US006834278B2
a2 United States Patent (10) Patent No.: US 6,834,278 B2
Yu et al. 45) Date of Patent: Dec. 21, 2004
(54) TRANSFORMATION-BASED METHOD FOR 5,647,058 A * 7/1997 Agrawal et al. 707/1
INDEXING HIGH-DIMENSIONAL DATA FOR 6,154,746 A * 11/2000 Berchtold et al. 707/100
NEAREST NEIGHBOUR QUERIES 6,477,553 Bl * 11/2002 Druckcooeonnniiin. 708/313

OTHER PUBLICATIONS
(75) Inventors: Cui Yu, Singapore (SG); Beng-Chin

Ooi, Singapore (SG); Kian-Lee Tan, Zaniolo et al. (Advance Database Systems) 1997, pp.
Singapore (SG) 276—283.*

(73) Assignee: Thothe Technologies Private Limited, * cited by examiner

Singapore (SG) Primary FExaminer—Saftet Metjahic
Assistant Examiner—Haythim J. Alaubaidi

(*) Notice: Subject' to any disclaimer,: the term of this (74) Attorney, Agent, or Firm—Pillsbury Winthrop LLP
patent 15 extended or adjusted under 35

U.S.C. 154(b) by 96 days. (57) ABSTRACT

We disclose a transformation-based method for indexing

(21) Appl. No.: 09/825,700 high-dimensional data to support similarity search. The

(22) Filed: Apr. 5, 2001 method, 1Distance, partitions the data into clusters either
based on some clustering strategies or simple data space

(65) Prior Publication Data partitioning strategies. The data 1n each cluster can be
US 2002/0147703 Al Oct. 10. 2002 described based on their similarity with respect to a refer-

" ence point, and hence they can be transtormed 1nto a single

(51) Imt. CL7 e, GO6F 17/30 dimensional space based on such relative similarity. This
(52) US.CL ... 707/2; 707/101; 707/103 Z allows us to index the data points using a B*-tree structure
(58) Field of Searchccccoceovvvinnnnnn... 707/2-3, 100, and perform similarity search using range search strategy. As

707/101, 103 R, 103 Z such, the method 1s well suited for mtegration 1nto existing
DBMSs. We also study two data partitioning strategies, and
(56) References Cited several methods on selection of reference points. We con-
ducted extensive experiments to evaluate 1Distance, and our
U.s. PATENT DOCUMENTS results demonstrate 1ts effectiveness.

4713.817 A * 12/1987 Wei wovveeereereeeeerrerarinns 714/758
5583.666 A * 12/1996 Ellson et al. 358/518 11 Claims, 26 Drawing Sheets
100
data points are clustered
30 transformed based on iDistance
0 data points transformed values

50

1Di1stance

Storage of

Insertion
algorithm

data

-

Bufter Disk

(RAM)
Retrieval
Query: algorithm
Retrieval of
data 40

a small fraction of disks 1s accessed
to retrieve data needed for queries

20

US 6,834,278 B2

Sheet 1 of 26

Dec. 21, 2004

U.S. Patent

0C

SLIAND 10J POpPaSu BIep AT 0}
PAssadde SI SYSIP JO UOIORI] [[BWUS B

eyep
JO [BASLIY
:Aran()

Ov

wyjIo3e
[BAILIIDY

>
(AVY)

wyILIo3e

UOT)IaSU] viep
- JO a3e101S
IOURISI(JI
0%
| _ Ol
SON[BA PaULIOJSuLI) syarod eyep
JOUB]SI(JI UO Paseq DOWLIOJSUel] Ot
paJ1aisnpd are syurod ejep
001
L "Old

U.S. Patent Dec. 21, 2004 Sheet 2 of 26 US 6,834,278 B2

FIG. 2

1. start with a small search sphere
if K nearest neighbors are found and
all data subspaces 1ntersecting
the current query space have been checked
exit
else
enlarge search sphere and continue searching.

goto 2.

I\

O Ok W

US 6,834,278 B2

Sheet 3 of 26

Dec. 21, 2004

U.S. Patent

sniper Yoreds 3uIseasoul

XeUu-20ue)SI(]

UTW-90UB)SI(]

¢ DiA

U.S. Patent Dec. 21, 2004 Sheet 4 of 26 US 6,834,278 B2

FIG. 4

| I} =
-.J- L=
"o "
b . =
LR I " -
- memrrs " F " dle 2wl " om noma n - - N
- . - "
P m om w1 oa - . g - o n - == e e . - .
L e N T L - e m e st o meomonE o s - L '
"'l"':"IIL".‘.'.I‘.'-]...I llJa-ﬂlll a o = EEm = § ‘7 R TS u
i R e A T o B | -"--, -—=-u orom - [R N
T T I Tt T " 3 LI R T R R
- I R dea e mma s g - - on
L I] L N L " e T 0 e 4 o m ' s .
=t - - .I a T " .l LI B LI T T I I I
Tr o= tm- L T F e ™7 a A ! mmaom ' P 1" .
-mom e - " min " 4 b o m s s msm ium = " . ' .
e e e e i aeem mm e e PEET e == 4PN
~ s . mly - ’ "k st FEwm o n
amm a2 e " E 1T o EEm - PRI . |-' . - .
L N N T T R E - — - * EEEeee
' . o=t I-‘-l T
mElmAET R ILE R RR = ".ul.'l‘l sewm Ay ITm v EEoERL
e o= LI ‘;I' 6] s m amn " v omas uiama
|eeorEEAE R L n ¥ T - = d s -
MR R RREE 3G e ‘."’ Ihl'll!'l'\.l wd e ara s
- am o EEomom a1 .1 v - . o h . mima
- - = m ®E | = - moE I.h
- 2 ¢ rl .ﬁ'nu [I | - T § -
n R T T | RN T) 4 h ot e = .

."'ll
-
o

-4 L |
L)
W v
e - bl r . . .
. [' -
F il = I u o m el 1 .
il -l .
el " mm . L, TRy ' .. e
. - — — LI - o [r
AP h e wu. |] "
P 1 b
P e ata ams e =, '
" o a " m s . moroa o n, " a
L | N I BRI I " T I I-;L - i _ r:ll?_-l:l-'--ln|:l::' ::
-1.-.l! '|I'I=. -III.I.I-!FhI'! - .' . ..I.. r_|l .
awTimu g g . . 1 P T IR M, P 1] ". P "::'—'.':'."ILI R
lm = =g g, l-.llF "-",'z""-'“-"l"l_ " "M [L | F.H"ﬁi il I'\. Lo - .
I-"'"'lh-u 'l‘--l- v ll“‘.:l!"‘ll LY » R . l‘-‘-:% II 1 Lo o) :
'l...rl'-ul-l_'_--'l'ﬂ -".I."'I""lll'hl-.'l] 'L . : = L rE.
gt LRI T I R b . -|r &
. . L B I I T
. .
. s 5 e e] cd e an 4w o moma-
; I "= _ 1 .Ilil-l moaoma ll.lll'll:-lllll|
: TN ¥ e e e e e e g s
. [1
Gy on dhm o= o= ‘ .f:lulll.-lp..- N N T I »
' ST L N A R
T R SRR TN
. e I R T T T
ro1n - - - - L} []
J - . - e fm " ==] FET "I B B T R B |
- u T EERL 4 A dE 201 WL LW o . r
" Twmr o J ' e N REE - .) . .= i - 3 - - e - "
T, - mrm . . u' " . """ll"r'lllll.llrF P) "
. :-|'..H .'r- T l o "'.'"'_I"."I' R AT . BN LD ed
J-nlI "1 - . ---"I:I el l--.-.---"'p L. =1 % e I mk 'Ii'.-.l...ll_.-l'
- I | - I O B O | qu_."l'l_qr.h‘ | I | L. T L] . '
- ! b .l'll .I. ---.-1-r l-#- - 0 r " " nomr (] 1 - .Il
J A M | s o [N b B _—
- - | T u - . . 1 X
. r - e IR | -“‘ Tl T AR
.l'-lﬂlllrli l:"'l"l:I* ;-l'rh-- -l '
.Il.._..--ll_l H®NT O, . . | .I._.--I—'
rl:r.l !""LI' _""I'I"llll [lllll.ll
" "y T i s mom LS L ; - : "
. = . mow - 1 P
wow e == e -y i ma - e w nyd e g
1 .'-i?l.-H lh Jqmr u -q.. i‘h‘r'l.l
PE " s " 1h .'Ill':.ll"ll-. []
. -l-r-.lr!.!l] JC R R A L LA
R LN I% 1" . mmn a LN
Mmooy, ""-A-'l..,."'.lll T ek d e A om o om
r m = = ? Tor
E a ' . 'Fr..n-.-l-_-- =r xoa N
.-l fe e e - 'Jil'uplt =L =ooE
r‘"'"' LT T - mw om
Bt R e b "-:n-".'-"l:i'dﬂ._ R LN
. - nm "= = L] LI}
1. : - . R N S L |
T = 21 'll! LR IR | - ;
AL a X I
. e 1 M mhoi.e o om L 'hrll"|". 1
.H PR N S N .‘h ’ a "B - - I .'ﬁil.::‘:j.hull'.‘l-: -
- omemEos [B} mrw " toa [(3] ' H-] v Ll
i ...) ! . = ""H) . L - _-I L,
i' " -t i".-"'""'..:".l.- . - . : g - . |.'-".
LA . o .. ek m o R f - S _ e i a -_‘I-ll_'\-":l--':_.—:.-'-la!'-'--'
-“-'. Pk _.:. - Bk i L Y | o ' : f N 'I:':.'l . =lF Is h-'u:"‘l-l-i.l‘ll.lr
e - 1im’ e LI . c. - ’ .) - ':"_.I:.'.."I—"“'-
"|: LR TR T R R T : [Tt - " : : ! A -y
FREEEE I T B - A - -
ﬂri--.-q-‘_"_- um
m § m°p 8 . m mmm
.t 174 o nomr, .
"I.IJ.-.'1...|.. = au b T
[T R | [I T R -= . - .] .‘.l"l:‘ 'll'l..l lIl:-_l-ll--l'n‘#r-
"% =0 w4 owow ! L "fia mon im s 1 TR momomow
] -
‘El-l - oaa .'l"." .ﬂ'--"-\..' P, el - " |ER L= ThE " ey - =1 g . m.c s lr
--n ;'_:L.-"-."‘."i "“='.'--'- o TR T T T R L
e T R R R IR L U o
Il-'i',_r-.--:il-:i-...nﬂ.q!';ﬂ; .III-'..-II. -.Hlﬂ'-'l'ill-llql=
- re - 1E R .l Lo A nm a gty . r ' '
. .. i . , LI r ' mw Pl gl
T Bl I e e R S o LN T
'._:_-'“" L R A BN T Y e ~
L L I R N N
1] .
- g om

U.S. Patent Dec. 21, 2004 Sheet 5 of 26 US 6,834,278 B2

FIG. 5
iDistanceKNN (g, Ar, maz_r)

r = 0;

initialize Ip[|, rpl[|, oflagll;

while |S| < K and r < maz_r
r=r-+ Ar:
SearchO(q, r);

end 1Distance KNN;

SearchO(q, r)
fori=0tom—1
if not oflag[i] /* if O; has not been searched bhefore */
oflagli] = 1;
dis = dist(0;, q);
if sphere(O;, dist_maz;) contains ¢
Inode = LocateLeaf(biree, i x ¢ + dis);
Ipli] = SearchInward(lnode, i * c + dis — T);
rpli] = SearchOutward(inode, i * c + dis +);
else if sphere(O;, dist_max;) intersects sphere(q,)
Inode = LocateLeaf(btree, dist_max;);
Ipli] = SearchInward(lnode, @ x ¢ + dis — r);
else if sphere(O;, dist_max;) intersects sphere(q, r)
if Ipli| not nil
Ip[t] = SearchInward(Ip[i]| — leftnode, i * c + dis — r);
if 7pli| not nil
rpli] = SearchOutward (rp[i] — rightnode, ¢ * ¢ + dis + r);
end SearchQ:;

SearchInward(node, ivalue)
for each entry e; in node

if || =K
f = furthest object in S from g;

if dist(e;, q) < dist(f, q)

S=5-f;

S=SU65;
eise

S:SUGi;

if e;.key < wwalue
node = SearchInward(node — leftnode, i x ¢ + dis — r);
if end of partition is reached
node = nil;
return(node);
end SearchInward;

U.S. Patent Dec. 21, 2004 Sheet 6 of 26 US 6,834,278 B2

FIG. 6

US 6,834,278 B2

Sheet 7 of 26

Dec. 21, 2004

U.S. Patent

e
————
'l..-ll_.l.-l

"eaJe SIU) UI PIjedo[e
I O woly syurod 1sayun,

.l.ll.l_l

nl——

Vi OIAd

U.S. Patent Dec. 21, 2004 Sheet 8 of 26 US 6,834,278 B2

FIG. 7B

The bounding area by
these arches are the atfected
searching area of kKNN{Q,r).

U.S. Patent Dec. 21, 2004 Sheet 9 of 26 US 6,834,278 B2

FIG. 8A

[villm o
. o -
\; r v ™
n ’ - L .
1 'J it - r.l. 1) X " -2 - k
- . > n ' ’ l"d'_.‘_ . i -!'- iy i ""J. .‘""‘4_ o
- - [“ oo ok mu i 3 i-f:lii-k._} _1'- .l_'l::‘ . -
" Al Tl TR i B S B I R it ™ ‘l':.l'.....:h‘i.l:"_.ﬂll:.l:l.';;":‘q'ﬁ o A}
i o] !] -’“F -_Ll g-".r-‘ -\::'-Ir' !'HEQ-"..F.,". l"'_“l - ',.--: -:.q_::r:' -_- -..-:I-' .l:.-.‘ .1“‘* o A ..l'_.:’_. -."i, i---_--l:r. '.. r;l.]. ..rl-
1. E e . [P LI l r . -I- - m l_\-. lr*;hn:_ Ly |i R e e gt
Fy e, v*'?:- e T -“-‘- “w“«""a : h_f:ﬁsfw..ur g b
E_r L] -!'.b-' ' l IJ - -l ! -...‘.-_1_ n = -]
] - '." " r r

N

-
L
LBl

ol
=
AN
SPR R
fiple :
5
.‘-‘*..

. .

‘Fin E K B

l".!
m
= h
[]
g
L |
el
!"I
r
h
rI
¥
irF
-I
{”
",'..
.'.l
ﬂl‘
i
‘l l
ﬂ
.1
-f‘:?
.i'
"l
""-r"
-;\
‘-‘-l'
lr.-"
-H."-."
!

. A o = "l u a‘-‘ﬂ =1 .
r'r"' I:i.* 5 .Ili"" .'I'n . L - 1 »m ---1--'.] L i LIP ir'
, 'a’t‘nl'“-*' Y ""5.“.1”-: ﬁn*‘ * g ‘:‘J‘.nia:d.'::‘ » ".r R e e T 4 L AT I
[] !.}_'-' iu'lp'_‘: a - ‘i.':-;‘n‘ '}‘*":;-.F‘h -:I“ - .|- "-.1:--.;‘ g’ - + .d-."'l'ﬂ&-. '-‘::.l'i*r'-r;:'* I."E, .-F‘-- qfli-' 'rl.':"llld'rl:_ [-

.l, -ﬁ"b' ‘ _,'I

Ft,.ll' '-.-I*H'A"*. .;.i-
-M B .-a'“h"“** *-"*‘“*a

.--II "'"."' 'i-i"r
“'* :E CAY Ty .- t.arlv..

'!ﬂlﬂilufl""“:"n - "Fll-"h"

|.|||u-|||

s -»-*...a,;rﬁ_.-
'?;"'. r“n-"l

J- ' '..] o 1F H §
3 ! E H {:‘ t , i .'--:‘- .L - '-"\..-" .' i iﬁ-rl ‘.'.'t'r
e "'i":l':'lr ¥ ‘“h 4'-*"5".:'?* S l: 'F.i u ! e S L e T -t ¢ -3 T
r" at x- --' 1;1 I-. - ;:.-r] - N :'_.: . j'{ v r LA 'l T .
et R S T

. B bpa ol

e ,l"ll.-. .ﬁ,ﬁ .I‘.F LR
ey LA el - AT _ffl_-s'a-
Ry
L] '

h-a"alF m a

-'*-I‘ -'l.-':r-ll
ln...iq_

"-

[y
'IH.-I-.

i’

lrJIlJ' -’
AR AN

US 6,834,278 B2

Sheet 10 of 26

Dec. 21, 2004

U.S. Patent

F1G. 8B

1
d
]

_ | . 1
LF ..lII.IF-.iJ I” .II Il - r. - -l. IIIIIIIIIII I = = = = ' EH =N W = = ‘A IE E E = I E =N I = =N I = == - - u - I - - I.I. .II - Hl - 1 L] 1 ‘ 1-._] 1.. ‘ ﬂl— ' - ‘. - H 1..- ' ! - ‘ .- ’ ! - - : -i- ’ “- 1 h . - L n — - -

u " |_r|.|...rrn T " . : . _r.t...ln.._-1 _|.)
H rl J!_HI_LEIF . %l- | I.lq.- - I-l ...
" .r.. ____ ..||.rr ! ...1..1.. h._ ,_...__ __.._
;“ .u“.. ___"n l.n..._l _... ..u_u-.ﬂ-._l .-m ...q.n W”
r . - i -l 1 1
s .) “n, " s ! S
y _p_- .—- .-.-r. . I.-..__ h_ _I- llll..l-..IHll‘I ||-
‘s “a ! . . - - oz ‘.
+) . 1 T : # d L L
” :. .._n .__. =, ' .u_-.._. 1._. L..u...nl. F -
. ._ l._- .-—. ._Fi " -..w_. -_ ...-.I - -1. ._- -
" i .|.. .J. _-F...n. " ._.-...-- .1.“._.._.i . - v m_.l .|
. ..:Inlll.l I-— IJ .-.r .-_._ . " .——.-_-. s ——.

=
B
I
'
4
r"
g
Yy
o ®

-
-
-lﬂlq
.!l"
lfl
s
e
urd
Tj
"
"";.
S,
’q-
™

N " [. Sppuniuaision SEERRERL " EEREE bttt

S

” .H.ﬂl-.ﬂ!.-..__lwi.q

L
H-

EmF -~ = = = =

L .

._._.!._,_“...__.r_..-ﬂm

1.
" el

.|...-___......ﬂ_. ...__- Fee FeriE 1t TTEEE ORT

liihqlq-il.

]

: E N _
. » 2 -
, ..n.f. o . Y | Ed
i - P - o
1 ..n-.. — L ...‘.1 ___ [.-...L I
1 (8 . & [1 §
' *. - = r - 2 "
. 1. c P !
' ", [l d : ot _
. y _ . o v _
“ J‘-.flﬂ . .IL . .1.-- I
' L & -_-.“. “
! .—...-I.__m rru._.._.] [
“) : n o ' " 1
: &J T , o
1

TERETY

o

" “ .‘_1 ..I__n_-.-.l - _
.2 Ty - .
: ; e _
" . . "3, _
- Iu.__._.__. ‘ " " £ .._.-.l__.-r 1
i LI
x 1 _-- ” - !
" ...-.-..._. [-—r - ...ru..-.. :
; ;. | . . LI " "
: T ’ .__...._n...n. LI " !
" ..ﬂ__ _ . .Ir..u-,ra“l“. -u-_..“-a_-l J-. -r. I
; o - ST A LR _
: - N L .J.....m_. " “
" F I _ .t " " ' oa ",
, r o : JH.:._H..:. "”““_1_:,..._., "
; r] T « a0 ad L1 - K B, 0 . " "
" u._.-. .-._1._,.-1. |||||||| " % we - |-.._"u| L) L _ .-.... - .
" .__- __-_...”.11 " .-ﬂm. _.ll ol ua“-rll L q._ -_-l .-l 1
. ..__ -..1...1..5.«.5.. . -%-.__-.u..un..a-_,...- 1.aqnuu.nuﬂ.-3._.-....__..1a,-1llll.-u....|1.l.i_i . .F._r...-_ ..r. .
L] m-_m l..l.-u- .-._h !-u.... -_- L r—- --r-_- .. __ - -..J- b .
' a._ﬂ e = .%. |hru n,-. : -_..u r..__.. T - ..._ .__._ w
" h--- -llﬂln-u.-l -L_ -u._ --- " r--.. -J-._ I_ -_J Jr_ "
Y ..-lil....ﬂr .__ . - -.hq 5 ._-_.- |.-r- ||. n-F -__ ”
" " a 2" ' u, . .] i
' _. __. 4 _..___. a .._... .._...._. =, h " .
“ 1 -.-.I o I.__n__.._ " -F_ _....-l . - -_- -
. .__ 3 -|..r| |.__._ ._.. 1 ,.
] ._ n_-._ - m lﬁ.m ” _-rl I-l_._..l ..- .._- _- -
.) i lu__.___. -.._l-IJ .!.- L [“
“_ _.ﬂ_-_u_.. -..-.- ' -.-... J.Jllm-lj _r !
- : e . -, R N T
- -_ __.-n ._- [] -r__ -ﬂ-".r £
n_-_ ...nh_ .___.._.. ! - .-.;.. —,.
”- ! ﬁ - 1 o - ._.... n,
i aT d = .) -.-.-. [i 1.
T L ed . R
| r 1 -] - E
_ n..u m_ ..I.._I..-.._-l ” .__|_|I..|I_r.. | T

— - w-I‘.l afe = -lmu..l ”w“l - D m Em ML m O EE E E O E] mom I W o W O m e m F oM E = m m o m m a3 mor o om oW EaoE .I— o B fm kd @, &0 JH ke i hd B! I CI O ELKLINITRI TESRZIXEDIAOAIFPCOPIENRTEI LHJ-IMI*.-U_J b e | JIL [=]
: “

U.S. Patent Dec. 21, 2004 Sheet 11 of 26 US 6,834,278 B2

- dih
r\ L |
. ("ﬂ_
Dﬁ C’l
& >
N \O
g’ e — -
e 3 Y ""‘--..__‘
- ~ _ ‘
-
O P ..
7 \‘\.
g .
d N gy
\
‘.fj . b Y
“
/ . \
/ \
/ o o ®
/ ¢ \
/ @ \\
/ ¢ ® ® .
¢ ® ® ® \
f @ @ @ \
’ ®e ° ® o 1
! @ ¢ ® ¢ ®
; @ i @ ® i i
® ® O O |
® ..x_ d '
-~~~ ® N g J
‘ | H*-.. . '..
g N o ® f
-~ \ . “, ’
d \ N ¢ : @ /
/ \ ® /
g . - .1"" . !
\ ' /
/ o\ \ ! ,
/ \ \ \)
/ \ :
/ @ \? \ :. 4
/ \ ® @ - !x
. .
/ /
@ .. PN ® \
! ® "*-. \ #
' ® .. ~ \ P -
| (] ""‘*\ ¢ ‘ P N
| o ® o0 Qs oo s IS A
| ¢ '.: h""-..____-_[:_______.-—"' O
‘ ' ¢)
\ ® ® ® O o x
\ . o,
\ : ® ® ,
\ ® e @ . y
\ . @ ® y
\ : /
\ @ - /
\
] N P
N / -
.

FIG. 9
1
0.70
0.31

e e e

U.S. Patent Dec. 21, 2004 Sheet 12 of 26 US 6,834,278 B2

FI1G. 10

US 6,834,278 B2

Sheet 13 of 26

Dec. 21, 2004

U.S. Patent

l

STIPEY
60 80 L0 90 ¢ 0 70 ¢ 0 ¢ O
—o— ({=
Y A VN MH

Q=UOISUSWIP ‘9dURISIP ISy pue jurod apisino suisn)

[0

0
01 -
@
@)
0¢ m,
0o
0€ &
-
b=ty
Of =
¢,
os 7
:
09 2
2
0L =
08 o
-
-
06 o
,..w.m
001
1T "ODIA

US 6,834,278 B2

Sheet 14 of 26

Dec. 21, 2004

U.S. Patent

snipey

[60 80 L0 90 SO0 +vO ¢0 <0 10

Q] =UOISUdWIP ‘9ourISIp 1SaYNJ pue jurod apisino surs))

0

0
;)
<
&
=
=
4

I -

'

oy =
D

0s 7
£

09 ¢
..m

oL g

08 o
-
=

06 =
S

00T

Gl "ODIA

US 6,834,278 B2

Sheet 15 of 26

Dec. 21, 2004

U.S. Patent

snipey
[60 80 LO 90 SO ¥0 €0 TO 10

O =UOISUDWIIP ‘90oUur]SIP 1SayumJ pue jurod dpIsno suis)

0
ol
@
0¢ m,
o
e %
-
-t
o =
g
s 7
&
09 g
E
oL 2
08 =
-
-
06 =
S
001
el "ODIA

o\
a=
L
a
3 G0 a
o)
A
\&
9 9.
-
o
o\
et
—
N &
o
- e
b
&
_—
o »
4
—
—
o\
1.....,
e N
>
b
-
/X

U.S. Patent

)

STIPEY
¢ 0 4l [0
SRR < UUURUURT - - S Q. =P
—o— 9] =P
—A w —
............... 0€ = P uedg-bog

—mm— Q] = p URD2S-bag
- —— § = p uedS-bag

0

00S

0001
4
@

00ST &
¢,
5
09

000¢ @
>
q
g,

005¢ 7
®
%

000¢

005¢

0007

Vi “OI1d

o\
aa
. SOIPEY
I~
5 L0 90 G0 b0 €0 0 1°0 0
~ 0
& —x— Jutod 1oype)
7 — o— ju10d Iej 00$
- —a—— Jurod apIsIno)
A JOWU9d oue[d-1adAYy 0001
............... uedS-bag
< A 0061 >
< s
- 000C &
S J 3
= 00§C &
2 : >
72 o
.. 000¢ m
w o p 006¢ O
P~ Fo
- 000V -
71. <
M w 00ST
A] 000S

O €=UOISUdWIP ‘jaseiep urojun OO |

Gl "OlAd

U.S. Patent

US 6,834,278 B2

Sheet 18 of 26

Dec. 21, 2004

U.S. Patent

SnIpey
80 L0 90 S0 0 €0

001=3 ‘suonnred O¢
07=31 ‘suonired (¢S
01=3] ‘suonnred 0S
[=)] ‘suonnred (¢
001= ‘suonmnred 0¢
07= ‘suoniued (¢
01= ‘suonnred O¢
[=Y ‘suonied O¢

() €=UOISUWIP “Joserep pataisn(d 001

a

10

0
01 -
o
0C m_,
oy
0€ &
-
Pt
1% =
(D
~
0S 4
&
09 2
5
0L 2
08 o
-
=
06 =
f%\
001
O1T "DIA

US 6,834,278 B2

Sheet 19 of 26

Dec. 21, 2004

U.S. Patent

snipey
b0 SE0

—x— suonnied ¢

—o— Suoniued Gy
—a— suonmed Ot
A suoniued G¢
—o— suonmed ()¢
—8— suoniued ¢
v— suonmued (¢

) €=UOoISUdWIP “Jaseiep pa1aisnd N0 1

0

00S
>

0001 &
o
aJc
g
aw,

00ST &
¢
>

000C &
)
>

00ST

000€

LT "OIA

US 6,834,278 B2

Sheet 20 of 26

Dec. 21, 2004

U.S. Patent

snIpey
80 L0 90 S0 t0 €0

(31001) 001=)
(31001) 0=
(31001) 01=)
(1001) 1=M
(31009) 001=1
(3I100S) 0Z=M
(3100$) 01=J
(31009) 1=X

) €=UOISUdWIP “Jaseiep palalsn|))

A\,

[0

Ol
0C
Ot
OF
0§
09
0L
03

06

(94) punoj syurod jsareau I Y} JO 98BIUII]

001

8T "DlA

US 6,834,278 B2

Sheet 21 of 26

Dec. 21, 2004

U.S. Patent

STIpeY]
70 €0 0 [0
}ii_ﬂu—!l-_‘ﬁ

'
-

=
-

- -
- Em EE s FEETEE e w RS WO e ML E L M B B BN BN BN BN M M NN BN BN BN B B M ML BLEN N N W M B N N N Em e ww i wowdow Bk kNS EEEEEwErEE R RS RNy T sk Aaas s asas kA EREE REEREERR FE ===

x— (31001) douelsi(!

—o— (31006) duelsI!

....... (3100S) uedS-bag
Bttt R -(STO0T) ueoS=bog—-

0 1= ‘Q€=UOISUdWIp 1oSBIBP PaIASN[)

0

0002

000% .
<!
@

0009 0%
g
o
g

0008 o
>

00001 7
®»
>

000C1 -

000V 1

00091

61 "OlA

(94) 2181 A0RINJDY
00T S6 06 €8 08 SL OL SS9 09 ¢§ 0§

US 6,834,278 B2

NG

o\

=

o\

o)

m H_‘,

2

g p

<t

= — — 07Z=Y‘(98pa 1918n]0)20UR}SI(]I
- — o— 01=Y(28p2 121sn2)doUrISI(]L
N A [=Y‘(98pa I21sNnd)aoue)si(Jl
M A 07=Y"(p1ronuad I3snyo)eourIsI(JI

o— O1=Y‘(pronuad 13)snjo)aouelsI(JI
— v [GBHES I2)SN[J)due)SI(JT

() €=UOISUWIP “Joseiep PaIa1snjd 0|

U.S. Patent

v

1S0) $SAJIY 938 J AFRIDAY

0¢ "OIA

(04,) BT ADRINDDY

001 S6 06 S8 08 SL OL S9 09 €SS 0§ St OF St Ot

US 6,834,278 B2

i B
o
@ |
-
-
ol
@ |
+—
&)
&)
i
7
4
—
—
@ |
1...,,
@ |
S o— (300¢) 2ouesi(l
= —*%— (3001) dduelsiq!

....... —- (3100S) ueos-bas
i e ssvmsreneenn DJOQ] - URDS=DAS

() €=U0ISUUWIP IaseIep paia1snd HNOOS 22 00T

U.S. Patent

1S07) $S9I0Y 338 IRIOAY

[c "OId

US 6,834,278 B2

Sheet 24 of 26

Dec. 21, 2004

U.S. Patent

SnIpey
y'0 €0 q L0

¥— suonned Q¢
—o— suonnied ¢y
—a—— suonnred Oy
— A suoniued ¢¢
—o—— Suonmed (¢
—F— Suoniued ¢¢
— »—— SuONIR{ O

(g=uoIsuatuIp ‘1osejep paidsnyd OO 1

0

20

b0
1
D
L

90 @
)
=
-

80 &
%

,H B S

a

b

¢6 I)IA

US 6,834,278 B2

Sheet 25 of 26

Dec. 21, 2004

U.S. Patent

(04,) 2181 A0RINDDY
00T S6 06 S8 08 SL OL S9 09 SS 0§ S¥ OF S¢ 0t SC O

llllllllllllllllllllllll
ll
- -

— 2ouR)SI(]!

—a— XEANUIAL
............... ueds-bas

0 =) E=uoIsuduwrplaselep uioyrun OO |

0

00S

0001
>
<!

00S] &
09
¢

000¢ A%
UQ
D

00T 2
¢

000 &
2

00S€

000¥

00S+

¢G DA

(94) 1B A2RINIDY
001 S6 06 S8 08 SL 0L S9 09 6 0 S O St Ot

US 6,834,278 B2

O
-
00¢
>
& 0001 S
< o
o - o
3 d
E 00ST &
g >
@]
[0002 &
= ®
: 2
B 00ST
= o %— (98p9 191sn]0)d0uBISI(JI
— o— (po1nuad 133sn[o)aoue)si(l
—a— XENUIA]
.. Q\NQWITDM OOOM

0 1=Y ‘Q€=UuoISudwWIp “}9seIep parAsn[d HOOI

Ve "Ol1d

U.S. Patent

US 6,334,278 B2

1

TRANSFORMATION-BASED METHOD FOR
INDEXING HIGH-DIMENSIONAL DATA FOR
NEAREST NEIGHBOUR QUERIES

2 BACKGROUND OF THE INVENTION

Broadly speaking, the mvention relates to the field of
Computer Science. Specifically, 1t 1s concerned with the
design of efficient database indexing structures to speed up
the access of high dimensional data points from a large
repository of points stored in a computer. The points to be
accessed are those that nearest to the query point.

Database management systems (DBMSs) are widely
accepted as a standard tool for manipulating large volumes
of data on secondary storage. To retrieve the stored data
quickly, databases employ structures known as indexes.
With an index, the volume of data to be fetched and
processed 1n response to a query can be significantly
reduced. In practice, large database files must be indexed to
meet performance requirements.

In recent years, database systems have been increasingly
used to support new applications, such as CAD/CAM
systems, spatial information systems and multimedia infor-
mation systems. These applications are far more complex
than the traditional business applications. In particular, data
objects are typically represented as high-dimensional points,
and queries require 1dentifying points that best match the
query points (e.g., nearest neigbors, similarity queries),
rather than exact matches. Traditional single dimensional
indexing techniques, such as the B™-tree and its variants,
cannot adequately support these applications. As such, new
indexing mechanisms must be developed.

Many indexing methods for multi-dimensional data have
been developed 1n the arts. Early works include hierarchical
tree structures (such as R-trees), linear quad-trees and grid-
files. Tree-based indexing methods perform well for small
number of dimensions (and hence large fan-out of the tree
nodes). However, as the number of dimensions increases,
the fan-out of the tree nodes reduces. The small fan-out leads
to 1ncreased overlap between node entries as well as a taller
tree. The consequence 1s more paths will have to be
traversed, and more data will have to be fetched, resulting 1n
a rapid deterioration 1n performance. Linear quad-trees and
orid-files also work well for low dimensionalities, but the
response time explodes exponentially for high dimension-
alities. It turns out that for high dimensionality, the simple
strategy of examining all data objects remains the best
strategy.

More recent efforts address this problem by reducing the
dimensionality of the indexing attribute. One direction 1s to
reduce the dimensionality of the data by projecting high-
dimensional points on the hyperplane containing the axis.
An algorithm (by Friedman, et. al. An algorithm for finding
nearest neighbors, 1IEEE Transaction on Computers, Vol
C-24, pp. 1000-1006) is to truncate the high dimension data.
Another algorithm (by B. C. Ooi, et. al. Indexing the
Edges—A Simple and Yet Efficient Approach to Indexing
High-Dimensional Indexing, Symposium on Principles of
Database Systems, 2000, pp. 166—174) is to transform the
high dimension data into a single dimension value based on
the maximum or minimum value of the dimensions. This
work, however, 1s designed to support window queries, and
cannot be easily extended to support nearest neighbor que-
ries (as the concept of distance/similarity is not built in). The
effectiveness of techniques in this category can be reduced
as secarching on the projections produces false drops.

10

15

20

25

30

35

40

45

50

55

60

65

2

Another direction 1s to group high dimensional data imto
smaller partitions so that the search can be performed by
sequentially scanning the smaller number of buckets. This
approach 1s not expected to scale for large number of
high-dimensional data as the number of partitions will be too
large. Moreover, it may miss some answers (€.g., Goldstein,
ct. al. Contrast plots and p-sphere trees: space vs. time n
nearest neighbor searches, 26th International Conference on
Very Large Databases, 2000, pp. 429-440). Yet another
direction 1s to specifically design indexes that facilitates
metric-based query processing. However, most of the cur-
rent work have been done on high-dimensional indexing
structures (which suffers from poor performance as the
number of dimensions becomes large).

Therefore, 1t 1s a problem 1n this art to reduce the
dimensionality of a high-dimensional database such that no
answers will be missed and the number of false drops 1s kept
minimum when answering a query.

3 BRIEF SUMMARY OF THE INVENTION

The mvention 1s a transformation-based method for
indexing high-dimensional data for nearest neighbor que-
ries. The method maps high-dimensional points into single
dimensional space using a three step algorithm. First, the
data 1n the high dimensional space 1s partitioned. Second, for
cach partition, a point 1s 1dentified to be a reference point.
Third, the distance between each point 1n the partition and
the reference point 1s computed. The distance, together with
the partition, essentially represents the high-dimensional
point 1n the single dimensional space. Nearest neighbor
queries 1n the high dimensional space has to be transformed
into a sequence of range queries on the single dimensional
space.

The mvention has several advantages over existing tech-
niques. First, the mapping function that we used 1s simple
and computationally inexpensive. Second, because distance
1s a single dimensional vector, we can exploit single dimen-
sional indexing structure to facilitate speedy retrieval. This
means that the technique can be easily deployed in com-
mercial database management systems that already provide
support for single dimensional indexing. Third, the 1nven-
tion can produce fast approximate nearest neighbors quickly,
and the answers are continuously refined until the nearest
neighbors are obtained. We note that most of the existing
approaches cannot prduce any answers until all the nearest
neighbors are returned. Fourth, the invention 1s space efli-
cient.

4 BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 1illustrates the How of information and control 1n
1Di1stance.

FIG. 2 gives an algorithmic description of the basic KNN
scarach algorithm for distance-based query processing.

FIG. 3 1llustrates the effects of enlarging search regions
for locating KNNSs.

FIG. 4 shows the search regions for NN queries g, and q..
FIG. 5 shows the KNN search algorithm on 1Distance.

FIG. 6 illustrates the space partitioning with (centroids of
(d-1)-Hyperplane, closest distance) combination.

FIGS. 7A-7B illustrate the space partitioning by (centroid,
furthest distance) combination, and the query space reduc-
fion respectively.

FIGS. 8A-8B illustrate the space partitioning by (external
point, closest distance) combination, and the query space
reduction respectively.

US 6,334,278 B2

3

FIG. 9 1llustrates the cluster-based space partitioning with
cluster centroid as reference point.

FIG. 10 1llustrates the cluster-based space partitioning,
with edge as reference point.

FIG. 11 shows the effect of search radius on retrieval
accuracy (dimension=8).

FIG. 12 shows the effect of search radius on retrieval
accuracy (dimension=16).

FIG. 13 shows the effect of search radius on retrieval
accuracy (dimension=30).

FIG. 14 shows the effect of search radius on retrieval
cificiency.

FIG. 15 shows the effect of reference points.

FIG. 16 shows the percentage trend with variant searching
radius.

FIG. 17 shows the effect of the number of partitions on
1Di1stance.

FIG. 18 shows the effect of data size on search radius.

FIG. 19 shows the effect of data size on I/O cost.

FIG. 20 shows the ef
data sets.

‘ect of reference points 1n clustered

FIG. 21 shows the effect of clustered data size.
FIG. 22 shows the CPU Time performance of 1Distance.

FIG. 23 shows a comparative study on uniform data set.

FIG. 24 shows a comparative study on clustered data set.

5 DETAILED DESCRIPTION OF THE
INVENTION

We disclose here the invention of a method that efficiently
retreives the nearest neighbors of a given query point from
a database of high-dimensional points.

The mvention, 1Distance, partitions the data 1n the high-
dimensional space into clusters, each with an associated
reference point; and uses the distances between points 1n a
cluster and its reference point as the representative index
keys for the points. Because distance 1s single dimension
metric, the points can be ordered and indexed using a single
dimensional indexes. In our implementation, we employ the
B™-tree structure since it 1s supported by all commercial
DBMSs. Thus, 1iDistance can be readily adopted for use.
Similarity search on the high-dimensional space can also be
performed as a sequence of range queries on the single
dimensional space.

1Distance determines the way the data 1s stored on disks
through the B*-tree, and the efficiency of the method affects
the processing time 1n retrieving data from disks to the buifer
(RAM). The effects are the storage and retrieval time of data
from disks and the efficient use of bufler space by fetching
just enough data for answering user queries. FIG. 1 1llus-
trates the flow of mmformation and control 100, and the
clfects of 1Distance on data retrieval time. As shown 1n the
figure, there are two parts: storage of data 10 and retrieval
of data 20. When high dimensional points have to be stored,
they are first transformed by 1Distance 30 1nto single dimen-
sional values in RAM 40. These single dimensional values
are then inserted into a B™-tree on disks 50. Since a B™-tree
clusters data that have similar values together, this effec-
fively clusters high dimensional points that are related
together. On the other hand, when we are retrieving data 20,
the query (also in high dimensional space) will also be
transformed under 1iDistance 30 i1nto a set of increasingly
larger range subqueries on the single dimension space in
RAM 40. These subqueries are then used to acess the data
from the disk-based B*-tree 50. We note that only a fraction

10

15

20

25

30

35

40

45

50

55

60

65

4

of the B™-tree will be searched, and only the relevant
portions of the disk pages 50 will be transferred into RAM
40. The relevant data are refined and returned as answers to
the query.

In the following discussion, we consider a unit
d-dimensional space, 1.e., points are 1n the space

([0,1]]0,1], . ..,[0,1]). In other words, all attribute values
are mapped into [0,1] domain. We denote an arbitrary data
point in the space as p(X, X,, - . . , X,). Let dist be a metric
distance function for pairs of points. For our discussion, we
shall use the Euclidean distance as the distance function,
although other distance functions may be more appropriate
for certain applications. Let p,(X;, X0y« - X)), Po(V1s Voo « -« -
y,) and ps(z,, z,, . . . Z;) be three data points in a unit
d-dimensional space. The distance between p, and p, 1S

defined as

dist(py, p2) = \/(Xl =y + (= y2)F o+ (g = Ya)?

This distance function, dist, has the the following properties:

P1.p> € Points

p; € Points

PP, € Points;p; = p,
P1.P>.p3 € Points

dist(p;,po) = dist(p,,p;)

dist(p,,p2) = 0
0 < dist(p;.p,) = Vd

dist(p;,p3) = dist(py,ps) + dist(po,ps)

<L <L < <

The last formula defines the triangular 1nequality, and
provides a condition for selecting candidates based on
metric relationship.

5.1 1Distance

1Distance comprises four steps. First, the high dimen-
sional data 1s split 1into a set of partitions. This 1s done based
on ecither some clustering strategies or simple data space
partitioning strategies. Second, a reference point 1n each
partition 1s 1identified. We note that the reference point need
not be a data point. For a reference point, O, its data space
1s defined by the points nearest and furthest to 1it. The
maximum distance dist__max of the points in the partition to
O, 1s the maximum radius of the partition sphere, while the
minimum distance dist_ min of the points 1n the partition to
O. 1s the distance of the nearest point to O, The region
bounded by the spheres obtained from these two radi
defines the effective data space that need to be searched. In
the following discussion, we shall assume that the data space
has been partitioned, and the reference point in each parti-
tion has been determined. These 1ssues shall be discussed 1n
the Section 5.3. Without loss of generality, let us suppose
that we have m partitions, P,, P,, . . . , P__. and their
corresponding reference points, O,, O,, O, _ ..

Third, all data points are represented in a single dimension
space as follows. A data point p(Xy, X,, . . ., X,), 0=x,=1,
1=7=d, has an 1ndex key, y, based on the distance from the
nearest reference point O, as follows:

y=i*c+dist(p, O,)

where dist(O,, p) is a distance function returning the distance
between O, and p, and ¢ 1s some constant to stretch the data
ranges. Essentially, ¢ serves to partition the single dimension
space 1mto regions so that all points 1n partition P, will be
mapped to the range [1*c, (i+1)*c). Thus, the value of ¢
should be sufficiently large enough for the purpose.
Fourth, the transformed points are indexed using any
single dimensional index structure. We use the B™-tree since
it 1s available 1n all commercial DBMS. In our implemen-
tation of the B™-tree, leaf nodes are linked to both the left

US 6,334,278 B2

S

and right siblings. This 1s to facilitate searching the neigh-
boring nodes when the search region 1s gradually enlarged.

Besides the B™-tree, a small auxiliary data structure is
required to store the m reference points and their respective
nearest and furthest radu that define the data space.

It 1s clear that 1Distance 1s lossy 1n the sense that multiple
data points 1n the high dimensional space may be mapped to
the same value 1n the single dimensional space. For
example, different points within a partition that are equidis-
tant from the reference point have the same transtormed
value. However, as we shall see 1in the experimental study,
1D1stance can still lead to superior performance over linear
scan and existing methods.

5.2 Similarity Search 1n 1Distance

Before we look at similarity search in 1Distance, let us
first look at how similarity search can be performed for
metric-based indexing in the high-dimensional space.

The similarity search algorithm (in high dimensional
space) 1s based on the following observation: data points in
a partition can be referenced via 1ts reference point, O, 1n
terms of their proximity or distance to it. Formally, the
inequality relationship between the reference point, data
point and query point enables us to retrieve the required data
correctly.

Theorem 1

Let g be a query object, O, € Points be a reference point
for partition 1, and p, € Points be a given data point in
partition 1. Moreover, let querydist(q) be the radius of the
query sphere about q. If dist(p,,q)=querydist(q) holds, then
it follows that dist(O_,q)-querydist(q)=dist(O_,p)=dist(O,,
q)+querydist(q).

Proot

Based on the definition of triangle inequality, we have
dist(O,,q) =dist(O,,p,)+dist(p;,q). Since dist(p,,q)=querydist
(q), therefore, dist(O,,q) =dist(O,,p,)+querydist(q). And also,
dist(O,,q)-querydist(q) =dist(O,,p,).

To search for the K nearest neighbors of g, the distance of
the Kth nearest neighbor to q defines the minimum radius
required for retrieving the complete answer set.
Unfortunately, such a distance cannot be predetermined with
100% accuracy. Hence, an iterative approach that examines
increasingly larger sphere 1n each iteration can be employed
(see FIG. 2). The algorithm (in high-dimensional space)
works as follows. Given a query point g, finding K nearest
neighbors (NN) begins with a query sphere defined by a
relatively small radius about q, querydist(q). All data spaces
that intersect the query sphere have to be searched.
Gradually, the search region 1s expanded till all the K nearest
points are found and all the data subspaces that intersect with
the current query space are checked. We note that starting
the search query with a small 1nitial radius keeps the search
space as tight as possible, and hence minimizes unnecessary
search (had a larger radius that contains all the K nearest
points been used). FIG. 3 illustrates two data partitions
referenced by O, and O, and the relationship between them
and query q.

We are now ready to look at the KNN algorithm for
1Di1stance. Let us first look at the search regions. Let O, be
the reference point of partition 1, and dist__max; and dist__
min. be the maximum and minimum distance between the
points 1n partition 1 and O, respectively. Let q be a query
point and querydist(q) be the radius of the sphere obtained
about q. For 1iDistance, in conducting NN search, if dist(O,,
q)—querydist(q)=dist__max;, then partition 1 has to be
scarched for NN points. The range searching within an
affected partition 1s [max(0, dist__min;),min(dist__max;, dist
(O,,q)+querydist(q))]. FIG. 4 illustrates that for query point

10

15

20

25

30

35

40

45

50

55

60

65

6

g,, only data set O, needs to be searched, while for query
point q,, both O, and O, have to be searched. From the
figure, 1t 1s clear that all points along a fixed radius have the
same value after transformation due to the lossy transior-
mation of data points into distance with respect to the
reference points. As such, the shaded regions are the areas
that need to be checked.

FIG. 5 summarizes the algorithm for KNN with iDistance
method. Like its high-dimensional counterpart, 1t begins by
scarching a small “sphere”, and incrementally enlarges the
scarch space till all K nearest neighbors are found.

The algorithm 1Distance KNN 1s highly abstracted. Before
examining 1it, let us briefly discuss some of the important
routines. Since both routines Searchlnward and SearchOut-
ward are similar, we shall only explain routine Searchln-
ward. Given a leaf node, routine Searchlnward examines the
entries of the node to determine if they are among the K
nearest neighbors, and updates the answers accordingly. We
note that because 1Distance 1s lossy, it 1s possible that points
with the same values are actually not close to one another—
some may be closer to g, while others are far from 1t. If the
first element (or last element for SearchOutward) of the node
1s contained in the query sphere, then it 1s likely that its
predecessor with respect to distance from the reference point
(or successor for SearchOutward) may also be close to q. As
such, the left (or right for SearchOutward) sibling is exam-
ined. In other words, Searchlnward (SearchOutward)
searches the space towards (away from) the reference point
of the partition. The routine LocatelLeaf 1s a typical B™-tree
traversal algorithm which locates a leaf node given a search
value, and hence the detailed description of the algorithm 1s
omitted.

We are now ready to explain the search algorithm. Search-
ing 1n 1Distance begins by scanning the auxiliary structure to
identily the reference points whose data space overlaps with
the query region. The search starts with a small radius
(querydist), and step by step, the radius is increased to form
a bigger query sphere. For each enlargement, there are three
main cases to consider.

1. The data space contains the query point, g. In this case,
we want to traverse the data space sufficiently to
determine the K nearest neighbors. This can be done by
first locating the leal node whereby q may be stored.
(Recall that this node does not necessarily contain
points whose distance are closest to g compared to its
sibling nodes), and search inward or outward of the
reference point accordingly.

2. The data space intersects the query sphere. In this case,
we only need to search inward since the query point 1s
outside the data space.

3. The data space does not intersect the query sphere.
Here, we do not need to examine the data space.

The search stops when the K nearest neighbors have been
identified from the data subspaces that intersect with the
current query sphere and when further enlargement of query
sphere does not change the K nearest list. In other words, all
points outside the subspaces intersecting with the query
sphere will definitely be at a distance D from the query point
such that D 1s greater than querydist. This occurs when the
distance of the further object in the answer set, S, from query
point g 1s less than or equal to the current search radius r.
Therefore, the answers returned by 1Distance are of 100%
accuracy.

We note that 1Distance can provide approximate KNN
answers quickly. In fact, at each iteration of algorithm
1D1stanceKNN, we have a set of K candidate NN points.
These results can be returned to the users immediately and

US 6,334,278 B2

7

refilned as more accurate answers are obtained 1n subsequent
iterations. It 1s important to note that these K candidate NN
points can be partitioned into two categories: those that we
are certain to be 1n the answer set, and those that we have no
such guarantee. The {first category can be easily determined,
since all those points with distance smaller than the current
spherical radius of the query must be in the answer set. Users
who can tolerate some amount of 1naccuracy can obtain
quick approximate answers and terminate the processing
prematurely (as long as they are satisfied with the
guarantee). Alternatively, max r can be specified with
appropriate value and used to terminate i1DistanceKNN
prematurely.

Theorem 2

Algorithm 1Distance KNN terminates when the KNNs are
found and the answer 1s correct.
Proof

Let q be the query point. Let sphere(q,r) be the spherical
region bounded by g with a radius of r. Let P, denote the Kth
nearest point i S, the answer set. We note that algorithm
iDistance KNN terminates when dist(p,,q)=r. There are two
scenar1os during the search process:

Case 1
Sphere(q,r) Contains all the Data Points in S

Let pfurrhesr=furth68t(sﬂq)'

For all points p in S, such that dist(p,q)<dist(py,,,zes»Q)-
SINCe Pp,ies; 18 1nside sphere(q,r), dist(pg,,es-q)=1. We
note that it is not necessary to check sphere(q,r+Ar) since
any point bounded by the region with radii r and (r+Ar) will
be larger than the Kth nearest point found so far. Hence the
answers are the Kth nearest. and the program stops.

Case 2
S Contains a Point, u, Outside Sphere(q,r)

This occurs when a point lies 1n the strip that need to be
checked, and 1t happens to be the Kth nearest so {far.
dist(u,q)>r, and hence r has to be enlarged: r=r+Ar Suppose
the enlarged search sphere encounters a point v in the newly
enlarged region, dist(v,q)<r. If dist(v,q)<dist(u,q), then u will
be replaced by o. o 1s the pont furthest from q: pg,, ,..,=0;
Now, since dist(o,q)<r, all the answers are the Kth nearest
and the program stops.
5.3 Splitting the Data Space and Selection of Reference
Points

To support distance-based similarity search, we need to
split the data space 1nto partitions and for each partition, we
nced a representative point where all data points i that
partition can be made reference to. The way the data space
1s split, and the choice of the reference points can aifect
performance. Here, we shall look at two partitioning
methods, and their corresponding reference point selection
heuristics.

5.3.1 Equal Partitioning of Data Space

A straight forward approach to data space partitioning 1s
to subdivide it into equal partition. In a d-dimensional space,
we have 2d hyperplanes. The method we adopted 1s to
partition the space mto 2d pyramids with the centroid of the
unit cube space as their tip, and each hyperplane forming the
base of each pyramid. Now, we expect equi-partitioning to
be effective 1f the data are uniformly distributed.

We note that within one partition, the maximal distance to
a hyperplane center, dist__max, can be as large as 0.5%v~
vd-1. Each of the hyperspheres with radius dist__max over-
laps with one another in unit cube space. We study the
following possible reference points, where the actual data
space ol hyperspheres do not overlap:

1. Centroid of hyperplane, Closest Distance. The centroid
of each hyperplane can be used as a reference point,

10

15

20

25

30

35

40

45

50

55

60

65

3

and the partition associated with the point contains all
points that are nearest to it. FIG. 6 shows an example
in 2-d space. Here, O, O,, O; and O, are the reference
points, and point A 1s closest to O, and so belongs to the
partition associated with it (the shaded region).
Moreover, as shown, the actual data space 1s disjoint

though the hyperspheres overlap.

2. Centroid of hyperplane, Furthest Distance. The cen-
troid of each hyperplane can be used as a reference
point, and the partition associlated with the point con-
tains all points that are furthest from it. FIGS. 7TA-7B
show an example 1n 2-d space of the space partitioning
by the method, and the reduction 1n query space respec-
tively. As shown, the. affected area can be greatly
reduced (as compared to the closest distance counter-
part.

3. External point. Any point along the line formed by the
centroid of a hyperplane and the centroid of the corre-
sponding data space can also be used as a reference
point. (We note that the other two reference points are
actually special cases of this.) By external point, we
refer to a reference point that falls out of the data space.
This heuristics 15 expected to perform well when the
alfected area 1s quite large, especially when the data are
uniformly distributed. We note that both closest and
furthest distance can also be supported. FIGS. SA-8B
show an example of closest distance for 2-d space, and
the reduction 1 query space respectively. Again, we
observe that the affected space under external point 1s
reduced (compared to using the centroid of the
hyperplane).

While the data space does not change, the index value of
data points will change accordingly. Such characteristic can
be used to avold having too many points being mapped 1nto
the same 1ndexed value, or appearing on the same ring. As
such picking a good reference point is crucial, and a refer-
ence point can be used as a tuning factor for effective
performance.

5.4 Cluster Based Partitioning

As mentioned, equi-partitioning 1s expected to be ellec-
tive only 1f the data are uniformly distributed. However, data
points are often correlated. Even when no correlation exists
in all dimensions, there are usually subsets of data that are
locally correlated. In these cases, a more appropriate parti-
tioning strategy would be to 1dentify clusters from the data
space. However, 1n high-dimensional data space, the distri-
bution of data points 1s sparse, and hence clustering 1s not as
straightforward as in low-dimensional databases. There are
several existing clustering schemes 1n the literature such as
BIRCH, CURE, and PROCLUS. While our metric based
indexing 1s not dependent on the underlying clustering
method, we expect the clustering strategy to have an influ-
ence on retrieval performance.

In this paper, we adopt a sampling-based approach. The
method comprises four steps. First, we obtain a sample of
the database. Second, from the sample, we can obtain the
statistics on the distribution of data in each dimension.
Third, we select k; values from dimension 1. These k: values
are those values whose frequencies exceed a certain thresh-
old value. We can then form 11k, centroids from these values.
For example, 1n a 2-dimensional data set, we can pick 2 high
frequency values, say 0.2 and 0.8, on one dimension, and 2
high frequency values, say 0.3 and 0.6, on another dimen-
sion. Based on this, we can predict the clusters could be
around (0.2,0,3), (0.2,0.6), (0.8,0.3) or (0.8,0.6), which can
be treated as the clusters’ centroids. Fourth, we count the
data that are nearest to each of the centroids; if there are

US 6,334,278 B2

9

certain number of data around a centroid, then we can
estimate that there 1s a cluster there.

We note that the third step of the algorithm is crucial since
the number of clusters can have an impact on the search arca
and the number of traversals from the root to the leaf nodes.

When the number of clusters 1s small, more points are likely
to have similar distance to a given reference point. On the
other hand, when the number of clusters 1s large, more data
spaces, defined by spheres with respect to centroid of
clusters, are likely to overlap, and incur additional traversal
and searching. Our solution 1s simple: 1f the number of
clusters 1s too many, we can merge whose centroids are
closest; similarly, 1f the number of clusters 1s too few, we can
split a large clusters into two smaller ones. We expect the
number of clusters to be a tuning parameter, and may vary
for different applications and domains.

Once the clusters are obtained, we need to select the
reference points. Again, we have several possible options
when selecting reference points:

1. Centroid of cluster. The centroid of a cluster 1s a natural
candidate as a reference point. FIG. 9 shows a 2-d
example. Here, we have 2 clusters, one cluster has
centroid O, and another has centroid O.,.

2. Edge of cluster. As shown 1n FIG. 9, when the centroid
1s used, both clusters have to be enlarged to include
outlier points, leading to significant overlap 1n the data
space. To minimize the overlap, we can select points on
the edge of the hyperplanes as reference points. FIG. 10
1s an example of 2-dimensional data space. There are
two clusters and the edge points are O,:(0,1) and
0,:(1,0). As shown, the overlap of the two partitions is
smaller than that using cluster centroids as reference
points.

5.5 A Performance Study

To study the effectiveness of iDistance, we conducted an
extensive performance study. As reference, we compare
iDistance against linear scan (which has been shown to be
effective for KNN queries in high dimensional data space)
and an extended version of iMinMax(0). iMinMax(0) maps
a high dimensional point to either the maximum or mini-
mum value of the values among the various dimensions of
the point, and a range query requires d subqueries. we
extended iMinMax(0) to support KNN queries, and to return
approximate answers progressively. We note that iMinMax
(0) is designed for window queries, and the concept of
distance/similarity 1s not built in. As such, because search 1s
done based on a single dimension, there 1s no guarantee that

any answer set obtained are the K closest neighbors until the
entire data set 1s examined.

We implemented iMinMax(0) and the iDistance tech-
nique and their search algorithms in C, and used the B™-tree
as the simngle dimensional index structure. Each index page
is 4 KB page. All the experiments are performed on a
300-MHz SUN Ultra 10 with 64 megabytes main memory,
running SUN Solaris.

We conducted many experiments using various data sets,
with some deriving from LUV color histograms of 20,000
images. For the synthetic data sets, we generated 8, 16,
30-dimensional uniform data sets. The data size ranges from
100,000 to 500,000. For the clustered data sets, we used a
clustering algorithm similar to BIRCH to generate the data
sets. For each query, a d-dimensional point 1s used, and we
1ssue five hundreds of such points, and take the average. The
relative performance of the various schemes are similar for
most of the experiments conducted. Here, we shall report
some of the more 1mteresting and representative results.

5.5.1 Effect of Search Radius

10

15

20

25

30

35

40

45

50

55

60

65

10

In high-dimensional similarity search, the search around
the neighborhood 1s required to find K nearest neighbors.
Typically, a small search sphere 1s used and enlarged when
the search condition cannot be met. Hence, 1t 1s important to
study the effect of search radius on the proposed index
methods.

In this experiment, we used 8-dimensional,
16-dimensional and 30-dimensional, 100K tuple uniformly
distributed data sets. We use only the (centroid,closest
distance) combination in this experiment. FIG. 11-13 show
the accuracy of KNN answers w1th respect to the search
radius (querydist). By “accuracy”, we refer to the quality of
the answers obtained. For example, 50% accuracy for a K
NN query means that 50% of the answers obtained so far are
in the actual answer set. The results show that as radius
increases, the accuracy improves and hits 100% at certain
query distance. A query with smaller K requires less search-
ing to retrieve the required answers. As the number of
dimension increases, the radius required to obtain 100% also
increases due to increase 1n possible distance between two
points and sparsity of data space in higher-dimensional
space. However, we should note that the seemingly large
increase 1s not out of proportion with respect to the total
possible dissimilarity. We also observe that iDistance 1s
capable of generating lots of nearest neighbors with a small
query radius. We shall show the effect of radius on other data
distributions and various data partitioning schemes as we
discuss other performance 1ssues.

In FIG. 14, we see the retrieval efficiency of iDistance for
10-NN queries. First, we note that we have stopped at radius
around 0.5. This 1s because the algorithm 1s able to detect all
the nearest neighbors once the radius reaches that length. As
shown, 1Distance can provide fast initial answers quickly
(compared to linear scan). Moreover, iDistance can produce
the complete answers much faster than linear scan for
reasonable number of dimensions (i.e., 8 and 16). When the
number of dimensions reaches 30, 1Distance takes a longer
time to produce the complete answers. This 1s expected since
the data are uniformly distributed. However, because of its
abﬂity to produce approximate answers, 1Distance 1s a
promising strategy to adopt.

5.5.2 Effect of Reference Points on Equi-Partitioning
Schemes

In this experiment, we evaluate the efficiency of equi-
partitioning-based 1Distance schemes using one of the pre-
vious data sets. FIG. 15 shows the results for (centroid,
closest) combination with three (external point, closest)
schemes. Each of the external points 1s further away from
the hyperplane centroid than the others. First, we note that
the I/O cost increases with radius when doing KNN search.
This 1s expected since a larger radius would mean increasing
number of false hits and more data are examined. We also
notice that it turns out that iDistance-based schemes are very
efficient in producing fast first answers, as well as the
complete answers. Moreover, we note that the further away
the reference point from the hyperplane centroid, the better
1s the performance. This 1s because the data space that is
required to be traversed 1s smaller 1n these cases as the point
oets further away. For clustered data sets, we shall 1llustrate
the effect of reference points 1n the next subsection.

5.5.3 Performance of Cluster-based Schemes

In this experiment, we tested a data set with 100K data
points of 20 and 50 clusters, and some of the clusters are
overlapped with each other. To test the eif

ect of the number
of partitions on KNN, we merge some number of close
clusters to form a larger partition. We use the edge near to
the cluster as its reference point for the partition. Compari-

US 6,334,278 B2

11

son 15 shown 1 FIG. 16 and FIG. 17. As with the other
experiments, we notice that the complete answer set can be
obtained with a reasonably small radius (see FIG. 16). We
also notice that a smaller number of partitions performs
better 1n returning the K points. This 1s probably due to the
larger partition size for small number of partitions.

The I/0 results for 10-NN 1s shown 1n FIG. 17. The results
show a slightly different trend. First, we see that the cluster-
based scheme can obtain the complete set of answers 1n a
short time. Second, we note that a smaller number of
partitions incur higher I/O cost. This 1s reasonable since a
smaller number of partitions would mean that each partition
1s larger, and the number of false drops being accessed 1s
also higher. Finally, it 1s clear from the result that 1Distance
can not only provide fast initial answers, but can outperform
linear scan by a wide margin. In this result, iDistance’s
number of I/Os 1s at most halve that of linear scan, and be
as small as 20% that of linear scan.

We also repeated the experiments for a larger data set of
500K points of 50 clusters using the edge of cluster strategy
in selecting the reference points. FIG. 18 shows the search-
ing radius required for locating K (K=1, 10, 20, 100) nearest
neighbors when 50 partitions were used. The results show
that searching radius does not increase (compared to small
data set) in order to get good percentage of KNN. However,
the data size does have great impact on the query cost. FIG.
19 shows the I/O cost for 10-NN queries and the speedup
factor of 4 over linear scan when all ten NNs were retrieved.

FIG. 20 and FIG. 21 show how the I/O cost 1s affected as
the nearest neighbors are being returned. Here, a point (x, y)
in the.graph means that x percent of the K nearest points are
obtained after y number of I/Os. Here, we note that all the
proposed schemes can produce 100% answers at a much
lower cost than linear scan. In fact, the improvement can be
as much as five times. The results 1n FIG. 20 also show that
picking an edge point to the the reference point 1s generally
better because 1t can reduce the amount of overlap.

5.5.4 CPU Time

While linear scan incurs less seek time, linear scan of a
feature file entails examination of each data point (feature)
and calculation of distance between each data point and the
query point. Further, due to the limited buifer size, the
feature file may be scanned intermittenly. The above factors
will have impact on the overall CPU time. FIG. 22 shows the
CPU time of linear scan and 1Distance for the same experi-
ment as 1 FIG. 17. It 1s interesting to note that the
performance 1 terms of CPU time approximately reflects
the trend 1n page accesses. The results show that the best
1Distance method achieves about a seven fold increase in
speed. We omit iMinMax 1n our comparison as iMinMax has
to search the whole 1ndex 1n order to ensure 100% accuracy,
and 1ts CPU time at that point 1s much higher than linear
scan.

Further optimization of B™-trees that could benefit 1Dis-
tance 1s possible. For example, since the leaf nodes of a
B™-tree are chained, they can be organized into contiguous
blocks and each block, rather than a page, can be fetched at
a time. However, this requires further study.

5.5.5 A Comparative Study

In this study, we compare 1Distance with iMinMax and
linear scan. Our first experiment uses a 100K
30-dimensional uniform data set. The query 1s a 10-NN
query. For iDistance, we use the (external point, furthest)
scheme. FIG. 23 shows the result of the experiment. First,
we note that both iMimMax and i1Distance can produce
quality approximate answers very quickly compared to
linear scan. As shown, the I/O cost 1s lower than linear scan

10

15

20

25

30

35

40

45

50

55

60

65

12

with up to 95% accuracy. However, because the data 1s
uniformly distributed, to retrieve all the 10 NN takes a
longer time than linear scan since all points are almost
equidistant to one another. Second, we note that iMinMax
and 1Distance perform equally well.

In another set of experiment, we use a 100K

30-dimensional clustered data set. The query 1s still a 10-NN
query. Here, we study two version of cluster-based
1D1stance—one that uses the edge of the cluster as a refer-
ence point, and another that uses the centroid of the cluster.
FIG. 24 summarizes the result. First, we observe that among
the two cluster-based schemes, the one that employs the
edge reference points performs best. This 1s because of the
smaller overlaps 1n space of this scheme. Second, as in
carlier experiments, we sec¢ that the cluster-based scheme
can return initial approximate answer quickly, and can
eventually produce the final answer set much faster than the
linear scan. Third, we note that iMinMax can also produce
approximate answers quickly. However, 1ts performance
starts to degenerate as the radius 1ncreases, as it attempts to
search for exact K NNs. Unlike 1Distance which terminates
once the K nearest points are determined, iMinMax cannot
terminate until the entire data set 1s examined. As such, to
obtain the final answer set, iMinMax performs poorly.
Finally, we see that the relative performance between 1Mi-
nMax and 1Distance for clustered data set 1s different from
that of uniform data set. Here, 1Distance outperforms 1Mi-
nMax by a wide margin. This 1s because of the larger number
of false drops produced by iMinMax.

What 1s claimed 1s:
1. A computerized method for indexing 1n a database of
stored objects, the method comprising:

applying a clustering algorithm to organize high-
dimensional points 1nto partitions;
selecting a reference point for each partition;

applying a transformation function to map a high-
dimensional point to a one-dimensional space;

indexing the transformed point using a single dimensional
mndex structure; and

wherein the transforming includes mapping a high dimen-
sional point p to a single dimensional value y under the
transformation function, y=1*c+dist(p,0), where point o
is the closest reference point to p, and dist(p,0) repre-
sent the distance between p and o, ¢ 1s an arbitrary
constant greater than 1, 1 1s an integer that uniquely
1dentifies o.

2. A method for indexing as defined in claim 1 further
comprising conducting a KNN (K nearest neighbor) search
on the indexed set of transformed points to retrieve a set of
points which represent a superset of objects including
desired objects and false drops.

3. A method for indexing as defined 1n claim 2 further
comprising pruning away the false drops.

4. A method for indexing as defined in claim 1 wherein the
partitioning of high-dimensional data points 1s performed
either via equi-space partitioning or cluster-based partition-
ng.

5. Amethod for indexing as defined 1n claim 4 wherein the
equi-space partitioning splits a d-dimensional data space
into 2d pyramids with the centroid of the unit cube space as
their tip, and each hyperplane forming the base of each
pyramid.

6. A method for indexing as defined 1n claim 4 wherein the
cluster-based partitioning adopts a clustering strategy to
obtain the partitions.

US 6,334,278 B2

13

7. Amethod for indexing as defined 1n claim 1 wherein the
selecting of the reference points 1s performed via the fol-
lowing heuristics:

for equi-space partitioning, the reference point of a par-
fition can be any point along the line formed by the
centroid of a hyperplane and the centroid of the corre-
sponding data space; and

for cluster-based partitioning, either the centroid of the
clusters or any points on the edge of the hyperplanes
can be used as reference points.
8. Amethod for indexing as defined 1n claim 1 wherein the
transforming 1ncludes mapping a high-dimensional point to
its distance from the closest reference point.

9. Amethod for KNN search as defined 1n claim 2 wherein
the method further comprises:

10

14

transtorming the KNN search 1nto a sequence of increas-

ingly larger range queries; and

evaluating each range query on the single dimensional

index structure storing the transformed points.

10. A method for KNN search as defined in claim 9
wherein approximate answers can be returned to the users as
soon as they are found; and the answers are progressively
refined until all answers are obtained unless the users
terminate prematurely.

11. A method for indexing as defined 1n claim 2 wherein
the desired objects are nearest with respect to a distance
metric to the query object.

	Front Page
	Drawings
	Specification
	Claims

