3

IpH 3yoe) 199 0306 Ny syoed ji #
9UJED Yo3d #

UOIIEZIIOUINE »IO8YD #
lapesy 1sanbai asled #
Jopeay 1sanbals }ob #

Juai|o 10820k #

SIUBWILLIOD
ale aul| yoes ui
#, 18)e s19)0eieyd

SaWeU a)e)S 4

ayoe »osymn
aloed }oaUo #

yiny 328y

1pH bay asied

IPH doy 189
13peay 1sanbal 136 #

HO 1deooy
T0108UU0D }d3JJe #

#
ajy uoneinbyuod ajels #

#

US 6,847,975 B2

Sheet 5 of 19

Jan. 25, 2005

U.S. Patent

‘s|npow yoes ioj |
UOIBWLIOJUI UOISUB)X8 D1j108ds-a|nPoin
)8 'UONEWOjUl JOJI8 |
pa|ielap ‘Ynsad buissasoid 41 I H

JUSId gopA 0} JOAISS QoA |
woJj uoeuuojul Aldal 41 I H |
JOAIBS gapA 0] JUsIO gapp

Eot uonewojul ysanbal 41 1H

9 ‘salidas ‘s)sanbal buialeoas |
_ocm UIPUSS JOJ UOIJEULIOJUI J3YNg

13)e| PaquISaP | djels buisn palo)s |
'8}e}s bulssasoid juaund 4o uojeuuoju] |

uonewJojut |
UOISUIIX8 oc_omam-m_:uos_

uoneuwloju |

}INsal mc_mmmoo_n_

uonewlojul Ajlday

uoljeulolul }sanbay

JayNqg 8AIa231/puas

co;mE‘_oE_ 3)e}S |

T I

?Em 3|qe) UoIssas)
91NJ0NJ]JS UOISSIS Yoea Ul Palols uonewioul ulep

8 I O S O

g Dl

US 6,847,975 B2

uoIjew.ojul
dnpue)s 12 JINg St 9|ge) uoiiSuel] a8lels ayl uaym dn 1as Ajjediewoine si uochewojut 3]els
Siyl " AQV, UB Suinjas € wWoiy uoijouny buissanosd aje}s ay) ji 3jels IXau ay) sajedipuy| Xau jjnejaq
‘G# 10 $# Ul pP3}eo0o|e | uonouny
z%o_Emc% suoibal sases|al ‘ejdwexa 10 'uoijoun) Siyj U1 gaAA B wolj }senbal e uoleuiulo]
10} BuISS300.d Jo uona|dwiod uodn ainjanns UOISSaS B buijsjap uaym pajnosxa uoijoun4 UOISSOS
‘74 ybnoiyy pajjeo uonoun) uoneinbiyuod
ay} Aq pajeoo)e suoibai oyoads-anpoui/alels ay) JO UOHEZI{eRiul pUB $80JN0S3l uoyouny
AIBSS30aU JO UOIIEJ0||B SB Yans syse) swiopad uonounj siy] 1usiio gapA e wolj jsanbal UcHeZI|ENIUL
o e JO 1diadas e 0) asuodsal ul paieald Si alnjoniis UoISSas B Uaym pPajndaxa uonoun 4 UOISSDS
= ‘suonisuel) aiel)s adAl- 0)0b6, 104 S(1| 21B1S 01 SSWIBU 3)elS SUSAUOD pUE Sajnpow ay) Jo |
& a)e)s ay) Aq papasu ainjnas uoissas ay) ul suoibal ajeaojje 0) }senbas e sayew uonouny
> au) ‘sjdwexa 104 '9)e}s ay} Joj dnuels waysAs je pawliopad aq 0} suoijesado uonezieniul uonduUNy
m sapinoid uonouny ay | 3d1Aap Axoud ay) Jo dnuels 1e aduo Isn! panoaxs St ey} uonoun uonenblyuod
auibua uonisuel) ajels syl 4o uondiosap ay) ass ‘anjeA uinyas ayy Jo sjlelsp uonouny
104 "0} pajepdn aq 0] a}e)s Xau ay} S3)EJIPUI dNjeA uin}al suonoun ay | 'sjels syl buissanoid
- UM pajeroosse buissasold swiopad uoiouny sy 8jels auy) 1o} uonouny buissaoold ayy 2le1s
= 821nap Axoid 8y} 40 | |
U dnyuels 1e JIng Si a|ge) uolisuel} alels ayj Usym pasn sI alWeu 8)els auyl Inq ‘uociindaxs
L Buunp pasn SI sweu 3)els ay} uey) jayiel Q] siels syl '9)e}s sy} Jo aweu J1joquAs . 9WEU 3JElS |
= ‘2INJONIS UOISSAS Y} Ul 3)e)s 1abie) ay) 4o
- gl 2)8)S au) s}as ale)s auy) 1o} uonouny Buissaoold ay) ‘(uonisuell aeis adAy- 0300, €)

3)E)S 1XaU)Neyap ayj uey) Jaylo ajels e o) paepdn si a)els 8 USYAA ‘gl Siels auy Buisn
}SS SI 9|ge] LUOISSas au) Ul palo)s UCBULIOMU! 3)B1S Juaung '] uoiedyiuap! ajels dl 91el1S

-

-

|

A1lua 9|ae) UONISURI] 8]BIS UJEBa Ul PaJ0)S uoliewojul uiep

9 Dla

U.S. Patent

U.S. Patent Jan. 25, 2005 Sheet 7 of 19 US 6,847,975 B2

FIG.7

Start proxy processing
Initialize memory, etc. SO

\

Build state
transition table S03
(Fig.9)

\/
Execute each state S05
configuration function |

Execute session
processing process

(Fig.10)

\/

SO07

US 6,847,975 B2

Sheet 8 0of 19

Jan. 25, 2005

U.S. Patent

D)< oz [T T hipyber ror dnyl IpHbaY 189, !

dn-Ue]s)e 8jge) uonISUel) 8)elS 10 uolealn

A I T N R P T
6 | - 1 - T - | oujox | tamgdo, |95z

¢z | T uepdecce | y01deddy,
Sleys | uonouny | uonoun) [uomouny 0o
Xau |uoheuiuus) fuoneziieniul juogenbyuod) mc_mwmoow
JINEJSJ| UOISSaS | UO0ISSSS S . d

“I_I_ : |z | | =

I O:Hﬁ

_.Smwﬁm&& e .E.H ,, S%_ﬂmﬁa_, uopuny [2BIS
RS buissanold ae] LIS .mc_mmwoo‘_n_

Eﬁm..am |
IpH bay Hmo
I | _ 1D 1dsooy |-
| (Byporejes)
3|qe) S|NPo aly uonIuYap SIS

U.S. Patent Jan. 25, 2005 Sheet 9 of 19 US 6,847,975 B2

F1G.9

\/

@ | Open state efinition file S801

>
\/

@) ' Read next state name from S8072
state definition file
S803

3) Any more state names to _
process (EOF)7? No
Yes
@ lLook up associated entry from S804
| module table.
\/

®) Copy search result entry to state | S805
transition table.

\/
® | Set up default ne state information S806
@ | Assign state ID & set up state_index S807
\/

Register session initialization S808
processing function list.
\/
©), Register session termination S809

orocessing function list.

Close state definition file $810
\/
a Execute state config functions S811

\/
Building of state transition
table done.

Flow of operations performed
to build state transition table

US 6,847,975 B2

Sheet 10 of 19

Jan. 25, 2005

U.S. Patent

(UonBWIOLUI JUBAS
pue AJjua UoISS3S YlIm)

auibus
ucijisuelt) 8jels ajnoax3

$S800.4d DUISS3004C
UOISSaS alBuIULd]

80YS
[oips’ OV 10VS ()

$955820.d
buissanoid uoissas Jo

U0ISSaS 41 IH

bulssa00.d

Buissso0id uonBUILLS] noawi} Apeai 109193
[(6 > ® S
1U2A2 BOVS
uoneulw.s| jnosuit] JusAs Apeay | S0¥S

puiy JusAs %38y (€)
/)

£OPS

/A

(uonouny
Buissaooid uopezieniut
uQISSas INJax3)

AJJus 8|qQe) UoISSas
SZI|eljiul pue 9}ed0||y

{\
SOvS ()

UON23UU0D YS!|qels]

UOI}OBUU0D § ()

ysiigejse | vOvrS
0] 1Sanbay

‘Ajdal uonedaiunwwed ssasoidiaiul pue (/| YJomiau 0 SjusAs-Apeal Se yons ‘Sjuana 1o liepa (2)

A

cOvsS L

$5900.d BUISSa20.C
UOISSas JO uonnoaxa uibeg

(1)

LOPS

0L "Dla

US 6,347,975 B2

Sheet 11 of 19

Jan. 25, 2005

U.S. Patent

‘NS .hUr_IUm‘.I_,U 1 A.Uum _O._..Omu .>Q¢_v

SUOISSAS 4| | H 40 poylaw buissaoo.td

- el N Ry - _‘

L Ol 4 anes| | | peox <
C]! wz_wmw.m e
S}NsaYy L yim Aldey
19AISS - | JU3O QoA
vl PU— ™ T P
)senbas piemiod | | 1s9NnDbay ,
llllllllllllllllllll N l....l..ll-llillull.l...l.ll...l.l.llln_.lll-llul..ll..

UOISSaS Apeal
2iNPaYIS

| 'l a1e1s uogdo o} oyads uoneuuolu] ,
'0}9 'UONEULIOUI SYNSaY

Elep puag ,

EJED SAIS03Y

[oUUBLO LUOHEIIUNLLILLICD J9AIRS

[SUUELIO USReIUNUIOD Ui
| (2) uoneuuoju ajels

LONBULIOUS 5 g m
UIINPaYDS-9 _
cogmcm_ I ! umco = |

Lou_c_ JUsAg
SINJOMuS UOISSag ,

uonouny
buissao0d E=

UONBULIOJU JUSAT , |

(U0ISSBS 41 IH Yyoee yim
AINOrUls UoISS3S uogeuuojul P3JRIOSSE AINONUS UOISS3G)
UOnoUNRy BUISSa004d SjelS dn %007 (Z) J "gige) Juawebeuew uoISSaS ()

a)e)s anoax3 ()

Rlll
Y, I R
- ® [- 1 - | ~ [y bar AilipH bay 199 @ |
I'I.I+I o 3decde | 3133de%y |) |

alels xau | uonoun) uonouny uonoun uo1OuUN} EE
aje)

uoneulwIa| uojeziieniul _._o;m_:m yuo)jbuissadoid
a|qe) uonisuen a)e1s (z

iinejaQd

US 6,847,975 B2

Sheet 12 of 19

Jan. 25, 2005

U.S. Patent

auibua uoIISURS] 3)B)S JO MO}

JUBAS Apea. J0J jlem
S0ES bujiNpaydsal }senbal B J3INPAYIS UOISSIS 0} UINBY j(c)

el i aler el e al l dml m] wl enh e vl O el B il e el el A skl win minal B om ok e ol dnk e e dui A e ol ol e odep dnl B oty ain up i ki o Ay wib dey sl i Sy e e A A e e e oy] e gk wg ol ek sl o bl ol b ol S el oy aw PR W W B I BN - S BN R e bk vule W bk O ke o B b s bl il s sl -Em ol o aml am ok Rl e ol Al A e okl vl ol omb owE ae

T JUBAB
10} JIEM pUB

mﬁm Aidal
uogeuLojul

£nus ajqe)

LOISSaS 83y § 91E1S 9}E}S Xau

PajEdIpul }ine}ap
UOioun uogeululs) 10148 aJels JuaLnd
U0ISSas 9)Noax3 0} alepdn ul AB1S 0} 8jepdn 0} 8jepdn
SE] P HOMY3 ¢ Q3HIS

uonouny Buissaoold a)els woy pallnal anjea Uo paseq uoneulojul 8je)s Juauno sbuey)n

L 2 T EF ¥ F r Fr N ¥F ¥ ¥ N ¥ N 1 ¥ N N ¥ ¥ N _F_F_¥ K __N W N ¥ _ X ¥ N N ¥ W B _F K W W NN R W

-

l-------ﬁ---- - 3 N N X 3 1 N N N B E N N ¢ § N X § 7 B [N E N -RE N L T N N ¥ JN

r
1
{
i
i
1
t
|
1
|
1
1
i
|
1
1
{
i
|
|
{
i
|
i
i
i
i
i
i
|
i
|
i
l
i
i
|
i
1
]
i
{
|
d
i
i
{
(
i
d
d
I
|
]
|
i
i
|
i
1
i
|
|
i
|
i
i
)
|
|
i
[
|
1
i
|
i
|
i
i
i
I
i
|
i
i
)
|
'
I
i
I
|
i
i
|
|
I
i
1
i
|
|
]
{
1
i
I
1
I
i
i
i
{
{
i
i
4
!
}
|
)
i
I
I
I
I
I
1
I
l
}

b0eS . (¥)
uonouny Buissanosd ale)s ajndexy
X
U2 3|qe} uolisuel) aje)s 1at
COES R uoleWIOUl 8)e}S Juaund dn %007 |(2)
f)
(19inpayds uoissses AqQ)

LOES suibua uoisue) Sjels Liels @ UOISSas d1 LH Apeal e 3inpayos | ()

US 6,847,975 B2

Sheet 13 of 19

Jan. 25, 2005

U.S. Patent

"UOISSaS
d11H ApeaJ e 0} |o1u09 ssed

PUE J8|NP3aY2s 8y} 0} |0NU0D U8y ,
‘Buissanosd uoI1ssas

41 | H aleulus) pue ‘ainjonils
UOISSOS BY) 931 ‘SU0I}DBUU0D 350|)) .
Nl Y]

pue suolbai pajedo|ie Ajjeslweuip
921} SUOI}OUN} UONEBUIWIS} UOISS3S
'8]8)S 1OBa 10} uoijpun} uoeullwla)
UOISSBS a)NJaxa ‘pajesauad

SEM 3|(e] uoljisuel) a)els aul

UsUM paieaJd 1sl| uonouny buissadold
UONBUILLIA) UOISS3S B 0} buliiajoy .
B0y ss820e 8)jeIBUaY aN3| S

U3 G 94} O3 |

¥OBQ JUSS 84 0} 8iNJINJIS UOISSAS aY)
H0d4d3] ¥

Ul UOI}BLLLIOJUI SYNSA. BU} Ul pajedlpult
10143 U SMmolie yaiym ‘sjels Ajdal
Q3HIS| €
0109 -

uoNBULIOJUI 10413 UR 0} UoiISuel] ,
'8)E)S 1X8U)Nejap e 0] uofisuel] E.
auibua uonisuel) 81eis JoO Uiy %H

&b Dl

‘paleuluLI8)} g 0} st
UoISSas ay) Jo) buissadoid e usym pas(y ,

‘AnjeA
siy) Buiuin}al 810j8q 84NJONIS UOISSSS
ay] ul dn 13s 89 p(NOYS uonewoul Jou3
U3 S
ay) 0} abessalw JoL8 Ue uin}as 0} pash .

Apeal S| UoISSas au)
USUM 3]B1S JUaLind 3y} wolj auwnsal
DUB 13|NP3YIs 3y} 0} |0Jju0d W8y .

JOAJSS puB JUSID QOAA SYI UM O/
YIOM)BU JO Apeal 10} Bunjiem uaym pasn .

‘Bwn|oA siy) Buiuinyal ai0jaq
81N1oNJIS UOISSaS aul JO pisly Q| diels sy}
ur dn 19s aq pinoys | aieis }1sbiey ayt
'a)e)s Jejnoied e 0} uonisuel} 10§ pash .

‘aINJONJ)S UOISSaS 3y} Ul pialy Q) 3jels
e Ui pajedipul S)els e 0} uolysuel]

'3)E)S 1XaU J|neyap e o) bulaow usym pasn,

218]S 8y} Joj uonouny buissasooid |
uoISSas AQ 8sn 0} moy pue asodind

US 6,847,975 B2

Sheet 14 of 19

Jan. 25, 2005

U.S. Patent

17 1L @:M; LW 2Je)S papuax3g

U 8)e1s Emn:Em

| SiElS Um_ucmuxm

boj ssao0y Z QeSS piepuels

) _ | | | 9lE]S U‘_mncﬂw.
v | 9|dE] ™ i
mc_m:m co_zm:mz 2)E1Q - 4

UOBISUEA

313 UORULIP
uolysues} Slels

ﬁ x
i)z UORBULIoU; _ |
Gl — G# || SuogouNy _ o«m Buibtio) cch %u_ Ur]]
Ve Hﬂ | Buissaooud %coﬁcea S Buibbo uonouny
8L Sjels pepuada SIS DIBPUBIS pepuaXg uoguyap

3|y uoniuLsp
buibboy papua)x3

uoibai

<UONBULIOJUI AZS)
LICISUSIXS

24103dg > Yj4-doxiy

Do ad -._.wu- uoibar) .
, - ' . “X
<UONBULIOJUI JOAISS u.‘ ;__“..w co_w@c%mp_c_ | Jonss _
%0002 O'ljc PIEPUEIS) | |1 preyoyoads Noom PI-b2u XXX
g7 19SAM0IY JUSDY-135()
Acopmm%ﬁ.__cma 2 Aoy t.,u uojeulojur | 14N 1S8nbay —
<UOGBULOJU JS8NDas 198N | Ojul oyads 008 |

ayoads > pre-bay- Y cOamctoE_
<Uoljeuuojul

| aweu Aejdsig E 1 |szIs mo
jasmolg > Juaby-iesn)sanbal (joea 06

0'L/IdLLH AMApoxjrdpy 139 | Snjess uofesado buipjoy
OjUI 13pE3 3|qe} Wwawabeuew UoISsas

asuodsaisenbay

.wxoi

azIs bo
payioads 0} buipsodde sQ yim |it4 7714 OH3Z

UoISIaA |020304d asuodsal 6o ' H¥IA 43I

UOISIaA |020)0.d 1sanbas 607 :43IA DI
‘uonewout 1asn plepuels se)i boy
pue 8|ge)} JuawabeuBW UOISSaS 3U] Ul UoNBWIoJUI SWeU Jash Se

uoieuuojul plely Jopeay isenbalsjes :¥SN dl14 03y
uoneuloul pialy sjapeay asuodsal bo1a14 43N

US 6,847,975 B2

b uonewlojut piay sepeay jsanbal bo7:q714 OIN
= SN pajsanbal 607 :DIY 11D
nt suonelado |evads papuaixe AQ uonewoul [e193ds 607 IVINIJS
>
)_..:.. \\....
7 RS sadA) BuiBboj jo uondussag .-
Ye s h......_...‘_...
= 198N PIN- 59 w_m: d14_ 034 ¢
U FEETNE TS JETVETS Q14_d3d| ¢
& L PiaYy o410ads Noom PI4-bay-XXX d14_034| ¢
P 1aSMOIg Emm«lmm: d1d4 D3d | ¢
= TdN Isenbay | 034 1101 ¢

ojul au108dg Sow WIO3dS | |

sweu Ae(dsiq | nmﬁ; 1 E D[Sl JapESH adAy 6o E

uonuysp GuiBbo] pepuaixy

SIRVIE

U.S. Patent

US 6,847,975 B2

_ <UOQBLLUIOJUI IBAISS >} m
ElEP | | <uoqeuuOjul }senbal oyinedS>a<UoleuULou m uonuyap 6o
BUIBBOl < | jasmarg MApooxaify POPUSIXS UO PoseEq nsay
PopUSX <Buissadsyd ajels papudixa ug ', Dol papuaixa @ Mw_m
. . WENETEETC TN PRZliely

N pPaSeE(q _...._.Opm QC_ D ,....._mﬂ‘ 0] O il l_ow e

" ,__ w.__m%mcm
A OJUl 19S}JO 7% \ O
m mc_mm%o_ cal L
- Papusi] | |]
. _ 7]
- 5ol papuaajbus T
o »

-8|qeuen Jo ybug| g0l
uofeuuojul

" Buibbo)3 (G# 0} Spuodsau00) uoneuloul Jasn

nIepue}s 'snjejs asuodsal

ybusj-paxi4 '921S asuodsal ‘jsanbay
()3T pa0d31 boj 8UO Jo Lbus| [Ej0] |

Jan. 25, 2005

uoneuuou co.n_c%mc Alewwns |eJnsnes |,
Boj papuaixe jo Adon T uogewwoyut ueipua ,

U.S. Patent

U.S. Patent Jan. 25, 2005 Sheet 17 of 19 US 6,847,975 B2

FIG.17

Flow of operations performed to output
access log upon termination of a session

(/
y

Qutput fixed-length S201
__ standard log ‘

\/

Output according to |
extended log 5203
| definition |

US 6,847,975 B2

Sheet 18 of 19

Jan. 25, 2005

U.S. Patent

'S0J8Z Y)M eale pazis-boj payioads (| ‘8simuayiQ
‘uonewLojul Jaquinu adA} boj pue ‘uoleuLojul

19s0 Do ‘uonewIojUl UOISSaS 8y} YlIM uoiounj ay} jjed ‘'dnjes Y193dS
S| uonouny Yooy bo| sseooe papuaIxd ue §

AjoAnoadsas ajge) Juawabeuew uoIssas Ul palo]s mm_m_»umw__m

UOISIBA |020)01d 3Su0dsal pue uoIsiaA |0o0joud Jsanbas 4SSN a14 03I
‘uoleWLIOUL JBSN ‘uanewlojul 14N 1senbal jo buibboj indino DIN 11D
8|ge)] Juaabeuew UOISSaS Ui Paiols 14 43y

uoneuwnojul Buibbo| bulpuaxa ay) jo Buibbojinding ‘a4 03Iy

adA) 60| uo Buipuadap mojaq suoijesado ajnoax3

8l Dls

US 6,847,975 B2

= .

n_m .

=

2

=

p

' __.

m.., mmmmmmmm | EIEP JUSIUOY

2 <uoneuLoul asuodsal

= o4108dS > pi4-doy-X XX

= I9pe3ay 0C1 -Ulbuai-lusiucy
asuodsay IwjuAxa) :adA | -1usjuon

<0JUl 1IBAIBS > I9AIBY
MO 00C 0 L/d11H

U.S. Patent

0t

uonewIous

PoX YIM | 7
bo| ssa00y .

‘wesbo.d
P3ppaquia YHM
uissaoold

<UCIIBLLIOIUI J3SN 214103d] > PIN-XXX
<UOIJBWIO)UI }saNnbas a4198ds > PI4-b8Y- XXX

<UolJBulOjUl Jasmo.g > Juaby-1asn
0" L/dLLH AMApC/:dpy 139

lapeay
Jsenbay

6L Dl

US 6,347,975 B2

1
PROXY PROCESSING METHOD

BACKGROUND OF THE INVENTION

The present mvention relates to a proxy processing
method. More specifically, the present invention relates to a
proxy processing method that allows flexible feature expan-
sion and logging. The proxy processing referred to here
relates to various processing operations, such as the relaying
of requests, e¢.g., A Web access request, from a client
terminal to a server, as well as operations for authentication,
access logging, caching, accounting, and value-added ser-
VICES.

An overview of conventional proxy processing will be
described.

FIG. 19 1s a diagram which 1llustrates conventional proxy
processing. In such processing, a proxy device 20 receives
requests from a client terminal 10. The request contains a
request header and content data. The request header can
contain, for example, a URL, browser information, speciiic
user information, and the like. The content data can contain,
for example, Web POST data, e.g., a user name and address.
The proxy device 20 sends the received request to a Web
server 40. The Web server 40 responds to the request by
sending a reply. The reply typically contains a reply header
and content data. The reply header contains termination
information (abnormal, normal), server information, context
type, context length, specific reply information, and the like.
The proxy device 20 keeps performed fixed accounting
operations and keeps an access log of fixed information.

With the conventional technology, however, only fixed
proxy operations can be performed, making 1t difficult to
provide extended features. Also, the access log information
in the conventional technology is fixed (with a fixed header
field), making it impossible to select specific extended
information and header fields for logging.

SUMMARY OF THE INVENTION

The present mnvention overcomes the problems described
above by providing a proxy processing method that allows
flexible adding and modification of speciiic extended opera-
tions. The present invention also provides flexible logging
by allowing selection of specific extended information,

header fields, and the like.

According to one aspect of the present invention, the
proxy processing method calls for reading a state definition
file that stores state names 1n a transition sequence, the states
representing processing steps for the request operation;
selecting from a standard module and extension modules a
state information entry that matches a state name 1n the state
definition file, the standard module storing session process-
ing functions associated with standard states for standard
features, and the extension modules storing session process-
ing functions associated with extended states for extended
features; generating, at startup, a state transition table based
on a sclected state mmformation entry, the state transition
table storing a session processing function associated with
cach state and a next transition state of the processing; and
executing a session processing function defined for each
state according to the generated state transition table.

According to another aspect of the present invention, the
proxy processing method calls for sequentially reading state
names from a state definition file containing state names 1in
a transition sequence, each state representing a processing
step 1n processing a request from a client terminal; and

10

15

20

25

30

35

40

45

50

55

60

65

2

retrieving from a module table a state information entry
having a state name that was read, the module table con-
taining a list of state information, and each state information
storing a state name and an associated state idenfifier, a
session processing function, a conflguration function allo-
cating a work region and the like, a session initialization
function called when a session i1s initiated, and a session
termination function called when a session 1s terminated.

According to another aspect of the present invention, in
the proxy processing method using a single processing
process to simultaneously process requests from a plurality
of clients, operations from the receipt of a request to the
termination of the processes of the request are handled as a
single session, a processing status 1s stored for each session
In a session management table, and a session scheduler 1s
used to schedule client sessions that have become ready to
Process.

The session scheduler calls for checking for events 1ndi-
cating a ready status for receiving a request and response
data and the like; selecting one session management table
entry out of entries for ready sessions, if a ready status event
1s generated or 1s received; and executing a state transition
engine using as parameters the selected session management
table entry and event information. The state transition engine
calls for looking up a state transition table indicating a
transition sequence of states, wherein each state represents
a processing step for processing a request from a client
terminal, and sequentially executing processing functions in
the state transition table entry associated with current state
information stored in the session management table.

According to another aspect of the present invention, the
proxy processing method includes processes of storing state
status representing processing steps 1n processing requests
from client terminals, updating states, and using a state
transition engine to sequentially execute processing func-
tions assoclated with a state. The proxy processing method
also calls for executing the state transition engine, wherein
the state transition engine calls for: looking up, for each
session from a client terminal, a session management table
storing information including state information, standard
information, and extended information specific to extension
modules; using state information in the session management
table to obtain a state transition table entry storing session
processing functions and default next states associated with
a processing state; executing a session processing function
from the obtained state transition table entry; determining a
next transition state using a value returned from the executed
session processing function, and setting up the next state
information in the session management table entry; and
executing processing for the next state if the returned value
1s that for transition to a next state, and returning to a
scheduler and requesting the scheduler to schedule another
ready session if the returned value 1s that for session
rescheduling.

According to another aspect of the present invention, 1n
the proxy processing method, access logeing for logging
processes of a request from a client 1s performed with
logging data formed from a fixed-length standard log region
and a variable-length extended log region. The proxy pro-
cessing method calls for loading definition immformation at
start-up from an extended logging definition file containing
log types to be logged; storing extended logging information
based on the definition information 1n a session management
table managing a processing status for a request from a client
terminal; and executing logging including extended infor-
mation based on the definition mformation.

These and other features are described throughout the
present specification. A further understanding of the nature

US 6,347,975 B2

3

and advantages of the invention may be realized by refer-
ence to the remaining portions of the specification and the
attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a functional block diagram 1illustrating a flow of
operations performed 1n a standard Web caching proxy
Process.

FIG. 2 1s a diagram 1llustrating the structure of a module
table.

FIG. 3 1s a diagram 1illustrating the main information
stored 1n a module table.

FIG. 4 1s a diagram 1llustrating sample 1tems defined in a
state definition file.

FIG. 5 1s a diagram 1llustrating the main information
stored in a session structure (session management table
entry).

FIG. 6 1s a diagram 1illustrating the main information
stored 1n each state transition table entry.

FIG. 7 1s a flowchart showing the overall flow of opera-
tions performed 1n proxy processing.

FIG. 8 1s a diagram 1llustrating the building of a state
transition table at the time of start-up.

FIG. 9 1s a flowchart showing a flow of operations
performed 1n building a state transition table.

FIG. 10 1s a functional block diagram illustrating a flow
of operations performed by the session scheduler.

FIG. 11 1s a diagram illustrating an example of HTTP
session processing by a proxy device.

FIG. 12 1s a flowchart showing the operations performed
by a state transition engine.

FIG. 13 1s a diagram 1llustrating a return value from a

session processing function for each state and the operations
thereof.

FIG. 14 1s a functional block diagram 1illustrating an
example of proxy operations.

FIG. 15 1s a diagram 1illustrating an extended log defini-
tion file.

FIG. 16 1s a diagram 1illustrating how access logs are
recorded.

FIG. 17 1s a diagram 1illustrating a flow of operations
performed for outputting an access log at the end of each
S€SS101.

FIG. 18 1s a diagram 1illustrating operations associated
with log types.

FIG. 19 1s a functional block diagram illustrating con-
ventional proxy processing.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS
1. HTTP Session Operations Performed by the Proxy Device

HTTP session operations (processing of client requests)
performed 1n this embodiment will be described.

FIG. 1 1s a diagram 1illustrating a flow of operations
performed in standard Web caching proxy processing. This
system 1ncludes Web clients 1, a Web caching proxy 2, a
cache 3, and a Web server 4. In response to Web access
requests from the Web clients, the Web caching proxy will
generally perform the following operations. In the figure, the
numbers 1n parentheses correspond to the steps numb red in
parentheses below.

(1) When a Web client 1 makes a request, a request
connection 1s set up between the Web client 1 and the Web

10

15

20

25

30

35

40

45

50

55

60

65

4

caching proxy 2 and an HTTP session 1s mitiated with the
client terminal.

(2) The web caching proxy 2 receives the request.

(3) The web caching proxy 2 analyzes the request

(4) The web caching proxy 2 checks to see if information
1s available 1n the cache 3.

a. If information 1s not available 1n the cache, the follow-
ing operations are performed.
(5) A connection from the web caching proxy 2 to the Web
server 4 1s established.

(6) A request is sent from the web caching proxy 2 to the
Web server 4.

(7) A response from the Web server 4 is received by the
web caching proxy 2.

(8) The web caching proxy 2 checks the received response
from the Web server 4.

(9) The web caching proxy 2 stores content data in the
cache 3.

(10) The web caching proxy 2 sends the content data to
the Web client 1.

(11) The HTTP session is closed.

b. If information 1s available 1n the cache, the following
operations are performed.

(15) The web caching proxy 2 reads the content data from
the cache 3.

(16) The content data obtained from the cache 3 is sent
back to the Web client 1 via the web caching proxy 2.

(17) The HTTP session is dosed.

In this proxy processing method, a process or thread 1s
assigned to each request from a Web client, and procedures
corresponding to steps (1)—(17) (the numbers in parentheses
1-17 in the figure) are called sequentially. This method
results 1n a heavy resource load since a process or thread has
to be assigned to each request. This leads to a high overhead
involving the operating system’s process or thread
switching, making the method unsuitable for handling large
numbers of requests.

In the proxy processing method of this embodiment, a
single process handles requests from multiple Web clients.
The status for each request (HT'TP session) from a Web
client, 1.€., at which step among steps (1)—(17) the request is
processed now, 1s stored as a state, and requests are pro-
cessed by updating these states. The proxy processing
includes various types of operations, such as customized
authentication, relaying of requests, caching, customized
access logeing, accounting, value-added services, and the
like.

2. Module Management

First, tables associated with proxy processing will be
described.

2-1. The Module Table

The program executed by the proxy processing device
contains a group of modules, which are functional group-
ings. A module serves as a single unit for the adding and
removing of features, and 1t contains state processing
functions, I/O processing functions, module-specific data 1n
shared memory, and the like. The proxy processing device
uses a module table to manage the modules. Each module
table entry contains a list of state information that the
module provides. With this state information, the proxy
processing device can build a state transition table at start-
up, and features provided by modules can be easily added
and removed.

FIG. 2 1s a diagram 1llustrating the structure of the module
table. FIG. 3 1s a diagram 1llustrating the main information
stored 1n the module table.

The module table 1s a table used to define what kind of
modules (features) are grouped together in the program.

US 6,347,975 B2

S

Each entry of the module table 1s associated with a module
object, and 1t contains a name of the module object and a list
of state information provided by the module object (see
figure for contents of each field). The list of state information
1s referenced 1n building the state transition table, and state
information selected from the list 1s used as a base for an
entry of the state transition table. Each state information
contains a name of the state and a session processing
function associated with the state in order to implement the
features provided by a module that the state belongs to, such
as a standard module and an accounting module. The state
transition table 1s created by selectively combining neces-
sary state mnformation from appropriate modules.

The modules can be static link modules which are regis-
tered 1n advance 1n the module table, and objects of the
modules are statically linked with other objects.
Alternatively, dynamic loading of modules can be
supported, with modules being registered dynamically 1n the
module table. Even with the static link modules, however,
not all features of loaded modules are activated. Only
required module features provided by states described 1n the
state transition table are selectively activated by the genera-
tion of the state transition table at the start-up time.

In addition to a state name and a session processing,
function for the state, the state information includes a state
identifier (state ID), a state configuration function for allo-
cating regions required by the state or module at start-up, a
session 1nitialization function allocating regions needed by
the state or module and performing initialization operations
and the like when a request i1s received from a client, a
session completion function releasing unneeded regions and
performing various termination operations when processes
of the request are completed, and the like.

2-2. The State Configuration File

The state configuration file 1s a file describing state
conflguration information used to build the state transition
table.

FIG. 4 1s a diagram 1llustrating a sample of the state
configuration file. The state configuration file contains state
names used 1n the state transition table arranged according
to the default state transition sequence. “#’ 1s a special
character that indicates that the rest of the line 1s a comment.
Blank lines can also be included. In this example, state
names are defined in order: (1) Acceppt_ Clt, (2) Get__ Req
Hdr, (3) Parse_ Req Hdr, (4) Check Auth, and (5)
Check Cache.

2-3. Session Management Table

FIG. 5 1s a diagram 1illustrating the main information
stored in a session structure (session management table
entry). An overview of the session management table will be
presented below.

In the proxy processing method of the present invention,
client requests are handled as HT'TP sessions, each session
starting with the receipt of a request (establishing a com-
munication channel) and ending with the completion of
processes of the request. Each entry of the session manage-
ment table 1s used to store information associated with an
HTTP session, starting with a receipt of a request from a
Web client and ending with the completion of processes of
the request. The session management table manages the
processing status for each request from a client. A session
table entry 1s generated and managed for each HI'TP session.
In addition to the current (active) state information of an
HTTP session, the session table entry stores various standard
and extended information needed to process the request
from a Web client. The session management table entry
assoclated with an HTTP session will be referred to below

10

15

20

25

30

35

40

45

50

55

60

65

6

as a session structure. In this example, each entry of the
session management table includes fields for a session ID,
state information, communication route information, a send/
receive buller, request information, reply information, pro-
cessing results information, module-specific extension
information, and the like (see the figure for descriptions of
field contents).

Next, region extensions for extension modules will be
described. In addition to a region to hold the standard
information used by a default HT'TP module, this session
management table can hold regions specific to extension
modules 1n the session structures. The regions speciiic to
extension modules hold module-specific extension 1nforma-
tion. If necessary, a module can call a particular function,
€.g., via a state confliguration function to be described later,
to allocate a module-specific region (module-specific exten-

sion information) in a session structure.
2-4. The State Transition Table

FIG. 6 1llustrates the main mmformation stored in state
transition table entries.

Each state transition table entry stores a session process-
ing function for a state corresponding to each processing
step (1)—(17) of a proxy operation as described above, and
also stores mformation for a default next state. This state
fransition table i1s generated using the state definition file
when the proxy operation 1s started up, as will be described
later. In this example, each state transition entry includes: a
state ID, a state name, a session processing function for the
state, a state configuration function, a session 1nitialization
function, a session termination function, and default next
state information (see figure for description of fields).

3. Overview of Proxy Processing

FIG. 7 1s a flowchart showing the overall flow of opera-
tions performed 1n proxy processing.

When proxy processing 1s started, the proxy processing
device 1nitializes memory, I/O devices, mterfaces, and the
like (S01). Next, a state transition table 1s built (5S03). For
details of this, see primarily FIG. 8 and FIG. 9 and the
following descriptions thereof. Next, the proxy processing
device executes the state configuration function for each of
the states (S05). The execution of the state configuration
function for each state 1s performed only once at start-up.
The proxy processing device allocates enough space for the
session management table needed for each session. Next, the
proxy processing device launches processes for processing
HTTP sessions. (S07).

The steps will be described 1 detail below.

3-1. Building of the State Transition Table at Start-Up

Using the state definition file, the proxy processing device
selects session processing features of necessary states from
the module table to dynamically build a state transition table
when proxy processing 1s started.

FIG. 8 1llustrates how the state transition table 1s built at
start-up. The state transition table 1s built by sequentially
scarching the lists of state information 1n the module table
for state transition table entries having state names described
in the state definition file, and copying the matching entries.

FIG. 9 1s a flowchart showing a flow of operations used
to build the state transition table. The searching of state
names 1s performed according to a predetermined sequence,
¢.g., starting with a last registered module. Thus, 1n this case,
if multiple modules provide states having the same state
name, the entry for the most recently registered module 1s
selected with higher priority. The flow of operations based
on the flowchart 1s as follows.

Step S801 (open state definition file):
Open the state definition file to read state definition
information.

US 6,347,975 B2

7

Step S802 (read state names)
Read state names one at a time 1n sequence from the
state definition file.

Step S803 (check for completion):
Jump to step S810 if there are no more state names to
be processed.

Step S804 (search for entry in module table):

If there 1s a state name to be processed, search the lists
of state information 1n the module table for a state
transition table entry having the indicated state
name.

Step S80S (copy entry to state transition table)
Copy and register the state information found at step
S804 to a new entry of the state transition table.

Step S806 (set up default next-state information):

Based on the order in the state definition file, set up the
default next-state information in the state transition
table entry registered at step S8035 to point to the state
transition table entry to be registered next. If the
current entry 1s the last 1n the state definition file, set
up information (NULL) indicating that the entry is
the last.

Step S807 (assign state ID and set up state__index):

I the state ID 1s O, generate a unique state ID and assign
the ID. Also, set up a state index (state_ index) to
allow state transition table entries to be indexed by
the state ID. If the state ID 1s not O, check to see if
the same ID has not already been registered. If so,
display an error message.

Step S808 (register session initialization function list):
If the session 1nitialization function is set up, register
the function onto a session 1nitialization function list.
This list 1s used to call initialization functions when
a session 1s 1nitialized.

Step S809 (register session termination function list):
Similarly, if the termination functions are set up, reg-

1ster the function onto a termination function list
Return to step S802.

Step S810 (close session definition file)
Close the session definition file.

Step S811 (execute state configuration functions):
Execute the state configuration functions for each state
transition table entry set up in step S801—step S810.
If all state configuration functions are executed
successtully, the building of the state transition table
1s finished.
3-2. Operations of State Configuration Function
The standard information in the session management table
1s common to all modules and 1s looked up and updated by
cach module. The extension information in the session
management table 1s specific to individual extension mod-
ules and 1s looked up and updated by these extension
modules. The extension information region 1s allocated by
executing a function to allocate the extended region 1 the
session management table. The configuration function
receives olfset information indicating the location of the
allocated extended region from the extended region alloca-
tion function, and this offset information 1s stored as an
oifset variable 1n the extension module. This offset variable
1s used to reference and update the extended region.
3-3. The Session Processing Process
FIG. 10 1s illustrates a flow of operations performed by a
session scheduler.
The session scheduler performs scheduling of client
HTTP sessions that are ready for processing. The operation
flow 1s as follows.

10

15

20

25

30

35

40

45

50

55

60

65

3

Step S401 (start execution of session processing process):
create session processing processes and begin execu-
tion of the created processes.

Step S402 (wait for events, such as ready-events of
network I/O and interprocess communication reply):
The session scheduler checks for events, such as ready-
events of network I/Oand 1nterprocess communication
reply, and an arrival of a request to establish a connec-
tion from a Web client. If no event 1s detected, the
scheduler waits until any of above events 1s raised or a
fixed 1nterval timeout occurs.

Step S403 (check event kind): The kind of the event
detected at step S402 1s checked, and the processing
branches depending on the event kind. The operations
that are performed can be, for example, as follows.

(1) If arequest to establish a connection from a Web client
arrives, jump to step S404.

(2) If a ready-event is raised, jump to step S406.
(3) If a timeout occurs, jump to step S408.

(4) If a termination event in response to an operator
instruction arrives, jump to step 409.

Step S404 (establish connection): If a request to establish
a connection arrives from a Web client, the session

scheduler establishes a connection and control goes to
step S405.

Step S405 (create and initialize session table entry) Next,
the session scheduler creates a session table entry and
initializes the session table entry. The session scheduler
looks up the session 1nitialization function list that was
generated at step S808 when the state transition table
was built. The session 1nitialization functions for the
states are called, module extended regions are
initialized, and the like. Then, control goes to step
S402, and the session scheduler waits for an HI'TP
request to arrive from the Web client.

Step S406 (sclect a ready HTTP session): If a readyevent
1s raised, the session scheduler selects a session table
entry for a ready HTTP session to process. Control
proceeds to step S407.

Step S407 (execute state transition engine): Next, the state
transition engine 1s called, passing the session table
entry and event information as parameters (the opera-
tions of the state transition engine will be described 1n
detail later). An example of an event information that
has been passed to the state transition engine 1s 1nfor-
mation such as “input/output operation 1s ready on a
communication channel associated with the selected
session”. When control returns from the state transition
engine, the session scheduler returns to step S402 and
schedules another ready HTTP session.

Step S408 (timeout processing): Even if no event is
detected at step S402, the wait at step S402 ends
periodically with a timeout and the timeouts for net-
work I/O for each session 1s checked. If an HTTP
session timeout 1s detected, the corresponding HTTP
session 1s notified of a timeout event and control returns
to step S402. As a result, steps S406 and S407 can
schedule the HT'TP session with a ready-event by the
fimeout

Step S409 (termination processing of session processing
processes): If an operator inputs a termination
command, the session scheduler 1s informed of a ter-
mination of proxy processing and performs a process-
Ing to terminate the session processing processes. Con-
trol then proceeds to step S410.

US 6,347,975 B2

9

Step S410 (terminate session processing processes): After
the processing at step S409 1s completed, the session
sch dul r terminates th session processing processes.

3-4. State Transition Engine

FIG. 11 illustrating the HTTP session processing per-
fomed by the proxy device. FIG. 12 shows a flowchart of the
operations performed by the state transition engine. The
state transition engine processes each HTTP session by
saving current state mformation of the session processing to
the corresponding session table entry and updating the
current state information, while sequentially executing ses-
sion processing functions described in the state transition
table entries. The numerals in parentheses below correspond
to the numerals in parentheses 1n FIG. 11.

(1) Step 301: Schedule ready HT'TP session and start the
state transition engine

First, the session scheduler for the session processing
processes detects that an HT'TP session has become ready to
process via an event such as arrival of data. Then, the session
scheduler executes the session transition engine, passing a
session structure for the HT'TP session and the detailed event
information as parameters. For details on the operations
performed up to the execution of the state transition engine,
see FIG. 10 (the session processing process) and associated
descriptions.

(2) Step S302 (look up current state information and
obtain state transition table entry): Next, the state transition
engine looks up state information (state ID) for the session
structure and obtains the associlated state transition table
entry. In this example, state (2) is looked up.

(3) Step S303 (execute session processing function for the
state): Next, the state transition engine executes the session
processing function for the state described in the state
transition table entry obtained at step S302 (in this example,
the session processing function named rcv__req_ hdr 1is
executed). When executing the session processing function
for the state, the session structure and the event information
are passed as parameters (this will be described in detail
later).

(4) At step S304 (transition to next state): Next, the state
transition engine determines a next transition state from the
value returned by the session processing function for the
state, and 1information about the next state 1s set up in the
session structure.

FIG. 13 1llustrates the value returned from the state
processing function and how 1t works. The return values can
be values such as “ADV”, “GOTO”, “SCHED”, “ERROR”,
and “END” (see figure for actions of the state transition
engine, purpose, and the manner in which the session
processing function for the state uses the return values). For
example, 1f the return value 1s “ADV”, a state transition 1s
made to a default next state described in the state transition
table entry associated with the current state. If the return
value 1s “GOTO”, a state transition 1S made to a state
indicated 1n a state ID ficld in the session structure. If the
return value 1s “SCHED”, a control 1s returned to the session
scheduler, and an event for the session will be waited for
without changing the current state. A processing for the
session will be started again with the same state when the
session has become ready to process. If the return value 1s
“ERROR”, the state will change to a state for error infor-
mation reply. If the return value 1s “END”, a processing for
the HTTP session 1s terminated. In this case, the session
termination functions described 1n the session termination
function list are executed, the associated session table entry

1s released, and control returns to the session scheduler.
If the return value is not “END” and not “SCHED” (e.g.,

the return value is “ADV”, “GOTO”, or “ERROR"), control

10

15

20

25

30

35

40

45

50

55

60

65

10

returns to step S302 and subsequent state processing 1s
performed. If the return value 1s “END” or “SCHED?”,

control goes to step S3035.

(5) Step S305 (return to session scheduler and request for
rescheduling):

If a rescheduling 1s necessary 1n a case such as waiting for
the arrival of data to process from a network, “SCHED” 1s
returned as the return value by the session processing
function for the state. If a processing of the HT'TP session 1s
to be terminated, “END” 1s returned by the session process-

ing function. In both cases, “SCHED” and “END”, control
returns to the session scheduler, and the session scheduler
schedules another ready session.

FIG. 14 shows a simplified diagram of proxy operations.

As described above, the state transition engine in this
embodiment saves current state information and updates 1t in
the session management table entry. Characteristics of the
state transition engine will be described.

(1) By a configuration function at startup, the state tran-
sition table to indicate a proxy processing procedure 1s built
using a state definition file (see 1(1) in the figure).

In this embodiment, the processing of requests from Web
clients are divided into states, and a flexible proxy process-
ing 1s can be provided by building the state transition table
that indicates the processing procedures following the state
definition file. With the insertion/addition/replacement of
state names 1n the state definition file, customized process-
ing can be realized for various needs, such as customized
accounting and authentication.

(2) The state transition engine is used to implement proxy
processing according to the state transition table (see 1-(2)
in the figure).

According to this embodiment, functions such as the ones
listed below are registered and defined for each state. Proxy
processing 1s 1mplemented by having the state transition
engine execute these functions according to the state tran-
sition table created at (1). The functions can carry out
various customized operations, €.g. (a) a session processing
function for the state, (b) a configuration function for various
initializations at startup, (c) a session initialization function
called when a session is started, and (d) a post-processing
function (termination function) for when a session process-
ing for the session 1s completed. By registering the functions
for the extended states, various customized operations can
be carried out.

(3) Additional feature to add extended regions used for
extended functions 1n each session management table entry
is provided (see 1-(3) in the figure).

This embodiment provides a feature for adding extended
regions to the standard information region in each session
management table entry that manages the processing state
for an individual client request. A configuration function (b)
for each state specified 1n each state transition table entry is
executed at startup, and 1t uses the extended region alloca-
tion feature to allocate extended regions if necessary. The
allocated extended regions store specific information that 1s
necessary for the processing by the extended states for each
session. Each session management table entry can include,
for example, current state information, user information,
standard information, and extended information. The 1nitial-
1zation and termination operations on these regions in each
session management table entry can be performed by the
session 1nitialization function (c¢) and the session post-
processing function (d).

4. Extended Logging

An embodiment for an extended logging, which 1s an

extension to standard logging, will be described with refer-

ence to FIG. 14.

US 6,347,975 B2

11

FIG. 15 illustrates an extended logging definition file.
(1) Indicate extended log information to log with an

extended logging file (see 2-(1) in FIG. 14).

In this embodiment, an extended logging definition file
contains log types, request or response header field names to
be logged, log sizes, type numbers, display names, and the
like. When the proxy processing device is started up, the
definition information i1s loaded from the file as extended
logging definition information. Access logging operations
are performed according to this definition, thus providing
flexible logging.

The log types are as shown in the FIG. 15. The log size
indicates the size of the log if the logging size 1s fixed. The
type number 1s a unique number to distinguish log contents.
In particular, 1t 1s used for logging information for special
extended operations (SPECIAL). The display name is a
name displayed by log analysis/dump tools.

(2) Store extended logging information in the session
management table following the extended logging definition
(see 2-(2) in FIG. 14).

When parsing request and response headers, and the like,
information defined by extended log types (such as REQ, ,
FLLD and REP__FLD) are stored as extended log definition
information 1n each session management table entry. Infor-
mation defined by standard log types (such as CLT__REQ__
URL, REQ_ FLD_USR, REQ_VER and REP_VER) are
stored as standard log definition information in each session
management table entry.

(3) Make each access log with two types of separate
logeings, a fixed-length standard log and a variable-length
extended log.

FIG. 16 illustrates how access logs are recorded (see 2-(3)

in the figure). The processing for making an access log will
be described.

Each access log 1s formed from a fixed-length standard
log that logs standard and common log information and
a variable-length extended log that logs according to
the extended logging definitions described above. The
fixed-length standard log 1s output based on standard
information in each session management table entry,
while the variable-length/extended log 1s output using
the extended information, as well as the standard infor-
mation 1n each session management table entry. This
provides extendable access logging.

The length of each access log 1s a multiple of a fixed block
size and 1s 1ndicated at a start field of the fixed-length
standard log. This allows high-speed log processing of
the variable-length log. The fixed-length standard log
information can include request and response sizes,
response status, user information (corresponds to #5),

and the like.

In addition to having total length information of the
variable-length extended log region, the wvariable-
length extended log region includes olfset information
(an array of offsets) that indicates where each extended
log defined by the extended logging definition 1s
output, and the actual extended logging data (extended

log information) for each extended log. By providing

the array of olffsets, the position of each extended log 1n
the variable-length log can be obtained with a single
indirect access operation. Thus, statistical operations
can be performed on specific extended log fields in the
log, e.g., tabulating fields, at high speeds. The size of
cach extended log data can be determined from oifsets
for previous and subsequent extended logs, and string-
type data can be processed without knowing size infor-
mation (excluding issues of maximum buffer size)

10

15

20

25

30

35

40

45

50

55

60

65

12

because the string-type data 1s always terminated with
a NULL byte.

An extended log for a “SPECIAL” type 1s output by a
hook function called from the standard access log
processing function. If the “SPECIAL” type extended
log 1s required, the hook function 1s set up by a state
conflguration function for an extended state. A hook
function variable indicates a hook function to call. If a
non-zero call address 1s set in the hook function

variable, the hook function indicated by the hook
function variable 1s called when making each access
log, thus providing loggings specific to extended states.
This allows extended loggings specific to customized
features.

A log header 1s output at the start of each access logging
file. This log header contains endian information, sta-
tistical summary information, a copy of the extended
logging definition information, and the like. The endian
information allows logs to be analyzed even if the
machine uses a different byte-endian system. The sta-
fistical summary information allows simple summary
operations without analysis tabulation of the entire
access log stored 1n the access log file. A copy of the
extended log definition immformation can provide infor-
mation on what types of logs are stored, how to access
the logs, and how to display the logs in the variable-
length extended region.
Thus, a log analysis tool can output various types of
analysis results based on the gen rated access log.
FIG. 17 illustrates a flow of operations performed when
outputting an access log at the end of each session.

S201: When a session 1s terminated and an access log
output operation 1s called, the access log output opera-
tion looks up the standard mmformation in the session
management table entry associated with the session and
outputs a pre-determined fixed-length standard log. The
fixed-length standard log 1s log information that 1s fixed
and always output in this proxy.

S203: Following the instructions in the extended log
definition {file, offset information indicating the output
position for each extended log and data of each
extended log are output in sequence as the extended
log.

FIG. 18 1llustrates various operations associated with the
log types 1ndicated 1n the extended log definition file at step
S203.

In the description set forth above, the execution of the
session 1nitialization functions 1s performed by the session
scheduler, and the session termination functions are
executed by the state transition engine called by the session
scheduler. The present 1nvention 1s not restricted to this,
however, and 1t would also be possible to execute session
initialization functions by the state transition engine, and/or
session termination functions can be executed by the session
scheduler.

The proxy processing method and proxy device of the
present invention can also be provided via a proxy process-
Ing program, a computer-readable storage medium contain-
Ing a proxy processing program, a program product con-
taining a proxy processing program capable of being loaded
into the internal memory of a computer, a computer, such as
a server, that contains the program, and the like.

As described above, the present invention provides a
proxy processing method that allows customized operations,
such as customized user authentication and accounting, to be
added and modified in a flexible manner. The present
invention also allows a flexible access logging by selecting

US 6,347,975 B2

13

logging 1tems for information specific to customized fea-
tures and special header fields to be logged, and it allows
high-speed analysis and tabulation operations on the access
log.

The specification and drawings are, accordingly, to be
regarded 1n an 1illustrative rather than a restrictive sense.
However, 1t will be evident that various modifications and
changes may be made thereto without departing from the
broader spirit and scope of the invention as set forth in the
claims.

We claim:

1. A proxy processing method including:

a step of loading definition information at start-up from an
extended logging definition file containing log types to
be logged;

a step of storing extended logging information based on
said definition information in a session management
table managing a processing status for a request from a
client terminal;

a step of executing logging, including extended

mmformation, based on said definition information.

2. A proxy processing method as described 1 claim 1,
wherein access logeing for logging processes of a request
from a client 1s performed with logging data formed from a
fixed-length standard log region and a variable-length
extended log region,

further comprising:

a step of storing a log record length and fixed-length
standard log information of logging data in a fixed-
length standard log; and

a step of storing 1n said variable-length/extended log
region olfset information indicating output position and
extended logging data based on a variable-length
region size and definition mmformation in an extended
logging definition file;

wherein said generated access log 1s looked up to perform
logging analysis and tabulation operations.
3. A proxy processing method as described 1n claim 2,
further comprising:

a step of performing analysis and tabulation of said access
log by analyzing and tabulating fixed-length standard
information through reference to said fixed-length stan-
dard log region 1n said access log; and

a step of performing analysis and tabulation of said access
log by referring to said variable-length extended log
region of said access log, retrieving offset information
for desired variable-length extended log information,
and analyzing/tabulating variable length extended log
data by accessing variable-length/extended logging
data using said retrieved offset information.

4. A proxy processing method as described in claim 2,
further comprising a step of storing any one or more of:
endian 1information, statistical summary information, and a
copy of said extended log definition information.

5. A proxy processing method, comprising:

a step of sequentially reading state names from a state
definition file containing states names 1n a transition
sequence, each state representing a processing step 1n a
processing sequence of a request from a client terminal;

a step of retrieving from a module table a state informa-
tion entry having a state name that was read, each entry
of said module table containing a list of state
information, and said state information containing a
state name and an associated state 1dentifier of the state,
a session processing function for the state, a configu-

10

15

20

25

30

35

40

45

50

55

60

65

14

ration function allocating a work region and the like, a
session 1nitialization function called when a session 1s
mitiated, and a session termination function called
when a session 1s terminated.

6. A proxy processing method as described in claim 5,
further comprising a step of setting up a state identifier by
generating a unique identifier for a retrieved state informa-
tion entry if a state identifier has not been defined and
detecting overlapped assignments by, checking to see if an
entry assoclated with said i1dentifier 1s already set up 1n said
state transition table.

7. A proxy processing method as described 1 claim 3,
further comprising a step of registering a session 1nitializa-
fion function and a session termination processing function
onto a session 1nitialization function list and a session
termination function list, respectively, 1f the non-null session
initialization function and the session termination function
are defined 1n said state transition table.

8. In an operation for processing a request from a client

terminal, a proxy processing method comprising;:

a step of reading a state definition file storing state names
In a transition sequence, said states representing pro-
cessing steps for said request operation;

a state selection step of selecting state information defined
in a standard module and extension modules matching,
with a state name specified 1n said state definition file,
sald standard module storing processing functions
assoclated with standard states for standard features,
and said extension modules storing processing func-
tions assoclated with extended states for extended
features;

a state transition table generating step of generating, at
startup, a state transition table based on selected state
information, said state transition table storing a pro-
cessing function associated with each state and a next
transition state of said: state; and

a step ol executing a processing function defined for each

state according to said generated state transition table.

9. A proxy processing method as described in claim 8,
further comprising:

a step of allocating a standard region 1n a session man-
agement table used to manage processing states for a
request from a client terminal, said standard region
being necessary for executing processing for standard
states; and

a step of allocating an extended region by executing an
environment setup function for an extended state, said
extended region being necessary for processing for said
extended state.

10. A proxy processing method as described 1n claim 9,
further comprising a step of executing logging operations
associated with client requests and/or server responses, said
logging operations being based on extended logging infor-
mation stored 1n an extended region in said session man-
agement table.

11. A proxy processing method as described in claim 8,
wherein:

a module table stores, for each module object, a module
name of the module object and a list of state informa-
tion provided by the module object, said list of state
information 1ncluding, for each state, a state name and
a state 1dentifier of the state, a session processing
function for the state, a function for initializing and
allocating a work region, and a termination processing,
function; and

said state selection step selecting, from said list of state
imnformation in said module table, a state information

US 6,347,975 B2

15

entry associated with a state name specified 1n said state
definition {ile.

12. A proxy processing method as described in claim 8,
wherein said state transition table associates a state identifier
with a state name, a session processing function for the state,
a conflguration function performing allocation of a work
region, a session 1nitialization function called when a ses-
sion 1s mitiated, a session termination function called when
a session 1S terminated, and a next state.

13. In a proxy processing method for storing state status
representing processing steps 1n processing requests from
client terminals, updating states, and using a state transition
engine to sequentially execute processing functions associ-
ated with state,

a proxy processing method comprising;:
a step of executing said state transition engine,
said state transition engine including:

(a) a step of looking up, for each session from a client
terminal, a session management table storing informa-
tion 1ncluding state information, standard information,
and extended information specific to extension mod-
ules;

(b) a step of using state information in said session
management table to obtain a state transition table entry
by looking up a state transition table storing session
processing functions and default next states associated
with each state;

(c) a step of executing a session processing function from
said obtained state transition table entry; and

(d) a step of determining a next transition state using a
value returned from an executed session processing,
function, and setting up said next state information 1n
said session management table entry; and

a step ol executing session processing for said next state
it said returned value 1s that for transition to a next
state, and returning to a scheduler and requesting said
scheduler to schedule another ready session if said
returned value 1s that for session rescheduling.

14. A proxy processing method as described in claim 13,

comprising any one or more of the following steps:

a step of updating to a next default state, if a value
returned from a session processing function 1s that for
state transition to a default next state;

a step of updating to a state indicated in a predetermined
fields, 1f a value returned from a session processing
function 1s that for goto-type state transition to a state
explicitly specified;

a step of updating to an error information reply state 1if a

value returned from a session processing function 1s
that for state transition to an error reply state; and

a step of executing a session termination function, releas-
ing said session management table entry, terminating
said current session, and returning to said session
scheduler, 1f a value returned from a session processing
function 1s that for terminating the session processing.

15. A proxy processing method using a single processing

process to simultaneously process requests from a plurality
of clients,

wherein:

operations from a receipt of a request to a termination of
the processes of the request are handled as a single
session, a process status 1s stored for each session 1n a

10

15

20

25

30

35

40

45

50

55

60

16

session management table, and a session scheduler 1s
used to schedule client sessions that have become ready
to process;

sald session scheduler including;:

a step of checking for events indicating ready status for
receiving request and response data;

a step of selecting one session management table entry out
of entries for ready sessions, 1f a ready status event 1s
generated or 1s received;

a step of executing a state transifion engine, using as
parameters said selected session management table
entry and event information; and wherein

said state transition engine includes a step of looking up
a state transition table 1indicating a transition sequence
of states representing processing steps for processing a
request from a client terminal, and sequentially execut-
Ing session processing functions in said state transition
table entries associlated with current state information
stored 1n said session management table.

16. A proxy processing method as described 1n claim 135,
wherein said session scheduler further includes a step of
periodically performing a timeout check on each session.

17. A proxy processing method as described 1n claim 135,
further comprising:

a step of executing a session 1nitialization function when
a connection 1s established, said session 1nitialization
function being obtained when said state transition table
1s built; and

a step of executing a session termination function when a

session 1s terminated.

18. A proxy processing method as described in claim 15,
further comprising a step of storing in said session manage-
ment table, for each session from a client terminal, state
information and various types of standard information, as
well as information containing extension information spe-
cific to extension modules, and, based on configuration
functions associated with extended states of said extension
modules, regions for module-specific extension information
are allocated at start-up.

19. A proxy processing method as described 1n claim 18,
further comprising a step of executing a logging operation
for client requests and/or server responses based on standard
information and extended information 1n said session man-
agement table.

20. A proxy processing method as described 1n claim 135,
wherein said state transition engine includes:

a step of looking up a session management table storing,
for each session from a client terminal, information-
including state information, standard information, and
module specific extension information;

a step of using said state mmformation 1n said session
management table to look up a state transition table to
obtain a state transition table entry, said state transition
table storing a session processing function associated
with each state and a next transition state of said state;

a step of executing a session processing function of said
obtained state transition table entry; and

a step of determining a next transition state using a value
returned from an executed session processing function
and setting up said next state information in said
session management table entry.

	Front Page
	Drawings
	Specification
	Claims

