US006839892B2
a2 United States Patent (10) Patent No.: US 6,839,892 B2
Dawkins et al. 45) Date of Patent: Jan. 4, 2005
(54) OPERATING SYSTEM DEBUGGER 6,546,477 B1 * 4/2003 Russo et al. 711/170
EXTENSIONS FOR HYPERVISOR 6,629,187 B1 * 9/2003 Krueger et al. 711/3
DEBUGGING 6,658,571 B1 * 12/2003 QO’Brien et al. 713/200
6,662,357 B1 * 12/2003 Bowman-Amuah 717/120
(75) Inventors: George John Dawkins, Austin, TX 6,681,358 B:h * 172004 Karlmli etal. 7147733
(US); Bruce G. Mealey, Austin, TX 6,684,343 B1 * 1/2004 Bouchier et al. 714/4
= ' Y, AUStN, 6,601,146 Bl * 2/2004 Armstrong et al. 718/100
(US) 6.711.693 Bl * 3/2004 Golden et al.oo....... 713/400
(73) Assignee: International Business Machines OTHER PUBLICATIONS
C tion, Ar k, NY (US
OTPOTSTION, AMMOnL, (US) TITLE: oWIT on—line debugger for application systems
(*) Notice: Subject to any disclaimer, the term of this using a ulTRON-specification operating system, author:
. . -
patent is extended or adjusted under 35 Miyatomi et al, 1EELE, Nov. 1991.% ‘
U.S.C. 154(b) by 595 days. TITLE: Toward user sharing of the microprogramming level
under UNIX on the Perkin—Elmer 3220, author: Roskos et
al, ACM, 1981.*
(21) Appl. No.: 09/203,936 TITLE: Hardware Fault Containment in Scalable Shared-—
(22) Filed: Jul. 12, 2001 Memory Multiprocessors, author: Teodosiu et al, ACM,
_ o 1997 .*
(65) prior Publication Data TITLE: Debugging Concurrency Extensions for Standard
US 2003/0014738 Al Jan. 16, 2003 ML, author: Tolmach et al, ACM, 1991.%
(51) Int. CL7 e GO6F 9/44 * cited by examiner
(52) US.CL ... 717/%;1}175%7/%%%571711/5‘;1205, Primary Examiner—Chameli Das
\ ’ A ama (74) Attorney, Agent, or Firm—Duke W. Yee; Volel Emile;
(58) Field of Search 717/:_24, :_26, Wayne P. Bailey
714/4, 25, 233; 711/153, 140, 170, 160;
713/1, 2, 200; 718/100, 105 (57) ABSTRACT
(56) References Cited A data processing system, method, and product are disclosed

U.S. PATENT DOCUMENTS

4435752 A * 3/1984 Winkelman 707/205
5,701,477 A * 12/1997 Chejlava, Jr. ..ccoeeeneneen.n. 713/2
5,764215 A * 6/1998 Brown et al. 345/620
5,828,824 A * 10/1998 Swoboda 714/25
5,887,146 A * 3/1999 Baxter et al. 710/104
5,889,988 A * 3/1999 Held ...covvvvnvvnnnnnnnn.. 718/103
5,958,049 A * 9/1999 Mealey et al. 713/1
6,289,448 B1 * 9/2001 Marslandccevveneen.e. 713/2
6,324,683 B1 * 11/2001 Fuh et al. 717/124
6,381,682 B2 * 4/2002 Noel et al. 711/153
6,449,735 B1 * 9/2002 Edwards et al. 714/25
S00

202

DEBUGGING NG
ENABLED WITHIN

for debugging partition management firmware from an exist-
ing operating system debugger. The partition management
firmware 1s also called a hypervisor. The data processing
system 1s logically partitioned and includes an operating

system debugger and hypervisor software. An operating
system and the operating system debugger are stored 1n one
of the logical partitions. Extensions are included within the
operating system debugger. The extensions are then utilized
by the existing operating system debugger to debug the
hypervisor.

24 Claims, 4 Drawing Sheets

HYPERVISOR?

YES
306

EVENT N

HAWDLER REGISTERED
?

YES

-
T
REPORT | -504
ERROR

508
HYPERVISOR

EVENT RECEIVED BY NO

EYEWT HANDLER?

TES

EXISTING 05 DEBUGGER
5100~ DETERMWINES APPROPRIATE
DEBUG ACTION TO TAKE

{

EXISTING 05 DEBUGGER
TRAMSLATES DETERMIMED
512~ ACTION INTO LOW LEVEL

HYPERVISOR OFERATION(S)

'

EXISTING CS DEBUGGER
INVOKES AFT CALLS TO CAUSE
314 -] HYPERVISOR TO EXECUTE LOW
LEVEL OPERATIONS

1
HYPERVISOR EXECUTES
2167 LOW LEVEL QPERATIONS

!

EXISTING OS5 DEBUGGER
INTERPRETS INFORMATION
318] RETURNED FROM

HYPERVIZOR AS NECESSARY
1

DID s
HYPERYISOR REPORT
AN ERROR?
REPORT
520

0 FRROR

522

CONTINUE

DEBUGGING 1S
i?

U.S. Patent Jan. 4, 2005 Sheet 1 of 4 US 6,839,892 B2
0
\ me
14 s
B CLIENT

16~"1 STORAGE I:I
22

rlG. 71

CLIENT

100

402 ESTABLISH AN EVENT HANDLER API WITHIN
AN EXISTING OPERATING SYSTEM DEBUGGER

1 ESTABLISH A READ PHYSICAL ADDRESS
4 SPACE API WITHIN AN EXISTING
OPERATING SYSTEM DEBUGGER

ESTABLISH A WRITE PHYSICAL ADDRESS
406 SPACE API WITHIN AN EXISTING

OPERATING SYSTEM DEBUGGER

FSTABLISH OTHER API'S WITHIN THE
408" EXISTING OPERATING SYSTEM DEBUGGER

410
rlG. 4

U.S. Patent Jan. 4, 2005 Sheet 2 of 4 US 6,839,892 B2

JTAG/12C BUSSES

101 102 103 104 19
N \ \ i
PROCESSOR | | PRocESSOR | | PRocessor] [Processor] | wemory | 1134
ATIN SIGNAL 135
Y
i SYSTEM BUS T rmvics

195 | PROCESSOR

MEMORY

110 106

108~ CONTROLLER/ Bél/DOGE e

CACHE 192
160 ISA

SERVICE PROCESSOR 2US
LOCAL MAILBOX INTERFACE NVRAM
| MEMORY AND ISA BUS ACCESS
» i PASSTHROUGH 196 190 |
194 PCI/ISA OF
LOCAL | 1371~ | BRIDGE PANEL
MEMORY | 120 132 he 136
162 PCI HOST i PC] 1?6
TOCH 119 BRIDGE |~ pey oc] RUS | ADAPTER
MEMORY BUS
PCI BUS, |
11\4 e 18 PCI 1/0
163 o A ADAPTER
A PCLHOST L~ £y
1/0 BRIDGE
LOCAL AUS PGl EANIEORY
MEMORY | BUS 119 - /
116 pCl BUS | ADAPTER

l 122 2 126 —_]PCI BUS PC] I/O

124
123 o | ADAPTER
<o == s
| PCI 129 '
pcl BUS | ADAPTER
100 ' T | JOWTER |

DATA PROCESSING k= PEL HOST | panc
SYSTEN BRIDGE] _
FIG. 2 pPcI gus | ADAPTER

150 /‘l HARD DISK l

U.S. Patent Jan. 4, 2005 Sheet 3 of 4 US 6,839,892 B2

L OGICALLY
PARTITIONED
PLATFORM
FIG. 3 200
'
201 202 203 204
PARTITION PARTITION PARTITION PARTITION
201a 202q 203a 204q
0S 0S
205 206
\ _ |
DEBUGGER DEBUGGER DEBUGGER
210
PARTITION MANAGEMENT FIRMWARE (HYPERVISOR)

230

PARTITIONED SERVICE
HARDWARE. PROCESSOR
MEMORY MEMORY
240 247

232 234
1/0
ADAPTER
lPROCESSOR| ‘PROCESSOR| PROCESSOR PROCESSOR

ﬁ
ADAPTER
3 -
"
ADAPTER

MEMORY MEMORY 255
I / 0
o4 N ADAPTER

e,

~
S

ADAPTER

250 254

=
-

ADAPTER

1/0
ADAPTER

75 262

~
O

ADAPTER

U.S. Patent Jan. 4, 2005 Sheet 4 of 4 US 6,839,892 B2

FIG. 5

DEBUGGING

ENABLED WITHIN
HYPERVISOR?

NO

YES
206

EVENT

HANDLER REGISTERED R
?

REPORT | ~504
ERROR

YES

208

HYPERVISOR
EVENT RECEIVED BY
EVENT HANDLER?

NO

TES

EXISTING OS5 DEBUGGER
510 —" DETERMINES APPROPRIAIE

DEBUG ACTION TO TAKE

EXISTING 0S DEBUGGER
TRANSLATES DETERMINED
512 ACTION INTO LOW LEVEL

HYPERVISOR OPERATION(S)

| EXISTING OS DEBUGGER

INVOKES APl CALLS TO CAUSE
514 HYPERVISOR TO EXECUTE LOW
LEVEL OPERATIONS

DID
HYPERVISOR REPORT

YES

| AN ERROR?
REPORT
HYPERVISOR EXECUTES NO 220
o216 LOW LEVEL OPERATIONS

CONTINUE
DEBUGGING
?

vES 322 ”

EXISTING OS5 DEBUGGER
INTERPRETS INFORMATION

518 RETURNED FROM
HYPERVISOR AS NECESSARY NO

US 6,539,892 B2

1

OPERATING SYSTEM DEBUGGER
EXTENSIONS FOR HYPERVISOR
DEBUGGING

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates generally to the field of
computer systems and, more specifically to a data process-
ing system, method, and product for including extensions 1n
an existing operating system debugger that may be used to
debug hypervisor software.

2. Description of Related Art

A logical partitioning option (LPAR) within a data pro-
cessing system (platform) allows multiple copies of a single
operating system (OS) or multiple heterogeneous operating
systems to be simultaneously run on a single data processing
system hardware platform. A partition, within which an
operating system 1mage runs, 1s assigned a non-overlapping
subset of the platform’s hardware resources. These platform
allocable resources include one or more architecturally
distinct processors with their interrupt management area,
regions of system memory, and input/output (I/O) adapter
bus slots. The partition’s resources are represented by its
own open lirmware device tree to the OS 1mage.

Each distinct OS or image of an OS running within the
platform 1s protected from each other such that software
errors on one logical partition can not affect the correct
operation of any of the other partitions. This 1s provided by
allocating a disjoint set of platform resources to be directly
managed by each OS 1mage and by providing mechanisms
for ensuring that the various 1mages can not control any
resources that have not been allocated to 1t. Furthermore,
software errors 1n the control of an operating system’s
allocated resources are prevented from affecting the
resources of any other image. Thus, each image of the OS (or
each different OS) directly controls a distinct set of allocable
resources within the platform.

Many logically partitioned systems make use of a hyper-
visor. A hypervisor 1s a layer of privileged software between
the hardware and logical partitions that manages and
enforces partition protection boundaries. The hypervisor 1s
also referred to as partition management firmware. The
hypervisor 1s responsible for configuring, servicing, and
running multiple logical systems on the same physical
hardware. The hypervisor 1s typically responsible for allo-
cating resources to a partition, installing an operating system
in a partition, starting and stopping the operating system 1in
a partition, dumping main storage of a partition, communi-
cating between partitions, and providing other functions. In
order to implement these functions, a hypervisor also has to
implement 1ts own low level operations like main storage
management, synchronization primitives, I/O facilities, heap
management, and other functions.

During development, software, such as a hypervisor, often
includes one or more inadvertent errors. Locating and
removing the errors 1n software 1s generally known 1n the

industry as “debugging” the software, with errors being
referred to as “bugs”.

Known systems for debugging a hypervisor require the
use of a dedicated hypervisor debugger which 1s written
specifically for use by the hypervisor. Time, and therefore
money, 1s required during development of systems 1n order
to develop a dedicated hypervisor debugger.

Operating system debuggers are known 1n the art and are
widely available. Operating system debuggers are utilized to

10

15

20

25

30

35

40

45

50

55

60

65

2

debug an operating system. Known operating system debug-
gers may not be used to debug a hypervisor however,
because operating systems are prohibited from directly
accessing the hypervisor’s resources.

Therefore, a need exists for a method, system, and product
whereby an existing operating system debugger 1s modified
by adding hypervisor extensions which enable the operating
system debugger to directly access a hypervisor’s resources
in order to debug the hypervisor. In this manner, valuable
development time and expense 1s saved by using a modified,
existing operating system to debug hypervisor software.

SUMMARY OF THE INVENTION

A data processing system, method, and product are dis-
closed for debugging partition management firmware utiliz-
Ing an existing operating system debugger. The partition
management firmware 1s also called a hypervisor. The data
processing system 1s logically partitioned and includes an
operating system debugger and hypervisor software. An
operating system and the operating system debugger are
stored 1n one of the logical partitions.

In known systems, operating systems and operating sys-
tem debuggers are not permitted to directly access resources
controlled by the hypervisor, such as the physical memory.
The present invention describes modifying an existing oper-
ating system debugger by adding extensions to the existing,
operating system debugger. The extensions may be utilized
by the existing operating system debugger to directly access
hypervisor resources and thus to debug the hypervisor.

These extensions include an event handler routine which
1s code which exists within the existing operating system
debugger which 1s alerted by the hypervisor when hypervi-
sor events occur. In response to these events, the existing
operating system debugger may then invoke other exten-
sions to cause the hypervisor to read data from physical
memory locations specified by the operating system
debugger, to cause the hypervisor to write specified data to
physical memory locations specified by the operating system
debugger, and to perform other hypervisor functions.

In this manner, an existing operating system debugger
may be modified and used to debug hypervisor software
without the need for writing a dedicated hypervisor debug-
oger that exists within the hypervisor for debugging the
hypervisor.

The above as well as additional objectives, features, and
advantages of the present invention will become apparent 1n
the following detailed written description.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth 1in the appended claims. The 1nvention itself,
however, as well as a preferred mode of use, further objec-
fives and advantages thereof, will best be understood by
reference to the following detailed description of an 1llus-
frative embodiment when read in conjunction with the
accompanying drawings, wherein:

FIG. 1 1s a pictorial representation which depicts a data
processing system 1n which the present invention may be
implemented 1n accordance with a preferred embodiment of
the present invention;

FIG. 2 1s a more detailed block diagram of a data
processing system 1n which the present invention may be
implemented 1n accordance with the present invention;

FIG. 3 1s a block diagram of an exemplary logically
partitioned platform in which the present invention may be
implemented;

US 6,539,892 B2

3

FIG. 4 1llustrates a high level flow chart which depicts
modifying an existing operating system debugger by adding
extensions to the existing operating system debugger in
accordance with the present invention; and

FIG. § depicts a high level flow chart which illustrates
using the modified, existing operating system debugger to
debug a hypervisor 1n accordance with the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

A preferred embodiment of the present invention and 1its
advantages are better understood by referring to the figures,
like numerals being used for like and corresponding parts of
the accompanying figures.

FIG. 1 depicts a pictorial representation of a network of
data processing systems 1n which the present invention may
be 1mplemented. Network data processing system 10 1s a
network of computers 1n which the present invention may be
implemented. Network data processing system 10 contains
a network 12, which 1s the medium used to provide com-
munications links between various devices and computers
connected together within network data processing system
10. Network 12 may include connections, such as wire,
wireless communication links, or fiber optic cables.

In the depicted example, a server 14 1s connected to
network 12 along with storage unit 16. In addition, clients
18, 20, and 22 also are connected to network 12. Network 12
may include permanent connections, such as wire or fiber
optic cables, or temporary connections made through tele-
phone connections. The communications network 12 also
can 1nclude other public and/or private wide area networks,
local area networks, wireless networks, data communication
networks or connections, intranets, routers, satellite links,
microwave links, cellular or telephone networks, radio links,
fiber optic transmission lines, ISDN lines, T1 lines, DSL,
etc. In some embodiments, a user device may be connected
directly to a server 14 without departing from the scope of
the present 1nvention. Moreover, as used herein, communi-
cations include those enabled by wired or wireless technol-
0gy.

Clients 18, 20, and 22 may be, for example, personal
computers, portable computers, mobile or fixed user
stations, workstations, network terminals or servers, cellular
telephones, kiosks, dumb terminals, personal digital
assistants, two-way pagers, smart phones, mformation
appliances, or network computers. For purposes of this
application, a network computer 1s any computer, coupled to
a network, which receives a program or other application
from another computer coupled to the network.

In the depicted example, server 14 provides data, such as
boot files, operating system images, and applications to
clients 18-22. Clients 18, 20, and 22 are clients to server 14.
Network data processing system 10 may include additional
servers, clients, and other devices not shown. In the depicted
example, network data processing system 10 1s the Internet
with network 12 representing a worldwide collection of
networks and gateways that use the TCP/IP suite of proto-
cols to communicate with one another. At the heart of the
Internet 1s a backbone of high-speed data communication
lines between major nodes or host computers, consisting of
thousands of commercial, government, educational and
other computer systems that route data and messages. Of
course, network data processing system 10 also may be
implemented as a number of different types of networks,
such as for example, an intranet, a local area network

(LAN), or a wide area network (WAN). FIG. 1 is intended

10

15

20

25

30

35

40

45

50

55

60

65

4

as an example, and not as an architectural limitation for the
present 1vention.

FIG. 2 1s a more detailed block diagram of a data
processing system 1n which the present invention may be
implemented. Data processing system 100 may be a sym-
metric multiprocessor (SMP) system including a plurality of
processors 101, 102, 103, and 104 connected to system bus
106. For example, data processing system 100 may be an
IBM RS/6000, a product of International Business Machines
Corporation 1n Armonk, N.Y., implemented as a server
within a network. Alternatively, a single processor system
may be employed. Also connected to system bus 106 is
memory controller/cache 108, which provides an interface
to a plurality of local memories 160-163. I/O bus bridge 110
1s connected to system bus 106 and provides an interface to

I/O bus 112. Memory controller/cache 108 and I/O bus
bridge 110 may be integrated as depicted.

Data processing system 100 1s a logically partitioned data
processing system. Thus, data processing system 100 may
have multiple heterogeneous operating systems (or multiple
instances of a single operating system) running simulta-
neously. Each of these multiple operating systems may have
any number of software programs executing within in it.
Data processing system 100 is logically partitioned such that
different I/O adapters 120121, 128-129, 136, and 148-149

may be assigned to different logical partitions.

Thus, for example, suppose data processing system 100 1s
divided into three logical partitions, P1, P2, and P3. Each of
I/O adapters 120-121, 128—-129, 136, and 148—-149, cach of
processors 101-104, and each of local memories 160-163 1s
assigned to one of the three partitions. For example, pro-
cessor 101, memory 160, and I/0 adapters 120, 128, and 129
may be assigned to logical partition P1; processors 102-103,
memory 161, and I/O adapters 121 and 136 may be assigned
to partition P2; and processor 104, memories 162—163, and

I/O adapters 148—149 may be assigned to logical partition
P3.

Each operating system executing within data processing,
system 100 1s assigned to a different logical partition. Thus,
cach operating system executing within data processing
system 100 may access only those I/O units that are within
its logical partition.

Peripheral component interconnect (PCI) Host bridge 114
connected to I/O bus 112 provides an interface to PCI local
bus 115. A number of Input/Output adapters 120-121 may
be connected to PCI bus 115. Typical PCI bus implemen-
tations will support between four and eight I/O adapters (i..
expansion slots for add-in connectors). Each I/O Adapter
120-121 provides an interface between data processing
system 100 and mput/output devices such as, for example,
other network computers, which are clients to data process-
ing system 100.

An additional PCI host bridge 122 provide an interface for
an additional PCI bus 123. PCI bus 123 1s connected to a
plurality of PCI I/O adapters 128-129 by a PCI bus
126—127. Thus, additional I/O devices, such as, for example,
modems or network adapters may be supported through each
of PCI I/O adapters 128—129. In this manner, data process-
ing system 100 allows connections to multiple network
computers.

A memory mapped graphics adapter 148 may be con-
nected to I/O bus 112 through PCI Host Bridge 140 and

EADS 142 (PCI-PCI bridge) via PCI buses 144 and 145 as
depicted. Also, a hard disk 150 may also be connected to I/0O
bus 112 through PCI Host Bridge 140 and EADS 142 via
PCI buses 141 and 145 as depicted.

US 6,539,892 B2

S

A PCI host bridge 130 provides an interface for a PCI bus
131 to connect to I/O bus 112. PCI bus 131 connects PCI

host bridge 130 to the service processor mailbox interface
and ISA bus access pass-through logic 194 and EADS 132.

The ISA bus access pass-through logic 194 forwards PCI
accesses destined to the PCI/ISA bridge 193. The NV-RAM

storage 1s connected to the ISA bus 196. The Service
processor 135 1s coupled to the service processor mailbox
interface 194 through its local PCI bus 195. Service proces-
sor 135 1s also connected to processors 101-104 via a
plurality of JTAG/I°C buses 134. JTAG/IC buses 134 are a
combination of JTAG/scan busses (see IEEE 1149.1) and
Phillips I°C busses. However, alternatively, JTAG/I°C buses
134 may be replaced by only Phillips I°C busses or only

JTAG/scan busses. All SP-ATTN signals of the host proces-
sors 101, 102, 103, and 104 are connected together to an
interrupt 1input signal of the service processor. The service
processor 135 has its own local memory 191, and has access
to the hardware op-panel 190.

When data processing system 100 1s mitially powered up,
service processor 135 uses the JTAG/scan buses 134 to
interrogate the system (Host) processors 101-104, memory
controller 108, and 1/O bridge 110. At completion of this
step, service processor 135 has an inventory and topology
understanding of data processing system 100. Service pro-
cessor 135 also executes Built-In-Self-Tests (BIS'Ts), Basic
Assurance Tests (BATS), and memory tests on all elements
found by mterrogating the system processors 101-104,
memory controller 108, and I/O bridge 110. Any error
information for failures detected during the BISTs, BATsS,

and memory tests are gathered and reported by service
processor 1335.

If a meaningful/valid configuration of system resources 1s
still possible after taking out the elements found to be faulty
during the BISTs, BATS, and memory tests, then data
processing system 100 1s allowed to proceed to load execut-
able code into local (Host) memories 160-163. Service
processor 135 then releases the Host processors 101-104 for
execution of the code loaded into Host memory 160-163.
While the Host processors 101-104 are executing code from
respective operating systems within the data processing
system 100, service processor 135 enters a mode of moni-
toring and reporting errors. The type of items monitored by
service processor 1nclude, for example, the cooling fan
speed and operation, thermal sensors, power supply
regulators, and recoverable and non-recoverable errors
reported by processors 101-104, memories 160-163, and
bus-bridge controller 110.

Service processor 135 1s responsible for saving and
reporting error information related to all the monitored 1tems
in data processing system 100. Service processor 135 also
takes action based on the type of errors and defined thresh-
olds. For example, service processor 135 may take note of
excessive recoverable errors on a processor’s cache memory
and decide that this 1s predictive of a hard failure. Based on
this determination, service processor 135 may mark that
resource for reconfiguration during the current running
session and future Initial Program Loads (IPLs). IPLs are
also sometimes referred to as a “boot” or “bootstrap”.

Those of ordinary skill i the art will appreciate that the
hardware depicted 1n FIG. 2 may vary. For example, other
peripheral devices, such as optical disk drives and the like,
also may be used 1n addition to or 1n place of the hardware
depicted. The depicted example 1s not meant to 1mply
architectural limitations with respect to the present imnven-
tion.

FIG. 3 1s a block diagram of an exemplary logically
partitioned platform 1s depicted 1n which the present inven-

10

15

20

25

30

35

40

45

50

55

60

65

6

tion may be 1mplemented. Logically partitioned platform
200 1ncludes partitioned hardware 230, partition manage-
ment firmware, also called a hypervisor, 210, and partitions
201-204. Operating systems 201a—204a exist within parti-
tions 201-204. Operating systems 201a—204a may be mul-
tiple copies of a single operating system or multiple hetero-
geneous operating systems simultaneously run on platform

200.

Partitioned hardware 230 includes a plurality of proces-
sors 232-238, a plurality of system memory units 240-246,
a plurality of input/output (I/O) adapters 248-262, and a
storage unit 270. Each of the processors 242248, memory
units 240-246, NV-RAM storage 298, and I/O adapters

248-262 may be assigned to one of multiple partitions
201-204.

Partition management firmware (hypervisor) 210 per-
forms a number of functions and services for partitions
201-204 to create and enforce the partitioning of logically
partitioned platform 200. Hypervisor 210 1s a firmware
implemented virtual machine identical to the underlying
hardware. Firmware 1s “software” stored 1n a memory chip
that holds its content without electrical power, such as, for
example, read-only memory (ROM), programmable ROM
(PROM), erasable programmable ROM (EPROM), electri-
cally erasable programmable ROM (EEPROM), and non-
volatile random access memory (non-volatile RAM). Thus,
hypervisor 210 allows the simultancous execution of 1nde-
pendent OS 1mages 201a—204a by virtualizing all the hard-
ware resources of logically partitioned platform 200. Hyper-
visor 210 may attach I/O devices through I/O adapters
248-262 to smgle virtual machines 1n an exclusive mode for
use by one of OS 1mages 201a-204a.

A debugger may be included 1n each operating system.
These debuggers are existing pieces of software which may
be utilized to debug the operating system in which the
debugger resides. For example, operating system 201a
includes debugger 205. Operating system 202a includes
debugger 206. Operating system 203a includes debugger
207. And, operating system 204a includes debugger 208.

These debuggers were written to debug the operating
system 1n which they are included. In prior art systems, these
debuggers can access only the logical memory assigned to
the partition within which the debugger resides. In the prior
art, these debuggers could not directly access the physical
memory, which 1s controlled by hypervisor 210.

According to the present invention, hypervisor extensions
are added to an existing operating system debugger to enable
the existing OS debugger to debug the hypervisor code. The
extensions permit the existing operating system debuggers
to directly access the physical memory space. The exten-
sions are application programming interface (API) calls that
can be invoked by the existing operating system debugger
that then cause the hypervisor to perform specified low-level
hypervisor operations such as reading from or writing to
physical memory locations, reading from or writing to
hypervisor registers, or any other hypervisor operation.

FIG. 4 depicts a high level flow chart which illustrates
establishing extensions within an existing operating system
debugger for debugging a hypervisor 1n accordance with the
present invention. The process starts as depicted by block
400 and thereafter passes to block 402 which illustrates
establishing an event handler API within an existing oper-
ating system debugger. The event handler API 1s one of the
operating system extensions. An event handler API 1s used
by the existing operating system debugger to register an
event handler with the partition management firmware

US 6,539,892 B2

7

(hypervisor). The event handler is code that resides within
the OS debugger that 1s invoked asynchronously, much like
an 1nterrupt, by the hypervisor to notify the OS debugger of
events that may be of interest to the OS debugger. Events of
interest may include fatal hypervisor errors or debug trap
instructions for example. The following 1s an example of an
event handler API:

1nt

h_ debug handler(

void (*handler)(int event),

)

The input parameter for this API 1s “handler”. This 1s the
name of the event handler within the existing operating
system debugger. The return values for this API are either a
“0” to indicate that the event handler was successtully
registered, or an “ENODEV” parameter to indicate that
hypervisor debugging 1s not enabled.

The process then passes to block 404 which depicts
establishing a “Read Physical Address Space” API within
the existing operating system debugger that will cause the
hypervisor to read a physical address and return the value to
the operating system debugger. The “Read Physical Address
Space” API 1s another operating system extension. The
following 1s an example of a “Read Physical Address Space”
API:
nt
h_ debug-read-memory(

vold *hypervisor _memory__address,

size_ t size,

void *data)

The parameters are “hypervisor__memory__address” which
speciflies the memory address the hypervisor 1s to read,
“s1ze” which specifies the number of bytes to read, and
“data” which speciiies the value read from the address. The
return values for this API are a “0” to indicate that the API
was executed successfully, an “ENODEV” parameter to
indicate that hypervisor debugging 1s not enabled, or an
“EINVAL” parameter to indicate a bad parameter.

Next, block 406 1llustrates establishing a “Write Physical
Address Space” API within the existing operating system
debugger that will cause the hypervisor to write a particular
value 1nto a physical address. The “Write Physical Address
Space” API 1s another operating system extension. The
following 1s an example of a “Write Physical Address
Space” API:
int
h_ debug-write-memory(

vold *hypervisor__memory__address,

size t size,

void *data)

The parameters are “hypervisor__memory_ address” which
speciflies the memory address the hypervisor 1s to be written
to, “size” which speciiies the number of bytes to be written,
and “data” which specifies the value to be written mto the
address. The return values for this API are a “0” to indicate
that the API was executed successtully, an “ENODEV”
parameter to indicate that hypervisor debugging is not
enabled, or an “EINVAL” parameter to indicate a bad
parameter.

Typically, an operating system and other software execut-
ing within a partition can gain access only to the logical
memory assigned to that partition. The operating system and
other software cannot normally directly access a physical
address space. The two APIs described above permit an
operating system debugger to read directly from or write
directly to a specified physical address. These two APIs are

5

10

15

20

25

30

35

40

45

50

55

60

65

3

used by an existing operating system debugger to gain direct
read/write access to the entire system’s physical address

space.
Thereafter, block 408 depicts establishing other APIs

within the existing operating system debugger as hypervisor
extensions to the existing operating system debugger. For
example, an API could be established that would cause the
hypervisor to read one of 1ts registers and return the value to
the operating system debugger. As another example, an API
could be established that would cause the hypervisor to write
a value specified within the API to one of the hypervisor’s
registers. The process then terminates as depicted by block

410.
FIG. 5 illustrates a high level flow chart which depicts

using extensions mncluded within an existing operating sys-
tem debugger to debug a hypervisor 1n accordance with the
present invention. The process starts as depicted by block
500 and thereafter passes to block 502 which 1llustrates a
determination of whether or not debugging is enabled within
the partition management firmware (hypervisor). Service
processor 290 may be used to either enable or disable
hypervisor debugeing. When the service processor has dis-
abled debugging within the hypervisor, the operating system
debugger will not be able to execute its hypervisor exten-
sions and will receive a return code i1ndicating that hyper-
visor debugging 1s not enabled 1f the operating system calls
onc of the hypervisor extension APIs. When the service
processor has enabled debugging, debugging using the
extensions that have been added to the existing operating
system debugger may proceed.

If a determination 1s made that debugging 1s not enabled
within the hypervisor, the process passes to block 504.
Referring again to block 502, 1f a determination 1s made that
debugging 1s enabled, the process passes to block 506 which
depicts a determination of whether or not an event handler
has been registered within the hypervisor. An event handler
1s code that resides within the OS debugger that 1s invoked
asynchronously by the hypervisor to notity the OS debugger
of events that may be of interest to the OS debugger. An
event handler must be registered within the hypervisor in
order to permit debugging by the existing operating system
debugger. If a determination 1s made that an event handler
1s not registered with the hypervisor, the process passes to
block 504.

Referring again to block 506, if a determination 1s made
that an event handler i1s registered with the hypervisor, the
process passes to block 508 which illustrates a determination
of whether or not an event has been received by the event
handler. If a determination 1s made that an event has not been
received by the event handler, the process passes back to
block 508. Referring again to block 508, if a determination
1s made that an event been received by the event handler, the
process passes to block 510 which depicts the existing
operating system debugger determining an appropriate
debug action to take 1n response to the received event.

The operating system debugger process of determining an
appropriate debug action i1s known 1n the art and 1s not
described herein. Any suitable method of making such a
determination may be utilized. Further, a user may make this
determination instead of the operating system debug soft-
ware.

Once an appropriate debug action 1s determined, the
action 1s translated, as depicted in block 512, into low level
hypervisor operations, such as read memory, write memory,
read registers, write registers, etc. Again, the process of
translating the debug action into appropriate low level
hypervisor actions 1s known 1n the art and 1s not described
herein.

US 6,539,892 B2

9

Describing again the present invention, the process then
passes to block 514 which illustrates the existing operating,
system debugger invoking API calls to cause the hypervisor
to execute these low level operations. Next, block 516
depicts the hypervisor executing the low level operations
and returning return codes and/or data as required by the API
calls invoked by the operating system debugger. Thereatter,
block 518 illustrates the existing operating system debugger
mnterrupting the mformation returned from the hypervisor as
necessary. For example, the value stored 1in a particular
physical address space 1s returned 1n response to mvoking a
“Read Physical Address Space” API. The existing operating
system debugger should mterrupt this information returned
by the hypervisor. In response to invoking other API calls,
a return value may be returned which should then be
mterrupted.

The process then passes to block 520 which depicts a
determination of whether or not the hypervisor reported an
error. For example, 1f debugging has been disabled by the
service processor, a return code will be reported by the
hypervisor indicating that the debugging option 1s not
enabled. In response to a determination that the hypervisor
reported an error, the process passes to block 522. Referring
again to block 520, if a determination 1s made that the
hypervisor did not report an error, the process passes to
block 524 which 1illustrates a determination of whether or
not to continue debugging. If a determination 1s made to
continue debugging, the process passes back to block 508.
Referring again to block 524, if a determination 1s made to
discontinue debugging, the process terminates as depicted
by block 526.

It 1s important to note that while the present invention has
been described in the context of a fully functioning data
processing system, those of ordinary skill in the art waill
appreciate that the processes of the present invention are
capable of being distributed 1n the form of a computer
readable medium of mstructions and a variety of forms and
that the present invention applies equally regardless of the
particular type of signal bearing media actually used to carry
out the distribution. Examples of computer readable media
include recordable-type media, such as a floppy disk, a hard
disk drive, a RAM, CD-ROMs, DVD-ROMs, and
transmission-type media, such as digital and analog com-
munications links, wired or wireless communications links
using transmission forms, such as, for example, radio fre-
quency and light wave transmissions. The computer read-
able media may take the form of coded formats that are
decoded for actual use 1n a particular data processing
system.

The description of the present mvention has been pre-
sented for purposes of 1llustration and description, and 1s not
intended to be exhaustive or limited to the mvention 1n the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodi-
ment was chosen and described 1n order to best explain the
principles of the invention, the practical application, and to
enable others of ordinary skill 1in the art to understand the
invention for various embodiments with various modifica-
tions as are suited to the particular use contemplated.

What 1s claimed 1s:

1. A method 1n a logically partitioned data processing
system 1ncluding a plurality of logical partitions, an oper-
ating system debugger and partition management firmware,
said partition management firmware being operable to allo-
cate resources to and manage the plurality of logical
partitions, said method comprising the steps of:

establishing extensions within said operating system
debugger, said extensions enabling direct access to said

10

15

20

25

30

35

40

45

50

55

60

65

10

resources of said partition management firmware by
said operating system debugger; and

utilizing said extensions to debug said partition manage-
ment firmware, wherein said operating system debug-
ger without said extensions would not otherwise have
direct access to said resources.

2. The method according to claim 1, further comprising
the step of establishing function calls within said operating
system debugger that when invoked by said operating sys-
tem debugger cause said partition management firmware to
execute partition management firmware operations.

3. The method according to claim 2, further comprising
the steps of:

establishing an event handler routine within said operat-
ing system debugger;

invoking said event handler routine by said operating
system debugger; and

reporting, from said partition management firmware to
said operating system debugger, partition management
firmware events 1n response to said operating system
debugger invoking said event handler routine.
4. The method according to claim 2, further comprising,
the steps of:

establishing a read memory call within said operating
system debugger;

invoking said read memory function call by said operating,
system debugger; and

directly reading data from a physical memory location
utilizing said partition management firmware 1n
response saild operating system debugger invoking said
read memory function call.
5. The method according to claim 2, further comprising,
the steps of:

establishing a write memory call within said operating
system debugger;

invoking said write memory function call by said oper-
ating system debugger; and

directly writing data to a physical memory location uti-
lizing said partition management firmware 1n response
said operating system debugger mmvoking said write
memory function call.
6. The method according to claim 1, further comprising
the steps of:

determining whether debugging i1s enabled within said
partition management firmware;

permitting said operating system debugger to utilize said
extensions to debug said partition management firm-
ware 1n response to a determination that debugging 1s
enabled within said partition management firmware;
and

prohibiting said operating system debugger to utilize said
extensions to debug said partition management firm-
ware 1n response to a determination that debugging 1s
disabled within said partition management firmware.
7. The method according to claim 6, further comprising
the steps of:

including a service processor within said data processing
system,

enabling debugging within said partition management
firmware utilizing said service processor; and

disabling debugging within said partition management
firmware utilizing said service processor.

8. The method according to claim 1, wherein said data

processing system includes hardware comprising physical

US 6,539,892 B2

11

memory, wherein said operating system debugger exists
within a partition, and further wherein said partition man-
agement firmware exists between said partition and said
hardware, and wherein said operating system debugger 1is
operable to directly access said physical memory using said
extensions 1n conjunction with said partition management
firmware.

9. A computer program product 1n a logically partitioned
data processing system including a plurality of logical
partitions, an operating system debugger and a partition
management firmware, said partition management firmware
being operable to allocate resources to and manage the
plurality of logical partitions, comprising:

instruction means for establishing extensions within said

operating system debugger, said extensions enabling
direct access to said resources of said partition man-
agement firmware by said operating system debugger;
and

instruction means for utilizing said extensions to debug
said partition management firmware, wherein said
operating system debugger without said extensions
would not otherwise have direct access to said
reSources.

10. The product according to claim 9, further comprising
instruction means for establishing function calls within said
operating system debugger that when invoked by said oper-
ating system debugger cause said partition management
firmware to execute partition management firmware opera-
tions.

11. The product according to claim 10, further compris-
Ing:

instruction means for establishing an event handler rou-

tine within said operating system debugger;

instruction means for invoking said event handler routine
by said operating system debugger; and

instruction means for reporting, from said partition man-
agement firmware to said operating system debugger,
partition management firmware events 1n response to
said operating system debugger invoking said event
handler routine.

12. The product according to claim 10, further compris-

Ing:

instruction means for establishing a read memory call

within said operating system debugger;

instruction means for mvoking said read memory function
call by said operating system debugger; and

instruction means for directly reading data from a physi-
cal memory location utilizing said partition manage-
ment firmware 1n response said operating system
debugger invoking said read memory function call.

13. The product according to claim 10, further compris-

ng:

instruction means for establishing a write memory call

within said operating system debugger;

instruction means for invoking said write memory func-
tion call by said operating system debugger; and

instruction means for directly writing data to a physical
memory location utilizing said partition management
firmware 1n response said operating system debugger
invoking said write memory function call.

14. The product according to claim 9, further comprising:

instruction means for determining whether debugging 1s
enabled within said partition management firmware;

instruction means for permitting said operating system
debugger to utilize said extensions to debug said par-

10

15

20

25

30

35

40

45

50

55

60

65

12

fition management firmware 1n response to a determi-
nation that debugging 1s enabled within said partition
management firmware; and

instruction means for prohibiting said operating system
debugger to utilize said extensions to debug said par-
fition management firmware 1n response to a determi-
nation that debugging 1s disabled within said partition
management firmware.

15. The product according to claim 14, further compris-

Ing:

instruction means for mcluding a service processor within

said data processing system;

instruction means for enabling debugging within said
partition management firmware utilizing said service
processor; and

instruction means for disabling debugging within said
partition management firmware utilizing said service
ProCessor.

16. The product according to claim 9, wherein said data
processing system includes hardware comprising physical
memory, wherein said operating system debugger exists
within a partition, and further wherein said partition man-
agement firmware exists between said partition and said
hardware, and wherein said operating system debugger 1s
operable to directly access said physical memory using said
extensions 1n conjunction with said partition management
firmware.

17. A logically partitioned data processing system 1nclud-
ing a plurality of logical partitions, an operating system
debugger and a partition management firmware, said parti-
tion management firmware being operable to allocate
resource to and manage the plurality of logical partitions,
comprising;:

extensions 1ncluded within said operating system
debugger, said extensions enabling direct access to said
resources of said partition management firmware by
said operating system debugger; and

said operating system debugger for utilizing said exten-
sions to debug said partition management firmware,
wherein said operating system debugger without said
extensions would not otherwise have direct access to
said resources.

18. The system according to claim 17, further comprising
function calls established within said operating system
debugger that when invoked by said operating system
debugger cause said partition management firmware to
execute partition management firmware operations.

19. The system according to claim 18, further comprising:

said operating system debugger including an event han-
dler routine;

said operating system debugger for invoking said event
handler routine; and

said partition management firmware for reporting to said
operating system debugger partition management firm-
ware events 1n response to said operating system
debugger 1nvoking said event handler routine.

20. The system according to claim 18, further comprising:

said operating system debugger including a read memory
call;

said operating system debugger for mvoking said read
memory function; and

said partition management firmware for directly reading
data from a physical memory location in response said
operating system debugger invoking said read memory
function call.

US 6,539,892 B2

13

21. The system according to claim 18, further comprising;:

said operating system debugger including a write memory
call;

said operating system debugger for mnvoking said write
memory function; and

said partition management firmware for directly writing,
data to a physical memory location in response said
operating system debugger nvoking said write
memory function call.

22. The system according to claim 17, further comprising;:

means for determining whether debugging i1s enabled
within said partition management firmware;

said operating system debugger being permitted to utilize
said extensions to debug said partition management
firmware 1n response to a determination that debugging
1s enabled within said partition management firmware;
and

said operating system debugger being prohibited from
utilizing said extensions to debug said partition man-

10

15

14

agement firmware 1n response to a determination that
debugging 1s disabled within said partition manage-
ment firmware.

23. The system according to claim 22, further comprising:

a service processor included within said data processing
system; and

said service processor for enabling and disabling debug-

oing within said partition management firmware.

24. The system according to claim 17, wherein said data
processing system includes hardware comprising physical
memory, wherein said operating system debugger exists
within a partition, and further wherein said partition man-
agement firmware exists between said partition and said
hardware, and wherein said operating system debugger is
operable to directly access said physical memory using said
extensions 1n conjunction with said partition management
firmware.

	Front Page
	Drawings
	Specification
	Claims

