(12)

United States Patent

Draper et al.

US006826717B1
(10) Patent No.: US 6,826,717 Bl
45) Date of Patent: Nov. 30, 2004

(54)

(75)

(73)

(21)
(22)

(60)

(51)
(52)
(58)

(56)

SYNCHRONIZATION OF HARDWARE AND
SOFTWARE DEBUGGERS

Inventors: Andrew Draper, Chesham (GB);
Edward Flaherty, Rimes Cottage (GB)

Assignee: Altera Corporation, San Jose, CA
(US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 445 days.

Appl. No.: 09/880,692
Filed: Jun. 12, 2001

Related U.S. Application Data

Provisional application No. 60/211,094, filed on Jun. 12,
2000.

INt. CL7 oo e GO6F 11/00
US.Cl o, 714/39; 714/725
Field of Search 714/39, 30, 725;

703/28; 326/39

References Cited

U.S. PATENT DOCUMENTS

5,425,036 A * 6/1995 Liuetal. 714/735
5,717,699 A * 2/1998 Haag et al. 714/725
5,960,191 A * 9/1999 Sample et al. 703/28
5,995,744 A 11/1999 Guccionecc.eveeen.... 395/500
6,016,563 A * 1/2000 Fleishercccvevvenen.n... 714/725
6,259,271 B1 * 7/2001 Couts-Martin et al. 326/40
6,389,558 B1 * 5/2002 Herrmann et al. 714/39
6,408,432 B1 * 6/2002 Herrmann et al. 717/139
6,425,077 B1 * 7/2002 Leetal. ..cococovvvvnivinnnn.... 713/1
6,460,148 B2 * 10/2002 Veenstra et al. 714/39
6,481,000 B1 * 11/2002 Zaveriet al. 716/17
2003/0078752 Al * 4/2003 Allamsetty 702/120

* cited by examiner

Primary Fxaminer—Scott Baderman
(74) Attorney, Agent, or Firm—Beyer, Weaver & Thomas,
LLP.

(57) ABSTRACT

A technique synchronizes logic signals captured in a PLD
portion of a PLD system having both a microprocessor and
PLD circuitry with executed instructions captured from a
microprocessor portion. One or more signal lines connects
the microcontroller portion with the PLD portion for trans-
mitting signals between the two portions corresponding to
debug operations 1n each portion.

Conventional electronic circuits employing microprocessors
and PLD’s use independent debugging techniques, either of
which are incapable of retflecting the complete state of the
circuit at a selected time. Combined processor and PLD
systems employ independent clocks for each portion, thus
creating additional problems in synchronizing logic state
traces 1n the PLD with the microprocessor instruction traces.
The present invention provides a direct signals from the
PLD portion to the microcontroller portion upon the occur-
rence of events relating to debugging and debug modes of
the microprocessor. In one embodiment, the PLD portion 1s
configured to send the output from a counter to a trace
module 1n the microcontroller portion. The periodic and
variably valued output signal from the PLD portion enables
software 1n an external host computer connected to the
combined circuit to match a debug trace from the micro-
processor to selected events occurring within the PLD
portion. In another embodiment, a signal 1s transmitted from
the microcontroller portion to the PLD portion and an
embedded logic analyzer 1s configured to respond to the
signal by performing a post-trigger scan. This scan captures
the states of selected logic in the PLD portion and may
provide the data to a user through software operating on a

host computer connected to the PLD portion, often through
a JTAG port.

39 Claims, 7 Drawing Sheets

302

PROCESSCR TRACE

/‘F> MODULE
702

5 HOST
| k———— COMPUTER
4

216

| 308

VAN

- — -
314 v""‘I l_”ﬁ 502 \

Ela |MONITOR 704
LOGIC
208 310

312 wl':

318

320
JTAG PORTS

? USER
LOGIC 308

300 PLD SYSTEM

U.S. Patent Nov. 30, 2004 Sheet 1 of 7 US 6,826,717 Bl

10
PROGRAMMABLE | 46
LOGIC DEVICE
__EB COMPUTER |
24 UNIT FILE SERVER /

N '
—T——

' COMPUTER COMPUTER | COMPUTER
SYSTEM SYSTEM SYSTEM
|
18 20 22

FIG. 1

U.S. Patent Nov. 30, 2004 Sheet 2 of 7 US 6,826,717 Bl

50 BEGIN DESIGN OF
PROGRAMMABLE LOGIC
\\ DEVICE

I_OBT/’ﬁ\IN SYSTEM SPECIFICATION |*\4 02

q » CREATE TOP LEVEL BLOCK DIAGRAM [~ 54

GENERATE DESIGN FILE TEMPLATES k\, 56
v
> IMPLEMENT BLOCK k\” 58
I
| _ SIMULATE BLOCK }\, 60

v
l« - COMBINE BLOCKS f\
v

- — SIMULATE ENTIRE DESIGNS ~— 64

I

l COMPILE ENTIRE DESIGN f\’ 66

I A

' OPTIMIZE DESIGN PERFORMANCE }\« 68

PROGRAM/CONFIGURE LOGIC DEVICE 70
AND TEST IN SYSTEM

S

FIG. 2

U.S. Patent Nov. 30, 2004 Sheet 3 of 7 US 6,826,717 Bl

PROCESSOR § HOST
% N COMPUTER
306 5 316

314 7" IDEBUG_REQ 304
PLD
MONITOR 318
LOGIC
310 320
JTAG PORTS

312 V"‘I

USER
LOGIC 308

300 PLD SYSTEM

FIG. 3

U.S. Patent Nov. 30, 2004 Sheet 4 of 7 US 6,826,717 Bl

474 Embedded Logic

Control Analyzer
L.ogic —
460

475 l
PLD
JTAG Port 320

TCLK TMS TDI TDO 304

PROGRAMMABLE LOGIC DEVICE

FIG. 4

U.S. Patent Nov. 30, 2004 Sheet 5 of 7 US 6,826,717 Bl

PROCESSOR § HOST
K n COMPUTER

316
5027 v IDEBUG_ACK 304
PLD
MONITOR 318
ELA
con | LOGIC
— 310 320
JTAG PORTS

312 v"‘ﬁ

USER
LOGIC 308

300 PLD SYSTEM

FIG. S

U.S. Patent Nov. 30, 2004 Sheet 6 of 7 US 6,826,717 Bl

PROCESSOR § HOST
K \ COMPUTER

316
m
PLD
CLA MONITOR 318
508 LOGIC
= - 310 320
JTAG PORTS

USER
LOGIC 308

300 PLD SYSTEM

FIG. 6

U.S. Patent Nov. 30, 2004 Sheet 7 of 7 US 6,826,717 Bl

302
o | [ma
306 oz < ’ 316
AN S
314 ~ ~ " 902 \ 304
PLD
MONITOR 704 318
ELA
o8 LOGIC
= - 310 320
JTAG PORTS

USER
LOGIC 3

-

8

300 PLD SYSTEM

FIG. 7

US 6,326,717 Bl

1

SYNCHRONIZATION OF HARDWARE AND
SOFTWARE DEBUGGERS

This application claims priority of U.S. provisional
patent application No. 60/211,094, filed Jun. 12, 2000,
entitled “Programmable Logic Integrated Circuit with
Embedded Processor” which i1s mcorporated by reference.

This application 1s related to U.S. Pat. No. 6,182,247,
entitled “Embedded Logic Analyzer For A Programmable
Logic Device”; U.S. patent application Ser. No. 09/186,607,
filed Nov. 6, 1998, enfitled “Enhanced Embedded Logic
Analyzer” now U.S. Pat. No. 6,286,114; and U.S. Pat. No.
6,247,147, entitled “Enhanced Embedded Logic Analyzer”;
all of which are hereby incorporated by reference.

FIELD OF THE INVENTION

The present invention relates generally to analysis and
debugging of integrated circuit devices. More specifically,
the present invention relates to synchronizing the debugging
of a processor and a PLD embedded on a common chip.

BACKGROUND OF THE INVENTION

Since their inception, digital systems have progressed
towards higher levels of integration. Higher integration
produces several benefits including increased performance
and lower development costs. At the device level integration
has been achieved by combining functions once performed
by multiple individual devices into higher density devices
with greater capabilities.

Architectural and process enhancements as well as incor-
poration of memory onboard the microprocessor chip have
permitted microprocessors to operate at higher speeds and
with greater capabilities. Likewise, programmable logic
devices have matured to meet customer’s expectations of
oreater capacity and performance through increases 1n size
and density and by changes 1n architecture. Programmable
logic devices refer to any integrated circuit that may be
programmed to perform a desired function and include
programmable logic arrays (PLAs), programmable array
logic (PAL), field programmable gate arrays (FPGA), com-
plex programmable logic devices (CPLDs), and a wide
variety of other logic and memory devices that may be
programmed. The increased size and capabilities of the
devices, with their corresponding complexities, has resulted
in movement towards higher levels of abstraction in the
design development of microprocessors and programmable
logic devices. Programming languages used in conjunction
with the design development of microprocessor circuits have
evolved towards languages using higher levels of
abstraction, such as C, C++, and JAVA. High level hardware
description languages, including Verilog and VHDL, are
typically employed to develop designs in programmable
logic devices. The increased complexity of these devices has
also resulted 1n increased reliance on design verification
through on-chip debugging tools. Such tools as Background
Debug Mode, Enhanced JTAG, and N-Wire are used 1n
debugging microprocessors.

Traditional design approaches include combining a
microprocessor with off-the-shelf devices on a system
board. This approach presents problems such as increased
delay from signals travelling off chip to other devices and
increased power consumption. On the other hand, integrat-
ing an embedded processor with programmable logic within
a PLD provides several advantages 1n addition to increased
performance. Flexibility 1s given to the designer to deter-
mine which functions should be executed in software (by the

10

15

20

25

30

35

40

45

50

55

60

65

2

processor) and which would benefit form hardware 1mple-
mentation 1n the PLD. Debugging such a system on a
programmable chip (“SOPC”) presents unique problems
best described after a more detailed description of conven-
tional debugging approaches for PLD’s and microprocessors
(software debugging).

In the field of electronics, various electronic design auto-
mation (EDA) tools are useful for automating the process by
which integrated circuits, multi-chip modules, boards, etc.,
are designed and manufactured. In particular, electronic
design automation tools are useful 1n the design of standard
integrated circuits, custom integrated circuits (e.g., ASICs),
and 1 the design of custom configurations for program-
mable integrated circuits. Integrated circuits that may be
programmable by a customer to produce a custom design for
that customer include programmable logic devices (PLDs).
Often, such PLDs are designed and programmed by a design
engineer using an electronic design automation tool that
takes the form of a software package. These tools commonly
offer the designer the option of inputting the design 1n at
least one high level hardware description language.

In the course of generating a design for a PLD, program-
ming the PLD and checking its functionality on the circuit
board or 1n the system for which 1t 1s intended, 1t 1s important
to be able to debug the PLLD because a design 1s not always
perfect the first time. Before a PLD 1s actually programmed
with an electronic design, a stmulation and/or timing analy-
sis may be used to debug the electronic design. However,
once the PLD has been programmed and 1s operating within
a working system, 1t 1s also 1important to be able to debug the
PLD 1n this real-world environment.

And although a simulation may be used to debug many
aspects of a PLD, 1t 1s nearly impossible to generate a
simulation that will accurately exercise all of the features of
the PLD on an actual circuit board operating in a complex
system. For example, a simulation may not be able to
provide timing characteristics that are similar to those that
will actually be experienced by the PLD 1n a running system;
¢.g., simulation timing signals may be closer or farther apart
than what a PLD will actually experience in a real system.

In addition to the difficulties in generating a comprehen-
sive simulation, other circuit board variables such as tem-
perature changes, capacitance, noise, and other factors may
cause Intermittent failures in a PLD that are only evident
when the PLD 1s operating within a working system. Still
further, 1t can be difficult to generate sufficiently varied test
vectors to stress the PLD design to the point where most
bugs are likely to be observed. For example, a PLD mal-
function can result when the PLD 1s presented with stimuli
that the designer did not expect, and therefore did not take
into account during the design and simulation of the PLD.
Such malfunctions are difficult to anticipate and must be
debugged 1n the context of the complete system. Thus,
simulation of an electronic design i1s useful, but usually
cannot debug a PLD completely.

One approach to debugging a hardware device within a
working system 1s to use a separate piece ol hardware
equipment called a logic analyzer to analyze signals present
on the pins of a hardware device. (For example, the
HP1670A Series Logic Analyzer from Hewlett-Packard
Company.) Typically, a number of probe wires are connected
manually from the logic analyzer to pins of interest on the
hardware device 1n order to monitor signals on those pins.
The logic analyzer captures and stores these signals.
However, the use of an external logic analyzer to monitor
pins of a hardware device has certain limitations when it

US 6,326,717 Bl

3

comes to debugging such a device. For example, such an
external logic analyzer can only connect to and monitor the
external pins of the hardware device. Thus, there 1s no way
to connect to and monitor signals that are internal to the
hardware device. Unfortunately, when programming a hard-
ware device such as a PLD, 1t would be useful to be able to
monitor some of these mternal signals 1in order to debug the

PLD.

Although some custom hardware devices may come ready
made with some internal debugeing hardware, this debug-
ong hardware 1s typically hardwired to route specific inter-
nal signals and cannot be readily changed by an engineer
who wishes to look at other signals. Also, with such built-in
debugging 1t 1s not possible to choose any signal to monitor
that the engineer desires, nor can triggering signals and
triggering conditions be changed by the engineer. Because a
PLD by 1ts very nature 1s a programmable device that an
engineer 1s attempting to program to perform a particular
function, 1t 1s 1mportant to the engineer to be able to
customize monitored signals, trigeer signals, and trigger
conditions 1n order to efficiently debug any particular device.
Further, creating an electronic design for a PLD 1s an
iterative process that requires creative debugging by an
engineer who may wish to view almost any internal signal,
and who may change his mind fairly frequently in the course
of debugging a PLLD within a system. Known external and
internal logic analyzers do not provide this flexibility.

A further drawback to using an external logic analyzer or
hardwired predetermined debugging hardware inside of a
custom chip 1s that often the number of internal signals that
an engineer desires to monitor are greater than the number
of available pins on the device. For example, if there are
sixteen internal signals that an engineer wishes to monitor
on a device, he 1s unable to do this using an external logic
analyzer if the device has only four pins available for
debugging.

In some cases, 1t 1s possible for an engineer to employ a
conventional logic analyzer to study an internal signal of a
PLD. This may be accomplished by, for example, an engi-
neer modifying his design so that a normally internal signal
1s routed temporarily to an output pin of the PLLD. The design
1s then recompiled. The engineer then attaches a probe to this
output pin 1n order to monitor the “internal” signal.
Unfortunately, the engineer must recompile his design and
reprogram the PLD in order to view this internal signal.
Also, when debugging 1s complete, the engineer must again
rewrite the design to remove the internal signal from the
output pin, recompile the design and finally reprogram the
PLD again. This can be a tedious process.

Even if an engineer 1s successiul in routing an internal
signal to an output pin of a PLD, with certain integrated
circuit packages it may be extremely difficult to attach an
external logic analyzer. For an integrated circuit 1n a dual
in-line package 1t may be relatively straightforward to attach
the probes of a logic analyzer to the top of the package as
long as the package 1s 1n an easily accessible location on a
circuit board. However, if the package 1s 1n a difficult to
reach location because of device crowding, it may be
difficult to physically attach logic analyzer probes to par-
ticular output pins of interest. Even more troublesome are
integrated circuits with rows of miniature contacts located
on the top of the package (e.g., “flip chips”). It 1s difficult to
attach logic analyzer probes to particular outputs of interest
with this type of package. Some integrated circuit are
encased 1n a ball grid array package with the contacts located
on the bottom of the package up against the circuit board; for
these packages, 1t may be nearly impossible to attach logic

10

15

20

25

30

35

40

45

50

55

60

65

4

analyzer probes to these small contacts located on the
underside of the package. Thus, use of an external logic
analyzer has shortcomings even if an internal signal can be
routed to a pin of a device.

U.S. patent application Ser. No. 08/958,435 entitled
“Embedded Logic Analyzer For A Programmable Logic
Device” discloses an advantageous apparatus and tech-
niques that allow an embedded logic analyzer to flexibly
analyze internal signals of interest in an electronic design,
such as within a programmable logic device (PLD).
Nevertheless, there 1s room for improvement in the analysis
of internal signals of a PLD for debugging purposes.

For example, some logic analyzers allow a user to specity
a trigger condition and a set of trigger signals that must
satisly that trigger condition before the logic analyzer is
triggered into the capture of data. Such logic analyzers are
useiul when 1t 1s desirable to capture and analyze signal data
that occurs immediately after a particular trigger condition
(such as a failure of the device). It is often desirable,
however, to capture signals for later analysis that occur
before the trigger condition. For the most part, these logic
analyzers that begin data capture based upon satisfaction of
a trigger condition are unable to provide captured signals
before the trigger condition because the logic analyzer 1s
only designed to begin capture upon an error, failure or other
trigger condition. Because these errors and/or failures are
unanticipated, these type of logic analyzers are unable to
anticipate the trigeer condition, and hence, are unable to
begin capturing data before the trigger condition occurs.

In some debugging situations, i1t can be extremely advan-
tageous to capture signals that occur before the trigger
conditions occurs. For example, when debugging a PCI bus
interface, a situation may occur in which the interface enters
an 1llegal state. Traditional logic analyzers would be able to
detect that 1llegal state and immediately begin capturing
signal data for later analysis. It would be extremely
desirable, however, to begin capturing signal data before the
bus interface enters the illegal state in order to determine
why the bus has entered this 1illegal state. In another
example, when an interrupt occurs, 1t can be extremely
desirable to know the history of certain registers before the
interrupt occurs. In other words, once the interrupt is
received, data capture may begin, but the registers may
already be 1n an incorrect state. It would be extremely
desirable to be able to capture and analyze signal data before
the 1nterrupt occurs in order to determine why certain
registers are 1n an incorrect state when the mterrupt occurs.
Other situations in which 1t would be desirable to capture
signal data before a specific trigger condition are also
possible.

Various prior art efforts present partial solutions, but each
have their drawbacks. For example, external logic analyzers
available from the Hewlett-Packard Company allow capture
of signal data before a trigger condition (or breakpoint)
occurs. Unfortunately, these external logic analyzers suifer
from many of the disadvantages associated with external
logic analyzers discussed above. Actel Corporation of
Sunnyvale, Calif. provides two probes within a program-
mable logic device that are able to monitor two different
signals, but these signals must be prespecified by the user
and may not be flexibly reassigned to other signals. In
addition, the Actel probes provide constant monitoring of
particular signals, but do not allow capture of relevant signal
data 1 relation to a specified breakpoint.

As described earlier 1n this section, a design engineer
designs a PLD and programs such a device using an elec-

US 6,326,717 Bl

S

tronic design automation tool. In the course of this design
phase, the design engineer may perform numerous design-
program-debug 1terations before the design 1s complete and
the PLLD ready for mass manufacturing. The design engineer
often uses a simulation and/or a timing analysis to assist in
debugging the electronic design of the PLD. It 1s also
conceivable that a design engineer would use an embedded
logic analyzer (such as disclosed in U.S. patent application
Ser. No. 08/958,435) to troubleshoot the design. Once the
design of the PLD i1s complete to the design engineer’s
satisfaction, the design 1s handed off to a product engineer
for the manufacturing phase.

In the manufacturing phase, a product engineer designs a
manufacturing flow for the mass production of an electronic
circuit board or other electronic device that incorporates one
or more PLDs. During the manufacturing phase, it will be
necessary to test the board itself and may also be necessary
to retest the PLD. In the beginning of the manufacturing
phase, any number and type of hardware components and
any number of PLDs are soldered to a board. Once on the
board, a PLD is most often programmed (or configured)
using a JTAG port located on the PLD. It 1s also possible that
a particular PLD be programmed by 1tself before placement
on a board using a special socket and a programming unit.

A full board test may then be performed to test the traces,
solder connections, and other physical interfaces between
components on the board. It should be pointed out that a
board test may also be performed before any devices on the
board are programmed or configured. It 1s common to use a
JTAG port of a PLD or other device to test the traces and
solder connections of a board during this board test. Once
physical connections are tested, a complete functional test of
the board 1s then formed to test the overall functionality of
the board (i.e., to ensure that particular inputs produce the
outputs expected). At this point, if a failure is detected it may
be necessary to debug a particular PLD while on the board.
For failures more difficult to track down, it may even be
necessary to remove a PLD from the board to be debugged.
In these circumstances, as previously explained, 1t 1s desir-
able to have an embedded logic analyzer within the PLD to
facilitate debugeing. During any debugging of the PLD
using an embedded logic analyzer, 1t 1s necessary 1n some
fashion to control the embedded logic analyzer, 1.., to
provide 1t with commands and data and to receive captured
data and status from it.

For example, it may be possible to use existing input/
output pins of a device to provide a control interface.
Unfortunately, a particular design may not have enough
extra mput/output pins available through which an interface
can be provided to control an embedded logic analyzer. It
can be undesirable to require that a customer purchasing a
PLD not use a certain number of input/output pins simply
because the PLD may not have been designed correctly and
might have to be debugged at some point.

Embedded logic analyzers placed in the programmable
logic device permit capture of specified signal data both
before and after a specified breakpoint. However, such
embedded analyzers have typically been designed to mea-
sure signal levels at various internal: and external circuit
nodes within the PLD. Their signal acquisition capabilities
do not extend to the states in the software environment of the
ProCeSSOr.

Software debug support 1s particularly useful with embed-
ded processors. In contrast to the signals measured by logic
analyzers 1n a PLD, the state of the microprocessor at the
fime of a system stoppage can be examined post stop. A

10

15

20

25

30

35

40

45

50

55

60

65

6

debug feature such as single-step may be used to look at the
contents of memory accessible by the processor and regis-
ters as well as the changes 1n values at these locations.
Through the use of the debugger, values in memory and
registers may be modified and followed by a restart of the
processor. Breakpoints may be inserted by the debugger (as
controlled from the host computer) into points of interest in
the program, 1.e. where the program 1s about to perform
improperly or has performed improperly. The user may then
single step through the program, 1.€. use the debugger to
execute one instruction at a time, watching the values in
registers and memory locations at each step. Debugging may
also be used, once a breakpoint 1s reached, to allow the user
to examine the states of all registers and memories leading
up to the system stoppage to obtain a more complete picture
of the events leading to the system failure.

One type of breakpoimt 1s mserted by a special unit that
stops the processor when 1t 1s about to execute an instruction
at a particular address. A second type of breakpoint involves
replacing one of the instructions i1n the program with a
breakpoint.

Extra information can be obtained by analysis of the
instructions executed immediately before the system stop-
page. Captured soltware trace data reflects the executed
Instructions in a processor prior to a trigger. In one approach,
a trace capture unit operates 1n combination with a main
processor. The main processor fetches instructions while the
tfrace capture unit monitors fetched instructions and data on
the bus and sends the information to the host computer
typically in a compressed form. The amount of and format
of trace information supplied 1s typically controlled through
a JTAG (Joint Test Action Group) port to an external host
computer.

These approaches are not optimal because generally they
capture no i1nformation about the states in peripherals or
other circuitry such as a PLD connected to the processor.

Intel Corporation of Santa Clara, Calif. uses a JTAG port
to control access to specified debug registers for help 1n
debugging a central processing unit (CPU). Because a CPU
1s a known design, 1t 1s known beforehand exactly how many
debug registers will be needed and control 1s simplified.
With a PLD, however, each user-implemented design will be
custom; 1t 1s unknown ahead of time what that design will be
and how many debug registers might be needed. Those
devices that include both a micro processor and a PLD are
a greater challenge.

Debugging a chip which combines both a microprocessor
and a PLD presents problems which have heretofore been
unaddressed. When execution of instructions in the micro-
processor comes to a halt, either through program failure or
through activation of a breakpoint 1n debugging software,
the operations 1in the PLD logic will continue indefinitely.
Thus, the logic states observed 1n the PLD at the time that
execution terminates will be different from the states (of
instructions) observed on the processor side at the time that
the system fault occurred. This incongruence between states
may also occur when a fault in the PLD side occurs.
Although debugging trace results can be obtained indepen-
dently for the microprocessor and the PLD, there 1s a need
for matching those results so that the states of the entire
system, including the microprocessor instructions and the
PLD logic signals, can be inspected at the time of the system
fault.

The microprocessor portion of the chip will typically have
an optimal clock speed different from the maximum clock
speed of the PLD. This means each of the portions will

US 6,326,717 Bl

7

operate at different speeds and the traces for each of the
portions will have different clock periods. This adds to the
difficulties 1n attempting to get a complete picture of the
states of the PLD logic and the processor instructions at
selected times during the debugeing process. Therefore,
what 1s further needed 1s a method of synchronizing debug-
oing trace results for both the microprocessor and the PLD
logic so that the states of the entire system at a trigger time
and a selected period before or after the trigger may be
accurately analyzed.

SUMMARY OF THE INVENTION

To achieve the foregoing, and 1n accordance with the
purpose of the present invention, a technique and electronic
device for synchronizing logic signals captured in a PLD
portion of a PLD system having both a microprocessor and
PLD circuitry with executed instructions captured from a
microprocessor portion, 1s disclosed. One or more signal
lines connects the microcontroller portion with the PLD
portion for transmitting signals between the two portions
corresponding to debug operations in each portion.

Combined processor and PLD systems employ indepen-
dent clocks for each portion to optimize performance of each
portion. Although software debuggers are commercially
available and capable of capturing and storing thousands of
instructions 1 accordance with the available memory, they
have no capability of storing the states present 1n the PLD
logic. Embedded logic analyzers such as Altera’s Signal Tap
are capable of storing signal values for selected logic circuit
points but are incapable of capturing and storing the
executed 1nstructions 1n the associated embedded micropro-
cessor. The present invention solves these problems by
providing a direct signal from the PLD portion to the
microcontroller portion upon the occurrence of events relat-
ing to debugeing and debug modes of the microprocesssor.
In one embodiment, the PLLD portion 1s configured to send
the output from a counter to a trace module in the micro-
controller portion 1 order to perform synchronization. The
periodic and variably valued output signal from the PLD
portion enables software 1n an external host computer con-
nected to the combined circuit to match a debug trace from
the microprocessor to selected events occurring within the
PLD portion. In another embodiment, a signal 1s transmitted
from the microcontroller portion to the PLD portion and an
embedded logic analyzer 1s configured to respond to the
signal by performing a post-trigger capture trace. This trace
captures the states of selected logic in the PLLD portion and
may provide the data to a user through software operating on
a host computer connected to the PLD portion, often through

a JTAG port.
BRIEF DESCRIPTION OF THE DRAWINGS

The 1nvention, together with further advantages thereof,
may best be understood by reference to the following
description taken in conjunction with the accompanying
drawings 1n which:

FIG. 1 1s a block diagram of a programmable logic
development system according to one embodiment of the
present invention.

FIG. 2 1s a flowchart of a design methodology used to
design a programmable logic device according to one
embodiment of the present invention.

FIG. 3 1s a block diagram of a programmable logic device
system transmitting a control signal from the PLD portion to
the microcontroller according to one embodiment of the
present mvention.

10

15

20

25

30

35

40

45

50

55

60

65

3

FIG. 4 illustrates an embedded logic analyzer according
to one embodiment of the present invention.

FIG. 5 1s a block diagram of a programmable logic device
system transmitting a control signal from the microcontrol-
ler to the PLD portion according to one embodiment of the
present 1nvention.

FIG. 6 1s a block diagram of a programmable logic device
system transmitting control signals between the microcon-
troller and the PLD portion according to one embodiment of
the present mvention.

FIG. 7 1s a block diagram of a programmable logic device
system having a trace module 1n the microcontroller portion
according to one embodiment of the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

Combining a processor portion with a programmable
logic device portion (“PLD”) on an integrated circuit pro-
vides many advantages to the user 1n terms of performance
and development costs but creates unique problems in
debuggeing. For eflicient operation, a microprocessor may in
many 1nstances provide data to the associated PLD portion,
move on to another task and return to obtain the processed
data from the PLD portion. When a fault occurs in the
execution of mstructions and produces an unexpected delay
in the execution of instructions, the processed data in the
PLD may reflect values that do not properly correspond to
the intermediate results expected by the processor. The
unequal delays in the PLD portion and the microcontroller
circuit cause a race condition, resulting in 1ncorrect perfor-
mance by the circuit. In order to debug such a combined
circuit, information as to the states of instructions in the
embedded processor and the logic values 1n the PLLD portion
1s desirable 1n order to obtain a complete snapshot of the
circuit at the time of failure. Debugging 1s typically per-
formed by the use of software implemented on a host
computer connected to the circuits subject to examination.

Combined processor and PLD systems employ indepen-
dent clocks for each portion to optimize performance of each
portion. Although software debuggers are commercially
available and capable of capturing and storing thousands of
instructions in accordance with the available memory, they
have no capability of storing the states present in the PLD
logic. Embedded logic analyzers such as Altera’s Signal Tap
are capable of storing signal values for selected logic circuit
points but are incapable of capturing and storing the
executed 1nstructions 1n the associated embedded micropro-
cessor. The present invention solves these problems by
providing a direct signal from the PLD portion to the
microcontroller portion upon the occurrence of events relat-
ing to debugeing and debug modes of the microprocessor. In
one embodiment, the PLD portion 1s configured to send the
output from a counter to a trace module 1n the microcon-
troller portion. The periodic and variably valued output
signal from the PLD portion enables software 1n an external
host computer connected to the combined circuit to match a
debug trace from the microprocessor to selected events
occurring within the PLD portion. In another embodiment,
a signal 1s transmitted from the microcontroller portion to
the PLD portion and an embedded logic analyzer 1s config-
ured to respond to the signal by performing a post-trigger
scan. This scan captures the states of selected logic 1n the
PLD portion and may provide the data to a user through
software operating on a host computer connected to the PLD
portion, often through a JTAG port.

Configuring the PLD portion 1s typically performed
through the assistance of electronic design automation

US 6,326,717 Bl

9

(EDA) software. In order to develop a design for program-
ming an electronic design such as a programmable logic
device, a programmable logic development system 1s used.
As used herein, “electronic design”™ refers to circuit boards
and systems including multiple electronic devices and multi-
chip modules, as well as integrated circuits. For
convenience, the following discussion will generally refer to
“integrated circuits”, or to “PLDs”, although the invention is
not so limited.

Programmable Logic Development System

FIG. 1 1s a block diagram of an embodiment of a
programmable logic development system 10 that includes a
computer network 12, a programming unit 14 and a pro-
crammable logic device 16 that is to be programmed.
Computer network 12 includes any number of computers
connected 1n a network such as computer system A 18,
computer system B 20, computer system C 22 and computer
system file server 23 all connected together through a
network connection 24. Computer network 12 1s connected
via a cable 26 to programming unit 14, which 1n turn 1s
connected via a programming cable 28 to the PLD 16.
Alternatively, only one computer system could be directly
connected to programming unit 14. Furthermore, computer
network 12 need not be connected to programming unit 14
at all times, such as when a design 1s being developed, but
could be connected only when PLD 16 1s to be programmed.

Programming unit 14 may be any suitable hardware
programming unit that accepts program instructions from
computer network 12 1n order to program PLD 16. By way
of example, programming unit 14 may include an add-on
logic programmer card for a computer, and a master pro-
gramming unit, such as are available from Altera Corpora-
tion of San Jose, Calif. PLD 16 may be present 1n a system
or 1n a programming station. In operation, any number of
engineers use computer network 12 in order to develop
programming 1nstructions using an electronic design auto-
mation soitware tool. Once a design has been developed and
entered by the engineers, the design 1s compiled and verified
before being downloaded to the programming unit. The
programming unit 14 1s then able to use the downloaded
design 1n order to program PLD 16.

For the purposes of debugging a PLD according to an
embodiment of the present invention, any of the computers
shown or others may be used to specily a logic analyzer
circuit and to compile such circuit along with a user’s
design. Furthermore, programming cable 28 may be used to
control the logic analyzer and to receive data from 1it, or a
separate debugging cable may be used to directly connect a
computer with device 16. Programming cable 28 may also
be used to program 1nstructions mnto the embedded processor
in a combined PLD, processor core, and memory system
such as Altera’s Excalibur embedded processor system.

Such a programmable logic development system 1s used
to create an electronic design. Design entry and processing
occurs 1n the context of a “project”. A project includes a
project file, design files, assignment files, and simulation
files, together with hierarchy information, system settings,
and output {files, which includes programming files and
report files. A project database may also exist, which con-
tains 1ntermediate data structures and version information.

A project contains one or more hierarchies of design
entities and each design hierarchy tree has a root entity,
which is the topmost design entity in that hierarchy tree (the
top-level functional block). Other design entities in the
design hierarchy tree are called child entities. Also, a design

10

15

20

25

30

35

40

45

50

55

60

65

10

hierarchy may contain entities for which there 1s no corre-
sponding design file, for example, 1n a top-down design
methodology. That part of a hierarchy which contains such
not-yet-implemented entities 1s not compiled or simulated
until a design file 1s supplied for each enfity. In this case,
template source files are automatically generated which have
defined interfaces but empty bodies to assist 1n implement-
ing these parts of a project. A user creates a design by
specifying and implementing functional blocks, as will now
be described in the context of an exemplary design meth-
odology.

Design Methodology

FIG. 2 shows a design methodology 50 for using a system
design specification 1n order to develop a design with which
to program a PLD. It should be appreciated that the present
invention may be practiced in the context of a wide variety
of design methodologies. By way of example, the work
group computing techniques and system of the present
invention work well with an electronic design automation
(EDA) software tool within the framework of the method-
ology of FIG. 2.

In step 52 a system specilication for the PLD to be
programmed 1s obtained. This specification i1s an external
document or file that describes, for example, the device pin
names, the functionality of each of the pins, the desired
system functionality, timing and resource budgets, and the
like. The multiple engineers within a work group will use

this system specification 1n order to create a design with the
EDA tool that will then be used to program a PLD.

Once the system specification 1s obtained, creation of a
design using functional block diagrams 1s begun. In step 54
a top-level block diagram 1s created in which connections
between lower-level designs blocks are specified. In this
block, the target device, speed grade, and key timing
requirements may be specified. Those skilled in the art will
recognize that this top-level block may also include blocks
that have already been developed or implemented or that
have been obtained from a third party provider. This top-
level block may also be converted into an HDL file, or the
like, for use 1n other related design tools, such as an external
simulator.

Step 56 includes generating design file templates with the
EDA tool for all blocks present in the top-level block
diagram of step 54. After the designer has created a block
which has not yet been implemented, the system may
generate a design file template. Such templates may display
a block 1n a window format including, for example, a fitle,
a date, etc. around the boundaries. It may also include some
details of the functional content depicted within the window.
The design file templates may be 1n any specified design
format including VHDL, AHDL, Verilog, block diagram,
schematic, or other like format. In the case of a VHDL block
the template may also include much of the formatting and
necessary syntax for any VHDL block. The user need only
take the template and add the small portion of VHDL syntax
required to 1implement his function. For example, the user
may need only add syntax defining a particular AND gate
operation. Normal design, such as VHDL or other IEEE
standard, requires large amounts of text to adequately set up
the design block.

Those skilled in the art will recognize that design {ile
templates such as these can be used as starting points for the
design of the structural or functional entities needed by the
design. Thus, a design file template may serve as a reusable
object for different instances of a block 1n one or more

US 6,326,717 Bl

11

designs. More i1mportantly, design file templates will be
employed to reduce the amount of labor that the designer
must expend to generate the logic 1n the blocks. In one
embodiment, the generation of the design file templates 1s
done 1n such a way that the templates can be updated later
if the top-level block diagram changes.

Next, 1n step 38, each of the blocks of the top-level block
1s implemented using the EDA tool. It 1s noted that for more
complicated designs, there may be additional levels of block
diagrams (i.e., blocks within blocks). If changes are required
at the top-level then the top-level block diagram 1s updated
and the sub-designs are preferably automatically updated as
well.

Furthermore, a block may be compiled through to a fitting
stage for a particular mtegrated circuit die to provide mfor-
mation about resource utilization, timing performance, etc.,
as required for a given design. As such, 1t 1s envisioned that
some timing optimization may be performed during step 38.
This sequence 1llustrates a style of design in which an
engineer first designs, then compiles and simulates, and then
returns to design again if the simulation results are not
satisfactory. In another style, an engineer may iterate
through a number of design followed by simulation loops
before finally compiling the complete design.

Concerning block implementation order, one or more of
the following factors can be used to determine 1implemen-
tation order: (1) the complexity of a block; (2) the uncer-
tainty or risk associated with a block; and/or (3) how far
upstream and/or downstream 1n a given data-path the block
resides. Each of steps 60, 62, 64, 68 and 70 may also lead
back to this block implementation step for additional 1mple-
mentation necessitated by later changes 1n the design.

In step 60 a block 1s stmulated functionally at the source
level using a behavioral stmulator and vectors generated by
using a VHDL or Verilog test bench, for example. The
simulation results can then be displayed or otherwise
presented/recorded as wavelorms, text or annotated onto the
source files. The designer may also return to step 38 to
implement a block again. Also, at this point a block may be
compiled or a timing analysis performed.

Once the designer 1s satisfied with the simulation results,
in step 62 the block 1s combined with other blocks and the
resulting eroup 1s simulated together. In some cases, 1t may
be usetul to complete a full compilation to provide critical
resource and timing information. Also, output simulation
vectors from one block may become the mput simulation
vectors to the next block. The designer may also return to
step 54 to modily the top-level block or to step 38 to
implement a block again.

Next, in step 64, the entire design 1s simulated function-
ally at the source level using a behavioral simulator.
Preferably, the top-level block diagram 1s fully specified
before simulation and shows complete design connectivity.
Vectors can be generated using a VHDL or Verilog test
bench. Again, the simulation results can be displayed either
as waveforms or annotated onto the source files. The
designer may also return to step 54 to modity the top-level
block or to step 58 to implement a block again. In step 66
the entire design 1s compiled through to a file containing the
information needed to program a PLD to implement the
user’s design, such as to a “programming output file”.

A wide variety of compile techniques may be used
depending upon the type of design being created. By way of
example, a few examples of compilation are presented
below. For a PLD, compilation includes the steps of
synthesis, place and route, generation of programming files

10

15

20

25

30

35

40

45

50

55

60

65

12

and simulation. For a traditional integrated circuit design
with a custom layout, compilation includes a layout version
schematic, a design rule checker and simulations. For inte-
orated circuit design using a high level design tool, compi-
lation 1ncludes synthesis from a language such as VHDL or
Verilog, automatic place and route and simulations. For
printed circuit boards, compilation includes automatic
routing, design rule checking, lumped parameter extraction
and simulation. Of course, other types of compilation and
variations on the above are possible.

Within the context of the present invention, any of the
above compile techniques may be modified in order to
produce an embedded logic analyzer. The compilation of a
PLD 1s modified 1n order to imsert a logic analyzer into a
user’s design.

Following compilation in step 66, in step 68 the timing
checker inside the compiler 1s used to determine if the
performance goals for the design have been met. Also,
timing stimulations are used to check performance details. In
addition, other analysis tools such as a design profiler and/or
layout editor can be used to further optimize the perfor-
mance of the design. Preferably, optimization 1s not per-
formed prior to step 68 because full compilation 1s usually
required to establish the location of one or more critical
paths within the design. The designer may also return to step
54 to modily the top-level block or to step 58 to implement
a block again.

Next, 1n step 70 the device 1s programmed/configured
using programming unit 14 and tested 1n the system. Again,
the designer may also return to step 54 to modify the
top-level block or to step 58 to implement a block again.
While methodology 50 presents a top-down design process,
it may also be used to support a bottom-up type methodol-
ogy. Now that a general design methodology has been
described by which an engineer may develop a design for a

PLD, a technique for embedding a logic analyzer within a
PLD will now be discussed.

Embedded Logic Analyzer and Software Debuggers

We now describe 1n general use of an embedded logic
analyzer and a software debugger. An embedded logic
analyzer within a PLD permits the capturing of desired
signals and viewing the results on a host computer. Initially,
a user generates a design for a device and compiles the
design 1nto an output file. A wide variety of EDA tools may
be used to generate and compile a design for a PLD. Specific

examples of how to use an embedded logic analyzer are
described 1n U.S. Pat. Nos. 6,182,247 and 6,247,147 and

U.S. patent application Ser. No. 09/186,607, filed Nov. 6,
1998, entitled “Enhanced Embedded Logic Analyzer” the
entire disclosures of which are incorporated herein by ref-
erence for all purposes.

A compiled output file 1s used to program the device and
the device 1s placed under operating conditions, such as on
a printed circuit board or within a suitable electronic system.
In one embodiment, if a user observes malfunctions with the
device, a hardware debugging feature of the EDA tool is
enabled. This enablement will allow the EDA tool to per-
form netlist augmentation. That 1s, the user’s design in
various design files may be augmented with a logic analyzer.
The user 1s allowed to program the logic analyzer 1n order
to debug the device 1in any way that the user chooses. The
design for the logic analyzer may already be present within
the EDA tool, or may be generated at any time. The signals
of 1nterest of the device to be monitored are specified by the
user 1n order to track down the cause of the maltunction. The

US 6,326,717 Bl

13

signals may be those present on pins of the device, or any
internal signals or points within the device. Often the nature
of the malfunction observed will provide a clue, suggesting
signals that would likely provide further information about
the problem. For example, 1f the malfunction 1s associated
with data output at a particular pin, the signals to be
monitored may be provided by logic upstream from the pin.

These signals to be monitored may be specified 1n a wide
variety of ways. By way of example, a hierarchical path
name for each signal may be specified, or a graphical user
interface may be used to view a particular design file and to
select a signal or point from within that file to be monitored.
The user may also specity which pins of the device will be
used as an interface to the user computer, 1.€., those pins to
be used to send control information to the embedded logic
analyzer within the PLLD and to upload captured information
from the logic analyzer to the user computer. Preferably,
though, the pins to be used as an interface are already
known, such as a JTAG port of a device.

The user connects a debugging interface cable from the
device to the user’s computer. The interface cable may be the
same cable used to program the device or it may be a
dedicated cable for debugging. In one embodiment, the
debugging cable connects to pins that have been specified by
the user as being dedicated to the logic analyzer circuit. In
other words, 1if the user has specified the pins to which the
debugging cable will be connected, the cable should be
connected to those pins. In an alternative embodiment, the
user need not specity the “debugging pins,” rather the
system speciflies them automatically. In other embodiments,
a dedicated JTAG port of the device may be used.

The cable may attach directly to these pins, or, the signals
from these pins may be routed to an easily accessible
location or port on the board to which the debugging cable
may ecasily attach. The cable will be used to transmait
instructions from the computer to the embedded logic
analyzer, and also to upload captured information from the
logic analyzer to the computer.

The user through the EDA tool requests the embedded
logic analyzer to begin running with an appropriate com-
mand. Once the logic analyzer begins to run, it begins to
continuously capture data from the signals that have been
speciflied to be monitored. Preferably, the user then manipu-
lates the system to duplicate previous malfunctions that the
user wishes to analyze. The captured data 1s stored within
memory of the PLD, and is preferably stored within dedi-
cated memory within the embedded logic analyzer 1itself.
The logic analyzer determines whether the state of the
signals specified to be monitored are equivalent to the
breakpoint that the user has specified. If not, then the logic
analyzer continues to capture data.

Once the total number of samples desired by the user have
been captured and stored, the stored data 1s dumped from the
sample memory of the logic analyzer to the user’s computer.
Preferably, the logic analyzer uploads this stored informa-
tion over the 1nterface cable to the user’s computer. The user
1s able to graphically view these signals received from the
logic analyzer. In one embodiment, the signals are presented
in a wavelform view annotated with the names of the signals.
Thus, by viewing these signals of mterest on a computer, a
user 1s able to efficiently debug a hardware device in much
the same way as if an external logic analyzer had been able
to be connected to these signals.

Software debuggers operate 1n a similar manner to capture
the state of executed instructions in an embedded processor.
Once a breakpoint 1s reached, the user may examine the

10

15

20

25

30

35

40

45

50

55

60

65

14

states of all registers and memories leading up to the system
stoppage to obtain a more complete picture of the events

leading to the system failure. A trace capture unit operating
in combination with a main processor ideally may be used
to capture the history of executed instructions prior to the
trigegering event. Analysis of the instructions executed
immediately before the system stoppage 1s typically per-
formed by software operating in the host computer. A more
limited capture of instructions may be obtained i the
absence of a trace unit by reading values stored by the
processor for this purpose at unused memory and register
locations.

As noted, sometimes trace modules are 1ntegrated into the
microcontroller to capture the history of instructions
executed by the processor. One such trace module suitable
for use with ARM processors 1s an ETM9 trace module
available from ARM Limited. ARM provides hard core
processors and associated tools to semiconductor chip
manufacturers for integration into their chips. The ETM9
trace module provides mnstruction and data tracing capability
for the ARM-based family. The ETM (connects directly to a
trace interface on the embedded processor. Altera Corpora-
fion of San Jose, Calif., uses hard core implementations of
processors from ARM-Limited as well as from MIPS
Technologies, Inc. 1n its Excalibur embedded processor PLD
systems. Thus, an implementation of the present invention in
Altera’s Excalibur embedded processor PLD systems uses
debugging tools that support ARM-based and MIPS based
Processors.

PLD System

FIG. 3 1llustrates a programmable logic device system 1n
accordance with one embodiment of the present invention.
The PLD system 300 comprises a microcontroller portion
302 and a PLD portion 304. The microprocessor 306 1s
contained within microcontroller 302. The microcontroller
may typically contain the processor core, peripherals, and
memory subsystem. An example of a PLD system 300
combining a PLD portion and a microcontroller portion 1s
Altera’s Excalibur family of ARM-based embedded proces-
sor PLD’s. An example processor suitable for practicing the
embodiments of the present invention 1s the ARM922T. The
ARMO922T 1s a member of the ARM-9 Thumb family of
processors, with Harvard architecture (separate memories
for instructions and data) implemented using a five-stage
pipeline. Such an implementation allows single clock-cycle
instruction operation through simultaneous fetch, decode,
execute, memory, and write stages. These processor features
provide performance advantages but require synchroniza-

fion as described 1n the present invention to effectively
debug the PLD system.

The PLD portion contains both user logic 308 and a
monitoring logic block 310. section. The user logic 308
generally comprises the application hardware. This logic 1s
configured through the EDA tools and design methods
described above. The designer generally will strive, through
the use of the EDA tools, to incorporate those functions of
the electronic design most suitable for implementation 1n the
soft logic of the PLD portion into that portion. He or she will
program the microprocessor 306 through high level hard-
ware development languages such as C and C++ 1n accor-
dance with methods well known to those of skill 1n the art.
User logic 308 1s connected by a connection network 312 of
connection lines between the user logic 308 and the moni-
toring logic 310.

The monitoring logic 310 may comprise a specialized
hardware circuit designed for the particular electronic design

US 6,326,717 Bl

15

application to generate an appropriate signal for transmis-
sion across signal line 314 to the microcontroller portion
302. In many cases, a single bit signal would be suitable for
this purpose. Generally, the monitoring logic 1s configured to
detect conditions within the PLD portion which might, for
example, indicate a fault in the PLD portion of the circuit
and generate a signal for transmission to the microprocessor

306 to indicate that a debug mode should be entered, which
stops the processor. This allows examination of an 1nstruc-
tion trace if so equipped. The signal may also be generated
when a breakpoint 1s reached 1 a soft processor 1mple-
mented 1n the PLD portion or when an internal state machine
in the PLD portion reaches a selected state and generally 1s
transmitted to stop the processor. In this way the PLD
portion can exert debug control over the processor. In yet
another embodiment, two chips may be configured so that
one processor stops when the second processor, such as one
located on another chip, stops or reaches a breakpoint. In a
further refinement, both processors may be interconnected
so that reaching a breakpoint on either processor causes the
other processor to stop.

Signal line 314 (DEBUG__ REQUEST) provides a direct

electrical connection between microcontroller portion 302
and the PLD portion 304 for transmission of a signal upon
the occurrence of a condition 1n the PLD portion 304
requiring a debug action 1n the processor. Methods of
forming such a connection between a microcontroller por-
tion containing an embedded processor and another portion
on the same chip (such as a PLLD) are well known in the art,
and one of ordinary skill would know how to adapt them to
constructing a PLLD system 1n accordance with the present
invention, given the parameters provided herein.

In this embodiment, the PLD portion 1s configured to
transmit signal 314 across the signal line upon the occur-
rence of some event 1in the PLD portion as detected by the
monitoring logic 310. In an alternate embodiment, the signal
generated may be provided from a portion of the user’s
circuit design which becomes active under some conditions
in the normal operation of the circuit. In yet another
embodiment, transmission of the debug request sugnal over
signal line 314 ocurs when a certain state 1n a state machine
1s reached. Configuration of logic 1n such manner may be
accomplished 1n accordance with techniques well known to
those of skill in the art. As noted earlier, designs entered into
the programmable logic portion of the system are typically
entered using hardware description languages. In addition,
many designs which can be integrated 1nto the PLD logic are
available commercially. For example, intellectual property
cores such as designs 1ncorporating embedded logic analyz-
ers (e.g., a Signal Tap product) are available from Altera
Corporation for use 1n its programmable logic devices.

In another embodiment, the monitoring logic 310 includes
an embedded logic analyzer, such as, for example, the
embedded logic analyzer described earlier 1n this specifica-
tion. One such embedded logic analyzer suitable for use in
this application is the Signal Tap embedded logic analyzer
sold by Altera Corporation. Embedded logic analyzers may
be programmed to output such a triggering signal 314 upon
the occurrence of a particular states, for example m a
simplified model, when nodes A and B contain high values
AND registers C and D have low values. The reason a signal
314 1s being output 1s generally to stop the processor to help
the user to debug the PLD system when 1t has reached the
state 1n which errors may occur or have just occurred.

Debugeing software 1s typically run on a host computer
316 connected through JTAG ports 318 and 320 to the
microcontroller portion 302 and PLD portion 304 respec-

10

15

20

25

30

35

40

45

50

55

60

65

16

tively. These ports (318 and 320) are also used for config-
uring the PLD portion 304 and programming the micropro-
cessor portion 302. Programming and user debugging
control may alternatively be provided through a single JTAG
port, such as either 318 and 320, in serial fashion. That 1s,
the debugging commands could first be provided to the
microcontroller portion 302 through the JTAG port followed
by debuggeing commands for the PLD portion 304, or 1n the
reverse order.

PLD’s may also be configured with one or more proces-
sors 1n the PLD portion 304. These are referred to as soft
processors. In such embodiments, the processor 1nstruction
execution may be debugged by a software debugger con-
nected to the soft core processor in the PLD portion 304. In
software debugging, breakpoints may be entered into the
execution stream through the use of a debugger to order
halting of execution of the instructions immediately after the
breakpoint 1s reached. In some systems breakpoints can be
configured to allow execution of mstructions to continue but
result in the sending of a signal such as signal 314 upon the
instruction stream reaching the breakpoint. In another
embodiment, the PLD portion 304 comprising a soft core
processor 1s configured to transmit signal 314 once a break-
point 1s reached 1n the soft processor’s execution of instruc-
tions. PLD portion 304 and the soft processor may also be
coniligured to send a signal 314 upon reaching a breakpoint
which stops execution of instructions by the soft processor.
This provides the capability of stopping the hard core
microprocessor 306 at or about the same time that program
execution stops 1n the soft core processor. Processor 306 1s
able to be stopped because signal 314 (DEBUG__REQ) is
routed to the processor which 1s configured to enter a debug
mode when a signal 1s received.

FIG. 4 illustrates another view of a PLD portion 304
showing a preferred embodiment for controlling a logic
analyzer using the JTAG port of the device 1n which the
logic analyzer 1s embedded. Not shown for clarity within
PLD portion 304 is user logic 308. In this preferred
embodiment, interface signals 264 are implemented using a
JTAG port 320 1n conjunction with control logic 474 and
signals 475. A JTAG (Joint Test Action Group) port 320 is
implemented under the IEEE 1149.1 standard and 1s known
to those of skill in the art. Control logic 474 provides
buffering between logic analyzer 460 and JTAG port 320 for
particular signals that are described below 1n FIG. 7. More
specifically, control logic 474 supplies control signals to
logic analyzer 460 and assists with retrieving data and status
from the logic analyzer.

In this embodiment, JTAG port 420 includes signals
TCLK, TMS, TDI and TDO. Signal TCLK 1s a clock signal
that controls the rate of serial data 1in and out of JTAG port
420. Signal TMS 1s a mode select signal that selects any of
the sixteen states of the JTAG port. Signals TDI and TDO

are serial data 1n and serial data out, respectfully.

Typically, a JTAG port 1s used either to program a PLD or
to assist with testing a circuit board on which PLDs are
located. Advantageously, it 1s realized that a JTAG port has
traditionally been unused during the design and debugging
of a particular PLD. Thus, it 1s further realized that a JTAG
port on a PLD 1s under utilized and may be used during
debugging of a PLLD as a means of communicating with and
controlling an embedded logic analyzer of the present inven-
fion. Advantageously, a standard JTAG port 1s used to
facilitate debugging of a programmable logic device that
includes an embedded logic analyzer.

As described above with reference to FIG. 4, a preferred
embodiment of the invention uses JTAG port 320 or ports

US 6,326,717 Bl

17

318 and 320 along with control logic 274 and signals 275 for
controlling logic analyzer 460 and trace module 702. It 1s
realized that use of a: JTAG port for control of a logic
analyzer would be advantageous 1n that a JTAG port 1s often
already present on a PLLD and present 1n the microcontroller.

The use of a JTAG port obviates the need to add exira,
dedicated debugging control pins. Furthermore, many
manufacturers of PLLDs already have facilities for connect-
ing and communicating through a JTAG port of a PLD. For
example, Altera Corporation of San Jose, Calif. uses a
product known as “Byte Blaster” to program a PLD through
a JTAG port. For these reasons and others, 1t 1s realized that
use of a JTAG port to control an embedded logic analyzer
and an embedded processor would be advantageous.
Advantageously, a JTAG port 1s used to control the embed-
ded logic analyzer while the PLD 1n which the logic analyzer
1s embedded 1s allowed to operate on the circuit board 1n a
real-world environment. Further details as to the operation
of the JTAG port are provided mm U.S. Pat. No. 6,247,147,
enfitled “Enhanced Embedded Logic Analyzer” which 1is
herein 1ncorporated by reference.

FIG. § illustrates a programmable logic device system
300 transmitting a signal 502 (DEBUG__

ACKNOWLEDGE) from a microcontroller portion 302 to a
PLD portion 304 1n accordance with one embodiment of the
present invention. A software debugging program operating,
on host computer 316 may be used to insert breakpoints in
the 1nstruction stream of microprocessor 306. A breakpoint
requires the processor to stop executing instructions and go
into a debug mode. A watchpoint makes the processor stop
executing 1nstructions and enter a debug mode because the
processor 1s about to access data at a particular location.
Some systems may be configured so that breakpoints and
watchpoints send a signal without shutting down the execu-
tion of instructions.

In both embodiments, the microcontroller portion may be
coniigured to transmit such a signal across signal line 502
upon reaching a breakpoint according to methods well
known to those of skill in the art. The signal 1s transmitted
across signal line 502 to the PLD portion 304 to create
events 1n the PLD portion to help debug the system. In one
embodiment it 1s received 1n the embedded logic analyzer
508. In one embodiment, the embedded logic analyzer may
be configured such that 1t is triggered upon receipt of the
signal. Altera’s Excalibur embedded processor PLD systems
incorporate such a signal line into the PLLD from the micro-
controller and designate the line 1n 1its specifications as
DEBUG-ACK, as referenced 1n FIG. 5. Embedded logic
analyzer 508 1s shown located within monitor logic block
310. Monitoring logic such as embedded logic analyzer 508
permit the capturing of information such as the states of
selected points within the PLD portion 304. Though logic
analyzers perform such functions well, specialized monitor-
ing logic could easily be configured within the monitor logic
block 310 or other portions of PLD portion 304 and still fall
within the spirit and intent of this invention. One advantage
of user specific monitoring logic 1s that the custom design
may minimize the area of the PLD devoted to such moni-
toring as compared to a larger area taken up by an embedded
logic analyzer. The specialized monitoring logic may pro-
vide greater versatility than provided by embedded logic
analyzer functions.

Embedded logic analyzers such as the Signal Tap product
produced by Altera Corp. of San Jose, Calif. are capable of
performing pre-trigger capture and post-trigger capture. In
pre-trigger mode the embedded logic analyzer captures and
stores state data for the PLD after the trigger signal is

10

15

20

25

30

35

40

45

50

55

60

65

138

received whereas post-trigger mode refers to captured and
stored state data immediately prior to the trigger. In some
cases, logic analyzers may implement more sophisticated
functions such as a 90% trigger, where 90% of the data 1s
before the trigger and 10% after the trigger so that all the
desired data up to the trigger signal i1s obtained and a little
after 1t. In alternate embodiments of the present invention,
pre-trigger captures and post-trigger captures are selected so
that the time period for which data i1s captured in the PLD
corresponds to the time period 1n which the user 1s inter-
ested. For example, if an event 1s triggered 1n the processor
by the system having just performed incorrectly (e.g. a fault
occurred), a post trigger capture in the PLD would be
selected to ensure that the PLD capture data covers the
period leading up to the time of the fault.

In another embodiment, the signal generated by the
microprocessor portion 304 1s connected to a state machine
in the PLD portion 304 and triggers the running of the state
machine. Inputting such a signal may be used to allow the
PLD to capture some of its state, such as for later analysis.
In yet another embodiment, the debug acknowledge signal
sent across signal 502 stops a soft processor configured 1n
the PLD portion at the same time that the processor is
stopped. The same signal may be sent to another processor
located off the chip. This embodiment would permit the
simultaneous stoppage of the processor and the second
processor to provide more complete system state informa-
tion during debugging.

Although signal 502 1s shown connected to an embedded
logic analyzer 508 1n monitoring logic 310, the invention 1s
applicable to other logic configurations designed for debug-
omg. For example, the PLD portion may be configured by
the designer to capture state signals for predetermined
portions of logic 1in the PLD section upon receipt of the
signal. In other embodiments, the specialized logic may be
configured to maintain the current state of predetermined
sections of logic 1n the PLD portion until a restart signal 1s
provided. Restart may be provided by a second signal line or
serially provided over the same line by methods well known
to those of skill 1in the art. Maintaining the state of selected
points within the PLD 1s useful to permit debugging of the
processor’s nstructions.

Normally when a breakpoint 1s reached in the processor
instruction execution, the execution halts but may be
restarted. In the absence of such a control signal to the PLD
portion, the PLD logic would keep running and i some
cases the sequence of microcontroller and PLD operations
could not be properly be restarted after the breakpoint. For
example, the system might enter 1nto an incorrect state 1if the
processor instructions depended upon an 1nput value from
the PLD portion which 1s only valid for a few clocks and
which would otherwise be overwritten if the processor
stopped. For example, 1f a PLD configured to sample 1s not
stopped, 1t will continue resampling and the user will lose
the data collected before. Thus, use of signal line 502 is
advantageous because it permits a complete picture of the
microprocessor instruction sequence at the time of a break-
point and a picture as to state information for selected points
in the PLD portion at the same time. Moreover, 1t also
permits the halting of instructions in the processor after
reaching a breakpoint to produce a similar maintenance of
states 1n the PLD portion so that the entire system may be
restarted as the user “steps” through the breakpoints of the
processor mstructions during debugging.

The foregoing embodiments have described various tech-
niques as to how the PLD can exert control over the
microprocessor by using the DEBUG__REQ line and how

US 6,326,717 Bl

19

the processor can exert control over the PLD by the
DEBUG__ACK line. Other lines may be used to perform the
same control functions but 1n a more complex way. For
example, using 2—4 lines, such as EXT__ 0 and EXT__1 lines,
as 1implemented 1 one embodiment of Altera’s Excalibur
embedded processor PLD systems, the processor will be
signaled to go 1nto a debug mode 1f one of the EXT lines 1s
asserted and another condition holds true such as a break-
point or watchpoint 1s triggered. For example, 1n the Excali-
bur system, there are 2 breakpoint units 1n the processor and
cach uses one of the EXT qualifying lines.

As 1llustrated 1n FIG. 6, two signal lines may be used to
coordinate the length of the captured debug data (traces) in
the processor and the PLD. Initially, the microprocessor may
hit a breakpoint 1n the debug process and transmit a signal
over line 502 to the monitor logic block 310 of the PLD 304.
The breakpomt may be a breakpoint which allows the
processor to continue with execution of instructions while
the embedded logic analyzer or other specially configured
monitoring logic in the PLD portion 304 completes its scan.
Signal line 314 transmits a signal to the microcontroller
portion 302 after completion of its capture of state informa-
tion. The microcontroller portion may be further configured
to stop program execution upon receipt of the second signal.
This embodiment 1s useful to capture complete state 1nfor-
mation for the system over an extended time period. For
example, a trace of 1nstructions over a 5 ms period may be
captured and output to the host computer using the debug-
oing 1n the processor while a timed 5 ms state scan of
selected points 1n the PLD portion also 1s captured and
forwarded to the host computer through the PLD’s debug
software. Thus, the trace 1in the PLD portion would coincide
with a period of interest traced in the processor. In yet
another embodiment, the PLD portion may be configured
upon receipt of the signal from the processor across signal
line 502 to safely terminate the operation of equipment
controlled by the processor. This embodiment would be
useful 1n many circumstances to permit a limited function
circuit 1n the PLD portion to take over control of a task
performed by the microprocessor, thus enabling debugging,
of the microprocessor to occur. For example, 1n the absence
of such a circuit in the PLD portion, a crane operated by a
microprocessor might drop its load when debugging stopped
the microprocessor. This embodiment 1s applicable to all
types of tasks controlled by a microprocessor wherein
stopping the processor during debugging may create safety
problems 1n the absence of backup circuitry provided by the
PLD portion.

As 1llustrated i FIG. 7, the PLD system may comprise a
trace module 702 within the microcontroller portion 302 in
accordance with one embodiment. The trace module moni-
tors the microprocessor’s 306 execution of instructions,
compresses the information, and outputs it through a trace
port 710 of the PLD system to host computer 316. The trace
module 702 performs functions for the processor 306 and its
software instructions similar to those debugging functions
by embedded logic analyzers 1n the PLD portion. Trace
module 702 monitors a signal line 704 from the PLD portion
304 and summarizes changes appearing on line 704 as well.
Although the line from the PLD portion to the trace module
702 may be a single line, a multi-bit bus such as a 4-bit bus
provides greater information and is preferable. The size of
the line or bus selected 1s determined by the width of the data
sought and the number of connections available on trace
module 702 for input. For example, an ETM-9 trace module
1s available from ARM Technologies, Ltd. for use with the
ARM family of embedded microprocessors. Such a module

10

15

20

25

30

35

40

45

50

55

60

65

20

implemented on Excalibur family of chips available from
Altera uses a 4 bit bus mput from the PLD portion and
designated as EXT-IN [3 .. . O]. The bandwidth provided by
a 4-bit bus, for example, permits a counter to be 1mple-
mented 1 PLD portion 304, or more specifically in one
embodiment, 1n an embedded logic analyzer 508. The last 4
bits of the counter, for example bits 8 . . . 11 of a 12-bit

counter, may be connected to the trace module 702.

The present invention 1n one embodiment uses the output
from the counter over signal line 704 to synchronize the
captured PLD portion states from the embedded logic ana-
lyzer with the captured and stored instructions from the
embedded microprocessor 306. In other words, the signals
transmitted across signal line 704 makes the PLD portion
clock or operations visible to the trace module. The concur-
rent storage of the signals received by the trace module 702
from the embedded logic analyzer 508 will thus permit a
timestamping on the executed instruction trace. Although
typically the clock rates for the PLD portion and the micro-
controller portion are different, this timestamping function
will permit the synchronization of the captured information
(traces) from each of the microcontroller portion 302 and
PLD portion 304 by software 1n the host computer 708. Such
software 1s projected to “stretch” one of the traces to match
the other trace and may be performed with techniques well
known to those of skill in the art. Synchronization 1s also
important because even with signals coordinated to shut
down the processor and freeze the PLD portion at the same
time, the stopping points will generally differ by several
cycles. Software 1n the host computer may perform the
synchronization of the traces from the embedded logic
analyzer and the trace module 1n the microcontroller portion.
The synchronized traces might appear as two traces side by
side with the synchronization points indicated. Alternately,
the trace might appear as a typical embedded logic analyzer
trace with the instructions appended. As noted earlier,
debugging software for both processors and embedded logic
analyzers and designed to be run on external host computers
are commercially available.

In an alternate embodiment, the signal from the PLD
portion may be generated by an event occurring within the
PLD or the embedded logic analyzer. For example, the PLD
portion may contain internal nodes which reach a selected
value only when a fault in the system is approaching. This
value would permit synchronization between the two traces
by effecting an “event stamping” in the trace module 702,
similar to the “time stamping” as described above with
reference to the output of a timer 1n the PLD portion 304. In
yet another embodiment, a state machine may be configured
in the PLD portion to generate signal 704 connected to the
trace module 702. For example, as known to those of skill
in the art, a state machine having 8 states may be represented
by a 3-bit signal. Thus, a 3-bit signal line 704 may be used
to synchronize the traces, taking outputs from the flip flops
of the state machine. Thus, the trace module 702 may be
used to produce a representation of everything occurring in
the processor simultaneous with each state of the state
machine.

One embodiment of the present mnvention 1s provided by
the Excalibur family of embedded processors available from
Altera Corporation, San Jose, Calif. The Excalibur family
provides a choice of processors, programmable logic, and
memory on a single PLD. Three embedded processor fami-
lies available mnclude an ARM-based processor core pro-
vided by ARM limited, a MIPS-based RISC processor core
provided by MIPS Technologies, Inc., and Altera’s Nios soft
core RISC embedded processor. Altera provides all of the

US 6,326,717 Bl

21

tools necessary for development of Excalibur designs,
including a C/C++ compiler and debugger, peripherals and
drivers, the Quartus software for PLD design development,
and download cables for device programming and veriiica-
tion. These tools provide a system-centric approach to
development, allowing hardware and software to be created
In unison.

The Nios embedded processor 1s a configurable RISC soft
core processor with a 16-bit instruction set and user-
selectable 16 or 32-bit data paths. Software development
support for the Nios solt core processor 1s provided by the

GNUPro compiler and debugger from Cygnus Software, a
division of Red Hat, Inc. It 1s an open source C/C++
development tool suite which provides debugging. The Nios
solt core processors may also be used 1n conjunction with

hard core processors embedded 1n the processor core such as
the ARM- and MIPS-based embedded processors.

Although the foregoing 1nvention has been described 1n
some detail for purposes of clarity of understanding, 1t will
be apparent that certain changes and modifications may be
practiced within the scope of the appended claims. For
instance, the connections between the PLD circuitry and the
microcontroller may be varied in number, name, and tech-
niques for forming them without departing from the spirit
and 1ntent of this invention. The configurations of the PLD
and the microcontroller have been described generally with
respect to the portions appearing 1n a single chip but the
invention 1s equally applicable to systems where the portions
appear on separate chips. Also, the present mvention 1s
applicable to any type of EDA tool that 1s able to compile a
user design. Although lmmited examples of PLD system
conilgurations have been presented, variations on the con-
figuration of logic within the PLD portion and the configu-
ration of the microcontroller and trace modules may occur
depending upon the device for which the design 1s being
compiled and still take advantage of the present invention.
Furthermore, the specific logic analyzer circuit shown 1is
exemplary; other circuits may also be used to implement a
logic analyzer. An 1nterface to the logic analyzer and to a
trace module from a computer may use any number of pins
and any type of protocol such as serial, parallel, etc. AJTAG
port may control one or more embedded logic analyzers or
frace modules, or separate ports may be used for each.
Therefore, the described embodiments should be taken as
llustrative and not restrictive, and the 1invention should not
be limited to the details given herein but should be defined
by the following claims and their full scope of equivalents.

We claim:

1. A programmable logic device (“PLD”) system com-
prising:

a programmable logic device (“PLD”) portion having

programmable logic circuitry representing one 1teration
of an electronic design 1n a design process to create a
final PLD portion;

a microcontroller portion having a microprocessor; and

a signal line connected between the microcontroller por-
tion and PLD portion to transmit debug control infor-
mation between the microcontroller portion and the
PLD portion, wherein the system 1s configured to use
the signal line to synchronize instruction traces on the
microprocessor with logic traces from the PLD portion.

2. The PLD system as recited 1n claim 1 wherein the PLD

portion 1s configured to transmit a signal across the signal
line and the microcontroller portion i1s configured to respond
to a signal recerved from the signal line.

3. The PLD system as recited in claim 2 wherein the

microprocessor enters into a debug mode.

10

15

20

25

30

35

40

45

50

55

60

65

22

4. The PLD system as recited in claim 2 wherein the
MICroprocessor stops executing instructions.

5. The PLD system as recited 1n claim 3 wherein the PLD
portion comprises specialized debugeing logic to generate
the signal.

6. The PLD system as recited in claim 5 wherein the PLD
portion comprises an embedded logic analyzer configured to
generate the signal upon the occurrence of a predetermined
condition.

7. The PLD system as recited m claim 6, further com-
prising:

a JTAG (Joint Test Action Group) port arranged to receive
at least one of logic analyzer and software debugging
commands from outside said PLD portion and said
microprocessor portion; and

means for performing the function of controlling said
logic analyzer using said JTAG port of said PLD
system, whereby said logic analyzer receives said com-
mands from outside said PLD portion and said micro-
processor portion and operates 1n response to said
commands.

8. The PLD system as recited 1n claim 2 wherein the PLD
portion comprises a state machine and the signal 1s gener-
ated when the state machine reaches a predetermined state.

9. The PLD system as recited 1 claim 2 further compris-

ing a second processor located on another chip and config-
ured to transmit debug control information to the micropro-
CESSOT.

10. The PLD system as recited in claim 3 wherein the
signal 1s a signal 1 a user logic circuit 1n the PLD portion
which becomes active 1n the normal operation of the circuit.

11. The PLD system as recited 1n claim 3 wherein the PLD
portion comprises a solt processor and the signal 1s gener-
ated by the soft processor after a breakpoint 1s reached.

12. The PLD system as recited 1n claim 1 wherein the
PLD portion and the microprocessor are fabricated on the
same chip.

13. The PLD system as recited 1n claim 1 wherein the
microcontroller portion 1s configured to transmit a signal
across the signal line when program execution reaches a
breakpoint and the PLLD portion 1s configured to respond to
a signal recerved from the signal line.

14. The PLD system as recited 1in claim 13 wherein the
program execution stops when a program executing 1n the
microprocessor reaches a breakpoint.

15. The PLD system as recited 1n claim 13 wherein a
coprocessor 1n the PLD portion 1s configured to stop upon
receipt of the signal.

16. The PLD system as recited 1n claim 13 wherein an
embedded logic analyzer in the PLD portion 1s triggered
upon receipt of the signal.

17. The PLD system as recited in claim 16 wherein the
embedded logic analyzer 1in the PLD portion 1s configured to
perform a pre-trigger capture of data.

18. The PLD system as recited 1in claim 16 wherein the
embedded logic analyzer 1n the PLLD portion 1s configured to
perform a post-trigger capture of data.

19. The PLD system as recited in claim 13 wherein a state
machine in the PLD portion 1s triggered upon receipt of the
signal.

20. The PLD system as recited 1 claim 13 wherein the
PLD portion 1s configured to capture the states of predeter-
mined sections of logic 1n the PLD portion upon receipt of
the signal.

21. The PLD system as recited 1 claim 13 wherein the
PLD portion 1s configured to maintain the current state of
predetermined sections of logic 1in the PLD portion, upon
receipt of the signal for the duration of the signal.

US 6,326,717 Bl

23

22. The PLD system as recited in claim 13 wherein the
PLD portion 1s configured to perform a safe shutdown of
equipment operated by the microcontroller.

23. The PLD system as recited in claim 16 further
comprising a second signal line connected between the
microcontroller portion and PLD portion to transmit debug
control information between the microcontroller portion and
the PLD portion, wherein the embedded logic analyzer is
configured to capture states of predetermined logic upon
triggering and to transmit a signal over the second signal line
to the processor portion and the microcontroller portion 1is
further configured stop program execution upon receipt of
the second signal.

24. A programmable logic device (“PLD”) system com-
Prising;:

a programmable logic device (“PLD”) portion having

programmable logic circuitry representing one 1teration

of an electronic design 1n a design process to create a
final PLD portion;

a microcontroller portion having a microprocessor and a
trace module configured to capture and store the micro-
processor’s execution of instructions; and

a signal line connected between the trace module and
PLD portion to communicate debug control informa-
tion between the microcontroller portion and the PLD
portion; wheremn the PLD portion 1s configured to
transmit a signal across the signal line and the trace
module 1s configured to respond to the signal received
from the signal line.

25. The PLD system as recited in claim 24 wherein the
trace module responds to the signal received by synchro-
nizing the signal with the capture and storage of the micro-
processor’s execution of instructions.

26. The PLD system as recited in claim 25 wherein the
PLD portion 1s configured to generate the signal from a
counter within the PLLD portion and the signal 1s a mult1 bat
signal.

27. The PLD system as recited in claim 26 wherein the
PLD portion further comprises an embedded logic analyzer
and the counter 1s located within the embedded logic ana-
lyzer.

28. The PLD system as recited in claim 24 wherein the
PLD portion 1s configured to generate the signal from an
event occurring within the PLD portion.

29. The PLD system as recited in claim 24 wherein the
PLD portion further comprises an embedded logic analyzer
and 1s configured to generate the signal from an event
occurring within the embedded logic analyzer.

30. The PLD system as recited in claim 24 wherein the
PLD portion 1s coniigured to generate the signal correspond-
ing to a state 1n a state machine.

31. Amethod for debugging a programmable logic device
(PLD) system comprising a microcontroller portion and a
PLD portion, said method comprising:

compiling an electronic design to produce a complete
design file;

24

programming said PLD portion with said complete design
file;

connecting the PLD portion and the microcontroller por-
tion by a signal line to synchronize debug data com-

. prising instruction traces for the microcontroller por-
tion and logic traces for the PLD portion;
connecting a JTAG (Joint Test Action Group) port of said
PLD system to monitor logic in the PLD portion and
10 the microcontroller portion; and

controlling said monitoring logic and microcontroller
portion, whereby said PLD system may be debugged.

32. The method as recited in claim 31, further comprising
transmitting debug control information from the PLD por-

15 f1on to the processor.
33. The method as recited 1n claim 32, wherein the PLLD

portion 1s configured to transmit a signal across the signal
line and the microcontroller portion is configured to respond
to a signal received from the signal line.

g 34. The method as recited 1 claim 33, wherein the PLD
portion comprises an embedded logic analyzer configured to
generate the signal upon the occurrence of a predetermined
condition.

35. The method as recited in claim 31, further comprising

5 transmitting debug control mmformation from the microcon-
troller portion to the PLD portion.

36. The method as recited in claim 35, wherein the
microcontroller portion 1s configured to transmit a signal
across the signal line when program execution reaches a

3o breakpoint and the PLD portion 1s configured to respond to

a signal received from the signal line.

37. A method for debugging a programmable logic device
(PLD) system containing a microprocessor and a PLD
portion, said method comprising;:

35 compiling an electronic design and inserting a logic
analyzer and a trace module to produce a complete
design file;

programming said PLD portion with said complete design
file, said logic analyzer being embedded in said PLD

40 portion;
receiving captured data from said logic analyzer of said

PLD portion, whereby said PLD portion may be
debugged;

rece1ving captured instruction traces for at least the micro-
processor from said trace module, whereby said micro-
processor may be debugged; and

45

synchronizing the captured instruction traces from the
trace module and the captured data from said logic

50 analyzer.

38. The method as recited 1in claim 37, wherein the
captured data from said logic analyzer are received via a
JTAG port.

39. The method as recited in claim 37, wherein the

ss captured trace instructions are received via a trace port.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

