(12) United States Patent
Myers

US006836879B1

US 6,836,879 Bl
Dec. 238, 2004

(10) Patent No.:
45) Date of Patent:

(54) OBJECT ORIENTED OPERATING SYSTEM
(75) Inventor: Nicholas Simon Myers, London (GB)
(73) Assignee: Symbian Limited, London (GB)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

(*) Notice:

(21) Appl. No.: 09/242,383
(22) PCT Filed: Jun. 12, 1998
(86) PCT No.: PCT/GB98/01717

§ 371 (e)(D),
(2), (4) Date: Feb. 12, 1999

(87) PCT Pub. No.: WQ98/57258
PCT Pub. Date: Dec. 17, 1998

(30) Foreign Application Priority Data
Jun. 13, 1997 (GB) .ceviiiiiiiii e, 9712455
(51) Int. CL7 ..o GO6F 9/44
(52) US.CL ..o 717/116; 717/107; 717/108;
717/165
(58) Field of Search 717/106-119, 162-165,
717/104
(56) References Cited
U.S. PATENT DOCUMENTS
5,787,431 A * 7/1998 Shaughnessy 707/100
A
TDes

OTHER PUBLICATTONS

Henricson et al., “Programming in C++ Rules and Recom-
mendations”, Ellemtel Telecommunication Systems, http://

intra.engr.uark.edu/~baker/Ellemtel—rules.pdt , pp. 1-88,
1992.*

Cowlishaw, “The REXX Language A practical Approach to
Programming”, Prentice Hall P T R, pp.: 1-23, 139-150,
1990.*

Michel, “Getting Started with Object REXX”, IBM Ger-
many German Software Development, http://citeseer.nj.nec-
com/361441.html, pp.: 1-21, Aug. 1996.*

* cited by examiner

Primary Examiner—We1 Y. Zhen

Assistant Examiner—Ted T. Vo
(74) Attorney, Agent, or Firm—Knobbe Martens Olson &

Bear LLLP
(57) ABSTRACT

An object oriented operating system handles all objects
related to text strings as belonging to one of three classes, 1n
which each class performs a different function and at least
one such class 1s modified to do so in a way that reduces
code and cycle overhead. This reduces executable code
overhead to minimise the amount of memory required, and
allows execution 1 a minimum number of cycles to mini-
mise power consumption. The operating system 1s particu-
larly well suited to ROM based mobile computing devices.

32 Claims, 6 Drawing Sheets

TDesC

TBufCBase

5 A
pjop Aipuiq Jo |xa} é

24hgl

de e

US 6,836,879 B1

o
M ojop Asoulq JO X3 sajuiod *yjbue| ‘y4bus| wnwixow
3 (0ingH uo 1o Jyngl D) il
7

ye U
3
—
s ojop Aiouiq 10 yxa}| we— | Jejuiod ‘ybua) ‘yibua) wnwixow
M (Adowaw o om‘_ov Idl
-

DIDP AJDUIG IO |X3}| wagme jajutod ‘yjbus

(Alowsw jo DaJD) 341dl

U.S. Patent

US 6,836,879 B1

120 P8J0J0YY

Sheet 2 of 6

iiiiiiiiiiiiiiii
IIIIIIIIIIIIIIIIIIIIII

Dec. 23, 2004

U.S. Patent

pjop Aiouiq 10 X8}

yibuay ‘yjbus) wnuwixow

gl

0jop AJDUIG JO X3} ybuol| e—|[|

J3ngL didl

U.S. Patent Dec. 28, 2004 Sheet 3 of 6 US 6,836,879 Bl

TBufCBase

TDes

74

TDesC

£16.

U.S. Patent Dec. 28, 2004 Sheet 4 of 6 US 6,836,879 Bl

r7G. 9

TBufC descriptor ABCD EFG
returned TPHrC
descriptor

F1G. 10

/G, 17

TBufC descriptor ABCDLFG
returned TPirC »
descriptor

flG. 12

U.S. Patent Dec. 28, 2004 Sheet 5 of 6 US 6,836,879 Bl

r7G. 17

TBufC descriptor AE
HBufC descriptor
/ created on the
heap.
HBufC descriptor ABCDEFG

@@xyz@@@

aWidth

717G, 15

rsfuvwxy

U.S. Patent Dec. 28, 2004 Sheet 6 of 6 US 6,836,879 Bl

abc@@xyz@RE

alength

| -

_’{ aWidth I‘—‘

6. 14

Maximum length is &

—"I ‘ “ Zero terminator

placed after the
character ‘e’

Length of data is 3

f1G. 19

US 6,536,879 Bl

1
OBJECT ORIENTED OPERATING SYSTEM

BACKGROUND

1. Field of the Invention

This mvention relates to an improved object oriented
operating system for a computer. In particular, it relates to an
operating system which 1s based on C++ programming
techniques. The commercially available embodiment of this
operating system 1s the EPOC32 operating system produced

by Psion Software Plc of England. EPOC32 1s a preferred
operating system in the mobile computing environment.

2. Description of the Related Art

The C++ programming language 1s widely used for writ-
ing application programs for computers, such as Personal
Computers, although 1t has only rarely been widely adopted
for writing operating systems. When writing for Personal
Computers, there 1s generally no overriding requirement to
cither minimise the size of the executable code or to mini-
mise the number of cycles required for executing steps
within the program. Typically, performance and ease of
authorship are the more significant requirements.

But there are other contexts 1n which the executable code
must occupy the minimum amount of space (e.g. to mini-
mise the amount of ROM and/or RAM required to store it),
and to execute in the minimum number of cycles (e.g. to
minimise power consumption).

The mobile computing (e.g. personal digital assistants),
smart phone (e.g. GSM cellular telephones with in-built
word processing, facsimile send/receive and Internet brows-
ing capabilities) and network computer (“NC”) environ-
ments exemplily contexts in which there are advantages to
minimising the code size of the operating system: namely,

the hardware costs (particularly ROM and/or RAM) can
then be reduced. That 1s particularly significant 1n the above
contexts since widespread consumer adoption i1s generally
dependent on relatively low hardware pricing. Similarly,
minimising processor execution cycles of the operating
system 1s very important 1n the mobile computing and smart
phone contexts, since doing so minimMIses pOwer consump-
tion and minimising power consumption 1s critical to long
battery life. A fully architected operating system written in
C++ would generally be substantial 1n size and be power
hungry. Hence, 1t would it be unsuitable for the mobile
computing, smart phone and NC environments.

Further, 1t 1s generally regarded as difficult to design a
fully functional operating system in C++ that meets stringent
requirements for code size and cycle overhead, particularly
the stringent requirements associated with the mobile, smart
phone and NC computing environments.

Some Terminology
“Objects of the String Class”

In C++, text (e.g. strings of letters that will actually appear
on a computer screen) is represented as an “Object”. The
implementer skilled 1n C++ or other object oriented lan-
cuages will be familiar with this categorisation. Such text
related Objects are of a particular type, which we shall call
“Objects of the String Class”: The kind of Class that an
Object belongs to (e.g. in the case of text, the String Class)
defines the allowable manipulations that can be performed
on that Object. Only certain manipulations can be performed
on Objects of the String Class (e.g. concatenating 2 text
strings together). A particular Object of the String Class
therefore represents a particular text string. It can only be
manipulated in certain, well defined ways.

The following steps are performed 1n conventional C++
programming in order to create an Object of the String Class
from an 1tem of text, where the text resides 1n a file in the
filing system:

10

15

20

25

30

35

40

45

50

55

60

65

2

sct aside a buifer location 1n memory
read the text into the buffer using a file reading service

use a string creation service to turn the buifered data into
an Object of the String Class

discard the buffer contents

The actual storage location of the text string 1s difficult to
identify 1n C++, but one does not need to know its location
since 1t 1s the Object of the String Class that one manipulates
directly: that in turn causes the actual text string to be
manipulated. Hence the Object of the String Class 1 effect
knows the memory location of the text string and can handle
all the necessary memory management tasks associated with
text manipulation.

Multiple Classes of Objects of the String Class

In the version of C++ known as the draft ANSL/ISO C++
Standard, all Objects of the String Class (as exemplified by
the string class 1n that part of the draft C++ Standard Library
of the above Standard referred to as <string>) are handled in
a manner that enables sophisticated memory management
tasks to be accomplished (e.g. re-allocating buffer space for
text that can grow or shrink or be spliced—fully dynamic
text). But this level of memory management uses a great
deal of code and may require considerable heap space.

Two examples of conventional C++ memory management
illustrate this:

Example 1: C++ Handling of Literal Text

In C++, there are many instances in which source code
contains text strings. These strings are known as ‘Literal
Text” and are permanently stored in buifer memory on
compilation of the source code 1nto executable object code.
When Literal Text 1s to be manipulated, then an Object of the
String Class must be created from 1t. However, creation of
that Object of the String Class 1tself leads to the creation in
memory of the text string which the newly created Object of
the String Class 1n fact manipulates. Hence, the text string 1s
duplicated 1n memory: once 1n the original buifer that arises
on compilation of the source code and again in the memory
location associated with the Object of the String Class that
enables the text to be manipulated.

As noted above, 1n some computing environments, code
space and power consumption are at a premium. However,
in conventional C++ (i.e. as implemented in the draft ANSI/
[SO C++ Standard), there is no mechanism to overcome the
inherent duplication in memory of Literal Text. That is
problematic, especially for an operating system since, in an
operating system, there are many occasions 1n which Literal
Text must be handled.

Example 2: C++ Handling of Length Limited Text

In C++, a programmer handles text using heap memory.
Text whose length 1s limited does not 1n fact require the fully
flexible approach that 1s needed to handle text whose length
1s not limited. However, in conventional C++, there 1s no
mechanism for using anything other than fully flexible, fully
featured Objects of the String Class, wrrespective of the
length of text. That leads to a high overhead 1in memory
management code since handling heap memory 1s code and
cycle intensive.

Overall, text memory management 1n C++ 15 code and
cycle 1ntensive. Since code space and power consumption
are at a premium 1n mobile environments, the conventional
C++approach would lead to an operating system that 1s
unacceptably large 1n terms of code size and 1s also too
power hungry.

SUMMARY

The operating system of the present invention re-defines
Objects of the String Class (i.e. as defined in the draft

US 6,536,879 Bl

3

ANSI/ISO C++ Standard), by substituting them with a three
fold structure of Objects of the String Class, namely three
new Classes of Objects. The conventional, fully featured
memory management functionality associlated with <string>
from the draft ANSI/ISO C++ Standard 1s not applied to all
three of the new classes. Whilst that full functionality is
useful in many environments, it is problematic in (inter alia)
mobile computing environments 1n which code space and
power consumption are at a premium.

Hence, the generalisation of the inventive concept of the
present mvention 1s to minimise code size and cycle over-
head by providing, 1n a computer operating system, a family
of three different Classes for handling text strings: each
different class 1s appropriate for a different circumstance.
This allows flexibility: for example, the fully featured
memory management functionality can now be applied
solely to those text strings that actually require 1it.

We shall refer to this new family of String Class Objects
as “Descriptors”. In a preferred embodiment, we call the
members of this family “Pointer Descriptors”, “Buller
Descriptors” and “Heap Descriptors”. Care should be taken
to note that these concepts are different (although related to)
the established concepts of “pointers”, “buifers” and
“heaps”, with which the skilled implementer will be famil-
1ar. Care should also be taken to note that the Descriptors
envisaged in this specification have no relationship to the
VMS facility of the same name, nor the UNIX term for small
integer numbers used to 1denfily active operating system
files. The skilled implementer may appreciate that it 1s
possible to design an operating system 1n which the number
of Classes for handling text strings exceeds three: such
variants are within the scope of the present invention. The
three fold structure i1s the minimum (and in almost all cases,
the most effective) proliferation of Classes.

Further, Descriptors are preferably polymorphic: hence, a
single service can operate on all Descriptors. That leads to
significant savings 1n code and, to a lesser extent, cycle
overhead, since otherwise modified services would be
needed for each of different Descriptors.

Hence, in accordance with a first aspect of the present
invention, there 1s provided a computer programmed with an
object oriented operating system, 1n which the operating
system 1s adapted to handle objects related to text strings;

characterised 1n that the operating system handles all such
objects as belonging to one of three classes (namely the
Pointer Descriptor Class, the Bufler Descriptor Class
and the Heap Descriptor Class), in which each class
performs a different function and at least one such class
1s modified to do so 1n a way that reduces code and
cycle overhead.

The 1nvention 1s founded upon the msight that in order to
deliver significant reductions 1n code and cycle overhead,
one has to redesign the operating system by substituting the
conventional, single form of Object of the String Class (for
example) with three different forms of that Object: each
form 1s optimised for different circumstances.

In a preferred form of the invention, conventional,
memory 1ntensive text handling techniques are applied only
to Objects which fall within the new Descriptor Class which
defines Objects requiring such techniques (i.e. Heap
Descriptors). The Pointer and Buffer Descriptor Classes are
however designed 1 a manner that reduces code and pro-
cessor cycles compared to conventional String Classes.

Using the two examples mentioned in the Description of
the Prior Art above (i.e. Example 1: C++ Handling of literal
text and Example 2: C++ Handling of length limited text),

10

15

20

25

30

35

40

45

50

55

60

65

4

the operating system of the present invention (1) handles
Literal Text 1n a manner that eliminates the need for a
duplicate copy of Literal Text and (11) handles text which is
determined dynamically at run time 1n a manner that only
requires code 1ntensive uftilisation of heap memory 1n those
limited circumstances 1n which 1t 1s actually necessary to do
so: 1n other circumstances (for example, where the program-
mer knows in advance the maximum length of the text), then
static memory 1s used instead. Fuller details of the speciiic
handling is given below (see section titled Detailed
Description).

Preferably, the operating system 1s adapted to handle not
only text but also raw data using the same three fold
structure.

In addition to the combined computer/operating system as
defined above, one can 1dentily further inventive aspects.
For example, any device that has to interface with such an
operating system must also use the same three-fold structure
for Objects of the String Class. For example, driver software
for peripherals such as solid state memory devices will have
to use this three fold-structure. Likewise, control panel
software for peripherals will also have to.

Hence, 1n a second aspect of the present invention, there
1s provided a peripheral device for a computer programmed
with an object oriented operating system, in which the
operating system 1s adapted to handle objects related to text
strings;

characterised 1n that the operating system handles all such

objects as belonging to one of three classes (namely the
Pointer Descriptor Class, the Buffer Descriptor Class
and the Heap Descriptor Class), in which each class
performs a different function and at least one such class
1s modified to do so 1n a way that reduces code and
cycle overhead and 1s further characterised in that the
peripheral device 1s programmed to handle objects
which also fall into the above three classes.

In a third aspect of the present invention, there 1s provided
an operating system encoded on computer readable media,
in which the operating system handles objects related to text
strings;

characterised 1n that the operating system 1s adapted to

handle all such objects as belonging to one of three
classes (namely the Pointer Descriptor Class, the Buffer
Descriptor Class and the Heap Descriptor Class), in
which each class performs a different function and at
least one such class 1s modified to do so 1n a way that
reduces code and cycle overhead.

In a fourth aspect of the invention, there 1s provided a
method of operating a micro-processor using an operating

system, 1n which the operating system 1s adapted to handle
objects related to text strings;

characterised 1n that the operating system handles all such
objects as belonging to one of three classes (namely the
Pointer Descriptor Class, the Bufler Descriptor Class
and the Heap Descriptor Class), in which each class
performs a different function and at least one such class
1s modified to do so 1n a way that reduces code and
cycle overhead.
In a fifth aspect, there 1s provided computer readable
media encoded with an operating system adapted to handle
objects related to text strings;

characterised 1n that the operating system handles all such
objects as belonging to one of three classes, in which
cach class performs a different function and at least one
such class 1s modified to do so 1n a way that reduces
code and cycle overhead. Typically, the computer read-
able media will be a masked ROM. For distribution
purposes, the media may also be a conventional

CD-ROM or floppy disc.

US 6,536,879 Bl

S
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s an 1illustration of a constant pointer descriptor;

FIG. 2A 1s an illustration of a modifiable pointer descrip-
tor pomnting to an area in at memorys;

FIG. 2B 1s an illustration of a modifiable pointer descrip-
tor pointing to another descriptor;

FIG. 3 1s an 1llustration of a constant buffer descriptor;

FIG. 4 1s an 1llustration of a modifiable pointer descriptor
pointing to a constant buffer descriptor;

FIG. 5 1s an illustration of a modifiable buffer descriptor;
FIG. 6 1s an 1llustration of a constant heap descriptor;

FIG. 7 1s an 1llustration of a modifiable pointer descriptor
pointing to an allocated constant heap descriptor;

FIG. 8 1s an illustration of the member functions available
to members of the various descriptor classes;

FIGS. 9, 10 1illustrate an example to construct a pointer
descriptor for leftmost part of data;

FIGS. 11, 12 illustrate an example to construct a pointer
descriptor for rightmost part of data;

FIGS. 13, 14 illustrate an example to create a new heap
descriptor;

FIGS. 15, 16 1llustrate an example to copy from a descrip-
tor and justily;

FIG. 17 illustrates an example to append a descriptor and
justify;

FIG. 18 illustrates an example to append part of a descrip-
tor and justify; and

FIG. 19 illustrates an example to append a zero termina-
tor.

DETAILED DESCRIPTION

The present mvention will be described 1n relation to an
embodiment known as EPOC32. EPOC32 1s a 32 bit oper-
ating system developed by Psion Software plc of England
for use in (inter alia) mobile and smart phone environments.
Further details of the EPOC32 embodiment are disclosed in
the SDK on EPOC32 published by Psion Software Plc,
England, to the extent possible without limiting 1n any way
the rights of the inventors and assignees of this invention,
the full SDK 1s mcorporated by reference into this specifi-
cation.

EPOC32 has been ported to run on a number of different
micro-processor architectures. The details of porting an
operating system per se are beyond the scope of this
specification, but will be understood by those skilled 1n the
arts. In particular, EPOC32 has been ported to run on ARM
RISC-based micro-processors from Advanced RISC
Machines of England. Various models of ARM micro-
processors are widely used 1n digital cellular telephones and
will be familiar to those skilled 1in the art. However, the
invention can be realised on many different micro-
processors. Hence, the claims of this specification should be
read to cover any and every hardware and software imple-
mentation 1 which the operating system performs the
functions as limited in the claims.

Returning to the examples of Literal Text and Length
Limited Text given in the Prior Art discussion above,
EPOC32 applies the above three-fold structure for Objects
of the String Class as follows:

10

15

20

25

30

35

40

45

50

55

60

65

6

Example 1: Literal Text in EPOC32

As explained above, 1n conventional C++, a text string
relating to Literal Text 1s duplicated in memory: once in the
original buflfer that arises on compilation of the source code
and again 1n the memory location associated with the Object
of the String Class that enables the text to be manipulated.
That duplication 1s wasteful.

EPOC32 however uses a Pointer Descriptor which points
to the original memory location of the Literal Text (i.e. as
laid down by the compiler). This Pointer Descriptor (called
the TPtrC Pointer Descriptor in EPOC32) is the Object of
the String Class for Literal Text. (In C++, pointers are not
usually regarded as Objects per se). Hence, the hybrid
pointer/object in EPOC32 leads to the complete elimination
of the need for an additional copy of Literal Text.
Example 2: Length Limited Text in EPOC32

As noted above, 1n conventional C++, there 1S no mecha-
nism for using anything other than fully flexible, fully
featured Objects of the String Class, wrrespective of the
length of text. That leads to a high overhead 1n memory
management code since handling heap memory 1s code and
cycle intensive.

In EPOC32, there 1s a particular class of String Objects,
known as Buffer Descriptors, which are size limited.
Because they are size limited, complex memory allocation
code 1s not required to manipulate them. Further, Buifer
Descriptors can use Static Memory (rather than heap
memory). Static memory cannot be re-allocated in the code
intensive fashion that heap memory can be, but 1s more
cfficient to use 1n that fewer code cycles are required to
achieve the necessary manipulations (hence leading to
power saving). Only in the truly dynamic case does EPOC32
require use of the heap memory with its attendant high cycle
overhead: Then, the Heap Descriptor Class 1s used.

EPOC32 lays down the parameters of length limited
String Classes using a template class, the ‘TBuf’ class.
(Class templates define the properties of numerous Objects
of the String Class; e.g. TBuf 1s the template for all Buifer
Descriptors—i.e. all Objects of the String Class of the Buifer
variant. TBuf defines certain common properties for all such
Objects of the String Class.)

EPOC32 exhibits several other significant features which
lead to minimising code size and cycle overhead, namely
that:

String and Raw Data Buifer Class Objects act as ‘flat’
structures

Descriptors give polymorphic characteristics

Descriptors allow for UNICODE and ASCII invariant
coding

String and Raw Data Buifer Class Objects as Flat Structures

All Descriptors are ‘flat’ structures (i.e. if a Descriptor has
to be copied, then only the Descriptor itself 1s copied. In
conventional C++, copying an Object requires copying not
only of the Object 1tself, but also all related pointers and the
data pointed to—i.e. the complex, related structure that
gives an Object meaning.) In EPOC32, copying a Descriptor
1s therefore far more economic 1 memory overhead and
cycles than copying an equivalent Object in ordinary C++.

This 1s achieved in EPOC32 as follows, for Buffers and
Pointers:

Buffer Descriptors (TBuf) contain the actual text refer-
enced by the Builer: hence, copying the Buflfer inher-
ently copies the related text. There 1s no need to copy
a pointer and related data as there would be 1n C++.

Pointer Descriptors (TPtr) contain a C++ type pointer
within them, so that copying TPtr alone 1s all that 1s
required when duplicating: in conventional C++, one

US 6,536,879 Bl

7

would have had to copy not just one entity, but also
related and separate pointers and text.
Descriptors as Polymorphic Objects

A group of Objects are said to exhibit polymorphism 1f all
the Objects 1n the Group behave like a single Object, yet
achieve common behaviour through different mechanisms.
Polymorphism 1s provided for in conventional C++ through
Virtual Functions: all Objects which are polymorphic to one
another 1include, at a common location, a pointer to a Virtual
Function Table (a pointer is therefore required in each
Object). This Table identifies the actual code for each
polymorphic function. A separate Table 1s needed for each
class that shares polymorphism. But this approach uses a
considerable amount of space, since each pointer 1s 32 bits
(i.e. 4 characters) and each Object needs a pointer to a
Virtual Function Table. In addition, a 32 bit length field 1s
also used 1n each Object.

In (inter alia) mobile operating system environments, this
overhead 1s problematic. EPOC32 addresses this as follows
for Objects of the String Class: a 32 bit length field 1s
sub-divided so that the first 4 bits code for the type of
Descriptor. A function then looks at the 4 bits and points to
the correct text location (e.g. within the Descriptor itself if
the Descriptor is a Buffer etc.) Hence, polymorphism is
provided for in that each of the three different classes of
Descriptors for Objects of the String Class (i.e. Pointer
Descriptors, Buffer Descriptors and Heap Descriptors) can
be coded for using merely the first 4 bits of a single 32 bit
field. Hence, considerable memory savings can be achieved.
In more general terms, the field shares a machine word with
another data item.

UNICODE and ASCII Invariant Code

In C++, coding for 16 bit Unicode leads to doubling in
size of all text data that would otherwise be 1n 8 bit code.
Also, conventionally, a programmer has to decide when
writing source code whether to code for text using ASCII or
Unicode.

In EPOC32, the same source code 1s used wrrespective of
the ultimate choice of ASCII or Unicode. This 1s achieved by
building the system using aliases for Class Names, which are
ASCII and Unicode invariant, rather than Classes per se (e.g.
Pointer Descriptors, Bulfer Descriptors and Heap
Descriptors). Hence, instead of building using the Pointer
TPtrl6 to code for Unicode or TPtr8 to code for ASCII, one
instead builds using the TPtr Class Name. At build time, the
Class Names can be compiled as either 16 bit Unicode or &
bit ASCII. This approach can be used to encompass all
character sets which can be encoded 1n different bit lengths.
Additional Advantages of EPOC32

In C++. text strings are conventionally terminated with a
‘0’ so that the system can readily know where a text string,
ends. In EPOC32, that 1s no longer necessary; Descriptors
include a statement defining the length of the data refer-
enced. Hence, there 15 a yet further saving in code since 1t no
longer needs to use ‘0’ terminators to flag the end of each
and every text item.

Summary of Descriptors Features

Descriptors come 3 classes: Pointer Descriptors, Buller
Descriptors and Heap Descriptors

Pointer Descriptors come 1n two forms: constant Pointer
Descriptors: TPtrC and modifiable Pointer Descriptors:
TPtr
constant Pointer Descriptors: TPtrC.

Data cannot be modified through this.

All member functions are constant.

[s used to reference constant strings or data (e.g. data
that must not be altered).

10

15

20

25

30

35

40

45

50

55

60

65

3

Is derived from TDesC and hence has a large number
of member functions.

modifiable Pointer Descriptors: TPtr.

Data can be modified though this Descriptor, so long
as the data does not extend beyond the maximum
length set by the constructor.

Points directly to a memory area containing the area
to be modified.

Pointer length determines number of data items that
are contained.

Inherits all the TDesC member functions, plus TDes
member functions for manipulating and changing
data.

Pointer Descriptors are separate from the data repre-
sented; but are constructed from a pre-existing arca

In Mmemory.

Buifer Descriptors come 1n two forms
constant Buffer Descriptor, TBufC<TInt S>

data can be set 1nto the Descriptor at construction
time or by the assignment operator (operator=)
later on.

length 1s defined by an 1nteger template: TBufC<40>
contains 40 data 1tems.

Inherits all the TDesC member functions

a modifiable Buifer Descriptor:, TBui<TInt S>

contains data that can be modified, so long as the
data 1s not modified to extend beyond the maxi-
mum length.

maximum length defines the max. number of data
items

actual length defines actual number of data 1tems

length 1s defined by an integer template: TBuf<40>
contains 40 data items and no more.

the data area 1s part of the Descriptor object

uselul for containing data which needs to be manipu-
lated and changed, but whose length will not
exceed a known maximum (e.g. WP text).

Inherits all the TDesC member functions, plus TDes
member functions for manipulating and changing
data.

Heap Descriptors come 1n one form only

constant Heap Descriptor HButC

contains a length followed by data

the data area 1s part of the Descriptor object; the whole
object occupies a cell allocated from the heap.

Data can be set into the Descriptor at construction time
or by the assignment operator (operator=) later on.

Inherits all the TDesC member functions

can be re-allocated: data area can expand or contract

TPtrC 1s a constant Descriptor through which no data can
be modified. All of its member functions (except the
constructors) are constant. TPtrC 1s shown schematically at
FIG. 1. TPtrC 1s useful for referencing constant strings or
data; for example, accessing text built into ROM resident
code, or passing a reference to data in RAM which must not
be modified through that reference. TPirC 1s derived from
TDesC, which provides a large number of member functions
for operating on its content; for example, locating characters
within text or extracting portions of data.

TPtr 1s a modifiable pointer Descriptor through which
data can be modified, provided that the data 1s not extended
beyond the maximum length. The maximum length is set by
the constructor. TPtr points directly to an area in memory
containing the data to be modified. TPtr 1s shown schemati-
cally in FIGS. 2A and 2B.

TBufC 1s a butfer Descriptor containing a length followed
by the data area. Data can be set into the Descriptor at

US 6,536,879 Bl

9

construction time or by the assignment operator (operator=)
at any other time. Data already held by the Descriptor 1s
constant. TBufC 1s shown schematically at FIG. 3. The
length of a TBuiC 1s defined by an integer template; for
example, TBulC<40> defines a TBufC which can contain up
to 40 data 1tems.

TBuiC 1s derived from TDesC, which provides a large
number of member functions for operating on its content; for
example, locating characters- within text or extracting por-
tions of data. TBufC provides the member function, Des(),

which creates a modifiable pointer Descriptor (a TPtr) to
reference the TBufC. This allows the TBufC data to be
changed through the TPtr, as indicated schematically at FIG.
4. The maximum length of the TPtr 1s the value of the integer
template parameter.

TBuf 1s a modifiable buffer Descriptor containing data
which can be modified, provided that the data 1s not
extended beyond 1ts maximum length. TBuf 1s shown sche-
matically at FIG. 5. The maximum number of data items that
the data area within TBuf can contain, 1s defined by the
maximum length. The length of the Descriptor indicates how
many data items are currently contained within the data area.
When this value 1s less than the maximum, a portion of the
data arca 1s unused. The maximum length of a TBuf is
defined by an integer template; for example, TBuf<40>
defines a TBuf which can contain up to data items (and no
more!). A TBuf is useful for containing data which needs to
be manipulated and changed but whose length will not
exceed a known maximum; for example, word processor
text. TBuf 1s derived from TDes which, 1n turn, 1s derived
from TDesC. Therefore, 1t inherits all the const member
functions defined 1n TDesC plus the member functions from
TDes which can manipulate and change the data; for
example, appending a character to the end of existing text.

HBufC 1s a Descriptor containing a length followed by
data. It 1s allocated on the heap using the New(), NewL()
or NewLC() static member functions. The length of the
Descriptor 1s passed as a parameter to these static functions.
HBufC is shown schematically at FIG. 6. Data can be set
into the Descriptor at construction time or by the assignment
operator (operator=) at any other time. Data already con-
tained by the Descriptor 1s constant. HBufC is derived from
TDesC, which provides a large number of member functions
for operating on its content; for example, locating characters
within text or extracting portions of data.

HBufC provides the member function, Des(), which
creates a modifiable pointer Descriptor (a TPtr) to reference
the HBufC. This allows the HBufCC data to be changed
through the TPtr. The maximum length of the TPtr its the
length of the HBufC data area. FIG. 7 illustrates this
schematically.

All of the Descriptor classes TPtrC, TPtr., TBuifC, TBuf
and HBufC are derived from the abstract base classes TDesC
and TDes. The class TBufCBase, although marked as an
abstract class, 1s merely an implementation convenience.
FIG. 8 schematically illustrates the relationship between the
classes.

EXAMPLE FUNCTIONS (See Appendix 1 for details and
additional functions)

The code fragments illustrate the use of Left().

TBufC<8>str(__IL(“abcdefg™));
// returns a TPtrC descriptor
/ representing the sting

iiabcd!!

:5t.1‘..LEfI:(4);
c]

The result of this specific example can be visualized 1n a
before (shown in FIG. 9) and after (shown in FIG. 10)

10

15

20

25

30

35

40

45

50

55

60

65

10

fashion. The underlined text in the “after” diagram (FIG. 10)
indicates the data represented by the returned descriptor.

The code fragments illustrate the use of Right().

TBufC<8>str(__L(*abcdefg™));

// returns a TPtrC descriptor
// representing the string

// Gidefg??

str.Right(4);

The result of this specific example can be visualized 1n a
before (FIG. 11) and after (FIG. 12) fashion. The underlined

text in the “after” diagram (FIG. 12) indicates the data
represented by the returned descriptor.

The code fragments illustrate the use of AllocL().

TBufC<16>str(__L(“abedefg™));
HBufC* ptr;

ptr = str.AllocL{); // Returns address of new HBufC descriptor
// holding the string “abcdefg”.

ptr.Length(); // Returns the length 7

The result of this specific example can be visualised 1n a
before (FIG. 13) and after (FIG. 14) fashion.

The following code fragments illustrate the use of Justify(

).
TBuf<16> tgt(_ L(“abc™));

tgt JustifyLL(“xyz”),8,ECenter,‘ @’);

The descriptor tgt has a maximum length of 16 and
initially holds the string “abc”. After the call to Justify(), the
content of tgt changes to “(@@xyz@@(@” as 1illustrated at
FIG. 15.

In this example, the content of the source descriptor is
taken to form an 8 character field which replaces the original
content of the descriptor tgt. The characters “xyz” are
centred within the new field and padded on both sides with
the fill character‘(@’. Setting the alignment to ELeft would
change the content of tgt to “xyz@(@@@@” while setting
the alignment to ERight would change the content of tgt to

“@@@@@xyz” In all three cases, the length of the descrip-
tor tgt changes from 3 to 8.

TBuf<8> tgtLL(*abc™)); . . .

tot JustifyLL(“xyz”),9,ECenter,‘ @’);
This call to Justify() will panic because the resulting
length of data i1n tgt would exceed the maximum length of

tet.
TBuf<16> tgt(_ L(“abc™));

tot. Justify(_ L(“rstuvwxyz”),8,ECenter,‘ @’);
In this call to Justify(), the content of tgt changes to

“rstuvwxy” as illustrated at FIG. 16. Only eight of the nine
characters 1n the source descriptor’s data area are copied.

US 6,536,879 Bl

11

The following code fragments illustrate the use of
AppendJustify().

TBuf<16> tgt(__IL(“abc™));

tgt. AppendJustify(_ L(“xyz”),8,ECenter,‘ @’);
The descriptor tgt has a maximum length of 16 and
initially holds the string “abc”. After the call to

AppendJustify(), the content of tgt changes to
“abc@@xyz@@@” as 1illustrated at FIG. 17.

The following code fragments 1llustrate the use of
AppendJustify().

TBuf<16> tgt(_ I(“abc™));

tgt. AppendJustify(_ L(“xyz01234456°,7897),3,8,
ECenter, @’);

The descriptor tgt has a maximum length of 16 and
initially holds the string “abc”. After the call to
AppendJustify(), the content of tgt changes to
“abc@@xyz@@@” as illustrated at FIG. 18.

The following code fragment depited in FIG. 19 1llus-
trates the use of ZeroTerminate().

TBuf<8> tgt(_ 1L.(“abcde™));

tgt.ZeroTerminate()

The length of the descriptor tgt 1s 5 both before and after
the call to ZeroTerminate().

The following code fragments extracted from the
E3232def.h header file (see Appendix 1 for the SDK) show
how this 1s implemented by defining the variant independent
class names as appropriate.

#if defined(_ UNICODE)

typedef TPtrl6 TPtr;
#Helse

typedef Ttr§ TPtr;

#endif

Application code should avoid using ‘C’ style string
literals directly. Instead, one should use the _ S macro to
create a ‘C’ style string of the appropriate width, returning
a pointer of the appropriate type. Also, one should use the
_ L macro (__L for “literal”) to create a Descriptor of the
appropriate type. See e32.macro._ S and e€32.macro._ L for
the definitions of these macros.
For example,

const TText* str=_S(“Hello”);
generates a string of single byte characters in an ASCII build
but a string of double-byte characters in a UNICODE build.

_ I(*Hello™);
generates an 8 bit Descriptor 1n an ASCII build and a 16 bait
Descriptor in a UNICODE build. Always use _ L(“abcdef™),
for example, rather than plain “abcdel” as 1t will always
construct a Descriptor of the correct variant.

Note that an 8 bit ‘C’ style string and an 8 bit pointer
Descriptor can be explicitly constructed, independently of
the build variant, by using the _ S8 and _ L8 macros
respectively. The corresponding 16 bit versions, _ S16 and
16 are also available. See e32.macro. S8, e32.macro.
L8, e32.macro. S16 and e32.macro. [1.16 for their defini-

tions.

b

10

15

20

25

30

35

40

45

50

55

60

65

12

Length and Size

E3232.descriptors.length-and-size

A Descriptor characterizes the data 1t represents by the
length of that data. The length of a Descriptor 1s the number
of data items. For the 8 bit vanants, the length of the
Descriptor 1s the number of single-bytes of data 1t repre-
sents; for the 16 bit variants, the length of the Descriptor 1s
the number of double-bytes of data 1t represents.

The size of a Descriptor 1s the number of bytes occupied
by the Descriptor’s data; this 1s not necessarily the same as
the Descriptor’s length. For the 8 bit variants, the size 1s the
same as the length but for the 16 bit variants, the size 1s twice
the length. Those Descriptors which allow their data to be
modified are also characterized by their maximum length.
For these Descriptors, the length of data represented can
vary from zero up to and including this maximum value. The
maximum length for any Descriptor is 2°°.

Text and Binary Data

E3232.descriptors.text-and-binary

In ‘C’, strings are characterized by the need for a zero
terminator to flag the end of the string. They suffer from a
number of problems. In particular, they cannot include
binary data within them (in case that data includes binary
zeroes) and operations on them are, in general, inefficient.
‘C’ strings need to be handled 1n a different way to binary
data, as reflected in the memxxx() and strxxx() function
ogroups 1n the ANSI *C’ library. Descriptors allow strings and
binary data to be represented in the same way; this allows
the same functions to be used 1n both cases. For binary data,
the 8 bit Descriptors should be used explicitly. The distinc-
tion between UNICODE and ASCH has no meaning for
binary data. Note that there 1s no practical use for explicit 16
bit binary data.

Memory Allocation

E3232.descriptors.alloc

The Descriptor classes (except HBufC) behave as built-in
types. They allocate no memory and have no destructors.
This means that they can be orphaned on the stack in the
same way as a built-in type. This 1s particularly important in
situations where <code can leave. (See
E3232 exception.trap.cleanup.requirements for the implica-
tions of orphaning). An HBufC Descriptor object is allo-
cated on the heap and cannot be created on the stack.
Exceptions

E3232.descriptors.exceptions

All parameters to Descriptor member functions are
checked to ensure that the operations are correctly specified
and that no data 1s written outside the Descriptor’s data area.
A particular consequence 1s that no member function can
extend a modifiable Descriptor beyond 1ts maximum allo-
cated length. It 1s the programmer’s responsibility to ensure
that all Descriptors are sufliciently large to contain their data,
cither by making the original allocation large enough or by
anticipating the need for a larger Descriptor and dynamically
allocating one at run-time. The static approach 1s simpler to
implement but 1if this were to prove wasteful 1n a speciiic
case, then the dynamic approach could be more worthwhile.
In the event of an exception, 1t can be safely assumed that
no 1llegal access of memory has taken place and that no data
has been moved or damaged.

The Descriptor Types

E3232.descriptors.types

There are three kinds of Descriptor object:

pointer Descriptors.
The Descriptor object 1s separate from the data 1t
represents but 1s constructed for a pre-existing area
in memory. They come 1n two forms:

US 6,536,879 Bl

13

a constant poimter Descriptor, TPtr(C
a modifiable pointer Descriptor, TPtr

buffer Descriptors.
The data area 1s part of the Descriptor object. They
come 1n two forms:

a constant buffer Descriptor, TBufC<TInt S>
a modifiable buffer Descriptor, TBuf<TInt S>

heap Descriptor.
The data area 1s part of the Descriptor object and the
whole object occupies a cell allocated from the heap.
This comes 1n only one form:
a constant heap Descriptor, HBufC
Pointer Descriptor—T1TPtrC

E3232 .descriptors.butfer-descriptor. TPirC

TPtrC 1s a constant Descriptor through which no data can
be modified. All of its member functions (except the
constructors) are constant. TPtrC 1s shown schematically at
FIG. 1. TPirC 1s useful for referencing constant strings or
data; for example, accessing text built into ROM resident
code, or passing a reference to data in RAM which must not
be modified through that reference. TPtr 1s derived from
TDesC, which provides a large number of member functions
for operating on 1ts content; for example, locating characters
within text or extracting portions of data.

Pointer Descriptor—TPtr

E3232 . descriptors.butfer-descriptor. TPtr

TPtr 1s a modifiable pointer Descriptor through which
data can be modified, provided that the data 1s not extended
beyond the maximum length. The maximum length 1s set by
the constructor. TPtr points directly to an area in memory
containing the data to be modified. TPtr 1s shown schemati-
cally 1n FIGS. 2A and 2B.

The maximum number of data items that the area can
contain 1s defined by the maximum length. The length of the
TPtr indicates how many data 1tems are currently contained
within the data. When this value 1s less than the maximum,
a portion of the data area i1s unused. TPtr 1s useful for
constructing a reference to an areca of RAM which contains
data intended to be modified through that reference, or even
to an areca of RAM which contains no data yet but 1n which
data will be constructed using the Descriptor reference and
member functions.

TPtr 1s also useful for constructing a reference to a TBufC
or an HBufC Descriptor which contain the data to be
modified. A TPtr used in this way points to a TBufC or an
HBufC Descriptor. The data contained by the TBufC or
HBufC Descriptors can be modified through the TPtr. TPtr
1s derived from TDes which, 1n turn, 1s derived from TDesC.
Therefore, 1t 1nherits all the const member functions defined
in TDesC plus the member functions from TDes which can
manipulate and change the data; for example, appending a
character to the end of existing text.

Buffer Descriptor—TBufC<TInt S>

E3232.descriptors.bulfer-descriptor. TButfC

TBufC 1s a buffer Descriptor containing a length followed
by the data area. Data can be set mto the Descriptor at
construction time or by the assignment operator (operator=)
at any other time. Data already held by the Descriptor 1s
constant. TBufC 1s shown schematically at FIG. 3. The
length of a TBuiC 1s defined by an integer template; for
example, TBulC<40> defines a TBufC which can contain up
to 40 data items.

TBuiC 1s derived from TDesC, which provides a large
number of member functions for operating on its content; for
example, locating characters within text or extracting por-
tions of data. TBufC provides the member function, Des(),
which creates a modifiable pointer Descriptor (a TPtr) to

10

15

20

25

30

35

40

45

50

55

60

65

14

reference the TBufC. This allows the TBufC data to be
changed through the TPtr, as indicated schematically at FIG.
4. The maximum length of the TPtr 1s the value of the integer
template parameter.

Buffer Descriptor—TBuf<TInt S>

E3232.descriptors.bulfer-descriptor. TBuf

TBuf 1s a modifiable buffer Descriptor containing data
which can be modified, provided that the data 1s not
extended beyond its maximum length. TBuf 1s shown sche-
matically at FIG. 5. The maximum number of data items that
the data area within TBuf can contain, 1s defined by the
maximum length. The length of the Descriptor indicates how
many data items are currently contained within the data area.
When this value 1s less than the maximum, a portion of the
data area 1s unused. The maximum length of a TBuf 1is
defined by an integer template; for example, TBuf<40>
defines a TBuf which can contain up to 40 data items (and
no more!). A TBuf is useful for containing data which needs
to be manipulated and changed but whose length will not
exceed a known maximum; for example, word processor
text. TBuf i1s derived from TDes which, 1n turn, 1s derived
from TDesC. Therefore, 1t inherits all the const member
functions defined in TDesC plus the member functions from
TDes which can manipulate and change the data; for
example, appending a character to the end of existing text.
Heap Descriptor—HBuiC

E3232.descriptors.butfer-descriptor. HButC

HBufC 1s a Descriptor containing a length followed by
data It is allocated on the heap using the New(), NewL()
or NewLC() static member functions. The length of the
Descriptor 1s passed as a parameter to these static functions.
HBufC 1s shown schematically at FIG. 6. Data can be set
into the Descriptor at construction time or by the assignment
operator (operator=) at any other time. Data already con-
tained by the Descriptor 1s constant. HBufC is derived from
TDesC, which provides a large number of member functions
for operating on 1ts content; for example, locating characters
within text or extracting portions of data.

HBufC provides the member function, Des(), which
creates a modifiable pointer Descriptor (a TPtr) to reference
the HBufC. This allows the HBuifC data to be changed
through the TPtr. The maximum length of the TPir is the
length of the HBufC data area. FIG. 7 illustrates this
schematically. Heap Descriptors can be re-allocated. The
ReAlloc() or ReAllocL() functions allow the heap Descrip-
tor’s data area to expand or contract. The length of the data
arca, however, cannot be made smaller than the length of
data currently held. Before contracting the data areca, the
length of the data held by the Descriptor must be reduced.
The length of data which the assignment operator can set
into the heap Descriptor 1s limited by the space allocated to
the Descriptor’s data area The memory occupied by heap
Descriptors must be explicitly freed either by calling
User::Free() or by using the delete keyword.

The Descriptor Classes’ Relationships

E32.descriptors.classes

All of the Descriptor classes TPtrC, TPtr, TBufC, TBut
and HBufC are dertved from the abstract base classes TDesC
and TDes. The class TButCBase, although marked as an
abstract class, 1s merely an 1mplementation convenience.
FIG. 8 schematically 1llustrates the relationship between the
classes.

The behaviour of the concrete Descriptor classes 1s very
similar, and therefore, most of the functionality of Descrip-
tors 1s provided by the abstract base classes. Because
Descriptors are widely used (especially on the stack), the
size of Descriptor objects must be kept to a minimum. To

US 6,536,879 Bl

15

help with this, no virtual functions are defined 1n order to
avold the overhead of a virtual function table pointer in each
Descriptor object. As a consequence, the base classes have
implicit knowledge of the classes derived from them. E32

supplies two variants of the Descriptor classes, one for
handling 8 bit (ASCII) text and binary data and the other for

handling 16 bit (UNICODE) text. The 8 bit variants of the
concrete classes are: TPtrC8, TPtr8, TBufC8<TInt S>,
TBuf8<TInt S> and HBuf(C8 while the 8 bit variants of the
abstract classes are: TDesC8, TDes8. Similarly, the 16 bit
variants are named: TPtrC, TPtrl6, TBufCl6<TInt S>,
TBufl6<TInt S>, HBut(C16, TDesC16 and TDes16 respec-

tively. This distinction 1s transparent for Descriptors
intended to represent text. By writing programs which
construct and use TPtrC, TPtr, TBufC<TInt S>, TBuf<TInt
S> and HBuiC classes, compatibility 1s maintained between
both UNICODE and ASCII. The appropriate variant 1s
selected at build time depending on whether the
__UNICODE macro has been defined or not. If the
__UNICODE macro 1s defined, the 16 bit variant 1s used,

otherwise the & bit variant 1s used as explained 1n
e¢32descriptors.char-set

Descriptors for binary data must explicitly use the 8 bit
variants; 1n other words, code must explicitly construct

TPtrC8, TPtr8, TBufC8<TInt S>, TBuf8<TInt S> and
HBuiC8 classes. Explicit use of the 16 bit variants for binary
data 1s possible but not recommended. In general, 8 bit and
16 bit variants are identical in structure and 1mplementation;
the description of the classes themselves uses the build
independent names throughout.

N.B. Many member functions take arecuments which are
cither of type TUint8* or type TUmntl6* depending on
whether the Descriptor 1s the 8 bit or 16 bit variant. To
simplify explanation, these arguments are written 1n func-
tion prototypes as TUint??*.

Using Descriptors for Function Interfaces
¢32.descriptors.using-function-interfaces

Many iterfaces which use or manipulate text strings or
general binary data use descriptors to specity the interface.
In conventional ‘C’ programming, interfaces would be
specified using a combination of char®, void* and length
values. In E32 descriptors are always used.

There are four main cases:

Passing a constant string,
In ‘C’: StringRead(const char* aString);
The length of the string 1s implied by the zero termi-
nator; therefore, the function does not require the
length to be explicitly specified.

In E32: StringRead(const TDesC& aString);
The descriptor contains both the string and 1ts length.

Passing a string which can be changed.

In ‘C’: StringWrite(char* aString, int aMaxLength);

The length of the passed string 1s implied by the zero
terminator. aMaxLength indicates the maximum
length to which the string may be extended.

In E32: StringWrite(TDes& aString);

The descriptor contains the string, its length and the
maximum length to which the string may be
extended.

Passing a buffer containing general binary data
In ‘C’: BufferRead(const void* aBuffer, int alLength);
Both the address and length of the buffer must be

specifled.
In E32: BufferRead(const TDes8& aBuffer);

The descriptor contains both the address and the length
of the data. The 8 bit variant 1s explicitly speciiied;
the buffer 1s treated as byte data, regardless of the
build variant.

10

15

20

25

30

35

40

45

50

55

60

65

16

Passing a buffer containing general binary data which can
be changed.

In “C”:

BufferWrite(void* aBuffer, int& alLength, int
aMaxLength);

The address of the buifer, the current length of the data
and the maximum length of the bufler are speciified.
The alLength parameter 1s specified as a reference to
allow the function to indicate the length of the data
on return.

In E32: BufferRead(TDes8& aBuffer);

The descriptor contains the address, the length of the
data and the maximum length. The 8 bit variant 1s
explicitly specified; the builfer is treated as byte data,
regardless of the build variant.

Folding and Collating

¢32.descriptors.folding-collating

There are two techniques that may be used to modily the
characters 1n a descriptor prior to performing some opera-
fions on text:

folding

collating
Variants of member functions that fold or collate are pro-
vided where appropriate.

Folding,

¢32.descriptors.folding

Folding means the removal of differences between char-
acters that are deemed unimportant for the purposes of
Inexact or case-insensitive matching. As well as 1gnoring
differences of case, folding 1gnores any accent on a charac-
ter. By convention, folding converts lower case characters
into upper case and removes any accent.

Collating

¢32.descriptors.collating,

Collating means the removal of differences between char-
acters that are deemed unimportant for the purposes of
ordering characters into their collating sequence. For
example, collate two strings 1f they are to be arranged in
properly sorted order, this may be different from a strict
alphabetic order.

Usimg Descriptors

¢32.descriptors.using,

The following series of examples show how descriptors
can be used. Specifically, the examples illustrate:

the basic concepts of the pointer descriptors, TPirC and
TPtr. See e32.descriptors.using.pointer-descriptors.

the basic concepts of the buffer descriptors, TBufC and
TBuf. See e32.descriptors.using.buifer-descriptors.

how descriptors can represent general binary data. See
¢32.descriptors.using.general-binary-data.

some of the member functions which do not modity the
content of a descriptor. See €32.descriptors.using.non-
modifying-functions.

some of the member functions which modify the content
of a descriptor. See e32.descriptors.using.modilying-
functions.

how descriptors can be used 1n 1nterfaces. See
¢32.descritpors.using.interface-specifiers.

the basic concepts of the heap descriptor, HBufC. See
¢32.descritpors.using.heap-descriptors.

Pointer Descriptors

¢32.descriptors.using.pointer-descriptors

The code fragments shown here to illustrate the use of
pointer descriptors are extracted from the sample source
code 1n the eudesptr project. Run the code 1n this project to
sec pointer descriptors 1n action.

US 6,536,879 Bl

17

TPtrC

The 8 bit variant

ATPtrC 1s usetul for referencing constant strings or data;
for example, accessing text built into ROM resident code, or
passing a reference to data in RAM which must not be
modified through that reference.
For example, define a constant ‘C’ style ASCII string:

const TText8* cstr8=(TText8*)“Hello World!”;

A TPtrC8 descriptor can be constructed to represent this
pre-defined area containing the string “Hello World!™:

TPtrC8 ptrC8(cstr8);

The descriptor 1s separate from the data it represents.

While the length of the ‘C’ string 1s 12, 1ts size 1s 13 to
allow for the zero terminator. From the descriptor’s
viewpoint, both the length and the size of the data 1s 12. The
descriptor uses the length to determine the amount of data
represented. The address of the descriptor’s data area, as
returned by:

ptrC8.Ptr();
1s the same as same as the address of the original ‘C’ string,
cstr8.

The 16 bit variant (UNICODE)

Similarly, define a constant ‘C’ style string of wide (or
UNICODE) characters:

const TTextl6 cstrl6=(TTextl16)L“Hello World!”;
A TPtrC descriptor can be constructed to represent this area

containing the string of double-byte characters “Hello
World!”:

TPtrC ptrC(cstrl6);
Again, the descriptor 1s separate from the data i1t represents.
The length of the descriptor, as returned by a call to
ptrc16.Length(), is 12 as it represents 12 text characters but
the size, as returned by a call to ptrc16.Size(), is now 24 as
cach character occupies 2 bytes. Again, the address of the
descriptor’s data area, as returned by:

ptrc16.Ptr();

1s the same as the address of the original ‘C’ string, cstrl6.
The _ S macro and build independent names
Use the _ S macro to define a constant ‘C’ style string of
the appropriate width. The TText variant 1s defined at build
time (as either TText8 or TText16) depending on whether the
__UNICODE macro has been defined. For example:

const TText* cstr=_ S(“Hello World!”);
The TPtrC descriptor:

TPtrC ptre(cstr);
represents the area containing the text “Hello World!”; the
TPtrC variant is defined at build time (as either TPtrC8 or
TPtr16) depending on whether the ~ UNICODE macro has
been defined.

The length of the descriptor, as returned by ptrc.Length(
), 1s 12 for all build variants but the size of the descriptor, as

returned by ptrc.Size() 1s 12 for an ASCII build and 24 for
a UNICODE build.
See e32.macro._S.

The _ L macro

The _ L. macro constructs a TPtrC of the correct variant
and 1s frequently used as a source descriptor when con-
structing a buffer descriptor or a heap descriptor.

The macro 1s also useful for constructing a TPtrC to be
passed as a parameter to a function. For example, the Printf(
) member function of the RTest class used in these examples
requires a descriptor as 1ts first parameter. Here, the _ L
macro constructs a TPirC representing the constant static
arca generated by the compiler containing the text “\nThe
_LL macro constructs a TPtrC”.

testConsole.Printf(_ I.(“\n The _ L. macro constructs a
TPtrC™));

10

15

20

25

30

35

40

45

50

55

60

65

138

See e32.macro._ L.
TPtr

A TPtr 1s a modifiable pointer descriptor through which
data can be modified, provided that the data 1s not extended
beyond the maximum length. The maximum length is set by
the constructor.
For example, define a TText area initialised to contain the
string “Have a nice day™:

TText str|16] =

L O A R Y A A T Y Y A Wa ta
{"H,a’,Vv', e, ,'a,) ,'n,'t,'c,’e,;) ,)'d,a, v, U}

A TPtr descriptor can be constructed to represent the data in
this area; further, this data can be changed, contracted and
expanded provided that the length of the data does not
exceed the maximum.

TPtr ptr(&str[0],15,16);

The descriptor ptr represents the data in str and 1s con-
structed to have a current length of 15 (the length of the text,
excluding the zero terminator) and a maximum length of 16
(the actual length of str). Once the descriptor has been
constructed, it has no farther use for the zero terminator.

The data can be completely replaced using the assignment
operator:

ptr=__I(“Hi there”);

Note the use of the _ L. macro to construct a TPtrC of the
correct build variant as the source of the assignment.

The length of ptr 1s now 8 but the maximum length
remains 16. The size depends on the build variant. In an
ASCII build, this 1s 8 but in a UNICODE build, this becomes
16 (two bytes for every character).

The length of the data represented can be changed. For
example, after ptr.SetLength(2), the descriptor represents the
text “H1”. The length can even be set to zero so that after
ptr.Zero(), the descriptor represents no data. Nevertheless,
the maximum length remains at 16 so that:

ptr=_ I(“Have a nice day!”); puts the 16 characters “Have
a nice day” into the descriptor’s data area.
See also e32.macro._ L.
Bufler Descriptors

¢32.descriptors.using.bufler-descriptors

The code fragments shown here to illustrate the use of
bufler descriptors are extracted from the sample source code
in the eudesbuf project. Run the code 1n this project to see
buffer descriptors in action.

TBufC

A TBuiC 1s a buffer descriptor where the data area 1s part
of the descriptor 1tself.

Data can be set mnto the descriptor at construction time or
by the assignment operator at any other time. Data already
held by the descriptor cannot be modified but 1t can be
completely replaced (again, using the assignment operator).
For example:

TBufC<16> bufc2(_ L(*Hello World!”));
constructs a TBufC which can contain up to 16 data items.
During construction, the descriptor’s data area 1s set to
contain the text “Hello World!” and the length of the
descriptor 1s set to 12.

The data within bufc2 cannot be modified but it can be
replaced using the assignment operator:

bufc2=_[(“Replacement text”);

To prevent any possibility of replacing the data, declare
bufc2 as const.

The data within a TBufC can be changed by constructing,
a TPtr from the TBufC using the Des() member function;

US 6,536,879 Bl

19

the data can then be changed through the TPtr. The maxi-
mum length of the TPtr 1s the value of the TBufC template
parameter. For example:

bufc2=_[(“Hello World!”);
TPtr ptr=bufc2.Des();
ptr.Delete((ptr.Length()-1),1);

ptr.Append(_ L(“& Hi"));
This deletes the last character in the TBufC and adds the
characters “& Hi” so that the TBufC now contains the text
“Hello World & Hi” and 1ts length 1s 16. Note that the length
of both the TBufC and the TPtr reflect the changed data.
TBut

A TBuf 1s a modifiable buffer descriptor where the data
area 1s part of the descriptor 1tself. The data can be modified
provided that the data 1s not extended beyond the maximum
length. The maximum length 1s set by the constructor.

For example:

TBuf<16> buf(_ L(“Hello World!™));

constructs a TBuf which can contain up to 16 data items.
During construction, the descriptor’s data area 1s set to
contain the text “Hello World!”, the length of the descriptor

1s set to 12 and 1ts maximum length 1s set to 16.
The data can be modified directly:

buf. Append(‘@’);
changes bul’s data to “Hello World!(@” and its length to 13
while:

buf.SetLength(3);
changes 1t length to 3 and 1ts data to “Hel”.

The maximum length of the descriptor always remains at
16.

Like a TBufC descriptor, the data contained within a TBuf
can be replaced entirely using the assignment operator:

buf=_ L(“Replacement text™);

replaces “Hello World” with “Replacement text” and
changes the length of the descriptor to 16.

An attempt to increase the length of the data beyond the
maximum generates an exception (a panic). For example:

buf=_ L(“Text replacement causes panic!”);

generates a panic at run time because the length of the
replacement text (30) is greater than the maximum (16).

General Binary Data
¢32.descriptors.using.general-binary-data

The code fragments shown here, 1llustrating how descrip-
tors can handle, general binary data, are extracted from the
sample source code 1n the eudesbin project. Run the code 1n
this project to see the sample 1n action.

The kind of data represented or contained by descriptors
1s not restricted to text. Descriptors can also handle general
binary data.

To deal with general binary data, always explicitly con-

struct an 8 bit variant descriptor. Binary data should always
be treated as 8 bit data regardless of the build.

For example set up an area 1n memory nitialised with
binary data:

TUint8 data[6 ={0x00,0x01,0x02,0xAD,0xAE,0xAF };
Construct a modifiable buffer descriptor using the default
constructor:

TBuf8<32> buffer;

The following code extracted from the eudesbin project
puts the binary data into the descriptor, appends a number of
single byte values and then displays the data at the test
console. The length of the buffer 1s 9, the maximum length
1s 32 and the size 1s 9 regardless of the build.

10

15

20

25

30

35

40

45

50

55

60

65

20

TInt index;
TInt counter;
buffer. Append(&data] 0],sizeof(data));
buffer. Append(0xFD);
buffer. Append(0xFE);
buffer. Append(OxFF);
counter = buffer.Length();
for (index = 0; index < counter; index++)
testConsole.Printf(_ 1.{(“0x%02x”),buffer| index|);
testConsole.Printf(_ L(“; Length()=%d;\n”),
buffer.Length()
);
testConsole.Printf(__I.(“Size()=%d; Maxlength()=%d\n”),
buffer.Size(),
buffer.MaxI ength()
);
Text and general binary data can be freely mixed; so that:
buffer. Append(‘A’);
buffer. Append(*B’);
buffer. Append(0x11);
1s acceptable.

Non-modifying Functions
¢32.descriptors.using.non-modifying-functions
The code fragments shown here, 1llustrating some of the
non-modifying descriptor member functions, are extracted
from the sample source code in the eudesc project. Look at
the code 1n this project to see the full set of examples
These examples all use a TBufC descriptor constructed to
contain the text “Hello World!”. Note also that the descriptor

1s declared const so that 1ts data cannot be replaced using the
assignment operator:

const TBufC<16> bufc(_ L(*Hello World!”));
Right() & Mid()

These functions construct a TPtrc to represent a portion of
bufc’s data

TPtrC ptrcl=bufc.Right(5); ptrcl represents the right
hand 5 data items 1n buic. ptrcl’s data 1s “orld!”, its
length 1s 5 and the address of its data area 1s the address
of bufc’s data area plus 7.

The Left() member function works in a similar way.

TPtrC ptrc2=bufc.Mid(3,6);

ptrc2 represents the 6 data 1tems offset 3 from the start of
bufc’s data area ptrc2’s data 1s “lo Wor”, its length 1s 6 and
the address of 1ts data area 1s the address of bufc’s data areca
plus 3.

In practice, 1t may not be necessary to assign the returned
TPtrC to another TPtrC. For example, the following code
puts a value of 3 1n pos; this 1s the oifset of char ‘W’ within

the chars “lo Wor” (see later for an explicit example of
Locate())

TInt pos;

pos=(bufc.Mid(3,6)).Locate(*W’);

These functions can panic. For example, requesting the 13
right hand data items in bufc will cause an exception (there
are only 12):

TPtrC ptrc3=bufc.Right(13);
Compare() & CompareF()

The compare functions can be used to compare the
content of two descriptors. Any kind of data can be com-
pared. For binary data, use Compare(). For text use
Compare(), CompareF() or CompareC().

The following example compares the content of bufc with
the content of a number of descriptors and displays the
results at the test console:

US 6,536,879 Bl

21

TInt index;

TPtrC genptr;

const TBufC<19>lessthan(_ I.(“ is less than ™));

const TBufC<19>greaterthan(_ L(“ is greater than ™)),

const TBufC<19>equalto(_ L.(* is equal to ™));

const TBufC<16>compstr[7] = {__ L(“Hellﬂ World!@@”),
_ L(“Hello”
__IL{(*Hello Wﬂrl”)p
_ L{*Hello World!”),
_ L{*hello world!™),
__L{(“Hello World”),

L(*Hello World@"),

J;
for (index = 0; index < 7; index++)
1
if((bufc.Compare(compstr|index])) < 0)

genptr.Set(lessthan);
else 1f((bufc.Compare(compstr|index])) = 0)
genptr.Set(greaterthan);
else genptr.Set(equalto);
testConsole. Printf(__1.(“\’%S\“ %S\’ %S*“\n™),
&bufc,
&genptr,
&compstr|index|

);

The case of text 1s important using Compare(); the fourth
comparison is equal but the fifth comparison is not (the ‘w’
characters are a different case).

Using CompareF(), the case is not important; both the
fourth and fifth comparisons return an equal result.
Locate(), LocateF() & LocateReverse(%

The locate functions can be used to find the position
(offset) of a character within text or a specific value within
general binary data.

The following example attempts to ﬁnd the p051t10115 (i.c.
the offsets) of the characters ‘H’, !°, ‘0" and ‘w’ within the
text “Hello World!” and dlsplays ‘the result at the test
console:

TInt index;

TInt pos;

TPtrC genptr;

const TBufC<9> notfound(_ L{(“NOT FOUND™)),
const TBufC<5> found(_ L{*found™));

TChar ch[4] = {‘H’, ‘!, ‘0’, ‘W’ };

testConsole.Printf(_ L(“using Locate(\n”));
for (index = 0 ; index < 4; index++)

1
pos = bufc.Locate(ch|index]);
if (pos < 0)
genptr.Set(notfound);
else
genptr.Set(found);
testConsole.Printf(__L{*\"%S* Char %c is at pos %d (%S)\n”),
&bufc,
ch|index],
pos,
&genptr
);

The character ‘w’ is not found using Locate() but 1s found
using LocateF(). This is because Locate() is case sensitive
while LocateF().

This example uses LocateReverse() which is used to find
the position of a character starting from the end of the
descriptor’s data area

5

10

15

20

25

30

35

40

45

50

55

60

65

22

testConsole.Printf(_ L.(“using LocateReverse()\n™));
for (index = 0 ; index < 4; indexX++)

{
pos = bufc.LocateReverse(ch|index]);
if(pos < 0)
genptr.Set(notfound);
clse
genptr.Set(found);
testConsole.Printf(__L{*\”%S* Char %c is at pos %d (%S)\n”),
&bufc,
ch|index],
pos,
&genptr

);

Note that the 2nd char ‘o’ in the string “Hello World!” 1s
found this time.

Match() & MatchF()
The following example shows the use of the Match() and

MatchF() member functions. The result of a matches
between the content of buf and a series of descriptors with
varying combinations of match strings 1s displayed at the
test console.

TInt index;
TInt pos;
TPtrC genptr;

const TBufC<9> notfound(_ L{*NOT FOUND”));
const TBufC<5> found({_L{*found™));
TBufC<8>matchstr[7] = {__L{**World*”),
_ L{*“*W7rld*”),
_ L{**Wor*”),
_ L{*“Hello™),
_ L{**W*7),
__L{*hello™),
L),
13
for (index = 0 ; index < 7; index++)
{
pos = bufc.Match(matchstr| index]);
if(pos < 0)
genptr.Set(notfound);
else
genptr.Set(found);
testConsole.Printf(_ 1.(“%- 8S pos %2d (%S)\n”),
&matchstr] index |,
pos,
&genptr
):
h

Note that when using MatchF(), the result is different
when matching the 6th string where the case 1s 1gnored.
Moditying Functions

¢32.descriptors.using. modifying-functions

The code fragments shown here, 1llustrating some of the
modifymg descriptor member functions, are extracted from
the sample source code 1n the eudes project. Look at the code
in this project to see the full set of examples.

These examples all use a TBuf descriptor constructed to

contain the text “Hello World!”.

TBuf<32> buf(_ L(“Hello World!”));

Swapl()
The contents, length and size of altbufl and buf are

swapped; the maximum lengths of the descriptors do NOT
change.

US 6,536,879 Bl

23
TBuf<16> altbufl(_ L(“What a nice day™));

buf.Swap(altbufl);
Repeat()

The current length of buf 1s set to 16. Repeat copying the
characters “Hello” generates the text sequence “HelloHel-

loHelloH” 1n butf.
buf.SetLength(16);
buf.Repeat(_ L(“Hello™));
Setting the length of buf to and re-doing the repeat

generates the text sequence “HelloHel”.
Justify()
The example uses src as the source descriptor.

TBufvVC<40> src(_ “Hello World!”));

buf.Justify(src,16,ELeft, @’);

The descriptor src has length 12.

The target field in buf has width 16 (this is greater than the
length of the descriptor src). src is copied into the target
field, aligned left and padded with ‘@’ characters. The

length of buf becomes the same as the specified width, 1.e 16.
buf.Justify(src,16,ECenter, @’);

The target field in buf has width 16 (this is greater than the
length of the descriptor src). src is copied into target field,
aligned centrally and padded with ‘(@’ characters. The length
of buf becomes the same as the specified width, 1. 16

buf.Justify(src,10,ECenter, @’);

The target field in buf has width 10 (this is smaller than
the length of the descriptor src). src is copied into the target
field but truncated to 10 characters and, therefore, alignment
and padding information i1s not used. The length of buf
becomes the same as the width, 1.e. 10

buf.Justify(src,KDefaultJustifyWidth,ECenter,‘ @’);

The target field 1n buf 1s set to the length of the descriptor
src (whatever it currently is). src is copied into the target
field. No padding and no truncation 1s needed and so the
alignment and padding information 1s not used. The length
of buf becomes the same as the length of src, 1.e. 12.
Descriptors as Interface Specifiers

¢32.descriptors.using.interface-specifiers

See the eudesint project for examples 1llustrating the use
of descriptors 1n function interfaces.

Heap Descriptors

¢32.descriptors.using.heap-descriptors

The code fragments shown here, 1llustrating the use of
heap descriptors, are extracted from the sample source code
in the eudeshbc project. Look at the code 1n this project to
sec the the sample 1n action.

An HBufC 1s always constructed on the heap using the
static member functions New(), NewL() or NewLC(). For
example:

HBufC* butf;

buf=HBufC::NewL(15);

This constructs an HBufC which can hold up to 15 data
items. The current length i1s zero. Although existing data
within an HBufC cannot be modified, the assignment opera-
tor can be used to replace that data For example:

*buf=_ [(“Hello World!”);

To allow more than 15 characters or data items to be
assigned 1nto the HBufC, 1t must be reallocated first. For
example:

buf=buf-> ReAllocl(20);
This permits the following assignment to be done without
causing a panic:

10

15

20

25

30

35

40

45

50

55

60

65

24

*buf=_ [(“Hello World! Morning”);
buf may or may not point to a different location in the

heap after relocation. The location of the reallocated descrip-

tor depends on the heap fragmentation and the size of the
new cell.

The Des() function returns a TPtr to the HBufC. The data
in the HBufC can be modified through the TPtr. The maxi-
mum length of the TPitr 1s determined from the size of the
cell allocated to the data area of the HBufC. For example:

TPtr ptr=buf-> Des();

ptr.Delete((ptr.Length()-9),9);

ptr.Append(_ L(“& Hi));
This changes the data in the HBufC and the length of the
HBuiC.

TPtrC Class Constant Pointer Descriptor

Overview
Derivation

TDesC Abstract: implements descriptor behaviour which

does not modily data.
TPtrC A constant pointer descriptor.

Defined 1n
e32des8.h for the 8 bit variant (TPtr8).
e32des16.h for the 16bit variant (TPtrl6).

Description

Create a TPtrC descriptor to access a pre-existing location
in either ROM or RAM where the data at that location 1s to
be accessed but not changed (or where the data cannot be
changed).

A common use for a TPtrC 1s to access a string of text in
a code segment. This will normally be constructed using the
__ L. macro which constructs a TPtrC descriptor for either an
ASCII or UNICODE build.

Often, a TPtrC will appear as the right hand side of an
expression or as an 1nitialisation value for another
descriptor, for example:

TBuf<16> str(__L“abcdefghijklmnop™));

str.Find(_ L*“abc”);
str.Find(__ L“bcde”);

The _ L. macro expands to a TPtrC which 1s defined as
cither a TPtr8 or TPtrC16 depending on the build variant
(TBuf is also defined in a similar way).

The &8 bit variant, TPtrC8 can be constructed to access
binary data The 8 bit variant 1s always explicitly used for
binary data.

Five constructors are available to build a TPtr and include
a default constructor. A TPtrC can be (re-)initialised after
construction by using the set() functions.

All the member functions described under the TDesC

class are available for use by a TPtrc descriptor. In summary
these are:

Length() Fetch length of descriptor data.

Size() Fetch the number of bytes occupied by
descriptor data.

Ptr() Return a pointer to the descriptor data.

Compare(), Compare data (normally), (folded), (collated).

CompareF(),
CompareC()

Match(),

MatchF(), MatchC()

Pattern match data (normally), (folded),
(collated).

US 6,536,879 Bl

25

-continued

Locate a character in forwards direction
(normally), (folded).

Locate a character 1n reverse direction
(normally), (folded).

Find data (normally), (folded), (collated).

Locate(), LocateF()

LocateReverse(),
LocateReverseF()
Find(), FindF(), FindC

Left() Construct TPtrC for leftmost part of data.
Right() Construct TPtrC for rightmost part of data.
Mid() Construct TPtrC for portion of data.
Alloc(), Construct an HBufC for this descriptor.

AllocL(), AllocL.C()
HufEncode()
HufDecode()

operators < <= » »>= ==
operator |]

Huffman encode
Huffman decode
Comparison operators
[ndexing operator

Construction

¢32.descriptors. TPirC.construction

TPtrC() Default C++ constructor

Description

The default C++ constructor 1s used to construct a con-
stant pointer descriptor.

The length of the constructed descriptor 1s set to zero and
its pointer 1s set to NULL.

Notes

Use the Set() member function to initialise the pointer
descriptor.

TPtrC() Copy constructor

TPtrC(const TPtrC& aDes);

Description

The C++ copy constructor constructs a new TPtrC object
from the existing one.

The length of the constructed descriptor 1s set to the length
of aDes and 1s set to point to aDes’s. data.

TPtrC() C++ constructor [with any descriptor]
TPtrC(const TDesC& aDes);

Description

The C++ constructor 1s used to construct the TPtrC with
any kind of descriptor.

The length of the constructed descriptor 1s set to the length
of aDes, and it 1s set to point to aDes’s data.

Arguments
const TDesC& aDes A reference to any type ol descriptor

used to construct the TPirC.

Notes

If aDes 1s a reference to a heap descriptor (HBufC), then
the data also resides on the heap.

TPtrC() C++ constructor [with zero terminated string |

TPtrC(const TText* aString);

Description

The C++ constructor 1s used to construct the TPtrC object
with a zero terminated string.

The length of the descriptor 1s set to the length of the zero
terminated string, excluding the zero terminator.

The constructed descriptor 1s set to point to the location of
the string, whether in RAM or ROM.

Arguments
const TText* aString A pointer to the zero terminated used

to construct the TPtrC.

TPtrC()C++ constructor [with address and length]

TPtrC(const TUint??* aBuf,TInt alLength);

Description

The C++ constructor 1s used to construct the TPtrC with
the memory address and length.

The length of the constructed descriptor 1s set to the value
of alLength.

The constructed descriptor 1s set to point to the memory
address supplied 1n aBuf; the address can refer to RAM or

ROM.

10

15

20

25

30

35

40

45

50

55

60

65

26

Arguments
const TU1nt??* aBuf The address which 1s to be the data areca

of the constant pointer descriptor.

For the 8 bit variant, this 1s type TUint8*; for the 16 bit

variant, this 1s type TUint16*.

TInt alLength The length of the constructed constant pointer
descriptor.

This value must be non-negative otherwise the construc-

tor will panic with ETDes8LengthNegative for the 8 bit

variant or ETDesl6lengthNegative for the 16 bit variant.

Late Initialisation
¢32.descriptors. TPtrC.late-initialisation
Set() Initialisation taking any descriptor
void Set(const TDesC& aDes);

Description

Use this function to initialise (or re-initialise) a constant
pointer descriptor using the content of any kind of descrip-
tor.

The length of this constant pointer descriptor 1s set to the
length of aDes.

This descriptor is set (or re-set) to point to aDes’s data

Arguments
const TDesC& aDes A reference to any descriptor whose

content 15 to be used to initialise this constant pointer

descriptor.

Notes

The Set() function can be used to initialise a constant
pointer descriptor constructed using the default constructor.

[f aDes is a reference to a heap descriptor (HBufC), then
the data also resides on the heap.

Set() Initialisation taking address and length

void Set(const TUint??* aBuf,TInt alLength);

Use this function to initialise (or re-initialise) a constant
pointer descriptor using the supplied memory address and
length.

The length of this constant pointer descriptor 1s set to the
value of alLength.

The descriptor 1s set to point to the memory address
supplied 1n aBuf; the address can refer to RAM or ROM.

Arguments
const TUint??* aBuf The address which is to be the data areca

of the constant pointer descriptor.

For the 8 bit variant, this 1s type TUint8*; for the 16 bait

variant, this 1s type TUint16*.

TInt alLength The length of the constant pointer descriptor.
This value must be non-negative otherwise the construc-
tor will panic with ETDes8LengthNegative for the 8 bit
variant or ETDes16LengthNegative for the 16 bit variant.
Notes
The Set() function can be used to initialise a constant

pointer descriptor constructed using the default constructor.

TPtr Class Modifiable Pointer Descriptor

Overview

Derivation
TDesC Abstract: implements descriptor behaviour which

does not modify data.
TDes Abstract: implements descriptor behaviour which can

change data.
TPtr A modifiable pointer descriptor.

Defined 1n
¢32des8.h for the 8 bit variant (TPtr8).
¢32des16.h for the 16 bit variant (TPtrl6).

Description

Create a TPtr descriptor to access a pre-existing area or
buffer in RAM where the contents of that buifer are to be
accessed and manipulated.

A common use for a TPtr 1s to access the buifer of an
existing TBufC or an HBufC descriptor using the Des()
member functions (of TBufC and HBufC). For example:

US 6,536,879 Bl

27
TBufC<8> str(__L(“abc™));

str.Des().Append(‘x’);

TPtr 1s defined as either a TPtr8 or TPir16 depending on
the build variant and can be used to access text.

The 8 bit variant, TPtr8 can be constructed to access
binary data. The 8 bit variant 1s always explicitly used for
binary data

Two constructors are available to build a TPtr and include
a default constructor. A TPtr can be (re-)initialised after
construction by using the set() functions.

All the member functions described under the TDesC and
TDes classes are available for use by a TPtr descriptor. In
summary these are:

Length() Fetch length of descriptor data.

Size() Fetch the number of bytes occupied by
descriptor data.

Ptr() Fetch address of descriptor data.

Compare(), Compare data (normally), (folded), (collated).
CompareF(),
CompareC()

Match(),

MatchF(), MatchC()

Locate(), LocateF()

Pattern match data (normally), (folded),
(collated).

Locate a character in forwards direction
(normally), (folded).

Locate a character in reverse direction
(normally), (folded).

Find data (normally), (folded), (collated).

LocateReverse(),
LocateReverseF()
Find(), FindF(), FindC

Left() Construct TPtrC for leftmost part of data.
Right() Construct TPtrC for rightmost part of data.
Mid() Construct TPtrC for portion of data.
Alloc(), Construct an HBufC for this descriptor.

AllocL{), AllocL.C()
HufEncode()
HufDecode()
MaxIength()

Huffman encode
Huffman decode
Fetch maximum length of descriptor.

MaxSize() Fetch maximum size of descriptor

SetLength() Set length of descriptor data

Zero() Set length of descriptor data to zero

SetMax() Set length of descriptor data to the
maximum value.

Swap() Swap data between two descriptors.

Copy(), Copy data (normally), (and fold), (and collate).

CopyF(), CopyC()

CopyLC() Copy data and convert to lower case.

CopyUC() Copy data and convert to upper case

CopyCP() Copy data and capitalise

Repeat() Copy and repeat.

Justify() Copy and justify.

[nsert{) [nsert data.

Delete() Delete data.

Replace() Replace data.

TrimLeft()
TrimRight()

Delete spaces from left side of data area.
Delete spaces from right side of data area.

Trim() Delete spaces from both left and right side of
data area.

Fold() Fold characters.

Collate() Collate characters.

Convert to lower case.
Convert to upper case.

LowerCase()
UpperCase()

Capitalise() Capitalise.

Fill({) Fill with specified character.

FillZ() Fill with 0x00.

Num() Convert numerics to character (hex.digits to
lower case).

NumUC() Convert numerics to (upper case) character.

Format(), Convert multiple arguments to character

FormatList() according to format specification.

Append() Append data.

AppendFill{)
AppendJustify()
AppendNum()
AppendNumUC()

Append with fill characters.

Append data and justify

Append from converted numerics.

Append from converted numerics; convert to
upper case.

Append from converted multiple arguments.

AppendFormat(),
AppendFormatList()

10

15

20

25

30

35

40

45

50

55

60

65

23

-continued

ZeroTerminate() Append zero terminator.

PtrZ.() Append zero terminator and return a pointer.
operators < <= > »>= == Comparison operators.
operator += Appending operator.

operator |] [ndexing operator.

Construction
¢32.descriptors. TPtr.construction
TPtr() C++ constructor [with address and maximum

length]

TPtr(TUint??* aBuf,TInt aMaxLength);

Description

The C++ constructor 1s used to construct the TPtr with the
address and maximum length.

The length of the constructed descriptor 1s set to zero and
its maximum length 1s set to aMaxLength.

The constructed descriptor 1s set to point to the memory
address supplied in aBuf which can refer either to RAM or
ROM.

Arguments
TUint??7* aBuf The address which 1s to be the data area of

the modifiable pointer descriptor.

For the 8 bit variant, this 1s type TUint8*; for the 16 bit

variant, this 1s type TUint16*.

TInt aMaxlength The maximum length of the new modi-
fiable pointer descriptor.

This value must be non-negative otherwise the construc-

tor will panic with ETDes8MaxI.engthNegative for the 8

bit variant or ETDesl6Maxl.engthNegative for the 16 bat

variant.

TPtr() C++ constructor [with address, length and maxi-
mum length]
TPtr(TUint??* aBuf,TInt alLength, TInt aMaxIength);

Description

The C++ constructor 1s used to construct the TPtr with the
address, length and maximum length.

Use this to construct a modifiable pointer descriptor using,
the supplied memory address, length and maximum length
to 1nitialise it.

The length of the constructed descriptor 1s set to alL.ength
and 1ts maximum length 1s set to aMaxI ength.

The constructed descriptor 1s set to point to the memory
address supplied in aBuf which can refer either to RAM or
ROM.

Arguments
TUint??* aBuf The address which 1s to be the data area of

the modifiable pointer descriptor.

For the 8 bit variant, this 1s type TUint8*; for the 16 bait

variant, this 1s type TUint16*.

TInt alLength The length of the new modifiable pointer
descriptor.

This value must be non-negative and not greater than the

value of aMaxLength otherwise the constructor will panic
with ETDes8LengthOutOfRange for the 8 bit variant or

ETDes8LengthOutOfRange for 16 bit variant.

TInt aMaxlength The maximum length of the new modi-
fiable pointer descriptor.
This value must be non-negative otherwise the construc-
tor will panic with ETDes8MaxIengthNegative for the 8
bit variant or ETDesl6MaxlLengthNegative for 16 bat
variant.

Late Initialisation
¢32.descriptors. TPtr.]late-1nitialisation
Set() Initialisation by copying a TPtr

void Set(TPtr& apt);

US 6,536,879 Bl

29

Use this function to initialise (or re-initialise) a modifiable
pointer descriptor using the content of another modifiable
pointer descriptor. The function behaves as a copy construc-
tor.

The length of the descriptor 1s set to the length of aPtr and
its maximum length 1s set to the maximum length of aPtr.
The descriptor is set (or re-set) to point to aPtr’s data.

Arguments
TPir& aPtr A reference to a modifiable pointer descriptor

whose content 1s to be used to mmitialise this modifiable

pointer descriptor.

Set() Initialisation taking address, length and maximum
length

void Set(TUint??* aBuf, TInt alLength, TInt aMaxILength);

Use this function to initialise (or re-initialise) a modifiable
pointer descriptor using the supplied memory address,
length and maximum length.

The length of the resulting descriptor 1s set to the value of
alLength and its maximum length 1s set to the value of
aMaxLength.

The descriptor is set (or re-set) to point to the memory
address supplied 1n aBuf; the address can refer to RAM or
ROM.

Arguments
TUint??7* aBuf The address which 1s to be the data area of

the modifiable pointer descriptor.

For the 8 bit variant, this 1s type TU1int8*; for the 16 bit

variant, this 1s type TUint16*.

TInt alLength The length of the modifiable pointer descriptor.
This value must be non-negative and not greater than the
value of aMaxLength otherwise the constructor will panic
with ETDes8LengthOutOfRange for the 8 bit variant or
ETDes16LengthOutOfRange for the 16 bit variant

TInt aMaxlLength The maximum length of the modifiable
pointer descriptor. This value must be non-negative oth-
erwise the constructor will panic with
ETDes8MaxlLengthNegative for the 8 bit variant or
ETDesl6Maxl engthNegative for the 16 bit variant

Assignment Operators
¢32.descriptors. TPtr.assignment-operators
See also €32.descriptors. TDes.assignment-operators.
operator= Operator=taking a TPtr
TPtr& operator=(const TPir& aDes);

Description

This assignment operator copies a modiiiable pointer
descriptor to this modifiable pointer descriptor.

aDes’s data 1s copied into this descriptor’s data area,
replacing the existing content. The length of this descriptor
1s set to the length of aDes.

Arguments
const TPtr& aDes A reference to the modifiable pointer

descriptor whose data 1s to be copied.

Return value
TPtr& A reference to this descriptor.

Notes

The length of aDes must not be greater than the maximum
length of this descriptor otherwise the operation will panic
with ETDes8Overflow for the 8§ bit variant or
ETDes160verflow for the 16 bit variant

operator= Operator=taking any descriptor

TPtr& operator=(const TDesC& aDes);

Description

This assignment operator copies the content of any type of
descriptor, aDes, to this modifiable pointer descriptor.

aDes’s data 1s copied into this descriptor’s data area,
replacing the existing content. The length of this descriptor
1s set to the length of aDes.

10

15

20

25

30

35

40

45

50

55

60

65

30

Arguments
const TDesC& aDes A reference to any type of descriptor

whose data 1s to be copied.

Return value
TPir& A reference to this descriptor.

Notes

The length of aDes must not be greater than the maximum
length of this descriptor otherwise the operation will panic
with ETDes8Overflow for the &8 bit variant or
ETDes160vertlow for the 16 bit variant

operator= Operator=taking a zero terminated string;

TPtr& operator=(const TText aString);

Description

This assignment operator copies a zero terminated string,
excluding the zero terminator, 1nto this modifiable pointer
descriptor.

The copied string replaces the existing content of this
descriptor.

The length of this descriptor 1s set to the length of the
string (excluding the zero terminator).

Arguments
const TText* aString The address of the zero terminated

string to be copied.

Return value
TPir& A reference to this descriptor.

Notes

The length of the string, excluding the zero terminator,
must not be greater than the maximum length of this

descriptor otherwise the operation will panic with

ETDes8Overflow for the 8 bit variant or ETDes160vertliow
for the 16 bit variant.

TBufC<TInt S> Class Constant Buifer Descriptor
Overview

Derivation
TDesC Abstract: implements descriptor behaviour which

does not modily data.

TBufCBase Abstract: implementation convenience.
TBufC<TInt S> A constant buffer descriptor.

Defined 1n
e32des8.h for the 8 bit variant (TBufC8<TInt S>).
¢32des16.h for the 16 bit variant (TBufC16<TInt S>)

Description

Create a TBulC descriptor to provide a buffer of fixed
length for containing and accessing constant data.

The data held in a TBufC descriptor cannot be modified,
although 1t can be replaced.

Four constructors are available to build a TBufC descrip-
tor and include a default constructor. The content of TBuiC
descriptor can be replaced after construction using the
assignment operators.

For example, to create a buifer of length 16 set to contain

the characters “ABC”

TBufC<16> str(_ L(“ABC”));

The content cannot be modified but may be replaced, for
example:

str=_ [L(“xyz”),

To create a bufler which 1s mtended to contain general

binary data, explicitly construct the 8 bit variant of TBufC;
for example, to create a 256 byte bufler:

TButC8<256> buf;

but=. . .;

All the member functions described under the TDesC
class are available for use by a TBufC descriptor. In sum-
mary these are:

US 6,536,879 Bl

31

Length() Fetch length of descriptor data.

Size() Fetch the number of bytes occupied by
descriptor data.

Ptr() Fetch address of descriptor data.

Compare(), Compare data (normally), (folded), (collated).

CompareF(),
CompareC()

Match(),

MatchF(), MatchC()
Locate(), LocateF()

Pattern match data (normally), (folded),
(collated).

Locate a character in forwards direction
(normally), (folded).

Locate a character 1n reverse direction

(normally), (folded).

LocateReverse(),
LocateReverseF()

Find(), Find data (normally), (folded), {(collated).
FindF(), FindC

Left() Construct TPtrC for leftmost part of data.
Right() Construct TPtrC for rightmost part of data.
Mid() Construct TPtrC for portion of data,
Alloc(), Construct an HBufC for this descriptor.

AllocL(), AllocLC()
HufEncode()
HufDecode()

operators < <= » »= ==
operator | |

Huffman encode
Huffman decode

Comparison operators
[ndexing operator

Construction
¢32.descriptors. TBuiC.construction
TBufC() Default C++ constructor
TtBufC();

Description

The default C++ constructor 1s used construct a non-
modifiable buffer descriptor.

The 1nteger template parameter<TInt S> 1s used, by the

compiler, to calculate the size of the data area to be created
as part of the descriptor object.

The length of the constructed descriptor 1s set to zero.

Notes

Use the assignment operators to 1nitialise the non-
modifiable buifer descriptor.

TBufC() Copy constructor

TBuf(const TBufC<S>& al.cb);

Description

The C++ copy constructor constructs a new TBufC<S>
object from the existing one.

The 1nteger template parameter <TInt S> 1s used, by the
compiler, to calculate the size of the data area to be created
as part of the constructed descriptor.

al.cb’s data 1s copied into the constructed descriptor’s
data area.

The length of the constructed descriptor 1s set to the length
of al.cb.

TBufC() C++ constructor [with any descriptor]

TBufC(const TDesC& aDes);

Description

The C++ constructor 1s used to construct the TBufC<S>
with any kind of descriptor.

The 1nteger template parameter <TInt S> 1s used, by the
compiler, to calculate the size of the data area to be created
as part of the constructed descriptor.

aDes’s data 1s copied into the constructed descriptor’s
data area.

The length of the constructed descriptor 1s set to the length
of aDes.

Arguments
const TDesC& aDes A reference to any type ol descriptor

used to construct the TBufC<S>.

Notes

The length of aDes must not be greater than the value of
the integer template parameter <TInt S> otherwise the

10

15

20

25

30

35

40

45

50

55

60

65

32

constructor will panic with ETDes8LengthOutOfRange for
the 8 bit variant or ETDesl16L.engthOutOfRange for the 16
bit variant.

TBufC() C++ constructor[with zero terminated string |
TBufC(const TText* aString);

Description

The C++ constructor 1s used to construct the TBufC<S>
with a zero terminated string.

The integer template parameter <TInt S> 1s used, by the
compiler, to calculate the size of the data area to be created
as part of the constructed descriptor object.

The string, excluding the zero terminator, 1s copied 1nto
the constructed descriptor’s data area.

The length of the constructed descriptor 1s set to the length
of the string, excluding the zero terminator.

Arguments
const TText* aString The address of the zero terminated

string used to construct the TBufC<S>.

Notes

The length of the string, excluding the zero terminator,
must not be greater than the value of the mteger template

parameter <TInt S> otherwise the constructor will panic
with ETDes8LengthOutOfRange for the 8 bit variant or
ETDesl6LengthOutOfRange for the 16 bit variant.

Create a Modifiable Pointer Descriptor
¢32.descriptors. TBufC.create-TPtr
Des() Create & return a TPtr
TPtr Des();

Description

Use this function to construct and return a modifiable
pointer descriptor to represent this descriptor.

The content of a non-modifiable buffer descriptor cannot
be altered but creating a modifiable pointer descriptor pro-
vides a mechanism for modifying that data.

The length of the new TPtr 1s set to the length of this
descriptor.

The maximum length of the new TPitr 1s set to the value
of the integer template parameter <TInt S>.

The new TPir 1s set to point to this descriptor. This
descriptor’s data i1s neither copied nor moved.

This descriptor’s data can be modified through the newly
constructed TPtr. If there 1s any change to the length of the
data, then the length of both this descriptor and the TPtr 1s
modified to reflect that change.

Return value
TPtr A modifiable pointer descriptor representing this non-

modifiable buifer descriptor.
Assignment Operators

¢32.descriptors. TBufC.assignment-operators

Sce also e32.descriptors. TDes.assignment-operators.

operator= Operator=taking a TBufC<S>

TBufC<S>& operator=(const TBufC<S>& al.cb);

Description

This assignment operator copies the content of the non-
modifiable buffer descriptor al.cb into this non-modifiable
buffer descriptor.

alL.cb’s data 1s copied into this descriptor’s data area,
replacing the existing content. The length of this descriptor
1s set to the length of al.cb.

Arguments
const TBufC<S>& al.cb A reference to a non-modifiable

buffer descriptor whose content 1s to be copied.

Return value

TBulC<S5>& A reference to this descriptor.
operator= Operator=taking any descriptor

TBufC<S>& operator=(const TDesC& aDes);

US 6,536,879 Bl

33

Description

This assignment operator copies the content of any type of
descriptor aDes 1nto this non-modifiable buffer descriptor.
aDes’s data 1s copied 1nto this descriptor’s data area, replac-
ing the existing content. The length of this descriptor 1s set
to the length of aDes.

Arguments
const TDesc& aDes A reference to any type of descriptor

whose data 1s to be copied.

Return value
TButfC<S>& A reference to this descriptor.

Notes

The length of aDes must not be greater than the value of
the integer template parameter <TInt S> otherwise the
operation will panic with ETDes8Overtlow for the 8 bt
variant or ETDes160vertlow for the 16 bit variant

operator=0Operator=taking zero terminated string

TBufC<S>& operator=(const TText* aString);

Description

This assignment operator copies a zero terminated string,
excluding the zero terminator, into this non-modifiable
buffer descriptor.

The copied string replaces the existing content of this
descriptor. The length of this descriptor 1s set to the length
of the string, excluding the zero terminator.

Arguments
const TText* aString The address of the zero terminated

string to be copied.

Return value
TBufC<S>& A reference to this descriptor.

Notes

The length of the string, excluding the zero terminator,
must not be greater than the value of the template parameter

<TInt S> otherwise the operation will panic with
ETDes80Overtlow for the 8 bit variant or ETDes160Overflow

for the 16 bit variant

TBui<TInt S> Class Modifiable Buifer Descriptor

Overview
Derivation

TDesC Abstract: implements descriptor behaviour which
does not modify data.

TDes Abstract: implements descriptor behaviour which can
change data.
A modifiable butfer descriptor.

TBuf<TInt S>

Defined In
¢32des8.h for the 8 bit variant (TBuf<TInt S>).
¢32des16.h for the 16 bit variant (TBuf<TInt S>).

Description

Create a TBuf descriptor to provide a buffer of fixed
length for containing, accessing and manipulating data.

Five constructors are available to build a TBuf descriptor
and include a default constructor.

The content of a TBuf descriptor can be replaced after
construction using the assignment operators.

For example, to create a bufler of length 8 mitially set to
contain the characters “ABC”

TBuf<8> str(_ L(*ABC”));

The content of the buffer descriptor can be replaced
provided the length of the new data does not exceed the
value of the integer template parameter, for example:

str=_ [(“xyz”); //OK
str=__ [(“rstuvwxyz”); //causes an exception
To create a buffer which 1s intended to contain general

binary data, explicitly construct the 8 bit variant TBui8, for
example, to create a 256 byte bufler:

10

15

20

25

30

35

40

45

50

55

60

65

TBuf8<256> buf;

but=. . .;

34

All the member functions described under the TDesC and
TDes classes are available for use by a TBuf descriptor. In

summary these are:

Length()
Size()

Ptr()

Compare(),
CompareF(),
CompareC()

Match(),

MatchF(), MatchC()
Locate(), LocateF()

LocateReverse(),
LocateReverseF()
Find(),

FindF(), FindC
Left()

Right()

Mid()

Alloc(),

AllocL(), AllocLC()
HufEncode()
HufDecode()
MaxLength()
MaxSize()
SetLength()
Zero()

SetMax()

Swap()
Copy(),

CopyF(), CopyC()
CopyLC()
CopyUC()
CopyCP()

Repeat()

Justify()

[nsert()

Delete()

Replace()
TrimLeft()
TrimRight()

Trim()

Fold({)
Collate()
LowerCase()
UpperCase()
Capitalise()
Fill()

FillZ({)
Num()

NumUC()
Format(),
FormatList()
Append()
AppendFill()
AppendJustify()
AppendNum()

AppendNumUC()

AppendFormat(),
AppendFormatList({)

ZeroTerminate()
PtrZ()

operator +=
operator | |

operators < <= » »= ==

Fetch length of descriptor data.

Fetch the number of bytes occupied by
descriptor data.

Fetch address of descriptor data.

Compare data (normally), (folded), (collated).

Pattern match data (normally), (folded),
(collated).

Locate a character in forwards direction
(normally), (folded).

L.ocate a character 1n reverse direction

(normally), (folded).
Find data (normally), (folded), (collated).

Construct TPtrC for leftmost part of data.
Construct TPtrC for rightmost part of data.
Construct TPtrC for portion of data.
Construct an HBufC for this descriptor.

Huffman encode

Huflman decode

Fetch maximum length of descriptor.
Fetch maximum size of descriptor
Set length of descriptor data

Set length of descriptor data to zero
Set length of descriptor data to the
maximum value.

Swap data between two descriptors.

Copy data (normally), (and fold), (and collate).

Copy data and convert to lower case.

Copy data and convert to upper case

Copy data and capitalise

Copy and repeat.

Copy and justify.

[nsert data.

Delete data.

Replace data.

Delete spaces from left side of data area.
Delete spaces from right side of data area.
Delete spaces from both left and right side of
data area.

Fold characters.

Collate characters.

Convert to lower case.

Convert to upper case.

Capitalise.

Fill with specified character.

Fill with 0x00.

Convert numerics to character (hex digits to
lower case).

Convert numerics to (upper case) character.
Convert multiple arguments to character
according to format specification.

Append data.

Append with fill characters.

Append data and justify

Append from converted numerics (hex digits
to lower case).

Append from converted numerics; convert
to uppercase.

Append from converted multiple arguments.

Append zero terminator.

Append zero terminator and return a pointer.
Comparison operators.

Appending operator.

[ndexing operator.

US 6,536,879 Bl

35

Construction

¢32.descriptors. TBuf.construction

TBuf() Default C++ constructor

TBuf();

Description

The default C++ constructor 1s used to construct a modi-
fiable buifer descriptor.

The mteger template parameter <TInt S> 1s used, by the
compiler, to calculate the size of the data area to be created
as part of the constructed descriptor.

The length of the constructed descriptor 1s set to zero and
the maximum length 1s set to the value of the integer
template parameter <TInt S>.

TBuf() C++ constructor[with length]

TBuf(TInt al.ength);

Description

The C++ constructor i1s used to construct the TBuf<S>
with the length.

The mteger template parameter <TInt S> 1s used, by the
compiler, to calculate the size of the data area to be created
as part of the constructed descriptor.

The length of the constructed descriptor 1s set to alLength
and the maximum length 1s set to the value of the integer
template parameter <TInt S>.

Arguments
TInt alLength The length of the constructed modifiable buifer

descriptor.

This value must be non-negative and not greater than the

value of the mteger template parameter <lInt S> other-

wise the constructor will panic with

ETDes8LengthOutOfRange for the 8 bit variant or

ETDes16LengthOutOfRange for the 16 bit variant

TBuf() Copy constructor

TBuf(const TBuf<S>& aBuf);

Description

The C++ copy constructor constructs a new TBul<S>
object from the existing one.

The mteger template parameter <TInt S> 1s used, by the
compiler, to calculate the size of the data area to be created
as part of the constructed descriptor object.

aBul’s data 1s copied into the constructed descriptor’s
data area.

The length of the constructed descriptor 1s set to the length
of aBuf and the maximum length is set to the value of the
integer template parameter <TInt S>.

TBuf() C++ constructor [with any descriptor]

TBuf(const TDesC& aDes);

Description

The C++ constructor 1s used to construct the TBui<S>
with any kind of descriptor.

The mteger template parameter <TInt S> 1s used, by the
compiler, to calculate the size of the data area to be created
as part of the constructed descriptor.

aDes’s data 1s copied into the constructed descriptor’s
data area.

The length of the constructed descriptor 1s set to the length
of aDes and the maximum length 1s set to the value of the
integer template parameter <TInt S>.

Arguments
const TDesC& aDes A reference to any type of descriptor

used to construct the TBui<S>.

Notes

The length of aDes must not be greater than the value of
the integer template parameter <TInt S> otherwise the
constructor will panic with ETDes8Overtlow for the 8 bit
variant or ETDes160vertlow for the 16 bit variant

TBuf() C++ constructor [with zero terminated string]

10

15

20

25

30

35

40

45

50

55

60

65

36

TBuf(const TText aString);

Description

The Cup constructor 1s used to construct the TBuf<S>
with a zero terminated string.

The integer template parameter <TInt S> 1s used, by the
compiler, to calculate the size of the data area to be created
as part of the constructed descriptor.

The string, excluding the zero terminator, 1s copied 1nto
the constructed descriptor’s data area.

The length of the constructed descriptor 1s set to the length
of the string, excluding the zero terminator, and the maxi-
mum length 1s set to the value of the integer template
parameter <1Int S>.

Arguments
const Text* aString The address of the zero terminated string

used to construct the TBuf<S>.

Notes

The length of the string, excluding the zero terminator
must not be greater than the value of the mteger template
parameter <TInt S> otherwise the constructor will panic
with ETDes8Overflow for the &8 bit variant or
ETDes160verflow for the 16 bit variant
Assignment Operators

¢32.descriptors. TBuf.assignment-operators

Sce also e€32.descriptors. TDes.assignment-operators.

operator= Operator=taking a TBuf<S>

TBuf<S>& operator=(const TBuf<S>& aBuf);

Description

This assignment operator copies the content of the modi-
fiable buffer descriptor aBuf into this modifiable buifer
descriptor.

aBuf’s data 1s copied into this descriptor’s data area,
replacing the existing content. The length of this descriptor
1s set to the length of aBuf.

Arguments
const TBuf<S>& aBuf A reference to the modifiable pointer

descriptor whose content 1s to be copied.

Return value
TBuf<S>& A reference to this descriptor.

Operator= Operator=taking any descriptor

TBuf<S>& operator=(const TDesC& aDes);

Description

This assignment operator copies the content of any type of
descriptor aDes 1nto this modifiable buffer descriptor.

aDes’s data 1s copied into this descriptor’s data area,
replacing the existing content. The length of this descriptor
1s set to the length of aDes.

Arguments
const TDesc& aDes A reference to any type of descriptor

whose content 1s to be copied.

Return value
TBuf<S>& A reference to this descriptor.

Notes

The length of aDes must not be greater than the value of
the 1nteger template parameter <TInt S> otherwise the
operation will panic with ETDes8Overtlow for the 8 bt
variant or ETDes160vertlow for the 16 bit variant

operator= Operator=taking a zero terminated string,

TBuf<S>& operator=(const TText* aString);

Description

This assignment operator copies a zero terminated string,
excluding the zero terminator, into this modifiable buifer
descriptor.

The copied string replaces the existing content of this
descriptor.

The length of this descriptor 1s set to the length of the
string, excluding the zero terminator.

US 6,536,879 Bl

37

Arguments
const TText* aString The address of the zero terminated
string to be copied.
Return value
TBuf<S>& A reference to this descriptor.
Notes
The length of the string, excluding the zero terminator,
must not be greater than the value of the template parameter

<TInt S> otherwise the operation will panic with
ETDes80Overflow for the 8 bit variant or ETDes160Overflow

for the 16 bit variant

HBufC Class Heap Descriptor
Overview
Derivation
TDesC Abstract: implements descriptor behaviour which

does not modity data.
TButfCBase Abstract: implementation convenience.

HBufC A heap descriptor.
Defined 1n

e32des8.h for the 8 bit variant (HBufCS).
¢32des16.h for the 16 bit variant (HBufC)

Description

Create an HBufC descriptor to provide a buifer of fixed
length for containing and accessing data.

The data held 1n an HBuiC descriptor cannot be modified,

although 1t can be replaced using the assignment operators.
The descriptor exists only on the heap but has the 1mpor-

tant property that 1t can be resized, 1.e. made either larger or
smaller, to change the size of 1its data area. This 1s achieved

by reallocating the descriptor. Unlike the behaviour of
dynamic buffers (see e32.dynamic-buffers) reallocation is
not done automatically.

An HBufC descriptor 1s useful in situations where a large
fixed length buffer may be required 1nitially but, thereafter,
a smaller fixed length buifer 1s suflicient.

An HBuiC descriptor must be constructed using the static

member functions New(), NewL() or NewL.(C() and resized
using the ReAlloc() or ReAllocl.() member functions. A
code fragment illustrates bow these might be used:

class CAnyClass: CBase
1
public:
void AddToBuf(const TDesC& aSrcBuf);
private:
HBufC* 1TgtBuf;
TInt 1AllocLen;

h

void CAnyClass::AddToBuf(const TDesC& aSrcBuf)

i

TInt SrcLen = aSrcBuf.Length();
if(iTgtBuf)

{

if (SrcLen > iAllocLen)

1

iTgtBuf = iTgtBuf->ReAllocL(Srclen);
1AllocLen = Srclen;

h

h

else

1

iTgtBuf = HBufC::NewL(SrcLen);
1Alloclen = Srclen;

y

*1TgtBuf = aSrcBuf;

h

In practice, the use of ReAlloc() here is a little inefficient
as the data 1n the HBufC descriptor 1s saved across the
re-allocation but 1s then discarded when the content of
aSrcBut 1s assigned to it.

10

15

20

25

30

35

40

45

50

55

60

65

33

All the member functions described under the TDesC
class are available for use by a TBufC descriptor. In sum-
mary these are:

Length() Fetch length of descriptor data.

Size() Fetch the number of bytes occupied by
descriptor data.

Ptr() Fetch address of descriptor data.

Compare(), Compare data (normally), (folded), (collated).
CompareF(),
CompareC()

Match(),

MatchF(), MatchC()

Locate(), LocateF()

Pattern match data (normally), (folded),
(collated).

Locate a character in forwards direction
(normally), (folded).

Locate a character in reverse direction
(normally), (folded).

Find data (normally), (folded), (collated).

LocateReverse(),
LocateReverseF()
Find(), FindF(), FindC

Left() Construct TPtrC for leftmost part of data.
Right() Construct TPtrC for rightmost part of data.
Mid() Construct TPtrC for portion of data.
Alloc(), Construct an HBufC for this descriptor.

AllocL(), AllocL.C()
HufEncode()
HufDecode()

operators < <= > >= ==
operator | |

Huffman encode
Huffman decode
Comparison operators
[ndexing operator

Allocation and Construction

¢32.descriptors. HBuiC.allocation-and-construction

New(), NewL(), NewLC() Create new HBufC

¢32.descriptors.new
static HBufC* New(TInt aMaxLength);
static HBufC* NewL(TInt aMaxLength);
static HBufC* NewLC(TInt aMaxLength);

Description

Use these functions to construct a new HBufC descriptor
on the heap.

The functions attempt to acquire a single cell large enough
to hold an HBufC object containing a data area with a length
which 1s at least aMaxLength. The resulting length of the
data area may be larger than aMaxILength, depending on the
way memory allocation 1s implemented, but 1s guaranteed to
be not less than aMaxILength.

If there 1s insuflicient memory available to create the
descriptor, New() returns NULL but both Newl.() and
NewLC() leave. See e32.exception.intro for more informa-
tion on leave processing.

[f the new descriptor is successfully constructed, NewLC(
) will place the descriptor on the clean-up stack before
returning with the address of that descriptor. See
¢32.exception.transient for more information on the clean-
up stack.

The length of the new descriptor 1s set to zero.

Use operator= to assign data into the descriptor.

Sece example eudeshbc.

Arguments
TInt aMaxLength The required length of the new descrip-

tor’s data area.

This value must be non-negative otherwise the function

will panic with ETDes8MaxLengthNegative for the 8 bit

variant or ETDesl6Maxl.engthNegative for the 16 bat
variant.

Return value
HBufC* The address of the newly created HBufC descriptor.
New() returns NULL, if there is insufficient memory.
Newl() and NewLC() leave, if there is insufficient
memory.
Example
These code fragments 1llustrate how an HBufC descriptor
can be constructed.

US 6,536,879 Bl

39

Use of New();
HButC* ptr;

ptr = HBufC::New(64);//buffer length is 64
if (Iptr)
1

-

Use of NewL.():
ptr = HBufC::Newl.(64);
// 1t control returns, allocation 1s OK
// and ptr has sensible value

// could not create the descriptor

Newl(), NewLC() Create new HBufC from a stream

¢32.descriptors.newiromstream

static HBufC* NewL(RReadStream& aStream,TInt
aMaxLength);

static HBuf* NewLC(RReadStream& aStream,TInt
aMaxLength);

Description

Use these functions to construct a new HBufC descriptor
on the heap and to assign to this new descriptor, data held in
the stream aStream.

The functions attempt to acquire a single cell large enough
to hold an HButfC object containing a data areca whose length
1s sufficient to contain the data held 1n the stream. The stream
contains both the length of the data and the data itself.

If there 1s insufficient memory available to create the
descriptor or the length value held 1n the stream 1s greater
then aMaxLength, both NewL() and NewLC() leave. See
¢32.exception.intro for more mmformation on leave process-
Ing.

If the new descriptor is successfully constructed, NewLC(
) places the descriptor on the clean-up stack before returning
with the address of that descriptor. See €32 exception.tran-
sient for more mformation on the clean-up stack.

These functions assume that the stream 1s currently posi-
tioned at an appropriate place, 1.€. a point where a descriptor
has previously been streamed out (using the operator <<).

See externalizing store.streams.externalizing.descriptors
and 1nternalizing store.stream.internalizinig.descriptors.

For general information on streams see store.streams-
basic and store.streams.

For general information on stores, see store.stores.

Arguments
RReadStreamé& aStream The stream from which the length

of the new descriptor and the data to be assigned to the

new descriptor, are to be taken.
TInt aMaxLength The maximum permitted length of the
new descriptor.

The resulting length of the new descriptor must not

exceed this value, otherwise the functions leave with a
KErrOvertlow.
Return value
HBufC* The address of the newly created HBulC descriptor.
Both Newl() and NewLC() leave, if there is insufficient
memory or the resulting length exceeds the value of
aMaxI ength.
NewMax(), NewMaxL(), NewMaxLC() Create new
HBufC and set length
static HBuf* NewMax(TInt aMaxLength);
static HBufC* NewMaxL(TInt aMaxLength);
static HBufC* NewMaxLC(TInt aMaxLength);
Description
Use these functions to construct a new HBufC descriptor
on the heap.
The functions attempt to acquire a single cell larege enough
to hold an HBuiC object containing a data area with a length

10

15

20

25

30

35

40

45

50

55

60

65

40

which 1s at least aMaxLength. The resulting length of the
data area may be larger than aMaxLength, depending on the
way memory allocation 1s implemented, but 1s guaranteed to
be not less than aMaxLength.

If there 1s insuflicient memory available to create the
descriptor, NewMax() returns NULL but both NewMaxI(

) and NewMaxL.C() leave. See €32 exception.intro for more
information on leave processing.

If the new descriptor 1s successfully constructed,
NewMaxL.C() will place the descriptor on the clean-up
stack before returning with the address of that descriptor.
See e32.exception.transient for more information on the

clean-up stack.
The length of the new descriptor 1s set to the value of

aMaxILength.
Use operator=to assign data into the descriptor.
Arguments

TInt aMaxLength The required length of the new descrip-
tor’s data area and the length given to the descriptor.
This value must be non-negative otherwise the function
will panic with ETDes8MaxLengthNegative for the 8 bat
vartant or ETDesl6Maxl.engthNegative for the 16 bat
variant.
Return value

HBufC* The address of the newly created HBulC descriptor.
NewMax() returns NULL, if there is insufficient memory.
NewMaxI() and NewMaxLC() leave, if there 1s insuf-
ficient memory.

Example
Sce e32.descriptors.new for an example
Reallocation

¢32.descriptors. HBuiC.reallocation
ReAlloc(), ReAllocL() Expand/contract the HBufC

buifer

HBufC* ReAlloc(TInt aMaxLength);

HBufC* ReAllocl(TInt aMaxILength);

Description

Use this function to expand or contract the data area of an
existing HBufC descriptor. This 1s done by:

constructing a new HBufC descriptor on the heap con-
taining a data area of length aMaxLength

copying the contents of the original descriptor into the
new descriptor

deleting the original descriptor

The functions attempt to acquire a single cell large enough
to hold an HBufC object containing a data area of length
aMaxIength.

If there 1s nsuflicient memory available to construct the
new descriptor, ReAlloc() returns NULL but ReAllocL()
leaves. In either case the original descriptor remains
unchanged; see €32.exception.intro for more mformation on
leave processing.

If the new descriptor 1s successtully constructed, then the
content of the original descriptor 1s copied into the new
descriptor, the original descriptor 1s deleted and the address
of the new descriptor 1s returned to the caller. The length of
the re-allocated descriptor remains unchanged.

Arguments
TInt aMaxlength The new length of the descriptor’s data

area.

This value must be non-negative otherwise the function

will panic with ETDes8MaxLengthNegative for the 8 bat

vartant or ETDesl6Maxl.engthNegative for the 16 bat
variant

This value must not be less than the length of the data 1n

the original descriptor otherwise the function will panic
with ETDes8ReAllocTooSmall for the 8 bit variant or

ETDesl6ReAllocTooSmall for the & bit variant

US 6,536,879 Bl

41

Return value
HBufC* The address of the expanded or contracted HBuiC

descriptor.

ReAlloc() returns NULL, if there is insufficient memory.

ReAllocl() leaves, if there 1s insufficient memory.

Notes

If re-allocation 1s successtul, be aware that any pointers
containing the address of the original HBufC descriptor are
no longer valid. This also applies to the cleanup stack; care
must be taken in the design and implementation of code
when a pointer to an HBufC descriptor 1s placed on the
cleanup stack and the descriptor 1s subsequently
re-allocated.

Take particular care if using the Des() member function
to create a TPtr descriptor. A TPtr descriptor created before
re-allocating the HBufC descriptor, 1s not guaranteed to have
a valid pointer after re-allocation. Any attempt to modify
data using the TPtr after re-allocation may have undefined
consequences.

Example

These code fragments illustrate how ReAlloc() can work.

HBufC* old;
HBufC* newgood,;
HBufC* newbad;

old=HBufC::Newl .(16); //buffer length 1s 16
*old=__ L(“abcdefghijkl™); //descriptor length 1s 12

newgood=old->ReAllocl.(24); //first reallocation OK

newbad=newgood->ReAllocl(8); //second reallocation

panics

After the first reallocation, newgood points to the
re-allocated descriptor, old contains an invalid address. The
second re-allocation panics because an attempt i1s being
made to contract the data area to a length of 8 which 1s
smaller than the original length of the descriptor.

Create a Modifiable Pointer Descriptor

¢32.descriptors. HBufC.create-TPtr

Des() Create & return a TPtr

TPtr Des();

Description

Use this function to construct and return a modifiable
pointer descriptor to represent this descriptor.

The content of a HBufC descriptor cannot be altered but
creating a modifiable pointer descriptor provides a mecha-
nism for modifying that data.

The length of the new TPir 1s set to the length of this
descriptor.

The maximum length of the new TPtr 1s set to the length
of this descriptor’s data area.

The new TPtr 1s set to point to this descriptor. This
descriptor’s data 1s neither copied nor moved.

This descriptor’s data can be modified through the newly
constructed TPtr. If there 1s any change to the length of the
data, then the length of both this descriptor and the TPtr 1s
modified to reflect that change.

Return value

TPtr A modifiable pointer descriptor representing this

HBufC descriptor.

Notes

Take particular care if using ReAlloc() or Reallocl(). A
TPtr descriptor created before re-allocating the HBufC
descriptor, 1s not guaranteed to have a valid pointer after
re-allocation. Any attempt to modily data using the TPtr
after re-allocation may have undefined consequences.

10

15

20

25

30

35

40

45

50

55

60

65

42

Assignment Operators

¢32.descriptors. HBufC.assignment-operators

Sce also e37.descriptors. TDes.assignment-operators.

operator= Operator=taking HBufC descriptor

HBufC& operator=(const HBufC& al.cb);

Description

This assignment operator copies the content of the heap
descriptor al.cb 1nto this heap descriptor.

alL.cb’s data 1s copied into this descriptor’s data area,
replacing the existing content. The length of this descriptor

1s set to the length of al.cb.

Arguments
const HBufC& al.cb A reference to the heap descriptor

whose content 1s to be copied.

Return value
HBufC& A reference to this descriptor.

Notes

The length of the descriptor alL.cb must not be greater than
the length of this descriptor’s data area otherwise the func-
tion will panic with ETDes8Overtlow for the 8 bit variant or
ETDes160vertlow for the 16 bit variant

Operator= Operator=taking any descriptor

HBufC& operator=(const TDesC& aDes);

Description

This assignment operator copies the content of any type of
descriptor aDes 1nto this heap descriptor.

aDes’s data 1s copied into this descriptor’s data area,
replacing the existing content. The length of this descriptor
1s set to the length of aDes.

Arguments
const TDesC& aDes A reference to any type of descriptor

whose content 1s to be copied.

Return value
HBUIC& A reference to this descriptor.

Notes

The length of the descriptor aDes must not be greater than
the length of this descriptor’s data area otherwise the func-
tion will panic with ETDes8Overflow for the 8 bit variant or
ETDes160vertlow for the 16 bit variant

operator=0perator=taking zero terminated string

HBuf& operator=(const TText* aString);

Description

This assignment operator copies a zero terminated string,
excluding the zero terminator, into this heap descriptor.

The string, excluding the zero terminator, 1s copied 1nto
this descriptor’s data area, replacing the existing content.
The length of this descriptor 1s set to the length of the string,
excluding the zero terminator.

Arguments
const TText* aString The address of the zero terminated

string to be copied.

Return value
HBufC& A reference to this descriptor.

Notes

The length of the string, excluding the zero terminator,
must not be greater than the length of this descriptor’s data
arca otherwise the function will panic with
ETDes8Overtlow for the 8 bit variant or ETDes160Overtlow
for the 16 bit variant.

TDesC Class

Overview
Derivation

TDesC Abstract: implements descriptor behaviour which
does not modily data
Defined 1n

e32des8.h for the 8 bit variant (TDesC8).

e32des16.h for the 16 bit variant (TDesc16)

US 6,536,879 Bl

43

Description

The class 1s abstract and cannot be constructed. It 1mple-
ments that aspect of descriptor behaviour which does not
modifly the descriptor’s data.

All member functions described here are available to all
derived descriptor classes.

Basic Information

¢32.descriptors. TDesC.basic-Tunctions

Length() Fetch descriptor length

TInt Length() const;

Description

Use this member function to return the number of data
items 1n the descriptor’s data area.

For 8 bit descriptors, data 1s single-byte valued and the
length has the same value as the number of bytes occupied
by that data. For 16 bit descriptors, data 1s double-byte
valued and the length value 1s half the number of bytes
occupied by that data,

For example, 1f a descriptor data area contains one ASCII
text character, the returned length 1s one and 1t occupies one
byte (and the Size() function returns one); if a data area
contains one UNICODE text character, the returned length
is also one but it occupies two bytes (and the Size() function
returns two).

Return value
TInt The length of the data within the data area.

Size() Fetch the number of bytes occupied by data

TInt Size() const;

Use this member function to return the number of bytes
occupied by data in the descriptor’s data area. For 8 bit
descriptors, this value i1s the same as the length of the data
For 16 bit descriptors, this value 1s twice the length of the
data.

Return value
TInt The number of bytes occupied by data within the

descriptor’s data area.

Ptr() Fetch address of descriptor’s data area

const TUint??* Ptr() const;

Description

Use this member function to return the address of the
descriptor’s data area. The address cannot be used to change
the descriptor’s data.

Return Value
const TUint??* The address of the data area. For the 8 bit

variant, this 1s type TUint8*; for the 16 bit variant, this 1s

type TUIntl16*.

Notes

If the descriptor 1s used for strings, then the pointer can be
regarded as a TText type and there 1s no need to distinguish
between the 8 bit and 16 bit variants. If the descriptor 1s used
for binary data then the pointer should be regarded as a
TUInt8 type.

Comparison

¢32.descriptors. TDesC.comparison

Compare(), CompareF(), CompareC() Compare data

TInt Compare(const TDesC& aDes) const;

TInt CompareF(const TDesC& aDes) const;

TInt CompareC(const TDesC& aDes) const;

Description

Use these functions to compare the content of this
descriptor with the content of the descriptor aDes.

The comparison proceeds on a byte for byte basis 1n the
8 bit variant and on a double-byte for double-byte basis in
the 16 bit variant.

The result of the comparison 1s based on the difference of
the first bytes (or double-bytes) to disagree. Two descriptors
are equal 1f they have the same length and content. Where

10

15

20

25

30

35

40

45

50

55

60

65

44

two descriptors have different lengths and the shorter
matches the first part of the longer, the shorter 1s considered
to be less than the longer.

CompareF() takes the folded content of both descriptors
for comparison while CompareC() takes the collated con-
tent of both descriptors for comparison. Compare() simply
takes the content of both descriptors as they stand.

Sce e32.descriptors.folding for more information on fold-
ing and e32.descriptors.collating for more 1nformation on
collating.

Compare() 1s useful for comparing both text and binary
data. CompareF() is useful for making case-insensitive text
Comparisons.

Arguments
const TDesCé& aDes A reference to any type of descriptor

whose content 1s to be compared with this descriptor’s

content.

Return value
TInt Positive, if this descriptor 1s greater than aDes.

Negative, 1f this descriptor 1s less than aDes.

Zero, 1f both descriptors have the same length and the
their contents are the same.

Example
This code fragment illustrates the use of Compare().

TBufC<8> str(_ [(“abcd™));

str.Compare(__L(“abcde”)); //returns —ve
str.Compare(__L(*abc™)); //returns +ve
str.Compare(__L(“abcd™)); //returns zero

str.Compare(__L(*abcx™)); //returns —ve
Thus:

<“abcd” 1s less than “abode”.
<“abed” 1s greater than “abc”.
<“abed” 1s equal to “abcd”.

<“abcd” 1s less than “abex”.
Pattern Matching

¢32.descriptors. TDesC.pattern-matching,
Match(), MatchF(), MatchC() Pattern match data

TInt Match(const TDesC& aDes) const;

TInt MatchF(const TDesC& aDes) const,

TInt MatchC(const TDesC& aDes) const;

Description

Use these functions to compare the match pattern 1n
aDes’s data arca against the content of this descriptor.

The match pattern can contain the wildcard characters <*’
and ‘?’, where ‘*’ matches zero or more consecutive occur-
rences of any character and ‘?” matches a single occurrence
of any character.

MatchF() takes the folded content of both descriptors for
matching while Match(C() takes the collated content of both
descriptors for matching. Match() simply takes the content
of both descriptors as they stand.

Sce e32.descriptors.folding for more information on fold-
ing and e32.descriptors.collating for more information on
collating.

Arguments
const TDesC& aDes A reference to any type of descriptor

whose data area contains the match pattern.

Return value
TInt If the content of this descriptor matches the pattern

supplied 1n aDes’s data area, then this 1s the length of the

most significant portion (i.e. the leftmost part) of this data
arca an which matches the pattern.

If the content of this descriptor does not match the pattern

supplied 1n aDes, KNotFound 1s returned.

US 6,536,879 Bl

45

Notes

To test for the existence of a pattern within a text string,
the pattern must start and end with an**’.

If the pattern terminates with an “*’ wildcard character
and the supplied string matches the pattern, then the value
returned 1s the length of the string which matches the pattern
up to but not mcluding the final asterisk. This 1s illustrated
in the examples below.

Example

This code fragment illustrates the use of Match()

TBufC<32>str(_L(“abedefghijklmnopgrstuvwxyz™));

str.Match(__L(**ijk*”)); //returns —> 11

str.Match(_ L{(“*1?7k*")); // ->11
strMatch(__L{*ijk*”")); // —> KNotFound
strMatch(__L(*abcd™)); // —> KNotFound
strMatch(_ L{(**1*mn*”)); / -»> 14

str.Match(__L(“abcdef*”)); //
str.Match(__ L(“*")), / -=0

—= 6

Locate a Character
¢32.descriptors. TDesC.locate-character
Locate(), LocateF() Locate a character forwards

TInt Locate(TChar aChar) const;
TInt LocateF(TChar aChar) const;

Description.

Use these functions to find the first occurrence of a
character within this descriptor. The search starts at the
beginning (i.e. the left side) of the data area.

LocateF() takes the folded content of the descriptor and
folds the supplied character before searching. This 1s useful
in searching for a character in a case-insensitive manner.

See e32.descriptors.folding for more information on fold-
Ing.

Arguments
TChar aChar The character to be found.

Return value
TInt If the character 1s found, this 1s the offset of its position

from the beginning of the data area.
KNotFound 1s returned 1f the character 1s not found.

Example
This code fragment illustrates the use of Locate().

TBufC<8> str(_ L(*abcd”));

str.Locate(‘d’); //returns 3
str.Locate(‘a’); //returns O
str.Locate(‘b’); // returns 1

str.Locate(‘x’); //returns KNotFound

LocateReverse(), LocateReverseF() Locate a character
In reverse

TInt LocateReverse(TChar aChar) coast;

TInt LocateReverseF(TChar aChar) const;

Description

Use these functions to find the {first occurrence of a
character within this descriptor, searching from the back (i.e.
the right side) of the data area.

LocateReverseF() takes the folded content of the descrip-
tor and folds the supplied character before searching. This 1s
useful 1 searching for a character in a case-insensitive
manner.

10

15

20

25

30

35

40

45

50

55

60

65

46

See e32.descriptors.folding for more information on fold-
Ing.

Arguments
TChar aChar The character to be found.

Return value
TInt If the character 1s found, this 1s the offset of its position
from beginning of data area.
KNotFound 1s returned 1f the character 1s-not found.
Find Data
e32.descriptors. TDesC.find-data
Find(), FindF(), FindC() Find data (given by descriptor)
TInt Find(const TDesC& aDes) const;
TInt FindF(const TDesC &aDes) const;
TInt FindC(const TDesC &aDes) const;

Description

Use these functions to find the location, within this
descriptor, of the data supplied in aDes’s. The search starts
at the beginning (i.c. the left side) of this descriptor’s data
area.

FindF() folds the content of both descriptors for the
purposes of searching while FindC() collates the content.
See €37.descriptors.folding for more information on folding
and e32.descriptors.collating for more information on col-
lating.

While these functions are most useful 1n searching for the
existence and location of a sub-string within a string, they
can, nevertheless, be used on general binary data.

FindF() is useful in performing a case-independent search
of a string for a sub-string;

FindC() is useful in searching a string for a sub-string on
the basis of their collating sequence.

Arguments
const TDesC& aDes A reference to any type of descriptor

which contains the data sequence to be found within this

descriptor.

Return value
TInt If the data 1s found, the offset of the starting position of

the data from the beginning of this descriptor’s data area.

KNotFound 1s returned if the data 1s not found.

Notes

If the descriptor aDes has zero length, then the returned
value will be zero.

Example

This code fragment illustrates the use of Find().

TBufC<32>str(__IL(*“abcdefghijklmnopqgrstuvwxyz”));

str.Find /! returns O

(“abe™));

(__L
str.Find(__1.(“bcde™)); // returns 1
str.Find(__L{*uvwxyz")); // returns 20
str.Find(__1.(“0123™)); // returns KNotFound
str.Find(__L{“abedefghijklmnopqrstuvwxyz01”)); // returns KNotFound
str.Find(__L{*")) ; // returns O

Find(), FindF(), FindC() Find data (given by address and
length)

TInt Find(const TUint??* aBuf,TInt al.en) const;

TInt FindF(const TUint??* aBuf, TInt alLen) const;

TInt FindC(const TUint??* aBuf,TInt al.en) const;

Description

Use these functions to find the location, within this
descriptor, of the data of length alLen at address aBuf. The
search starts at the beginning (i.e. the left side) of this
descriptor’s data area.

FindF() folds the content of both this descriptor and the
data at aBuf for the purposes of searching, while FindC()

US 6,536,879 Bl

47

collates the content. See e€32.descriptors.folding for more
information on folding and e.32.descriptors.collating for
more 1nformation on collating.

While these functions are most usetul in searching for the
existence and location of a sub-string within a string, they
can, nevertheless, be used on general binary data.

FindF() is useful in performing a case-independent search
of a string for a sub-string;

FindC() 1s useful in searching a string for a sub-string on
the basis of their collating sequence.

Arguments
const TUnt??* aBuf The address of the data sequence to be

found within this descriptor.

For the 8 bit variant, this 1s type TU1int8*; for the 16 bit

variant, this 1s type TUint16*.

TInt alLen The length of the data sequence.

This value must be non-negative otherwise the function

will panic with ETDes8LengthNegative for the 8 bit

variant or ETDes16l.engthNegative for the 16 bit variant.

Return value
TInt If the data 1s found, the offset of the starting position of

the data from the beginning of this descriptor’s data area.

KNotFound 1s returned if the data 1s not found.

Notes

If alLen 1s zero, then the returned value will be zero.
Extraction

¢32.descriptors. TDesC.extraction
Left() Construct TPirC for leftmost part of data

TPtrC Left(TInt alLength) const;
Description

Use this function to construct and return a constant
pointer descriptor to represent the leftmost part of this
descriptor’s data.

Arguments

TInt alLength The length of data within this descriptor which
the new descriptor 1s to represent.
This value must not be negative and must not be greater
than the current length of this descriptor otherwise the
function will panic with ETDes8PosOutOfRange for the
8 bit variant or ETDes16PosOutOfRange for the 16 bit
variant.
Return value
TPtrC The constant pointer descriptor representing the left-
most part of this descriptor’s data area.
Notes
No movement or copying of data takes place; the data
represented by the returned descriptor occupies the same
memory as the original.
Specifying a zero value for alLength will result 1n a
descriptor which represents no data.
Example
The code fragments illustrate the use of Left().

TBufC<8>str(__IL(*abcdefg™));

// returns a TPtrC descriptor
// representing the string

// c:abcdn

str.Left(4);

The result of this specific example can be visualised 1n a
before (shown in FIG. 9) and after (shown in FIG. 10)

fashion. The underlined text in the “after” diagram (FIG. 10)
indicates the data represented by the returned descriptor.

Note that the result of the following calls to Left() will
result in a panic.

10

15

20

25

30

35

40

45

50

55

60

65

43

TBufC<8>str(__L(“abedefg™));

str.Left(8);
str.Left(-1);

// panic !!
// panic !!

Right() Construct TPtrC for rightmost part of data
TPtrC Right(TInt alLength) const;
Description
Use this function to create and return a constant pointer
descriptor to represent the rightmost part of this descriptor’s
data.
Arguments
TInt alLength The length of data within this descriptor which
the new descriptor 1s to represent.
This value must not be negative and must not be greater
than the current length of this descriptor otherwise the
function will panic with ETDes8PosOutOfRange for the
8 bit variant or ETDes16PosOutOfRange for the 16 bit
variant.
Return value
TPtrC The constant pointer descriptor representing the right-
most part of this descriptor’s data area.
Notes
No movement or copying of data takes place; the data
represented by the returned descriptor occupies the same
memory as the original.
Specitying a zero value for alength will result in a
descriptor which represents no data.
Example

The code fragments illustrate the use of Right().

TBufC<8>str(__L(“abcdefg™));
// returns a TPtrC descriptor

/] representing the string
// ccdefgn

str.Right(4);

The result of this specific example can be visualised 1n a

before (FIG. 11) and after (FIG. 12) fashion. The underlined
text in the “after” diagram (FIG. 12) indicates the data
represented by the returned descriptor.

Note that the result of the following calls to Right() will
result 1n a panic.

TBufC<8>str(__L(“abedefg™));

str.Right(8);
str.Right(-1);

// panic !!
// panic !!

Mid() Construct TPtrC for portion of data

TPtrC Mid(TInt aPos) const;

TPtrC Mid(TInt aPos, TInt alLength) const;

Description

Use these functions to create and return a constant pointer
descriptor to represent a portion of the data held in this
descriptor.

The portion can be identified either by position alone or
by position and length. If identified by position alone, the
implied length 1s the length of data from the specified
position to the end of the data in this descriptor.

US 6,536,879 Bl

49

Arguments
TInt aPos The starting position, within this descriptor, of the

data to be represented by the new constant descriptor. The

position 1s given relative to zero; 1.€. a zero value 1implies
the leftmost data position.

This value 1s subject to the constraints outlined below.
TInt alLength The length of data which the new descriptor 1s

to represent.

This value 1s subject to the constraints outlined below.

If aPos alone 1s specified, then O<=aPos<=length of this
descriptor.

If aPos and al.ength are specified, then O<=(aPos+
alLength)<=length of this descriptor.

If these limits are exceeded, then the functions will panic
with ETDes8PosOutOfRange for the 8 bit variant or
ETDesl16PosOutOfRange for the 16 bit variant.

Return value
TPtrC The constant pointer descriptor representing the

selected portion of this descriptor’s data.

Notes

No movement or copying of data takes place; the data
represented by the returned descriptor occupies the same
memory as the original.

Specitying a value of aPos which has the same value as
the length of the data, will result 1n a constant pointer
descriptor which represents no data.

Example
The code fragments illustrate the use of Mid().

TBufC str(__L{*abcdefg™));

// returns TPtrC descriptors
// representing the strings . . .

str.Mid{0); //“abcdefg”
str.Mid(1); //“bedefg”
str.Mid(6); /g
str.Mid(3,3); //“def”
str.Mid((0,7); //“abcdefg”
str.Mid(8); // Panics !!
str.Mid(3,5); // Panics !!

Create a Heap Descriptor (HBufC)

¢32.descriptors. TDesC.create-HBufC

Alloc(), AllocL(), AllocLC() Create new HBufC for this
descriptor

HBufC* Alloc() const;

HBufC AllocL() const;

HBufC* AllocLLC() const;

Description

Use these functions to allocate and construct a new
HBufC descriptor on the heap and initialise 1t using the
content of this descriptor.

The functions attempt to acquire a single cell large enough
to hold an HBufC object containing a data area whose length
1s the same as the current length of this descriptor. The
content of this descriptor i1s copied mto the new HBuiC
descriptor.

If there 1s insuflicient memory available to create the new
HBufC descriptor, Alloc() returns NULL but both AllocI(
) and AllocLC() leave. See e32.exception.intro for more
information or, leave processing.

If the new descriptor is successfully created, AllocL.C()
will place the new descriptor on the clean-up stack before
returning with the address of that descriptor. See
e32.exception.transient for more information on the clean-
up stack.

10

15

20

25

30

35

40

45

50

55

60

65

50
Return value
HBufC* The address of the newly created HBufC descriptor.
Alloc() returns NULL, if there 1s insufficient memory.
AllocL() and AllocLC() leave, if there 1s insufficient
memory.
Example

The code fragments illustrate the use of AllocL().

TBufC<16>str(__L(“abedefg™));
HBufC* ptr;

ptr = str.AllocL{); // Returns address of new HBufC descriptor
// holding the string “abcdefg”.

ptr.Length(); // Returns the length 7

The result of this specific example can be visualised 1n a
before (FIG. 13) and after (FIG. 14) fashion.

Huffman Encoding/Decoding
¢32.descriptors. TDesC.huffman-encoding-decoding,
HufEncode() Huffman encode
TInt HufEncode(TDes& aDest) const;

TInt HufEncode(TDes& aDest,const TUint8* aHufBits)
const;

Description

Use this function to Huffman encode the data in this
descriptor and place the result into the descriptor aDest. The
target descriptor must be a modifiable type; 1.e. either a TPtr
or TBuf.

The caller can supply a Huffman tree or use the built-in
tree.

Arguments
TDes& aDest A reference to the modifiable descriptor which

1s to hold the result of encoding the data in this descriptor.
const TU1nt8* aHuiBaits If specified, the Huffman tree to be

used for encoding.

This 1s of type TUint8* for both 8 bit and 16 bit descrip-

tors.

If not supplied, the built-in Huffman tree 1s used.

Return value
TInt The total number of bits occupied by the encoded data.

HufDecode() Huffman decode

void HufDecode(TDes &aDest) const;

void HufDecode(TDes &aDest,const TUint8 *aHufTree)
const;

Description

Use this function to Huflman decode the data i this
descriptor and place the result into the descriptor aDest. The
target descriptor must be a modifiable type; 1.e. either a TPtr
or TBuf.

The caller can supply a Huffman tree or use the built-in
tree.

Arguments
TDes& aDest A reference to the descriptor which 1s to hold

the result of decoding the data in this descriptor.
const TUint8* aHufBits If specified, the Huiffman tree to be

used for decoding.

This 1s of type TU1nt8* for both &8 bit and 16 bit descrip-

tors.

If not supplied, the built-in Huffman tree 1s used.
Comparison Operators

¢32.descriptors. TDesC.comparison-operators

operators < <= > >= == != Comparison operators taking
any descriptor

TInt operator<(const TDesC& aDes) const;

TInt operator<=(const TDesC& aDes) const;

US 6,536,879 Bl

51

TInt operator>(const TDesCé& aDes) const;

TInt operator>=(const TDesC& aDes) const;

TInt operator==(const TDesC& aDes) const;

TInt operator!=(const TDesC& aDes) const;

Description

Use these operators to determine whether the content of
this descriptor 1s:

3 less than
less than or equal to

oreater than

oreater than or equal to

equal to

not equal to
the content of aDes.

The comparison 1s 1mplemented using the

TDesC::Compare() member function. See this member
function for more detail on the comparison process.

Arguments

const TDesC& aDes A reference to the descriptor whose
content 1s to be compared with the content of this descrip-
tor.
Return value

TInt true or false
Example
This code fragment illustrates the use of Compare().

TBufC<8>str(__L{“abcd™));

if (str == __L(*“abcde™)) // returns false

if (str < __L{*abcx™)) // returns true

if (str > __L{*abc™)) // returns true

Indexing Operator
¢32.descriptors. TDesC.1ndexing-operator
operator [| operator | |
const TUint??& operator] J(TInt anIndex) const;
Description

Use this operator to return a reference to a single data item
within this descriptor (e.g. a text character). The data can be
considered as an array of ASCII or UNICODE characters or

as an array of bytes (or double-bytes) of binary data.

This operator allows the individual elements of the array
to be accessed but not changed.

Arguments

TInt anIndex The 1index value indicating the position of the
clement within the data area. The index 1s given relative
to zero; 1.€. zero 1mplies the leftmost data position.
This value must be non-negative and less than the current
length of the descriptor otherwise the operation will panic
with ETDes8IndexOutOfRange for the & bit variant or
ETDes16IndexOutOfRange for the 16 bit variant
Return value

const TU1nt??& A reference to the data at position anlndex.
The data 1s of type TUnt8& for 8 bit variants and of type
TUintl6& for 16 bit variants.

10

15

20

25

30

35

40

45

50

55

60

65

52

Example
The code fragments illustrates the use of operator| |.

TBufC<8>str(__L(“abcdefg™));
str[O]; // returns reference to ‘a’
str[3]; // returns reference to ‘d’
str| 7]; // Panics !!
if (str]0] == ‘a’) // ... compare returns True
{
h
if (str]6] == ‘x") // ... compare returns False
{
h
TDes Class
Overview
Derivation

TDesC Abstract: implements descriptor behaviour which
does not modily data.
TDes Abstract: implements descriptor behaviour which can

change data.
Defined in

e32des8.h for the 8 bit variant (TDes8).
¢32des16.h for the 16 bit variant (TDes16)

Description

The class 1s abstract and cannot be constructed. It imple-
ments that aspect of descriptor behaviour which modifies the
descriptor’s data.

All member functions described here are available to all
derived descriptor classes.

Basic Functions

¢32.descriptors. TDes.basic-functions

MaxLength() Fetch maximum length of descriptor

TInt MaxLength() const;

Description

Use this function to return the maximum length of data
that the descriptor’s data area can hold.

For modifiable descriptors, the amount of data that a
descriptor’s data area can hold 1s variable; however, there 1s
an upper limit and this limit 1s the value returned by the
function.

For 8 bit descriptors, data 1s single-byte valued and the
maximum length has the same value as the maximum size.
For 16 bit descriptors, data 1s double-byte valued and the
value of the maximum length 1s half the maximum size.

Return value
TInt The maximum length of data that the descriptor’s data

arca can hold.

MaxSize() Fetch maximum size of descriptor

TInt MaxSize() const,

Description

Use this function to fetch the maximum size of the
descriptor’s data area, in bytes.

For 8 bit descriptors, data 1s single-byte and the maximum
size 1s the same value as the maximum length.

For 16 bit descriptors, data 1s double-byte and the maxi-
mum size 15 twice the value of the maximum length.

Return value

TInt The maximum size of the descriptor’s data area.
Change Length
¢32.descriptors. TDes.change-length

SetLength() Set length of data
void SetLength(TInt alLength);

US 6,536,879 Bl

53

Description

Use this function to set the length of the descriptor to the
value of alength.

Arguments
TInt alLength The new length of the descriptor.

This value must be non-negative and must not be greater

than the maximum length otherwise the function waill

panic with ETDes8Overflow for the 8 bit variant or

ETDes160verflow for the 16 bit variant

Zero() Set length of data to zero

void Zero();

Description

Use this function to set the length of the descriptor to zero.

SetMax() Set length of data to maximum

void SetMax();

Description

Use this function to set the length of the descriptor to its
maximum value.
Swap

¢32.descriptors. TDes.swap

Swap() Swap descriptor contents

void Swap(TDes& aDes);

Description

Swap the contents of this descriptor with the contents of
aDes. The lengths of both descriptors are also swapped to
reflect the change of data.

Arguments
TDes& aDes A reference to the descriptor whose contents

are to be swapped with the contents of this descriptor. This

descriptor must be a modifiable type; 1.e. either a TPtr or

TBuf.

Notes

Each descriptor must be capable of accommodating the
contents of the other descriptor. If the maximum length of a
descriptor 1s smaller than the length of the other descriptor,
then the function will panic with ETDes8Overtflow for the 8
bit variant or ETDes160verflow for the 16 bit variant

Example

The following code fragment illustrates the use of Swap(

)

TBuf<8> bufl(__L(“abcde™));
TBuf<8> buf2(_ L(“xyz”));
TBuf<16> buf3(__1(“0123456789));

bufl.Swap(buf2); //contents of bufl and buf2 swapped
OK

bufl.Swap(buf3); //Panic!!
Copy

¢32.descriptors. TDes.copy

Copy() Copy (unmodified) from any 8 bit or 16 bit
descriptor

void Copy(const TDesC&& aDes);

void Copy(const TDesC& aDes);

Description

Use these functions to copy the content of any descriptor
aDes 1nto this descriptor. The copied data replaces the
existing content of this descriptor.

The length of this descriptor 1s set to the length of aDes.

If this descriptor is the 8 bit variant, Copy() is overloaded
so that 1t can take another 8 bit descriptor or a 16 bat
descriptor as source.

If this descriptor is the 16 bit variant, Copy() is over-

loaded so that 1t can take an 8 bit descriptor or another 16 bit
descriptor as source.

10

15

20

25

30

35

40

45

50

55

60

65

54

Thus:

an 8 bit descriptor can be copied to an 8 bit descriptor
an 8 bit descriptor can be copied to a 16 bit descriptor
a 16 bit descriptor can be copied to an 8 bit descriptor

a 16 bit descriptor can be copied to a 16 bit descriptor

In the case where a 16 bit descriptor 1s copied to an 8 bit
descriptor, each double-byte 1s copied 1nto the correspond-
ing single byte where the value of the double-byte 1s less
than decimal 256. A double-byte value of 256 or greater
cannot be copied and the corresponding single byte 1s set to
a value of decimal 1.

In practice, the most common situation 1s to copy either
8 bit to 8 bit or 16 bit to 16 bat.

Arguments
const TDesC8& aDes A reference to any type of descriptor

whose content 1s to be or copied into this descriptor.
const TDesC16& aDes

Notes

The length of the data 1n aDes cannot be greater than the
maximum length of this descriptor otherwise the: function
will panic with ETDes8Overflow for the 8 bit variant or
ETDes160vertlow for the 16 bit variant.

Example

The code fragment illustrates the use of Copy().

TBuf<8>str;

str.Copy(__L“abedefg”);
str. Length();
str. MaxLength();

// copies “abcdefg” to tmp
// returns /
// returns 8

str.Copy(__L*“abc™),
str.Length();
str. MaxLength();

// copies “abc” to tmp
// returns 3
// returns &

str.Copy(__L*“abcedefghi™); // Panics !!

Copy() Copy from zero terminated string

void Copy(const T'Text* aString);

Description

Use this function to copy a zero terminated string, exclud-
ing the zero terminator, into this descriptor replacing the
existing content.

The length of this descriptor 1s set to the length of the
string, excluding the zero terminator.

Arguments
const TText* aString The address of the zero terminated

string to be copied.

Notes

The length of the string, excluding the zero terminator,
must not be greater than the maximum length of this
descriptor otherwise the function will panic with
ETDes80Overtlow for the 8 bit variant or ETDes160vertlow
for the 16 bit variant.

Copy() Copy from address

void Copy(const TUint?? aBuf, TInt alLength);

Description

Use this function to copy data of length al.ength from the
memory location aBuf.

The length of this descriptor 1s set to the value of al.ength.

Arguments
const TUint??* aBuf The address of the data to be copied.

For the 8 bit variant, this 1s type TUint8*; for the 16 bait

variant, this 1s type TUint16*.
TInt alLength The length of the data to be copied.

This value must be non-negative and must not be greater

than maximum length of this descriptor otherwise the

US 6,536,879 Bl

33

function will panic with ETDes8Overflow for the 8 bit

variant or ETDes160vertlow for the 16 bit variant.

CopyF(), CopyC() Copy (and fold/collate) from any
descriptor

void CopyF(const TDesC& aDes);

void CopyC(const TDesC& aDes);

Description

Use these functions to copy the content of aDesC 1nto this
descriptor, replacing the existing content.

The length of this descriptor 1s set to the length of aDes.

CopyF() folds the data before insertion into this descrip-
tor and CopyC() collates the data before insertion. See
¢32.descriptors.folding for more information on folding and
e32.descriptors.collating for more information on collating.

These functions are only of practical use for text data.

Arguments
const TDesC& aDes A reference to the descriptor whose

content 1s to be copied into this descriptor.

Notes

The length of the data 1n aDes must not be greater than the
maximum length of this descriptor otherwise the function
will panic with ETDes8Overflow for the 8 bit variant or
ETDes160verflow for the 16 bit variant

CopyLC(), CopyUC(), CopyCP() Copy (and change
case) from any descriptor

void CopyLC(const TDesC& aDes);

void CopyUC(const TDesCé& aDes);

void CopyCP(const TDesCé& aDes);

Description

Use these functions to copy the content of aDesC 1nto this
descriptor, replacing the existing content.

The length of this descriptor 1s set to the length of aDes.

Before copying data , CopyLC() converts characters to
lower case, CopyUC() converts characters to upper case and
CopyCP() capitalises text.

Capitalisation means the conversion of the first character
In a string to upper case and converting all remaining
characters to lower case.

Accented characters retain their accents.

These functions are only of practical use for string data.

Arguments
const TDesC& aDes A reference to any type of descriptor

whose content 1s to be copied into this descriptor.

Notes

The length of the data 1n aDes must not be greater than the
maximum length of this descriptor otherwise the function
will panic with ETDes8Overflow for the 8 bit variant or

ETDes160vertlow for the 16 bit variant
Copy Repeat
¢32.descriptors. TDes.copy-repeat
Repeat() Copy from descriptor and repeat
void Repeat(const TDesC& aDes)
Description

Use this function to copy the content of the descriptor
aDes, repeatedly into this descriptor.

The copies are concatenated together within this descrip-
tor and replace any existing data.

Copying proceeds until this descriptor 1s filled up to its
current length. If 1t cannot contain a whole number of copies
of aDes, then the last copy within this descriptor is truncated.

Arguments

const TDes& aDes A reference to any type of descriptor
whose contents are to be repeatedly copied.
Example
The following code fragment illustrates the use of Repeat(

).

10

15

20

25

30

35

40

45

50

55

60

65

56

TBuf<8>tgt(8); // length of tgt is the same as the

/f maximum which 1s 8

// tollowing strings
tgt.Repeat(_ L(“ab™)); // “abababab
tgt.Repeat(__L(“abc™); // “abcabcab”
tgt.Repeat(__I(“abede™)); // “abcdeabe”

generated 1n tgt

// changing length to 7 has the
// tollowing effect
tgt.SetLength(7);
tgt.Repeat(__1.(“ab™)); // “abababa”
tgt.Repeat(__L{*abc™)); // “abcabca”
tgt.Repeat(_ I.(“abede™)); // “abedeab”

Repeat() Copy from address and repeat

void Repeat(const TUint??* aBuf,TInt alLength);

Description

Use this function to copy data of length al.ength from the
memory location aBuf, repeatedly mto this descriptor. The
copies are concatenated together within this descriptor and
replace any existing data.

Copying proceeds until this descriptor 1s filled up to its
current length. If 1t cannot contain a whole number of copies,
then the last copy within this descriptor 1s truncated.

Arguments
const TUint??* aBuf The address of the data to be repeatedly

copied.

For the 8 bit variant, this 1s type TUint8*; for the 16 bait

variant, this 1s type TUint16*.

TInt alLength The length of the data to be repeatedly copied.
This value must be non-negative otherwise the function
will panic with ETDes8LengthNegative for the 8 bat
variant or ETDes16LengthNegative for the 16 bit variant.

Copy and Justify
¢32 descriptors. TDes.copy-justily
Justify() Copy from descriptor and justify
¢32.descriptors. TDes.copy-justily.justify
void Justify(const TDesC& aDes,TInt aWidth, TAlign

anAlignment, TChar aFill);

Description

Use this function to copy the content of aDes into this
descriptor, replacing the existing content. The target arca 1s
considered to be a field of width aWidth positioned at the
beginning (i.e. the left hand side) of this descriptor’s data
arca. The content of aDes 1s copied into the target area and
aligned within 1t as dictated by the value of anAlignment.

If aWidth has the value KDefaultJustifyWidth, then the
width of the target area (i.e. the value of aWidth) is re-set to
the length of aDes.

If the length of aDes 1s smaller than the width of the target
arca, then any spare space within the target area 1s padded
with the {ill character aFill.

If the length of aDes 1s greater than the width of the target
arca, then the amount of data copied from aDes 1s limited to
the value of aWidth.

Arguments
const TDesC& aDes A reference to any type of descriptor

whose content 1s to be copied.

TInt aWidth The width of the target area. This must be one
of:

KDefaultJustityWidth

a non-negative value

If 1t has the value KDefaultjustityWidth, then it 1s re-set
to the length of aDes.

If the value 1s less than the length of aDes, then the
amount of data copied from aDes 1nto the target area 1s

limited to aWidth.

US 6,536,879 Bl

S7

TAlign anAlignment An enumeration which dictates the
aligenment of the data within the target area. See
¢32.enum.TAlign.

TChar aFill The fill character used to pad the target area.
Notes
If the width of the target area 1s greater than the maximum

length of this descriptor, then the function will panic with

ETDes8Overflow for the 8 bit variant or ETDes160Overilow

for the 16 bit variant.

Do not set aWidth to a negative value (other than
KDefaultjustifyWidth) as this may have unpredictable con-
sequences.

Example

The following code fragments illustrate the use of Justify(

).

TBuf<16> tgt(_ [(“abc™));

tet.Justify(_ L(“xyz”),8,ECenter, @’);

The descriptor tgt has a maximum length of 16 and
initially holds the string “abc”. After the call to Justify(), the
content of tgt changes to “(@@xyz@(@@” as 1llustrated at
FIG. 15.

In this example, the content of the source descriptor 1s
taken to form an 8 character field which replaces the original
content of the descriptor tgt. The characters “xyz” are
centred within the new field and padded on both sides with
the fill character‘(@’.

Setting the alignment to ELeft would change the content
of tet to “xyz@@@@(@ ~ while setting the alignment to
ERi1ght would change the content of tgt to
“(@@@@@xyz”’In all three cases, the length of the descrip-
tor tet changes from 3 to 8.

TBuf<8> tgt(__I(“abc™));

tegt. Justify(_ L(“xyz”),9,ECenter, @’);
This call to Justify() will panic because the resulting
length of data in tgt would exceed the maximum length of

tgt.
TBuf<16> tgt(_ I(“abc™));

tet.Justify(_ L(“rstuvwxyz”),8,ECenter,‘@”);

In this call to Justify(), the content of tgt changes to
“rstuvwxy” as illustrated at FIG. 16.

Only eight of the nine characters 1n the source descriptor’s
data area are copied.
Insertion/Deletion

¢32.descriptors. TDes.insertion-deletion

Insert() Insert from descriptor

void Insert(TInt aPos,const TDesC& aDes);

Description

Use this function to insert the content of aDes into this
descriptor’s data area at the specified position. The existing
data at the specified position within this descriptor 1s moved
to the right to make way for the mserted data.

The length of this descriptor 1s increased to reflect the
Increase in content.

Arguments
TInt aPos The offset within this descriptor’s data area where

the content of aDes 1s to be inserted. This value can range

from zero to the length of this descriptor.

A value of zero means insert at the beginning of this

descriptor’s data area, while a value equal to the length of

this descriptor means insert at the end (i.e. append).

aPos must not be negative and must not be greater than the

length of this descriptor, otherwise the function will panic

10

15

20

25

30

35

40

45

50

55

60

65

53

with ETDes8PosOutOfRange for the 8 bit variant or
ETDesl16PosOutOfRange for the 16 bit variant.

const TDesC& aDes A reference to any type ol descriptor
whose content 1s to be 1nserted into this descriptor.

The length of aDes plus the length of this descriptor must
not exceed the maximum length of this descriptor other-

wise the function will panic with ETDes8Overtlow for the
8 bit variant or ETDes160vertlow for the 16 bit variant.

Example

The following code fragment illustrates the use of Insert(

TBuf<8>tgt(3);

TPtrC sre(__L(*abc™));

C // generates the strings . . .
tgt = src;

tgt.Insert(0, L{(*XYZ)); // “XYZabc”

tgt = srcC;

tgt.Insert(1, L(*XYZ)); // “aXYZbc”

tgt = src;
tgt.Insert{tgt.Length(), L(“XYZ™)); // “abcXYZ”

tgt = srcC;
tgt.Insert(tgt.Length()+1,_I1(“XYZ")),// ----> Panic !!

tgt = src;

tetInsert(1,_ L“WXYZ?)); /) “aWXYZbc”
tgt = src;
tgt.Insert(1, L“VWXYZ")); [/ “aVWXYZbc”

tgt = srcC;

tgt.Insert(1, L“UVWXYZ")); // ----> Panic !!

Delete() Delete
void Delete(TInt aPos,TInt al.ength);

Description

Use this function to delete a portion of data of length
alLength from this descriptor’s data area, starting at position
aPos.

The length of this descriptor 1s decreased to reflect the
reduction in content.

Arguments

TInt aPos The offset within this descriptor’s data area where
deletion 1s to start. This value can range from zero to the
length of this descriptor.

A value of zero means delete from the beginning of this
descriptor’s data area, while a value equal to the length of

this descriptor means, 1 effect, that no data will be
deleted.

aPos must not be negative and must not be greater than the
length of this descriptor, otherwise the function will panic
with ETDes8PosOutOfRange for the 8 bit variant or
ETDesl16PosOutOfRange for the 16 bit variant.

TInt al.ength The length of data to be deleted from the
descriptor.

If (alLength+aPos) is greater than the length of this
descriptor, then the length of data deleted 1s (this descrip-

tor length—aPos). In effect, the value of al.ength is
truncated.

US 6,536,879 Bl

59

Example
The following code fragment illustrates the use of Delete(

).

TBuf<8>tgt(4);
TBufC<4>src(__1(“abed™));
// generates the strings

tgt = src;

tgt.Delete(0,1); // “bed”

tgl = src;

tgt.Delete(0,2); /f “cd”

tgl = src;

tgt.Delete(0,4); /]«

tgt = src;

tgt.Delete(1,2); // “ad”

tgl = src;

tgt.Delete(2,2); // “ab”

tgt = src;

tgt.Delete(2,3); // “ab”

tgl = src;

tgt.Delete(2,256); // “ab”

tgl = src;

tgt.Delete(5,1); // ----> Panics !!

tgt = src;

tgt.Delete(—1,1); // ----> Panics !!

Replace() Replace
void Replace(TInt aPos,TInt al.ength,const TDesC&

aDes);
Description
Use this function to replace a portion of data of length
alLength 1n this descriptor’s data area, starting at position
aPos, with the content of the descriptor aDes.
The length of aDes may be less than al.ength, 1n which
case the resulting length of this descriptor decreases.
The length of aDes may be greater than alLength, 1n which
case the resulting length of this descriptor increases.
The length of this descriptor changes to retlect the
changed content.
Arguments
TInt aPos The offset within this descriptor’s data area where
replacement 1s to start. This value can range from zero to
the length of this descriptor.
A value of zero means replace at the beginning of this
descriptor’s data area aPos must not be negative and must
not be greater than the length of this descriptor, otherwise
the function panics with ETDes8PosOutOfRange for the
8 bit variant or ETDes16PosOutOfRange for the 16 bit
variant.
TInt alLength The length of data in this descriptor which is
to be replaced.
alLength must not be negative and (alLength+aPos) must
not be greater than the current length of this descriptor,
otherwise the function panics with
ETDes8LengthOutOfRange for the 8 bit variant or
ETDes16LengthOutOfRange for the 16 bit variant.
const TDesCé& aDes A reference to any type of descriptor
whose content 1s to replace the data of length al.ength at
position aPos 1n this descriptor.
The length of aDes must not be negative and must not
exceed the maximum length of this descriptor otherwise
the function panics with

ETDes8RemoteLengthOutOfRange for the 8 bit variant
or ETDes8RemoteLengthOutOfRange for the 16 bit vari-

ant.

10

15

20

25

30

35

40

45

50

55

60

65

60

The resulting length of this descriptor must not exceed the
maximum length of this descriptor, otherwise the function
panics with ETDes8Overflow for the 8 bit variant or
ETDes160verflow for the 16 bit variant.

Example

The following code fragment illustrates the use of

Replace().

TBuf<8>tgt(4);
TBufC<4>src(_ L{*abcd™));

- // generates the strings
tgt = src;

tgt.Replace(0,1,_L{(*v™)); // “ubcd”
tgt = src;
tgt.Replace(0,1, L{*uv™)); // “uvbed”

tgt = src;
tgt.Replace(0,1,_ L{(“uvw™)); // “uvwbecd”

tgt = src;
tgt.Replace(0,1_ L{*uvwxyz”));// ----> Panic !!

tgt = src;

tgt.Replace(1,2, L{*u™)); // “aud”
tgt = src;
tgt.Replace(1,2, L.(*7)); // “ad”

tgt = src;

tgt.Replace(1,4, L{*uvw™)); // ----> Panics !!
tgt = sr1c;

tgt.Replace(3,1,_ L{*uvw™)); // “abcuvw”

tgt = src;

tgt.Replace(4,0,_L{(*uvw™)); // “abcduvw”

Delete Leading and Trailing Spaces

¢32.descriptors. TDes.delete-spaces

TrimLeft() Delete spaces from left side of descriptor

void TrimLeft();

Description

Use this function to delete space characters from the left
hand side of the descriptor’s data area. The function deletes
every space character, starting at the beginning, until 1t
meets the first non-space character.

The length of the descriptor 1s reduced to reflect the loss
of the space characters.

Example

The following code fragment illustrates the use of

TrimLeft().

TBuf<8> str1(__L(* abcd ™));
TBuf<8> str2(__L{*a b ™));

// generates the following strings
// 1n the descriptors strl and str2

strl.Length();
strl. TrimLeft();
strl.Length();

// returns 8
// ccabcd "

// returns 6

str2.Length();
str2. TrimLeft{);
str2.Length();

// returns 5
// iiab el

// returns 4

TrimRight() Delete spaces from right side of descriptor

void TrimRight()

Description

Use this function to delete space characters from the right
hand side of the descriptor’s data area. The function deletes

US 6,536,879 Bl

61

every space character, starting at the end and moving
towards the beginning, until 1t meets the first non-space
character.

The length of the descriptor 1s reduced to reflect the loss
of the space characters.

Example

The following code fragment 1illustrates the use of

TrimRight().

TBuf<8> str1(__L(* abcd 7));
TBuf<8> str2(__L(“a b™));

// generates the following strings
// 1in the descriptors strl and str2
strl.Length();
strl. TrimRight();
strl.Length();

// returns &
//cc abcdn

// returns 6

str2.Length();
str2. TrimRight();
str2.Length();

// returns 5
// {{a b!?
// returns 4

Trim() Delete spaces from both sides of descriptor

void Trim();

Use this function to delete space characters from both the
left and the right hand sides of the descriptor’s data area.

The function deletes every space character starting at the
beginning unfil 1t meets the first non-space character and
deletes every space character starting at the end and moving
towards the beginning, until 1t meets the first non-space
character.

The length of the descriptor 1s reduced to reflect the loss
of the space characters.

Example

The following code fragment illustrates the use of Trim(

).

TBuf<8> str1(__L(* abed ™));
TBuf<8> str2(__L(“a b™));

// generates the following strings
// 1in the descriptors strl and str2

strl.Length();
strl. Trim();
strl.Length();

// returns &
//;; ade”

// returns 4

str2.Length();
str2. Trim{);
str2.Length();

// returns 5
// Gﬁa b??

// returns 3

Fold/Collate

¢32.descriptors. TDes.fold-collate

Fold(). Fold

void Fold();

Description

Use this function to fold the content of this descriptor. See
e¢32descriptors.folding for more information on folding.

Collate() Collate

void Collate();

Description

Use this function to collate the content of this descriptor.
See e32:descriptors.collating for more information on col-
lating.
Change Case

¢32.descriptors. TDes.change-case

LowerCase() Convert to lower case

void LowerCase();

10

15

20

25

30

35

40

45

50

55

60

65

62

Description

Use this function to convert the characters in this descrip-
tor to lower case.

UpperCase() Convert to upper case

void UpperCase();

Description

Use this function to convert the characters of this descrip-
tor to upper case.

Capitalise() Capitalise

void Capitalise();

Description

Use this unction to capitalise the content of this descriptor.

Capitalisation here means the conversion of the first
character to upper case and the conversion of all remaining
characters to lower case.

Example

The following code fragment illustrates the use of
Capitalise()

TBuf<24> tgt(_ L(“tHe CaT sAt On ThE mAt.”));

tgt.Capitalise(); // changes string to
// “The cat sat on the mat.”

Filling

¢32.descriptors. TDes.filling

Fill() Fill with character

void Fill(TChar aChar);

Description

Use this function to fill the this descriptor’s data area with
the character aChar, replacing any existing content.

The data area 1s filled from the beginning up to its current
length. It 1s not filled to 1ts maximum length.

The length of the descriptor remains unchanged.

Arguments

TChar aChar The character used to fill the descriptor’s data

area.
Fill() Fill with character up to specified length

void Fill(TChar aChar,TInt al.ength);
Description
Use this function to fill this descriptor’s data area with
alLength characters aChar, replacing any existing content.
The length of the descriptor is set to alLength.
Arguments
TChar aChar The character used to fill this descriptor’s data
arca
TInt alLength The new length of the descriptor. This value
must not be negative and must not be greater than the
maximum length of this descriptor otherwise the function
will panic with ETDes8Overflow for the 8 bit variant or
ETDesl60vertlow for the 16 bit variant.
FillZ() Fill with zeroes
void FillZ();
Description
Use this function to {ill the this descriptor’s data area with
zeroes (i.e. 0x00 or 0x0000), replacing any existing content.
The descriptor’s data area 1s filled from the beginning up
to 1ts current length. It 1s not filled up to 1ts maximum length.
The length of the descriptor remains unchanged.
FillZ() Fill with zeroes up to specified length
void FillZ(TInt al.ength);
Description
Use this function to fill the this descriptor’s data area with
alLength zeroes (i.e. 0x00 or 0x0000), replacing any existing
content.

US 6,536,879 Bl

63

The length of the descriptor 1s set to alLength.
Arguments

TInt alLength The new length of the descriptor. This value
must not be negative and must not be greater than the
maximum length of this descriptor otherwise the function
will panic with ETDes8Overtflow for the 8 bit variant or
ETDes160verflow for the 16 bit variant.

Integer Conversion
¢32.descriptors. TDes.integer-conversion
Num() Convert signed integer

void Num(TInt aVal);

Description

Use this function to convert the signed integer aVal 1nto
a decimal character representation and place the resulting
characters into this descriptor’s data area, replacing any
existing content. If the integer 1s negative, the character
representation 1s prefixed by a minus sign.

Arguments
TInt aVal The value to be converted to decimal characters.

Example

The following code fragment illustrates the use of Num(

).

TBul<16> tgt;
TInt numpos(176);
TInt numneg(-176);

// generates the following strings
// 1n the descriptor tgt . . .

// “176”
// ==_176H

tgt.Num(numpos);
tgt. Num(numneg);

Num(), NumUC() Convert unsigned integer

¢32.descriptors. TDes.integer-conversion. Numusi
void Num(TUint aVal,TRadix aRadix=EDecimal);

void NumUC(TUint aVal,TRadix aRadix=EDecimal);

Description

Use these functions to convert the unsigned integer aVal
into 1ts corresponding character representation and place the
resulting characters into this descriptor’s data area, replacing
any existing content.

Num() converts the hexadecimal characters ‘a’, ‘b’, ‘c’,
‘d’, ‘e’ and ‘f” to lower case, while NumUC() converts them
to upper case.

The choice of function i1s dependent on the needs of
applications.

Arguments
TUint aVal The value to be converted to characters.
TRadix aRadix The number system representation for the

unsigned integer. This 1s an enumeration; sce

¢32.descriptors. TRadix.

If no value 1s supplied, then EDecimal 1s taken by default.

Example

The following code fragment illustrates the use of Num(

) and NumUC().

TBuf<16>tgt; // generates the following strings
TUint number(176); // in the descriptor tgt . . .

tgt. Num(number,EBinary); // “10101010”

tgt. Num{number,EOctol); // “252”

tgt. Num(number,EDecimal); // “176”

tgt. Num(number,EHex); // “aa” «<-NB hex value 1n lower case

tgt. NumUC(number,EHex); // “AA” <-NB hex value in UPPER case
tgt. Num(number); // “176” <-EDecimal taken as default

10

15

20

25

30

35

40

45

50

55

60

65

64

Real Number Conversion
¢32.descriptors. TDes.real-number-conversion
Num() Convert floating point number
¢32.descriptors.num-float

TInt Num(TReal aVal,const TRealFormat& aFormat);

Description

Use this function to convert the floating point number
aVal mto a character representation and place the resulting
characters 1nto this descriptor’s data arca, replacing any
existing content.

The format of the character representation 1s dictated by
aFormat, an object of type TRealFormat. Sec
¢32.class. TRealFormat for more information on the TReal-
Format class.

Arguments
TReal aVal The floating point number to be converted. The

value must be such that 1.0E-99<=|aVal|<=1.0E99.

Any value smaller than 1.0E-99 1s assumed to be zero.
TRealFormat& aFormat A reference to a TRealFormat

object which dictates the format of the conversion.

Return value
TInt If the conversion 1s successful, the length of the

converted string.

If the conversion fails, a negative value indicating the

cause of failure. The possible values and their meaning,

are as follows:

KErrArgument The length of the converted number is
oreater than the maximum length of this descriptor. In
other words, there 1s msuflicient space 1n this descriptor to
hold the character representation.

KErrOvertlow The number 1s too large to represent

KErrUndertflow The number 1s too small to represent

KErrGeneral The conversion cannot be completed; e.g. the
value of the 1W1dth member of TRealFormat 1s too small.

Formatting
¢32.descriptors. TDes.formatting
Format() Convert multiple arguments
e32.descriptors.format
void Format(TRefByValue<const TDesC> aFmt, . . .);
Description
Use this function to insert formatted text into this

descriptor, as controlled by the format string supplied 1n the

descriptor aFmt and the argument list which follows it. Any
existing content 1n this descriptor 1s discarded.

The format string contained 1n aFmt contains literal text,
embedded with commands for converting the trailing list of
arcuments 1nto text.

The embedded commands are character sequences pre-
fixed with the ‘%’ character. The literal text 1s simply copied
into this descriptor unaltered while the ‘%’ commands are
used to convert successive arguments (which follow aFmt in
the argument list).

The resulting stream of literal text and converted argu-
ments 1s 1mserted into this descriptor. The syntax of the
embedded commands follows one of the four general pat-
terns shown below. Each bracketed item indicates a charac-
ter or sequence of characters having a specific meaning.

A bracketed 1item within square brackets 1s optional.

% <type>
where <type> 1s a character code which indicates how
data 1s to be converted. The data 1s converted without
padding and only occupies the space required.

% <width>[<prec> |<type>

where <type> 1s a character code indicating how data 1s
to be converted and <width> contains either numeric
characters which directly define the size of the field to
be occupied by the converted data or an ‘*° character.

US 6,536,879 Bl

65

An “*’ indicates that the size of the field 1s taken from
the next TUint value in the argument list. <prec> 1s
optional and 1s only relevant when a real number 1s to
be converted. If specified, <prec> must be a °.” char-
acter followed by an integer representing the precision
of the real number, (i.e. the number of decimal places).
If <prec> 1s omitted, the precision for the conversion of

a real number defaults to KDefaultPrecision.

The converted data 1s right-aligned within the field; 1f
it occupies fewer character positions than specified 1n
<width>, 1t 1s padded to the left with blank characters.

If more than <width> characters are generated by the
conversion, then the outcome depends on the value of
<type>.

If type> is either e, E, {, or F, (the source data is a real
number), the value of <width> is ignored and all the
generated characters are accepted; however, the maxi-

mum number of characters generated can never exceed
KMaxRealWidth.

If <type> 1s either g, or G, (the source data 1s a real
number), the value of <Width> is ignored and all the
generated characters are accepted; however, the maxi-

mum number of characters generated can never exceed
KDefaultReal Width.

If the source data 1s any other type, the converted data
1s truncated so that only <width> characters are taken.

%0<width> [<prec> |<type>

where <type> 1s a character code indicating how data 1s
to be converted and <width> contains numeric charac-
ters which directly define the size of the field to be
occupied by the converted data.

The converted data 1s right-aligned within this field; if
it occupies fewer character positions than specified 1n
<width>, it 1s padded to the left with ‘0’ characters.

If more than <width> characters are generated by the
conversion, then the outcome depends on the value of
<type>.

If type> is either e, E, {, or F, (the source data is a real
number), the value of <width> 1s ignored and all the
generated characters are accepted; however, the maxi-

mum number of characters generated can never exceed
KMaxRealWidth.

If <type> is either g, or G, (the source data is a real
number), the value of <width> is ignored and all the
generated characters are accepted; however, the maxi-

mum number of characters generated can never exceed
KDefaultReal Width.

If the source data 1s any other type, the converted data
1s truncated so that only <width> characters are taken.

<prec> 1s optional and 1s only relevant when a real
number 1s to be converted.

If specified, <prec> must be a‘.” character followed by
an mteger representing the precision of the real number,
(i.c. the number of decimal places). If <prec> 1is
omitted, the precision for the conversion of a real
number defaults to KDefaultPrecision.

(Note: in this specific case, <width> cannot be a single
“*? character. If 1t 1s necessary to take the width value
from the argcument list, use the more general pattern
%o<a><p> <width><type>).

%<a><p><width>| <prec>|<type>

where <type> 1s a character code indicating how data 1s
to be converted and <width> contains either numeric

characters which directly define the size of the field to

10

15

20

25

30

35

40

45

50

55

60

65

66

be occupied by the converted data or an ‘*’ character.
An “*’ 1ndicates that the size of the field 1s taken from

the next TUint value 1n the arecument list.

<prec> 1s optional and 1s only relevant when a real
number 18 to be converted.

If specified, <prec> must be a ‘.” character followed by
an integer representing the precision of the real number,
(i.c. the number of decimal places). If <prec> is
omitted, the precision for the conversion of a real
number defaults to KDefaultPrecision.

The converted data 1s aligned within this field as
defined by the value of <a> as follows:

+ right aligned
— left aligned
= centre aligned

If the converted data occupies fewer character positions
than specified 1n <width>, 1t 1s padded with the pad
character defined by <p>.

Note that a pad character of ‘*’ 1s a special case. It
indicates that the code value of the pad character is
taken from the next TUint value 1n the argument list.
The data for conversion 1s taken from the following
argument.

Thus, to pad with asterisks, the code value of the
asterisk character must be supplied through the argu-
ment list.

If more than <width> characters are generated by the
conversion, then the outcome depends on the value of
<type>.

If <type> is either e, E, {, or F, (the source data is a real
number), the value of <width> is ignored and all the
generated characters are accepted; however, the maxi-

mum number of characters generated can never exceed
KMaxRealWidth.

If <type> 1s either g, or G, (the source data 1s a real
number), the value of <Width> is 1gnored and all the
generated characters are accepted; however, the maxi-

mum number of characters generated can never exceed
KDetfaultReal Width.

If the source data 1s any other type, the converted data
1s truncated so that only <widths characters are taken.
The conversion of argument data 1s dictated by the value

of <type> which consists of a single character. Note the case
of the character as this 1s significant.

The possible values for <type> are as follows:

b Interpret the arcument as a TUint and convert 1t to 1ts
binary character representation. This can be either
upper or lower case.

o Interpret the arecument as a TUint and convert 1t to 1ts
octal character representation. This can be either upper
or lower case.

d Interpret the argument as a TInt and convert it to 1ifs
signed decimal representation. This can be either upper
or lower case.

If the value 1s negative, the representation will be
prefixed by a minus sign.

¢ Interpret the argument as a TReal and convert 1t to
exponent format representation (Sece
c32.class. TRealFormat and
¢32.enum.TRealFormatType.)

(Note the lower case)

E Interpret the argument as a TReal96 and convert it to
exponent format representation (See

US 6,536,879 Bl

67

c32.class. TRealFormat
¢32.enum.TRealFormatType).

and

(Note the upper case)

I Interpret the arcument as a TReal and convert it to fixed
format representation (See e32.class. TReal Format and
¢32.enum. TRealFormatType).

(Note the lower case)

F Interpret the argument as a TReal96 and convert it to

fixed format representation (See
c32.class. TRealFormat and
¢32.enum.TRealFormatType).

(Note the upper case)

o Interpret the argument as a TReal and convert it to either
fixed or exponent format representation, whichever
format can present the greater number of significant
digits (See e32.class.TRealFormat and
¢32.enum.TRealFormatType).

(Note the lower case)

G Interpret the arcument as a TReal96 and convert 1t to
cither fixed or exponent format representation, which-
ever format can present the greater number of signifi-
cant digits (See e32.class.TRealFormat and

¢32.enum.TRealFormatType).

(Note the upper case)

u Interpret the argcument as a TUint and convert 1t to 1ts
unsigned decimal representation. This can be either
upper or lower case.

X Interpret the arcument as a TUint and convert 1t to its
hexadecimal representation. This can be either upper or
lower case.

p Generate the required number of pad characters. No
arcuments are accessed.

This can be either upper or lower case.

¢ Interpret the argument as a TUint value and convert 1t
to a smngle ASCH character value. This can be either
upper or lower case.

s Interpret the argcument as a zero terminated string. Copy
the characters from the string but exclude the zero
terminator.

(Note the lower case).

S Interpret the arcument as the address of a descriptor and
copy the characters from 1it.

(Note the upper case).

w Interpret the arcument as a TU1int and convert the value
to a two byte binary numeric representation with the
least significant byte first. The generated output 1s two
bytes whether this descriptor 1s an 8 bit or a 16 bat
variant.

(Note the lower case).

W Interpret the argument as a TU1nt and convert the value
to a four byte binary numeric representation with the
least significant byte first. The generated output 1s four
bytes whether this descriptor 1s an 8 bit or a 16 bit
variant.

(Note the upper case).

m Interpret the arcument as a TUint and convert the value
to a two byte binary numeric representation with the
most significant byte first. The generated output 1s two
bytes whether this descriptor 1s an 8 bit or a 16 bit
variant.

(Note the lower case).

M Interpret the arcument as a TU1nt and convert the value
to a four byte binary numeric representation with the

10

15

20

25

30

35

40

45

50

55

60

65

63

most significant byte first. The generated output 1s four
bytes whether this descriptor 1s an 8 bit or a 16 bit
variant.

(Note the upper case).
Arguments
TRefByValue<const TDesC> aFmt Any type of descriptor
containing the format string. The TRetByValue 1s con-
structed from the aFmit.
. . A variable number of argcuments to be converted to text
as dictated by the format string in aFmit.
Notes
Two successive ‘%’ characters are interpreted as literal
text and causes one ‘%’ character to be generated.

Blank characters are interpreted as literal text.

Specitying a pad character of “*” 1s a special case. It
indicates that the code value of the pad character 1s taken as
the next TUint value from the argument list. Any data
needed for conversion 1s taken from the following argument.

Thus, to use asterisks as a pad character, the code value of
the asterisk character must be supplied 1n the arcument list.

Using an ‘*’ character for both <width> and <p> means
that the width value and the pad character will be taken from
the arecument list. Note that the first “*” character will be
interpreted as representing the width only 1f 1t 1s preceded by
one of the alignment characters ‘+” ‘=" or ‘=’ (i.e., if the
command follows the fourth general pattern outlined above).

Specitying the command %p results in no characters
being generated. To be useful, a width needs to specified; for
example ‘%1p’ or ‘%6p’.

If <prec> 1s specified when the data to be converted 1s not
a real number, then 1t 1s 1gnored.

If any command has incorrect syntax, then the function
will panic with ETDes8BadFormatDescriptor for the 8 bit
vartant or ETDesl6BadFormatDescriptor for the 16 bit
variant

If the resulting length of text in this descriptor exceeds 1its

maximum length, then the function will panic with
ETDes80Overtlow for the 8 bit variant or ETDes160Overflow

for the 16 bit variant.

Example

The following code fragments 1llustrate the various pos-
sibilities of Format().

TBuf<256>tgt;

%c %d %0 %u %x]’),65,65,65,65,65,65);
//generates:
//|1000001 A 65 101 65 41].
tgt.Format(__ L.(*]| %04x["),65;

//generates:

//]0041]
tgt.Format(_ L(“| %4x]"),65;

//generates:

/41

// note the use of blanks as

// default fill characters
tgt.Format(__L.(“| %6*x]"),4,65;

//generates:

/] 41]

// width taken from the

// argument list
tgt.Format(_ L.(*]| %+$4d.00 %S]”),65,&(_L{(“over”)));
//generates:
/] $$65.00 over]
// note that %ls can be
// replaced by %S

tgt.Format{__L{*[%b

US 6,536,879 Bl

69

-continued

tgt.Format{__L{*[%+0*S["),10,&{_L{*“fred”)));

//generates:
//[000000fred] 5
tgt.Format(_ L(*| %="6x]"),*",65);
//generates:
tgt.Format{__L{*“[%+**d]”),*.”,10,(-65));
//generates:
i ... -65] 10
tgt.Format(__L.(*| %-Adp]”).65);
//generates:
IAAAA]
// and makes no use of the
// argument list
tgt.Format(__L(“| %om[”),4660); 15
//generates:
//the character ‘|’
//Tollowed by a byte holding 0x12
//followed by a byte holding 0x34
//followed by the character ‘|’
tgt.Format(__ L(*]| %M |"),4660); 50
//generates:
//the character ‘|’
//Tollowed by a byte holding 0x00
//followed by a byte holding 0x00
//Tollowed by a byte holding 0x12
//Tollowed by a byte holding 0x34
//followed by the character |’ 25
tgt.Format(__ L.(*]| %w]”),4660);
//generates:
//the character ‘|’
//followed by a byte holding 0x34
//Tollowed by a byte holding 0x12
//followed by the character |’ 30
tgt.Format(__1L.(“| %W |”),4660);
//generates:
//the character ‘|’
//followed by a byte holding 0x34
//followed by a byte holding 0x12
//Tollowed by a byte holding 0x00 35
//followed by a byte holding 0x00
//followed by the character |’
tgt.Format(_ L.(*| %6.2¢["),3.4555);
//generates:
//13.46E+00]
tgt.Format(__L(*]| %6.2{]"),3.4555); 40
: //generates:
/] 3.46]
tgt.Format(_ 1.(“| %6.2g]"),3.4555);
//generates:
//13.4555]
45
FormatList() Convert multiple arguments
void FormatList(const TDesC& aFmt,VA__ LIST al.ist);
Description
This function 1s equivalent to Format().
Arguments 50

const TDesC& aFmt A reference to any type of descriptor
containing the format string.

VA__LIST alList A pointer to a variable number of arcuments
to be converted to text as dictated by the format string in
akFmt.

Appending,
¢32.descriptors. TDes.appending
Append() Append a character
void Append(TChar aChar);

Description
Use this function to add a character onto the end of the

content of this descriptor.
The length of this descriptor 1s incremented by one.
Arguments

TChar aChar The character to be appended.

Notes
The length of this descriptor must be less than 1ts maxi-
mum length. If the descriptor i1s already at its maximum

55

60

65

70

length, any attempt to append another character will cause
the function to panic with ETDes80Overtlow for the § bat
variant or ETDes160vertlow for the 16 bit variant.

Append() Append any descriptor

void Append(const TDesC& aDes);

Description

Use this function to append the content of aDes onto the
end of the content of this descriptor.

The length of this descriptor 1s incremented by the length
of aDes.

There 1s an extra overloaded variation of Append() so
that, 1f this descriptor is the 8 bit variant, Append() can take
the 16 bit variant of aDes as well as the expected 8 bt

variant.
Thus:

an 8 bit descriptor can be appended onto an 8 bit descrip-
tor

a 16 bit descriptor can be appended onto a 16 bit descrip-
tor

a 16 bit descriptor can be appended onto an 8 bit descrip-

tor.

In the case where a 16 bit descriptor 1s appended to an 8
bit descriptor, each double-byte 1s appended as a single byte
where the value of the double-byte 1s less than decimal 256.
A double-byte value of decimal 256 or greater cannot be
appended as a single byte value and, 1n this case, the single
byte 1s set to a value of decimal 1.

Arguments
const TDesCé& aDes A reference to any type of descriptor

whose content 1s to be appended.

Notes

The resulting length of this descriptor must not be greater
than 1ts maximum length otherwise the function will panic
with ETDes8Overtflow for the 8 bit variant or
ETDes160verflow for the 16 bit variant

Append() Append from address

void Append(const TUint??* aBuf,TInt al.ength);

Description

Use this function to append data of length al.ength at
address aBuf onto the end of the content of this descriptor.

The length of this descriptor 1s incremented by the value
of alLength.

Arguments
const TUint??* aBuf The address of the data to be appended.

For the 8 bit variant, this 1s type TUint8*; for the 16 bit

variant, this 1s type TUint16*.

TInt alLength The length of the data to be appended.

Notes

The resulting length of this descriptor must not be greater
than 1ts maximum length otherwise the function will panic
with ETDes8Overflow for the &8 bit variant or
ETDesl160vertlow for the 16 bit variant.

The value of alLength must be non-negative otherwise the
results may be unpredictable.

AppendFill() Append with fill characters

void AppendFill(TChar aChar, TInt alLength);

Description

Use this function to add al.ength characters aChar onto
the end of any existing data 1n this descriptor.

Arguments
TChar aChar The fill character.

TInt alLength The number of {ill characters to be appended.

Notes

The resulting length of this descriptor must not be greater

than 1ts maximum length otherwise the function will panic
with ETDes8Overflow for the & bit wvariant or
ETDes160verflow for the 16 bit variant

US 6,536,879 Bl

71

AppendJustify() Append any descriptor and justify
¢32.descriptors. TDes.appending.appendjustify-anydesc
void AppendJustify(const TDesC& aDes, TInt aWidth,

TAlign anAlignment, TChar aFill);

Description

Use this function to copy the content of aDes onto the end
of the content of this descriptor.

The target area within this descriptor 1s considered to be
an arca of width awidth, immediately following the existing
data. The source data 1s copied into this target area and
aligned within 1t as dictated by the value of anAlignment.

If aWidth has the value KDefaultJustityWidth, then the
width of the target area (i.e. the value of aWidth) is re-set to
the value of alLength.

If alLength 1s smaller than the width of the target area, then
any spare space within the target area 1s padded with the fill
character aFill.

If alL.ength 1s greater than the width of the target area, then
the amount of data copied from the location aString is
limited to the value of aWidth.

Arguments
const TDesCé& aDes A reference to any type of descriptor

whose content 1s to be copied.

TInt aWidth The width of the target area. This must be one
of:

KDefaultJustityWidth

a non-negative value
If 1t has the value KDefaultJustiftyWidth, then it 1s re-set
to the length of aDes.
If the value 1s less than the length of aDes, then the
amount of data copied from aDes into the target area is
limited to this value.

TAlign anAlignment An enumeration which dictates the
alienment of the data within the target area. See
¢32.enum.TAlign.

TChar aFill The fill character used to pad the target area.
Notes

If the width of the target area 1s greater than the maximum
length of this descriptor, then the function will panic with
ETDes8Overflow for the 8 bit variant or ETDes160Overtlow
for the 16 bit variant.

Do not set aWidth to a negative value (other than
KDefaultJustifyWidth) as this may have unpredictable con-
Sequences.

Example

The following code fragments 1llustrate the use of
AppendJustify().

TBuf<16> tgt(__I(“abc™));

tet. AppendJustify(_ L(“xyz”),8,ECenter,‘ @’);

The descriptor tgt has a maximum length of 16 and
initially holds the string “abc”. After the call to
AppendlJustify(), the content of tgt changes to
“abc@@xyz@@@” as 1illustrated at FIG. 17.

In this example, the content of the source descriptor 1s
taken to form an 8 character field which 1s appended to the

content of the descriptor tgt. The characters “xyz” are

centred within the new field and padded on both sides with
the fill character ‘(@’.

Setting the alignment to ELeft would change the content
of tmp to “abcxyz@(@ (@@ (@’ while setting the alignment to
ERight would change the content of tmp to

“abc@@@@@xyz”

10

15

20

25

30

35

40

45

50

55

60

65

72

In all three cases, the length of the descriptor tgt changes
from 3 to 11.

TBuf<16> tgt(_ L(“abcdefghik™));

tgt. AppendJustify(_ [.(“01234567),7, ECenter, @’);

This call to AppendJustify() will panic because the
resulting length of tgt would exceed 1ts maximum length.

AppendJustify() Append part of any descriptor and
justily

¢32.descriptors. TDes.appending.appendjustify-partdesc

void AppendJustify(const TDesC &Des, TInt alength,
TInt aWidth,

TAlign anAlignment, TChar aFill);

Description
Use this function to append data of length al.ength from

the descriptor aDes onto the end of the content of this
descriptor.

The target area within this descriptor’s data area 1s con-
sidered to be an area of width aWidth, immediately follow-
ing the existing data. The source data 1s copied into this
target area and aligned within 1t as dictated by the value of
anAlignment.

If aWidth has the value KDefaultJustifyWidth, then the
width of the target area (i.e. the value of aWidth) is re-set to
the value of al.ength.

If alLength 1s smaller than the width of the target area, then
any spare space within the target area 1s padded with the fill
character aFill.

If alLength 1s greater than the width of the target area, then
the amount of data copied from aDes 1s limited to the value
of awidth.

Arguments
coast TDesCé& aDes A reference to any type of descriptor

whose content 1s to be copied.

TInt alLength The length of data to be copied from the source
descriptor aDes.

If this value 1s greater then the value of aWidth, then 1t 1s

truncated to the value of aWidth.

TInt aWidth The width of the target area. This must be one
of:

<KDefaultJustity Width

<a non-negative value

If 1t has the value KDetfaultJustityWidth, then it 1s re-set

to the value of alength.

If this value 1s less than alLength, then the amount of data

copied from aDes 1s limited to aWidth.

TAlign anAlignment An enumeration which dictates the
alienment of the data within the target area. See
¢32.enum.TAlign.

TChar aFill The fill character used to pad the target area.
Notes
If the width of the target area 1s greater than the maximum

length of this descriptor, then the function will panic with

ETDes80Overtlow for the 8 bit variant or ETDes160vertlow

for the 16 bit variant.

Do not set aWidth to a negative value (other than
KDefaultJustifyWidth) as this may have unpredictable con-
sequences.

Do not set alLength to a negative value as this may have
unpredictable consequences.

Make sure that the value of alLength 1s not greater than the
length of aDes otherwise unexpected data may be copied.

US 6,536,879 Bl

73

Example
The following code fragments illustrate the use of
AppendJustify().

TBuf<16> tgt(__I(“abc™));

tet. AppendJustify(I(“xyz012344567897),3,8,ECenter,
‘@’);

The descriptor tgt has a maximum length of 16 and
initially holds the string “abc”. After the call AppendJustify(
), the content of tgt changes to “abc@@xyz@@@” as
illustrated 1n FIG. 18.

In this example, the first three characters of
_ L*xyz01234567789” are taken to form an 8 character field
which 1s appended to the existing content of the descriptor
tgt. The characters “xyz” are centred within the new field
and padded on both sides with the fill character “‘(@’.

Setting the alignment to ELeft would change the content
of tgt to “abexyz(@@@(@(@” while setting the alignment to
ERight would change the content of tgt to
“abc@@@@@xyz”

In all three cases, the length of the descriptor tgt changes
from 3 to 11.

TBuf<16> tgt(__[(“abc™));

tgt. AppendJustify(_ 1.01234567897,9,8,ECenter,‘ (@’);

In this example, the call to AppendJustify() changes the
content of tgt to “abc01234567”.

As the specified length 1s greater than the specified width,
the length 1s truncated so that only eight characters are
copied from the source descriptor.

TBuf<16> tgt(_ I(“abcdefghik™));

tgt. AppendJustify(__1.“01234567897,3,7, ECenter,‘ (@’);

This call to AppendJustify() panics because the resulting
length of tgt would exceed 1ts maximum length.

AppendJustify() Append from address and justify

¢32.descriptors. TDes.appending.appendjustify-fromadr

void AppendJustify(const TUint??* aString,TInt alLength,
TInt aWidth,

TAlign anAlignment, TChar aFill);

Description

Use this function to append data of length alLength from
the address aString onto the end of the content of this
descriptor.

The target arca within this descriptor’s data area 1s con-
sidered to be an area of width aWidth, immediately follow-
ing the existing data. The source data 1s copied into this
target area and aligned within 1t as dictated by the value of
anAlignment.

If aWidth has the value KDefaultJustityWidth, then the
width of the target area (i.e. the value of aWidth) is re-set to
the value of alLength.

If alL.ength 1s smaller than the width of the target area, then
any spare space within the target area 1s padded with the fill
character aFill.

If alL.ength 1s greater than the width of the target area, then
the amount of data copied from the location aString is
limited to the value of aWidth.

Arguments
const TUmnt??* aBuf The address of the data to be copied

and appended.

For the 8 bit variant, this 1s type TUint8*; for the 16 bit

variant, this 1s type TUint16*.

TInt alLength The length of data to be copied from the
location aString.

10

15

20

25

30

35

40

45

50

55

60

65

74

If this value 1s greater then the value of aWidth, then 1t 1s
truncated to the value of awidth.

TInt aWidth The width of the target arca This must be one
of:

KDefaultJustityWidth

a non-negative value

If 1t has the value KDefaultJustityWidth, then 1t 1s re-set

to the value of alLength.

If this value 1s less than alLength, then the amount of data
copied from the location aString 1s limited to aWidth.
TAlign anAlignment An enumeration which dictates the

alignment of the data within the target area See

¢32.enum.TAlign.
TChar aFill The fill character used to pad the target area.

Notes

If the width of the target area 1s greater than the maximum
length of this descriptor, then the function will panic with
ETDes8Overtlow for the 8 bit variant or ETDes160Overilow
for the 16 bit variant.

Do not set aWidth to a negative value (other than
KDefaultJustifyWidth) as this may have unpredictable con-
sequences.

Do not set alLength to a negative value as this may have
unpredictable consequences.

AppendJustify() Append zero terminated string and jus-
tily

¢32.descriptors. TDes.appending.appendjustify-zeroterm

void AppendJustify(const TText* aString, TInt aWidth,

TAlign anAlignment, T'Char aFill);

Description

Use this function to append the zero terminated string,
located at aString, onto the end of the content of this
descriptor. The zero terminator 1s not copied.

The target area within this descriptor’s data area 1s con-
sidered to be an area of width aWidth, immediately follow-
ing the existing data. The zero terminated string 1s copied
into this target area and aligned within 1t as dictated by the
value of anAlignment.

If aWidth has the value KDefaultJustifyWidth, then the
width of the target area (i.e. the value of aWidth) is re-set to
the length of the zero terminated string, excluding the zero
terminator.

[T the length of the zero terminated string (excluding the
zero terminator) is smaller than the width of the target area,
then any spare space within the target area 1s padded with the
f1ll character aFill.

If the length of the zero terminated string (excluding the
zero terminator) 1s greater than the width of the target area,
then the number of characters copied from aString 1s limited
to the value of aWidth.

Arguments
const TText* aBuf The address of the zero terminated string

to be copied and appended.

TInt aWidth The width of the target area. This must be one
of:

<KDefaultJustity Width

<a non-negative value

If 1t has the value KDefaultJustityWidth, then 1t 1s re-set

to the length of the zero terminated string (excluding the

zero terminator).

If this value 1s less than the length of the zero terminated

string (excluding the zero terminator), then the number of

characters copied from aString 1s limited to aWidth.
TAlign anAlignment An enumeration which dictates the

alienment of the data within the target area. See

¢32.enum.TAlign.

US 6,536,879 Bl

75

TChar aFill The fill character used to pad the target area.

Notes

If the width of the target area 1s greater than the maximum
length of this descriptor, then the function will panic with
ETDes8Overflow for the 8 bit variant or ETDes160vertlow
for the 16 bit variant.

Do not set aWidth to a negative value (other than
KDefaultJustifyWidth) as this may have unpredictable con-
Sequences.

AppendNum() Append converted signed integer

void AppendNum(TInt aVal);

76

Arguments
TUint aVal The value to be converted to characters.

TRadix aRadix The number system representation for the
unsigned 1nteger. This 1s an enumeration; sce
¢32.descriptors. TRadix.

If no value 1s supplied, then EDecimal 1s taken by default.

Example
The following code fragment illustrates the use of

AppendNum() and AppendNumUC().

TBuf<lo>tgt(L(“abc™)); // generates the following strings

TUint num(176);

// 1n the descriptor tgt . . .

tgt. AppendNum(num,EBinary); // “abc 10101010

tgt. AppendNum(nwn.EOctol); // “abc252”

tgt. AppendNum(num,EDecimal); // “abc176”

tgt. AppendNum(num,EHex); // “abcaa” <-NB hex value in lower case

tgt. AppendNumUC{(num,EHex); // “abcAA”™ <-NB hex value in UPPER case
// and current descriptor
// content converted to
// upper case.

tgt. AppendNum (num); // “abcl76”<-EDecimal taken as default

Description

Use this function to convert the signed integer aVal into
a decimal character representation and append the resulting
characters onto the end of the content of this descriptor. It

the 1nteger 1s negative, the character representation 1s pre-
fixed by a minus sign.

Arguments
TUint aVal The value to be converted to decimal characters.
Example

The following code fragment 1illustrates the use of
AppendNum().

TBuf<l6>tgt(L(*abe™));
TInt numpos(176);

// generates the following strings
// 1n the descriptor tgt . . .

TInt numneg(-176);
tgt. AppendNum(numpos); // “abcl176”
tgt. AppendNum(numneg); // “abc-176"

AppendNum(), AppendNumUC() Append converted
unsigned integer

e32.descriptors. TDes.appending. Appendnumusi

void AppeadNum(TUint aVal,TRadix aRadix=
EDecimal);

void AppendNunUC(TUint aVal,TRadix aRadix=
EDecimal);

Description

Use these functions to convert the unsigned integer aVal
into its corresponding character representation and append
the resulting characters onto the end of content of this
descriptor.

AppendNum() converts the hexadecimal characters ‘a’,
‘b7, ‘c’, ‘d’, ‘e’ and ‘I’ to lower case.

AppendNumUC() converts the hexadecimal characters
‘A, ‘B, C’, ‘D’ ‘E” and ‘F’ to upper case.

30

35

40

45

50

55

60

65

AppendFormat() Append converted multiple arguments
¢32.descriptors. TDes.appending. AppendFormat

void AppendFormat(TRefByValue<const TDesC> aFmit, .

)5
void AppendFormat(TRefByValue<const TDesC> aFmit,

TDes??0verflow™® aOvertlowHandler,

o);

Description

Use this function to append formatted text into this
descriptor, as controlled by the format string supplied n the
descriptor aFmt and the argument list which follows 1t. The
generated text 1s appended to any existing data within this
descriptor.

The format string contained 1n aFmt contains literal text,
embedded with commands for converting the trailing list of
arcuments 1nto text.

Sce the e32.descriptors.format member function for the
syntax of the embedded commands.

The resulting length of this descriptor must not exceed 1its
maximum length. Once the descriptor reaches its maximum
length, any attempt to append more text will result in one of

the following:

if aOvertlowHandler 1s not supplied, the function panics
with ETDes80Overflow for the 8 bit variant or
ETDes160vertlow for the 16 bit variant.

if aOverflowHandler is supplied, the Overflow() member
function of either TDes8Overflow for the 8 bit variant
or TDes160verflow for the 16 bit variant, 1s called to
handle the condition; On return from Overflow(),
AppendFormat() completes without panic.
Arguments
TRefByValue<const TDesC> aFmt Any type of descriptor
containing the format string. The TRefByValue 1s con-
structed from the aFmt.
TDes??70verflow™® aOverflowHandler If supplied, a pointer
to either a TDes8Overflow object (for the 8 bit variant) or
a TDes160verflow object (for the 16 bit variant).
aOverflowHandler->Overflow() is called if an attempt is
made to exceed the maximum length of this descriptor.
A variable number of arguments to be converted to text as
dictated by the format string in aFmt.

US 6,536,879 Bl

77

AppendFormatList() Append converted multiple argu-
ments

¢32.descriptors. TDes.appending. AppendFormatList

void AppendFormatList(const TDesC& aFmit,

VA__ LIST al.ist,

TDes??0verflow™ aOverflowHandler=NULL);
Description

This function is equivalent to AppendFormat().
Arguments

const TDesC& aFmt A reference to any type of descriptor
containing the format string.

VA__LIST alist A pointer to a variable number of arcuments
to be converted to text as dictated by the format string in
alFmt.

TDes??0verflow™® aOverflowHandler If supplied, a pointer
to either a TDes8Overflow object (for the 8 bit variant) or
a TDes160verflow object (for the 16 bit variant).
aOverflowHandler->Overflow() 1s called if an attempt is
made to exceed the maximum length of this descriptor.
AppendNum() Append converted floating point number
¢32.descriptors.appendnum-float
TInt AppendNum(TReal aVal,const TRealFormat&

aFormat);

Description

Use this function to convert the floating point number
aVal 1into a character representation and append the resulting
characters onto the end of the content of this descriptor.

The format of the character representation 1s dictated by
aFormat, an object of type TRealFormat. Sec
e32.class. TRealFormat for more information on the TReal-

Format class.

Arguments

TReal aVal The floating point number to be converted. The
value must be such that 1.0E-99<=|aVal|<=1.0E99.

Any value smaller than 1.0E-99 1s assumed to be zero.

TRealFormat& aFormat A reference to a TRealFormat
object which dictates the format of the conversion.
Return value

TInt If the conversion 1s successful, the length of the
converted string.

If the conversion fails, a negative value indicating the
cause of failure. The possible values and their meaning
are as follows:

KErrArgcument The length of the converted number 1is
oreater than the maximum length of this descriptor. In
other words, there 1s insufficient space 1n this descriptor to
bold the character representation.

KErrOverflow The number 1s too large to represent

KErrUnderflow The number is too small to represent

KErrGeneral The conversion cannot be completed; e.g. the
value of the 1iWidth member of TRealFormat 1s too small.

Add Zero Terminator
¢32.descriptors. TDes.zero-terminator
ZeroTerminate() Append zero terminator
void Zero'Terminate(),

Description

Use this function to append a zero terminator (1.e. a
NULL) onto the end of the content of this descriptor.

The length of the descriptor 1s not changed.
Notes

The length of the descriptor must be strictly less than its
maximum length otherwise the function will panic with
ETDes8Overflow for the 8 bit variant or E1Des160vertlow
for the 16 bit variant. This condition guarantees that there 1s
sufficient space 1n the descriptor’s data area for the zero
terminator.

10

15

20

25

30

35

40

45

50

55

60

65

78

Example
The following code fragment depited 1n FIG. 19 1llus-
trates the use of ZeroTerminate().

TBufC<8> str(__I1(“abcd™));

tgt.ZeroTerminate()

The length of the descriptor tgt 1s 5 both before and after
the call to ZeroTerminate()

PtrZ() Append zero terminator and return a pointer
const TText PtrZ();

Description

Use this function to append a zero terminator (i.e. a
NULL) onto the end of the content of this descriptor and
return a pointer to the descriptor’s data area

The length of the descriptor i1s not changed.

If the data area only contains text characters, then adding
a zero terminator creates a ‘C’ style zero terminated string.

Return value
const TText* A pointer to the zero terminated string

Notes

The length of the descriptor must be strictly less than 1its
maximum length otherwise the function will panic with
ETDes80Overtlow for the 8 bit variant or ETDes160vertlow
for the 16 bit variant. This condition guarantees that there 1s
suflicient space 1n the descriptor’s data area for the zero
terminator.

The zero terminated string can be accessed through the
returned pointer but cannot be changed.

Indexing Operators

¢32.descriptors. TDes.indexing-operators

operator] | Operator| |

const TUint??& operator] J(TInt anIndex) const;
TUint??& operator[[(TInt anIndex);

Description

Use these operators to return a reference to a single data
item within this descriptor (e.g. a text character). The data
can be considered as an array of ASCII or UNICODE
characters or as an array of bytes (or double-bytes, but not
recommended) of binary data.

These operators allow the individual elements of the array
to be accessed and changed.

Two variants of the operator are supplied so that it can
return a Ivalue when applied to a non-const argcument or an
rvalue when applied to a const argument. The decision as to
which variant to use, 1s made by the compiler.

Arguments
TInt anIndex The 1index value indicating the position of the

clement within the data area. The index 1s given relative

to zero; 1.€. a zero value implies the leftmost data position.

This value must be non-negative and less than the current

length of the descriptor otherwise the operation will panic

with ETDes8IndexOutOfRange for the 8 bit variant or

ETDesl6IndexOutOfRange for the 16 bit variant

Return value
TUint??7& A non-const reference to the data at position

anlndex. The data 1s of type TUmnt8& for 8 bit variants

and of type TUintl6& for 16 bit variants.

This 1s returned when the operator is used to return a

lvalue.
const TUmt??& A const reference to the data at position

anlndex. The data 1s of type TUmt8& for 8 bit variants
and of type TUintl6& for 16 bit variants.

This 1s returned when the operator 1s used to return an

rvalue.

US 6,536,879 Bl

79

Example
The code fragments illustrates the use of operator| |.

TBuf<8> str(__ L(“abedefg™));
TChar ch;

str.Length(); // returns 7

ch = str|0}; // ch contains the character ‘a’
ch = str|3]; // ch contains the character ‘d’
str|0] = “z’; // changes str to “zbcdefg”
str| 3] = “z’; // changes str to “abczefg”

ch = str| 7]; // Panic !!

str| 7] = ‘z’; // Panic !!

Appending Operators
¢32.descriptors. TDes.appending-operators
operator+= Operator+=
TDes& operator+=(const TDesC& aDes);
Description

Use this operator to append the content of aDes onto the
end of the content of this descriptor.

The length of this descriptor 1s incremented by the length
of aDes.

Arguments

const TDesC& aDes A reference to any type of descriptor
whose content 1s to be appended.

Return value
TDes& A reference to this descriptor.
Notes

The operator can only be used by classes derived from
TDes, specifically TPtr and TBuf.

The resulting length of this descriptor must not be greater
than its maximum length otherwise the operation will panic
with ETDes8Overflow for the 8 bit variant or
ETDes160vertlow for the 16 bit variant

Example

The following code fragment illustrates the use of this
operator.

TBuf<16>tgt(_ L(“abc™));

tgt+=(__1.(“0123456789)); // generates “abc0123456789”
tet+=(_1(“0123456789qwerty”)); // Panics !}

Non-class Specific Assignment Operators
¢32.descriptors. TDes.assignment-operators

The behaviour of these operators 1s exactly the same as
the class specific operators. However, unlike the class spe-
cilic operators, these non-class specific operators are not
inline.

The compiler invokes these non-class specific assignment
operators whenever the left hand variable of an assignment

operation 1s not of a concrete type 1.. one of TPitr,
TBufC<class S>, TBuf<class S> or HBufC.

5

10

15

20

25

30

35

40

45

50

55

60

65

30

For example,

class TMyClass

d
public:

void MyCopy(TDes& aTarget, TDesC& aSource);

;

void TMyClass::MyCopy(TDes& aTarget, TDesC& aSource)
{
aTarget = aSource; // Non-class specific operator used.
h

{

TBuf<l6>target;

TBuf<l6>source(_ L{(“ABCDEF));

TMyClass mine;
mine.MyCopy(target,source);

If the member function MyCopy 1s changed so that 1t 1s
prototyped as:

void MyCopy(TBuf<16>& aTarget, TDesC& aSource);
or even

void MyCopy(TBuf<16>& aTarget, TBufC<16>&
aSource);
then the TBuf<class S> class assignment operator would be
used by the compiler.

However, such a change could compromise the design of
the class TMyclass.

operator= Operator=taking any descriptor

TDes& operator=(const TDesC& aDes);

Description

This assignment operator copies the content of any type of
descriptor aDes into this descriptor.

The content of aDes 1s copied into this descriptor, replac-
ing the existing content. The length of this descriptor 1s set
to the length of aDes.

Arguments
const TDesC& aDes A reference to any type ol descriptor

whose content 1s to be copied.

Return value
TDes& A reference to this descriptor.

Notes

This assignment operator returns a reference to type
TDes, 1.e. the base abstract class for modifiable descriptors.

The length of aDes must not be greater than the maximum
length of this descriptor otherwise the operation will panic
with ETDes8Overflow for the 8 bit variant or
ETDes160verflow for the 16 bit variant.

operator= Operator=taking a modifiable descriptor

TDes& operator=(const TDesC& aDes);

Description

This assignment operator copies the content of a modidi-
able descriptor aDes into this descriptor.

The content of aDes 1s copied into this descriptor, replac-
ing the existing content. The length of this descriptor 1s set
to the length of aDes.

Arguments
const TDes& aDes A reference to a modifiable type descrip-

tor whose content 1s to be copied.

Return value
TDes& A reference to this descriptor.

Notes

This assignment operator returns a reference to type
TDes, 1.¢. the base abstract class for modifiable descriptors.

The length of aDes must not be greater than the maximum

length of this descriptor otherwise the operation will panic
with ETDes8Overflow for the & bit wvariant or
ETDes160verflow for the 16 bit variant.

US 6,536,879 Bl

31

operator= Operator=taking zero terminated string

TDes& operator=(const TText* aString);

Description

This assignment operator copies a zero terminated string,
excluding the zero terminator, into this descriptor.

The copied string replaces the existing content of this
descriptor.

The length of this descriptor 1s set to the length of the
string (excluding the zero terminator).

Arguments
const TText* aString The address of the zero terminated

string to be copied.

Return value
TDes& A reference to this descriptor.

Notes

This assignment operator returns a reference to type
TDes, 1.¢. the base abstract class for modifiable descriptors.

The length of aDes must not be greater than the maximum
length of this descriptor otherwise the: operation will panic
with ETDes8Overtflow for the 8 bit variant or
ETDes160vertlow for the 16 bit variant.

TDes80verflow Class Overflow Handler (8 bit)
Overview
Derivation

TDes8Overflow Abstract: & bit variant overflow handler.
Defined 1n

e¢32des8.h

Description

A TDes80Overflow derived object 1s used by the
AppendFormat() and AppendFormatList() member func-
tions of 8 bit variant descriptors to handle descriptor over-
flow.
Overflow occurs 1f an attempt 1s made to append text to the
descriptor when the descriptor 1s already at 1ts maximum
length.

The class 1s abstract and defines the pure virtual member
function Overflow().

See e32.descriptors. TDes.appending. AppendFormat and
¢32 descriptors.TDes.appending. AppendFormatList.

Writing derived classes

A derived class must provide an implementation for the
Overflow() member function.

Overflow Handling

Overflow() Overflow handler function
virtual void Overflow(TDes8& Des);
Description

A pure virtual function.

The function is called by the AppendFormat() and the
AppendFormatList() member functions of an 8bit variant
descriptor 1if an attempt 1s made to append text to this
descriptor when the descriptor 1s already at its maximum
length.

A derived class must provide an 1implementation for this
function.

Arguments

TDes8& aDes A reference to the 8 bit variant modifiable
descriptor whose overtlow has resulted 1n the call to this
function

TDes160verflow Class Overflow Handler (16 bit)
Overview

Derivation
TDes160vertlow Abstract: 16 bit variant overflow han-
dler.

10

15

20

25

30

35

40

45

50

55

60

65

32

Defined 1n
¢32des16.h

Description

A TDesl60verflow derived object 1s used by the
AppendFormat() and AppendFormatList() member func-
fions of 16 bit variant descriptors to handle descriptor
overtlow.

Overflow occurs 1f an attempt 1s made to append text to
the descriptor when the descriptor 1s already at 1ts maximum
length.

The class 1s abstract and defines the pure virtual member
function Overflow().

Sece e32.descriptors. TDes.appending. AppendFormat and
¢32.descriptors. TDes.appending. AppendFormatList.

Writing derived classes

A derived class must provide an implementation for the
Overflow() member function.

Overflow Handling

Overflow() Overflow handler function
virtual void Overflow(TDesl6& aDes);

Description
A pure virtual function.

The function is called by the AppendFormat() and the
AppendFormatList() member functions of an 16 bit variant
descriptor 1f an attempt 1s made to append text to this
descriptor when the descriptor 1s already at its maximum
length.

A dernived class must provide an implementation for this
function.

Arguments

TDesl16& aDes A reference to the 16 bit variant modifiable
descriptor whose overflow has resulted 1n the call to this
function

TRadix enum Number System Representation

¢32.descriptors. TRadix

Defined 1n
¢32std.h

Description

An enumeration whose enumerators govern the number
system representation of signed and unsigned 1ntegers when
converting them into character format.

The enumeration 1s used by the descriptor member func-
tions e€32.descriptors. TDes.integer-conversion.Numusi and
¢32.descriptors. TDes.appending. Appendnumusi.

Members

EBinary Conversion into binary character representation.
EQctal Conversion 1nto octal character representation.
EDecimal Conversion into decimal character representation.
FEHex Conversion 1nto hexadecimal character representation
TAlign enum Alignment of data
Defined 1n
e32std.h
Description

An enumeration whose enumerators govern the alignment
of data within an area. The enumeration 1s used by the
descriptor member functions e32.descriptors. TDes.copy-
justify.justity,
e¢32.descriptors. TDes.appending.appendjustify-anydesc,
¢32.descriptors. TDes.appending.appendjustify-fromadr and
e32.descriptors. TDes.appending.appendjustify-zeroterm.

US 6,536,879 Bl

33

Members
Eleft Data 1s left aligned.
ERight Data 1s right aligned.
ECenter Data 1s centered.

_ S macro Build independent string
Defined 1n
e32det.h

Description

#if defined(_ UNICODE)
typedet Textl6 TText;

#define _ S(a) ((const TText *)L ## a)

#Helse
typedef TText8 TText;

#define _ S(a) ((const TText *)a)

#endif

Notes

The definition of S 1n e32std.def 1s intertwined with the
definition of 1.

__ L. macro Build independent literal

Defined 1n

¢32detf.h
Description

#if defined(UNICODE)
typedef TTextl6 TText;
#define _[(a) (TPtrC((const TText *)L ## a))

#else
typedef TText8 TText;
#define _ [(a) (TPirC((const TText *)(a)))

#endif

Notes

The definition of L 1n e32std.def 1s intertwined with the
definition of _S.

__ S8 macro 8 bit string

Defined 1n
e32def.h

Description

#define S8(a) ((const TText8 *)a)
I8 macro 8 bit literal
Defined 1n

e32def.h

Description

#define L8(a) (TPirC8((const TText8 *)(a)))
_S16 macro 16 bait string,

Defined in

e¢32def.h
Description

#define S 16(a) ((const TText 16 *)L #a)
~ .16 macro 16 bit literal
Defined 1n

e32def.h

Description
#define _ [.16(a) (TPtrC16((const TTextl6 *)L ## a))

10

15

20

25

30

35

40

45

50

55

60

65

34

Glossary definitions

Term Aliases Meaning See Also

built-in type n Data types which are part of the C++ language;
e.g. unsigned int, unsigned char etc

descriptor n An object capable of representing contiguous data
and providing member functions to operate on
that data.

huffman v A process of compressing data.

encode

huffman v A process of decompressing data which was

decode originally compressed using Huffman encoding.

length n The length of data currently represented by a
descriptor.

maximum n The maximum length of data which a modifiable

length type descriptor 1s capable of holding.

fold v The removal of differences between characters
that are deemed unimportant for the purposes of
inexact or case-insensitive matching. As well as
ignoring differences of case, folding 1gnores any
accent on a character.

collate v The removal of differences between characters
that are deemed unimportant for the purposes of
ordering characters into their collating sequence

unicode [SO 10646-1 defines a “universal character

code” which uses either 2 or 4 bytes to represent
characters from a large character set. Thus, Far

Fastern character sets can be represented.
In ERA, 2-byte UNICODE support 1s built deep
into the system.

What 1s claimed 1s:

1. A computing device programmed to manipulate or
access objects of the string class using an object oriented
operating system, wherein the objects of the string class are
derived from a single base class and the operating system
handles all such objects of the string class according to one
or more of the following requirements:

(a) objects of the string class for literal text are handled as
belonging to a class in which a pointer points to the
memory location where the text string 1s stored;

(b) objects of the string class for length limited text are
handled as belonging to a class 1n which a buffer stores

text of a predetermined length requiring a limited
subset of available memory management functions;

and

(c) objects of the string class using heap memory are
handled as belonging to a class requiring the full set of
available memory management functions.

2. The computing device of claim 1, further comprising a
program which interfaces with the operating system and
which also handles objects according to one or more of the
requirements.

3. The computing device of claim 1, wherein objects
satisfying one or more of the requirements are flat structures.

4. The computing device of claim 1, wherein objects of
the string class for length limited text are stored 1n particular
memory locations at run time which are not part of the heap
memory.

5. The computing device of claim 1, wherein the objects
are polymorphic.

6. The device of claim 5, wherein polymorphism 1s
achieved by providing a data field for each object which
identifies its class, with a different action being associated
with different data field values.

7. The computing device of claim 6, wherein the data field
1s a part of the representation of another data 1item within a
machine word.

8. The computing device of claim 7, wherein the same
source code 1s used, wrrespective of the character code

US 6,536,879 Bl

35

system and character code width being used, by using aliases
for class names that are character code independent.

9. The computing device of claim 8, wherein the source
code using text strings 1s written 1n a manner independent of
the strings’ actual ASCII or Unicode implementation by
using a system of aliases for class names.

10. The computing device of claim 1, wherein objects
have information on the length of the data they contain and
hence have no ‘0° terminator.

11. A method of allowing objects of the string class to be
manipulated or accessed by a program using an object
oriented operating system, wherein the program handles all
such objects according to one or more of the following
requirements:

(a) objects of the string class for literal text are handled as
belonging to a class in which a pointer points to the
memory location where the text string 1s stored;

(b) objects of the string class for length limited text are
handled as belonging to a class in which a bufler stores
text of a predetermined length requiring a limited
subset of available memory management functions;
and

(c) objects of the string class using heap memory are
handled as belonging to a class requiring the full set of
available memory management functions.

12. The method of claim 11, being performed by an

operating system.

13. The method of claam 11, being performed by a
program which interfaces with an operating system which
itself also performs the method of claim 11.

14. The method of claam 11, wherein objects satisfying
one or more of the requirements are flat structures.

15. The method of claim 11, wherein objects of the string
class for length limited text are stored 1n particular memory
locations at run time which are not part of the heap memory.

16. The method of claim 11, wherein the objects are
polymorphic.

17. The method of claim 16, wherein polymorphism 1s
achieved by providing a data field for each object which
identifies 1ts class, with a different action being associated
with different data field values.

18. The method of claim 17, wherein the data field 1s a
part of the representation of another data item within a
machine word.

19. The method of claim 18, wherein the same source
code 1s used, wurrespective of the character code system and
character code width being used, by using aliases for class
names that are character code independent.

20. The method of claim 19, wherein the source code
using text strings 1s written 1n a manner independent of the
strings’ actual ASCII or Unicode implementation by using a
system of aliases for class names.

5

10

15

20

25

30

35

40

45

50

36

21. The method of claim 11, wherein objects have mfor-
mation on the length of the data they contain and hence have
no ‘0’ terminator.

22. Computer software which allows objects of the string
class to be manipulated or accessed by a program using an
object oriented operating system, wherein the program
handles all such objects according to one or more of the
following requirements:

(a) objects of the string class for literal text are handled as
belonging to a class 1n which a pointer points to the
memory location where the text string 1s stored;

(b) objects of the string class for length limited text are
handled as belonging to a class 1n which a bufler stores
text of a predetermined length requiring a limited
subset of available memory management functions;

and

(c) objects of the string class using heap memory are
handled as belonging to a class requiring the fall set of
available memory management functions.

23. The computer software of claim 22, being an object

oriented operating system.

24. The computer software of claims 23, further compris-
ing a program which 1s capable of interfacing with the object
oriented operating system.

25. The computer software of claim 22, wherein in which
objects satisfying one or more of the requirements are flat
structures.

26. The computer software of claim 22, wherein objects
of the string class for length lIimited text are stored in
particular memory locations at run time which are not pat of
the heap memory.

27. The computer software of claim 22, wherein the
objects are polymorphic.

28. The computer software of claim 27, wherein poly-
morphism 1s achieved by providing a data field for each
object which 1dentifies 1ts class, with a different action being
assoclated with different data field values.

29. The computer software of claim 28, wherein the data
field 1s a part of the representation of another data item
within a machine word.

30. The computer software of claim 29, wherein the same
source code 1s used, wrrespective of the character code
system and character code width being used, by using aliases
for class names that are character code independent.

31. The computer software of claim 30, wherein the
source code using text strings 1s written 1n a manner 1nde-
pendent of the strings” actual ASCII or Unicode implemen-
tation by using a system of aliases for class names.

32. The computer software of claim 22, wherein objects
have information on the length of the data they contain and
hence have no ‘0’ terminator.

	Front Page
	Drawings
	Specification
	Claims

