(12)

United States Patent
Rumph et al.

US006844942B2

US 6,844,942 B2
Jan. 18, 2005

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(21)
(22)

(65)

(63)

(51)
(52)

(58)

(56)

METHOD FOR TRAPPING RASTER DATA IN
A RUN-LENGTH ENCODED FORM

Inventors: David E. Rumph, Pasadena, CA (US);
Jon S. McElvain, Redondo Beach, CA
(US); Jared Boone, Loveland, OH (US)

Assignee: Xerox Corporation, Stamford, CT
(US)

Notice: Subject to any disclaimer, the term of this
patent 15 extended or adjusted under 35
U.S.C. 154(b) by 316 days.

Appl. No.: 10/263,534

Filed: Oct. 2, 2002

Prior Publication Data
US 2003/0025945 Al Feb. 6, 2003

Related U.S. Application Data

Continuation of application No. 09/409,541, filed on Sep.
29, 1999, now abandoned.

Int. CL7 .o, GO6F 15/00
US.CL 358/1.9; 358/1.15; 358/518;
382/167

Field of Search 358/1.1, 1.9, 443,
358/448, 462, 518, 521, 525, 539; 382/167,
226, 266, 162, 164, 165, 166, 245

References Cited

U.S. PATENT DOCUMENTS

3/1997
9/1997

5,613,046 A
5,666,543 A

358/1.9
395/788

Dermer
Gartland

N5

‘gﬂaﬁf’

(XX 0 "'6 XXX XK H IR
’ ’02’: : % . “ “ A’A‘A /A

\/

vwvvvvvv AR AR
R R SRS RSKIILKILK,

5,668,931 A 9/1997 Dermercoceeeveennn... 358/1.4
5,864,651 A * 1/1999 Lavie et al. 358/1.15
6,023,558 A * 2/2000 Grabowskic.......... 358/1.9
6.345,117 B2 2/2002 Klassencoceeeveennnn. 382/167
2002/0051156 Al 5/2002 Weinholz et al. 358/1.9

OTHER PUBLICATTONS

U.S. Appl. No. 09/409,541, filed Sep. 29, 1999, David E.
Rumph.

* cited by examiner

Primary Examiner—Mark Wallerson

(57) ABSTRACT

A method of correction for toner misregistration in color
printing systems, specifically for run length encoded 1mage
data. This method, called “trapping”, usually involves
extending the color separations one or more pixels to
overlay the edge. The color of the “trap zone™ 1s chosen such
that 1t 1s nearly imperceptible 1n the presence of the two
initial colors. Our approach assumes the existence of a “trap
generator”’, which provides a trap color given two 1nput
colors.

In run length encoded 1mage format, the 1image 1s comprised
of an array of “scanlines”, consisting of a string of “runs”
that are specified by a minimum position in the fast (hori-
zontal) direction, a length, and a color. We describe a method
of trapping involving the following steps: 1) inspecting the
run lengths 1n each scanline to determine the color edges of
the image; 2) sending the colors at the boundaries to the trap
generator to determine the trap color; and 3) modifying the
intersecting runs with the trap color. The result 1s an efficient
climination of the edge defects at color boundaries, which 1s
enabled by the run length encoded 1mage format.

5 Claims, 10 Drawing Sheets

000 %0 %0% %% % 20%9.9, 0,09,
000000000000004
B SRE
0,0

A.‘.A

(TR :.:.m‘a

Ak

0'0' a9
S UPPER RIGHTSXS

9. 9.9, &% 0...0.... ,._0..,0 040,..0 ¢

POTENTIAL TRAP REGIONS

U.S. Patent Jan. 18, 2005 Sheet 1 of 10 US 6,844,942 B2

RSN\

SUB-RUN SEGMENT

FIG. 1

“UPPER RIGHT" CORNER
‘LOWER RIGHT" CORNER

“UPPER LEFT" CORNER
“LOWER LEFT" CORNER

SEGMENT BOUNDARIES

FIG. 2

ONE-COLOR H{H]
< N1 TN 0 M NT
TWO-COLOR
NS TN [0 BIT
THREE- COLOR |3

FOUR- COLOR E:N

FIG. 3

U.S. Patent Jan. 18, 2005 Sheet 2 of 10 US 6,844,942 B2

N

9.9.909.9.90.90.0.0.90.90.0.0.0. 0.4
NN R ORIIRRRNIL

& AT AV
S TR AOTETs Sy ‘o '0'0;030;m;04‘
IR 2 RSP ERRIHT

WERLEEL ¢ (/ RISDWER RIGHTSS
A A RS e A S IS
0 0. 0.0.0.0.¢.0000.00.000. 00 0000000000000 000
00000000 2050 2070 2020 20 20 2002020 20260 %020 2626 % %0 %6 %% .

&
N AL NLNNNN NN X LXK

\/
POTENTIAL TRAP REGIONS

FIG. 4

' N

TR

ANANNNRARNNNN
TRAP REGION —

SUB-RUN SEGMENT

FIG. 5

U.S. Patent Jan. 18, 2005 Sheet 3 of 10 US 6,844,942 B2

1T A “ X X AN ARR
TR ERHH 1BV Z%’%Qﬂll
PXZ NP Z O/ 87 TP
L‘\““\

DA \\‘\\\

e

FIG. 6

DT T

Wﬂﬂﬂﬁflﬁ P %

TR
SRS

..,--""-"

FIG. /7

!!!!!H"!!

l.iI

<

NN

U.S. Patent Jan. 18, 2005 Sheet 4 of 10 US 6,844,942 B2

\

1111]

—

FIG. 9

\

DR T TEEERNNNNNY

wlinkii e

FIG.10

U.S. Patent Jan. 18, 2005 Sheet 5 of 10 US 6,844,942 B2

g .‘Il-l‘

1" . I b.#"lll" I'...

e ‘r-‘f';:'. "'= .
\P 1"" -‘.1" -‘;l.

FIG. 12a

¢t ¥ . . - t Vogu'n et
. * bm B, . e i - s
S e S LA SR P St RS S R AT S S o —
-» [.i'.-’. .- .'.-...*'-.l L l'., ax P a® . F » sl &+ ¥ .I a % W .l--
|-I.| .- S g e g @ ® "9 4 '_".l - Sa ke gy '-"-1.-. . LR
& -.l-.'l-l'l _....,..._'.. l' .-i. . l.-i---l.-"
»
PIRL AU

FIG. 12b

U.S. Patent

Jan. 18, 2005 Sheet 6 of 10

S E— L

FIG. I3

TRAPPED RUN

—_—
T =
———

e 4 _®
--\I. st &
'.l. - b
.ll.... "B
---{I“‘.:-l.
- -

.. l-.'l- .

il W._.I

PR TR TR Y Sl S A
-

FIG. 14

TRAPPED RUN

. » ™

L]

" .t'.‘l-'
aw

sa "ea®, """,
amPagas @

el

FIG. 15

US 6,844,942 B2

U.S. Patent Jan. 18, 2005 Sheet 7 of 10 US 6,844,942 B2

> » - s n 0 B [
..' -.'I. I." [L W -- '.'...-1...- #* '-. .'-'.
L - - " - L - -

csa? B . e, 8 aa b ¥ e *®e

at ®a? .l- e "an" 1"'-1.'--
» pg” * a8 B .-Ta® s @ ad

'..’.". .'.il. .- ? g ‘I' - -.---..- .I.I\-.'-
s, agags Pa'..lli.. . X XY 2% o5 W

- -
- i

- $

L |

]

i &]
-« .'-.i'..
i I-

TRAPPED RUN

FIG. 16

- i.l'.'l d

--] [
L ..'I-I-

a=a ¥

LA ol L -

' Y AT
- w
‘-l '.l. -
L --l-.l-
....- [] - &
L - o
e & A e w L " . -
g% _» 4o ®® o, T, @ Wt e 4 B" ae, . b 8
..- il - & - * . = - g - - # -
. " "o ®TE T, aTe a b A | A R a P,
«® A _a% v b o ® en_o* 2t .4 00 & "Tut oW
4 I.I'l-'l' 2e R ' »y "Daw 1-.'- a e 2 I:.-.. -
- -
a™ -

TRAPPED RUN

FIG. 17

U.S. Patent Jan. 18, 2005 Sheet 8 of 10 US 6,844,942 B2

B S

-
e
PR T
sl
—
ey -
E—

_ﬂ“—
aT————— - e —
[] o m L
T Lt ety va
et e gty L mg s PPN L
i)] a dn m Y, g
. e L L -
n 1 mF ATy i' "L
- - -

SRARRRRRRTIITHINNNN
IIHIIIIIIIIIIIIIIIIIIII\\.\'\\\\\\\

kel I —

| E——— -

U.S. Patent Jan. 18, 2005 Sheet 9 of 10 US 6,844,942 B2

I ==
Illlllllllllll&\\“\\\\\\b\as

il e il

il e

FIG. 20

il
iyl

RERIIRNNNNNN
ullllnlulllm\\\\\\'\\\\\\\WE

i :\\ *

ekl

/

/

'

FIG. 21

U.S. Patent Jan. 18, 2005 Sheet 10 of 10 US 6,844,942 B2

TR —

h,

SUBDIVIDED SWEEP RUNS

FIG. 22

T AN ———
N =
N~

N

'/

77

INTERPOLATED SWEEP RUNS

FIG. 23

US 6,844,942 B2

1

METHOD FOR TRAPPING RASTER DATA IN
A RUN-LENGTH ENCODED FORM

CROSS REFERENCE TO RELATED
APPLICATION

This 1s a continuation of U.S. application Ser. No. 09/409,
541 filed Sep. 29, 1999, abandoned the contents of which are
incorporated herein by reference.

BACKGROUND OF THE INVENTION

A method of deciding where to do trapping of color image
data while the data 1s mm run length encoded form by
determining if there 1s a color edge between pixels on the
current or adjacent scan lines, and invoking the trap gen-
erator 1f there 1s.

If there 1s even a small amount of misregistration between
the printer separations (typically cyan, magenta, yellow, and
black in a color printer), regions of high color contrast will
show either a dark band or a white fringe, depending on the
direction of the color misregistrations. These unwanted dark
bands will be particularly visible 1n the presence of light
colors; conversely, the white fringe will be particularly
noticeable 1n the presence of dark colors.

The method of correcting for these misregistration zones,
called “trapping”, usually involves extending the color sepa-
rations one or more pixels to overlay the edge. The color of
the “trap zone” 1s chosen such that 1t 1s nearly imperceptible
in the presence of the two 1nitial colors when viewed from
atar. The result 1s an insignificant loss of detail and an
climination of the edge defect.

Trapping 1s a two step process. The first step 1s to locate
the edge, and the second 1s to generate the overlay of one or
more pixels, in any combination of the color separations.

The second step 1s done by a “trapping generator”. The
two 1puts for the trapping generator are the colors on both
sides of the edge 1n question. As an example, consider
magenta and cyan, with a user-specified maximum trap
width of two. The generator will compute from these
whether trapping i1s necessary, what color to use, and where
it should be applied. In our example, the correction could be
zero (no trapping), one, or two pixels in width, and could be
any combination of cyan, magenta, yellow and black, and
could be located 1n either the magenta or cyan area. Various
forms of trapping generators are described in U.S. patent

application Ser. Nos. 09/176 969, 09/176 970 and 09/177
2’76, and are mcorporated herein by reference.

The first step 1n the trapping process 1s to determine where
there 1s an edge on which to apply trapping. Trapping is
typically used between pixels that are not of identical color,
but 1t can be used 1n other locations as well. In addition, it
is typically applied to decompressed image data (pixel
encoded) but it would be convenient if it could be applied to
image data that 1s still 1n run length encoded form. The
invention described below 1s such a method.

SUMMARY OF THE INVENTION

This system requires a user specification of the maximum
trap radius; 1.¢., the maximum number of pixels over which
the trap zone will extend. It also requires a “scanline buffer”
that has twice the number of scan lines as the trap radius
specifled. Each scanline of the image consists of a string of
“runs”’, which are specified by a minimum position in the
fast (horizontal) direction, a length, a color (if it 1s constant
color), and other tags used for printing purposes. The runs
can be of constant color, or dertved from sampled image

10

15

20

25

30

35

40

45

50

55

60

65

2

data. In this example, the trap radius 1s two, so four scanlines
at a time will be examined during the trapping procedure.
First, the runs of all four scanlines are inspected, and the
point where any run ends on a particular scanline 1s assumed
to be an edge (denoted a “segment boundary”™).

In order to determine what traps are needed on the fast-
and slow-scan edges, and adjacent corners, the four colors
adjacent to the center “crosshairs” of the buffer at each

secgment boundary are inspected. The center crosshairs are
comprised of the segment boundary in the fast-scan direc-
fion between the two segments, and the scanline boundary
between the center two scanlines of the buifer. There are four
segments adjacent to these crosshairs. We call them “upper
left”, “upper right”, “lower left” and “lower right” corners.
More than one of these may have the same color. In order to
determine where traps, 1f any, need to be placed, the four
comers are compared, yielding one of 13 possible geom-
ctries. The geometry determines where traps might be
needed, directing the software to specific code that handles
cach geometry case. In each of these thirteen cases, the
colors are used as inputs to the trapping generator, and
depending on the output of the trapping generator, the colors
of all four runs within the crosshairs may be modified.

Once all segment boundaries within the scanline buffer
are processed, the topmost scanline is output (to the printer,
for example), and a new scanline 1s read into the bottom of
the buffer. The trapping procedure 1s then repeated for this
new set of scanlines within the buffer, until the entire 1image
1s processed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a segment of overlap between two runs.

FIG. 2 1s a region of interest for trapping runs, with
intersections and four relevant corner run segments.

FIG. 3 shows the 13 possible comer geometries.

FIG. 4 shows the interactions of concern for geometry-
based trapping.

FIG. 5 shows the trapping of a segment of overlap
between two constant color runs.

FIG. 6 shows the trapping of a segment of overlap
between a constant color and a generic sampled color run.

FIG. 7 shows the trapping of a segment of overlap
between a constant color and a sampled color run of gra-
dation. Interpolation can occur within arcas of similar trap
parameters.

FIG. 8 shows the trapping of a segment of overlap
between a constant color and a sampled color run of gra-
dation. Repeated dividing yields subsegments within which
interpolation can occur.

FIG. 9 shows the scanline buffer configuration for
Example 1, where the trap radius 1s set to unity.

FIG. 10 shows the modification of the upper right run
resulting from trapping in the fast direction.

FIG. 11 shows the modification of the lower left and upper
right runs resulting from trapping in both the fast and slow
directions. At this point the topmost scanline 1s emitted.

FIGS. 124 and 12b show the input and output scanline
buflers, respectively after a new scanline 1s read.

FIG. 13 shows the scanline buffer configuration for
Example 2, where only constant color runs abut, and the trap
radius 1s set to two.

FIG. 14 shows the modification of the upper right run
resulting from trapping in the fast direction.

FIG. 15 shows the modification of the right run on the
topmost scanline resulting from trapping in the fast direc-
tion.

US 6,844,942 B2

3

FIG. 16 shows the modification of the lower left run
resulting from trapping 1n slow direction.

FIG. 17 shows the modification of the leftmost run of the
bottom scanline resulting from trapping in slow direction. At
this point the topmost scanline 1s emitted.

FIGS. 18a and 18b show the mput and output scanline
buffers, respectively after a new scanline 1s read.

FIG. 19 shows the scanline buffer configuration for
Example 3, where both constant color and smooth gradation
(sweep) runs abut, and the trap radius is set to two.

FIG. 20 shows the modification of the upper right run and
the right run on the topmost scanline resulting from trapping
in the fast direction.

FIG. 21 shows the positions (min, center, and max) along
the sweep/constant color interface for which the trap gen-
erator 1s consulted 1nitially.

FIG. 22 shows the positions (min, center, and max) along
the subdivided sweep/constant color interfaces for which the
trap generator 1s consulted. In this case the trap offset values
match within each subdivided run, so that interpolation may
be performed to determine the intermediate pixel trap colors.

FIG. 23 shows the result of the interpolation procedure for
sweep runs abutted against runs of constant color.

DETAILED DESCRIPTION OF THE
INVENTION

There are three areas of image manipulation mnvolving
trapping: rules for deciding the conditions under which to
trap, finding color pairs 1n a “display list” representation of
a collection of graphical objects, and finding situations to
frap 1n an uncompressed raster representation of the page.

It 1s assumed that there 1s a trap generator that, given a
pair of colors, returns 1) whether trapping is needed or not,
2) what color the trap should be, and 3) where the trap

should be located relative to the edge.

The following discussion concerns an intermediate
between the second and third situations above, where the
oraphical data 1s still in run-length encoded form. Edges are
casy to find 1n the fast-scan direction, since runs end there.
In the slow scan direction, more effort 1s needed because
runs on adjacent scanlines must be 1ndividually tested to see
if they are the same or different. Complicating matters 1s that
runs on adjacent scanlines often begin and end in different
places. A third complication 1s how to 1dentify and deal with
corners. The final difficulty 1s how to add traps to a run-
length encoded data form with minimal overhead. This
embodiment uses buifered runs divided into “segments” of
uniform overlap, and constructs a “geometry” that can be
used to control the application of traps.

To address the 1ssue that runs may not begin or end 1n the
same places on abutting scanlines, the runs are divided into
segments at the point where at least one run on a sufficiently
nearby scanline ends. FIG. 1 shows a segment of overlap
between two runs.

The trap size (width) is often greater than one pixel. In the
fast-scan direction, a trap of width x 1s easily applied by
chopping off a total of x pixels of the run(s) adjacent to the
cdge, depending on where the trap generator said to place
the trap. In the slow-scan direction, multiple scanlines of
runs are maintained to form the prospective trap region. In
order to accommodate all possible trap positionings, a buifer
of at least 2x scan lines 1s needed. At least two run segments
are needed to apply any fast-scan traps. In order to determine
what traps are needed on the fast and slow scan edges, and
adjacent corners, the four colors adjacent to the center of the

10

15

20

25

30

35

40

45

50

55

60

65

4

intersection of the buffer must be looked at. The center
intersection 1s comprised of the segment boundary i the
fast-scan direction between the two segments, and the scan-
line boundary between the center two scanlines of the buifer.
FIG. 2 shows a region of interest for trapping runs, with the
central intersection and four relevant corner run segments.

There are four segments adjacent to these intersections
which can be referred to as “upper left”, “upper right”,
“lower left”, and “lower right” corners. More than one of
these may have the same color. In order to determine where
traps, if any, are needed, the four corners are compared,
yielding one of 13 possible geometries. The geometry deter-
mines where traps might be needed, directing the software
to specific code that handles each geometry case. FIG. 3
shows all of the possible geometries for the segment bound-
ary 1nspection procedure.

As trap processing proceeds across the fast-scan runs and
the slow-scan scanlines, each segment eventually becomes
the upper left comer of the intersection. This 1s ensured even
when the segment 1s the last on a scanline by providing a
“dummy” run of the same color beyond the end of the
scanline. Taking advantage of this characteristic avoids
redundant work 1n later processing; 1t i1s therefore only
necessary to check the mteraction between the upper left
comer and the other three comers. Even so, traps may only
be required 1n the upper left comer, or 1n the lower left, upper
right and lower right corners; or they may be required 1n all
four corners, as 1n the case of centerline traps. FIG. 4 shows
the 1nteractions of concern for quadrant-based trapping.

Trapping data 1s treated by creating two separate scanline
buflers, one for the original mnput scanlines, and the other for
the modified scanlines that are to be sent as output (to the
printer, for example). The output buffer is initially a copy of
the mput scanline buffer. When it 1s determined that a trap
1s needed, each run to be trapped 1s subjected to the
following procedure: 1) a new run is created; 2) the original
run’s data is copied to the new run; 3) the lengths of the
original, now shortened, run and the new run are adjusted
appropriately; and 4) the trap color and rendering intent are
applied to either the original or new run, depending upon the
specific printing requirements.

A run may be affected by more than one trapping
operation, and so may be updated more than once. Keeping
a “modified” flag 1n the output run structure makes it
possible to treat this as a special case to optimize perfor-
mance and quality. If a particular run 1s to be trapped that has
already been modified, the existing color of the run i1s
combined with the color that 1s returned by the current call
to the trap generator. This color combination can be 1n the
form of color separation averaging, or taking the maximum
(or minimum) value of the two colors.

In the fast scan direction, only the upper left and upper
richt run segments on the scanline immediately above the
horizontal intersection need be updated with traps. However,
in the slow-scan direction, run segments farther away from
the 1mtersection may need to be altered, depending on the
width of the trap and the offset position relative to the
intersection. For this reason, the number of scanlines that
need to be buifered 1s two times the maximum trap width in
the slow-scan direction. The maximum trap width need not
be the same 1n the slow and fast scan directions.

The trapping procedure 1s repeated for all segment bound-
aries detected within the input scanline buiffer. Once all
boundaries have been processed, the topmost scanline of the
output buffer can be output. The remaining lower scanlines
in the buffers are rolled up one position (vertically), and a

US 6,844,942 B2

S

new scanline 1s read 1nto the lowest position of both butfers.
Once again, there will be 2x scanlines 1n the buffers, where
X 1s the trap radius. The trapping procedure is repeated, and
new scanlines output/read, until all image data 1s processed.

An additional method 1s needed for efficiently trapping
color gradations (sweeps) in a run length encoded form. As
discussed above, processing in run-length encoded form
climinates considerable work when applying algorithms
such as trapping that deal with edges of objects, provided the
objects have constant color. Run-length data description is
of no value, however, 1n the general case where the pixel
data 1s inherently sampled, such as a scanned 1mage, and the
object edge runs along the scanline boundary. The following
describes a method for trapping the edge of a sampled 1mage
where 1t 1s known that the colors along the edge are varying,
slowly, as 1s the case with a sweep.

Here again, the following assumes a trap generator that,
given a pair of colors, returns 1) whether trapping is needed,
2) what color the trap should be, and 3) where the trap
should be located relative to the edge. The following
assumes a run-length encoded form of raster data. Runs can
be of constant color, wherein all the pixels of a run have the
same color, or of sampled color, wherein each pixel of the
run has a different color, as specified by a referenced pixel
map. Determining what to do i the fast scan direction 1s
casy because the edge 1s easily located at the run boundary.
In the slow-scan direction, abutting constant color runs can
be relatively easily compared over the sub-runs
(“segments”) in which they overlap.

In the general case of abutting runs, at least one of which
1s sampled color, no correlation between adjacent pixels of
a single sampled color run can be assumed, and the trap
generator must be separately consulted and the trap applied
for each pixel across the segment that overlaps. FIG. 5
shows the trapping of a segment of overlap between a
constant color and a generic sampled run. Each sampled
color pixel 1n the trap region must be individually trapped
against the constant color.

The following discusses sampled color runs where 1t 1s
known that the adjacent pixels of a sampled color run are
correlated, for example, 1n the case where the sampled color

pixels represent a smoothly shaded gradient, or sweep.

This method looks at the two ends and the center of the
two run segments across an edge from each other, at least
one of which 1s sampled color data known to be smoothly
varying. FIG. 6 shows the trapping of a segment of overlap
between a constant color and a sampled color run of gra-
dation. For each of the three color pairs, the trap generator
1s consulted, resulting 1n a trap color and trap offset for each
pair. If the trap offset matches for each of the three color
pairs, 1nterpolation can be used to determine the trap color
for all the other pixels of the edge. FIG. 7 shows the trapping
of a segment of overlap between a constant color and a
sampled color run of gradation.

If any of the trap offsets differ among the three pairs, the
run of sampled color 1s divided 1n half, forming two sub-
runs. The previous center pixel pair becomes the new end of
cach half. For each half, the process is repeated with a new
center pixel pair. Note that the trap generator parameter
information 1s already known for the two ends; the trap
generator needs to be consulted only for the new center pixel
pair. Each sub-run is divided until the trap offsets all match
for all three points in the sub-run. The trap color for that
sub-run 1s then calculated by interpolating the trap color
from one end to the other. FIG. 8 shows the trapping of a
segment of overlap between a constant color and a sampled

10

15

20

25

30

35

40

45

50

55

60

65

6

color run of gradation. Eventually, if the parameters con-
finue not to match for some sub-run as it is continually
divided, the sub-run’s length will reach three pixels or less;
at that point all the necessary trap colors are already known,
so that no interpolation 1s necessary.

EXAMPLES

Example 1

We consider the case where the user specifies a trap radius
of 1. Run-length encoded data consisting of constant color
runs 1s sent to the trapping module for misregistration
corrections. Since the trap radius 1s one, the input and output
scanline buffers will collect two scanlines each. The set of
scanlines under consideration 1n the scanline buifers 1is
shown schematically 1n FIG. 9.

Inspection of the input scanline buffer reveals that seg-
ment boundary appears on the topmost scanline, at the
intersection between the red and green runs. The geometry
will be determined by the run colors that appear at this
segment boundary: upper left=red, upper right=green, lower
left=blue, lower right=blue. The geometry for this example
would be a split-upper, one of the 13 specified geometries
from FIG. 3. Since the upper left and the upper right colors
are different, the trap generator will be consulted. In this
example, 1t 1s assumed the color returned by the ftrap
generator 1S a brownish-green tint, and the trap 1s to be
placed on the right side of the run boundary (FIG. 10). For
this case, the upper right (green) run will be modified, such
that 1t will begin one pixel further to the right of the segment
boundary. Anew run of constant color (length one pixel) will
be 1nserted to the right of the segment boundary, and will
carry the color returned by the trap generator.

The trap generator will then be consulted for upper left
(red) and the lower left (blue) pixels of the segment
boundary, since these colors are also different. In this
example, the trap generator 1s assumed to return a medium
gray trap color, with trapping to occur only on the lower left
run. The lower left run will then be split at the segment
boundary into two separate runs, as shown in FIG. 11. The
color of the left portion of the divided run will be set to the
medium gray color returned by the second call to the trap
generator.

Since all segment boundaries of the scanline buifer have
been analyzed, the topmost scanline is emitted (for example
to the printer). The previous bottom scanline becomes the
new top scanline, and the next scanline 1s read in for
analysis, as shown 1n FIG. 12. The new segment boundaries
are located for the scanline buffer, and the runs are trapped
accordingly. This process 1s repeated until all scanlines of
the 1mage have been analyzed.

Example 2

We consider the case where the user specifies a trap radius
of 2. Run-length encoded data consisting of constant color
runs 1s sent to the trapping module for misregistration
corrections. Since the trap radius 1s two, the 1nput and output
scanline buffers will collect four scanlines each. The set of
scanlines under consideration in the scanline buifers 1is
shown schematically 1n FIG. 13.

Inspection of the input scanline buifer reveals that a
segment boundary appears at the same fast position both on
the first and second scanlines, at the intersection between the
red and blue runs. The geometry will be determined by the
run colors that appear at this segment boundary: upper
left=red, upper right=blue, lower left=blue, lower right=

US 6,844,942 B2

7

blue. The geometry for this example would be a corner
upper-left (since only the upper left corner is a different
color), one of the 13 specified geometries from FIG. 3. Since
the upper left and the upper right colors are different, the trap
generator will be consulted. In this example, 1t 1s assumed
the color returned by the trap generator 1s a gray tint, and the
two pixel trap 1s to be placed on the right side of the run
boundary (FIG. 14). For this case, the upper right (blue) run
will be modified, such that 1t will begin two pixels further to
the right of the segment boundary. A new run of constant
color (length two pixels) will be inserted to the right of the
secgment boundary, and will carry the color returned by the
trap generator. The algorithm will now look at the run
immediately above the upper right run, on the first scanline.
Since 1n this example the color of the upper right run is
identical to the color immediately above, the rightmost run
on the upper scanline will also be trapped in an identical
fashion, as shown 1n FIG. 15.

Although the upper left and lower left colors are also
different, the trap generator need not be consulted again, as
it has already been called for the red-blue color combination
for fast scan direction trapping. Again here, the trapping will
only be applied into the blue (lower left) run. The lower left
run will then be split at the segment boundary into two
separate runs, as shown 1n FIG. 16. The color of the left
portion of the divided run will be set to the medium gray
color returned by the trap generator. As was the case for the
fast scan direction trapping, the run located on the last
scanline 1immediately below the lower left run is mspected
for a color match. In this example, the color of this run is
also blue so that i1t will be trapped 1 the same fashion as the

run directly above (FIG. 17).

Since all segment boundaries of the scanline buifer have
been analyzed, the topmost scanline is emitted (for example
to the printer). The previous bottom scanline becomes the
new top scanline, and the next scanline 1s read 1 for
analysis, as shown in FIG. 18. The new segment boundaries
are located for the scanline buffer, and the runs are trapped
accordingly. This process 1s repeated until all scanlines of
the 1mage have been analyzed.

Example 3

We consider the case where the user specifies a trap radius
of 2. Run-length encoded data consisting of constant color
runs and smooth gradation runs (sweeps) is sent to the
trapping module for misregistration corrections. Since the
trap radius 1s two, the mput and output scanline buffers will
collect four scanlines each. The set of scanlines under

consideration 1n the scanline buifers 1s shown schematically
in FIG. 19.

Inspection of the input scanline buffer reveals that a
segment boundary appears at the same fast position both on
the first and second scanlines, at the 1intersection between the
sweep and blue runs. The geometry will be determined by
the run colors that appear at this segment boundary: upper
left=red (the rightmost pixel value of the sweep in the
second scanline), upper right=blue, lower left=blue, lower
right=blue. The geometry for this example would be a corner
upper-left (since only the upper left corner is a different
color), one of the 13 specified geometries from FIG. 3. Since
the upper left and the upper right colors are different, the trap
generator will be consulted for trapping in the fast direction.
In this example, it 1s assumed the color returned by the trap
generator 1s a turquoise tint, and the two pixel trap 1s to be
placed one pixel on the left and one pixel on the right of the
run boundary (FIG. 20). For this case, the upper right (blue)

10

15

20

25

30

35

40

45

50

55

60

65

3

run will be modified, such that it will begin one pixel further
to the right of the segment boundary. A new run of constant
color (Iength two pixels) will be inserted to the right of the
segment boundary, and will carry the color returned by the
trap generator. Likewise, the upper left run (sweep) will be
reduced in length by one pixel, with a new single pixel run
with the trap color mserted at its end. As in Example 2, the
algorithm will now look at the runs immediately above the
modified runs (located on the first scanline) and trap in an
identical fashion (since both the sweep and blue extend
upward one scanline).

In the slow scan direction, the trap colors along the upper
left (sweep) and lower left (constant color) runs first by
consulting the trap generator for the left, center, and right
color pairs along the interface, as shown in FIG. 21. The trap
oracle will return a color and trap offset for each of the three
color pairs. In this example, the trap offset values only match
for the left and center color pairs. Therefore, the sweep 1s
subdivided into two separate sweeps, and the process is
repeated. However, the trap generator need only be con-
sulted for the center color pair of the left sweep, and the left
and center color pairs of the right sweep; for all other points
the trap generator has already been consulted.

Once the sweeps are subdivided in this particular
example, the offset values are found to match for the min,
center, and max positions of each subdivided sweep (FIG.
22). At this point, interpolation i1s performed on each sub-
divided sweep run to determine the trap colors of the
intermediate pixel positions (i.e. those positions for which
the trap generator was not explicitly called). In this case
simple quadratic interpolation i1s used. The result of such
interpolation 1s schematically shown in FIG. 23.

As 1n the cases discussed in Examples 1 and 2, the
topmost scanline 1s emitted upon processing of all segment
boundaries within the current mput scanline buffer. Scan-
lines 2, 3, and 4 are then shifted up in the buffer, and a new
scanline 1s read into the lower position of the buffer. The
trapping procedure described herein i1s repeated until all
image nformation 1s processed.

While the invention has been described with reference to
a specific embodiment, it will be understood by those skilled
in the art that various changes may be made and equivalents
may be substituted for elements thereof without departing
from the true spirit and scope of the invention. In addition,
many modifications may be made without departing from
the essential teachings of the invention.

What 1s claimed 1s:

1. A method of generating outputs for run length encoded
constant color data which can be sent to a trap generator
comprising the steps of:

first determining the maximum number x of pixels which
the trap generator may change 1n color,

placing 2x scanlines 1n run length encoded form into a
buffer,

inspecting the run lengths 1n each scanline to determine
the next run length end 1n any one of the 2x scan lines,
and taking this end as the current end of segment for all
scanlines,

determining a center point at the intersection of the line
between two scanlines and the line connecting the
current end of all scanline segments, and determining a
square of pixels all of which are adjacent the center
point,

determining the color of any two pixels 1n the square, and

sending the number x and the colors of the two pixels to
the trap generator to determine the trap color.

US 6,844,942 B2

9

2. The method of claim 1 wherein the runs are of constant
color.

3. The method of claim 1 wherein the color of all pixels
adjacent the connecting line are sent to the trap generator.

4. A method of generating outputs for run length encoded
color data which can be sent to a trap generator where at
least one scanline contains uncorrelated 1mage data com-
prising the steps of:

first determining the maximum number x of pixels in the
slow scan direction which the trap generator may
change 1n color,

placing 2x scanlines 1n run length encoded form mto a
buffer,

inspecting the run lengths 1n each scanline to determine
the next run length end 1n any one of the 2x scan lines,
and taking this end as the current end of segment for all
scanlines,

determining a center point at the intersection of the line
between two scanlines and the line connecting the
current and next pixels, and determining a square of
pixels all of which are adjacent the center point,

determining 1f a sampled 1mage run exists in any of the
four runs of this intersection,

if so, determine the trap color along the interface of the
sampled 1mage run by calling the trap generator for

cach pixel within the sampled 1mage run.

10

15

20

25

10

5. A method of generating outputs for run length encoded

sweep data which can be sent to a trap generator comprising
the steps of:

first determining the maximum number x of pixels in the
slow scan direction which the trap generator may
change 1n color,

placing 2x scanlines i run length encoded form into a
buffer,

inspecting the run lengths in each scanline to determine
the beginning and end of a on any one of the 2x scan
lines, and taking these ends as the ends of the current
segment for all scanlines,

determining a center point at the intersection of the line
between two scanlines and the line connecting the
current and next pixels, and determining a square of
pixels all of which are adjacent the center point,

determining if a sweep run abuts a constant color run or
another sweep run 1n the slow scan direction 1n any of
the four corners of this intersection,

if so, for a the first, middle, and last pixels within the
sweep, determine their trap colors by calling the trap
generator for each,

and determining the trap colors of the intermediate pixels
via mterpolation.

	Front Page
	Drawings
	Specification
	Claims

