US006826630B2
a2 United States Patent (10) Patent No.: US 6,826,630 B2
Olds et al. 45) Date of Patent: Nov. 30, 2004

(54) PRIORITIZING COMMANDS IN A DATA (56) References Cited

STORAGE DEVICE U.S. PATENT DOCUMENTS
(75) Inventors: Edwin Scott Olds, Norman, OK (US); 4,394,733 A 7/1983 Swenson .................... 364/200
Stephen R. Cornaby? Yukon, OK (US)? 5,603,063 A * 2/1997 AU cocvvririiiiiiiiiiinnen, 710/52
Mark David Hertz, Oklahoma City, 5,644,786 A * 7/1997 Gallqgher etal. ............ 7 10/30
OK (US); Kenny Troy Coker, 5935940 A 111998 Savkar et ol oo 195/392
838, avkar et al. ...............
Mustang, OK (US) 5,001,825 A 11/1999 NE .vovooeereeereeerereerren 710/6
o 6,170,042 B1 * 1/2001 Gaertner et al. ............ 711/158
(73) Assignee: Seagate Technology LLC, Scotts 6,571,298 Bl * 5/2003 Megiddo .....corrrerrerrere.. 710/5
Valley, CA (US) 6,574,676 Bl * 6/2003 Megiddo .....oooeveeven.... 710/5
(*) Not Subioet | eelnimer. the - 2002/0002655 Al * 1/2002 Hoskins ......cccccoevenn.... 711/112
OL1CC. UDJCCL 1O anly AIsCldlmer, e Lermim o 1S
patent 1s extended or adjusted under 35 FOREIGN PATENT DOCUMENTS

U.S.C. 154(b) by 187 days. EP 0354931 Bl * 4/1996 ........... GOG6F/12/08

* cited by examiner
(21) Appl. No.: 10/121,901

Primary FExaminer—Jellrey Gatlin

(22) Filed: Apr. 12, 2002 Assistant Examiner—ITanh Q. Nguyen
_ o (74) Attorney, Agent, or Firm—Fish & Richardson P.C.,
(65) Prior Publication Data PA
US 2003/0056034 A1 Mar. 20, 2003 (57) ABSTRACT
Related U.S. Application Data A unique system and method for ordering commands to
(60) Provisional application No. 60/322,492, filed on Sep. 14, reduce disc access latency while giving preference to pend-
2001. ing commands. The method and system 1nvolves giving
(51) Int. Cl” GO6F 13/00: GO6F 13/14 preference to pending commands 1n a set of priority queues.

(52) U.S. Cl 710/6: 710/5: 710/40: The method and system 1nvolve identifying a pending

710/41: 710/58: 710/244: 711/151: 711/158: command and processing other non-pending commands 1n
? ? 711 /167?' 711 /16é' 111 69’ route to the pending command if performance will not be

_ penalized 1n doing so. The method and system include a list
(58) Field of S$15c39363940_455 27153/ 5;2, Slg_ig’ of command node references referring to a list of sorted
676 4 7"2 7:_1 2; 4 3 O? . 11 1 6 0 { " ’1 . 3" command nodes that are to be scheduled for processing.

150, 151, 158, 163, 167-169 9 Claims, 7 Drawing Sheets

00
( START },—501 ‘/_5
50
02 47
Petform basic -
N—> " rps sort "'( END )

Any pending
commands?

50 &1
Y 505 —506 7 ™
Determine Sort tdentify first Obtain location of
Processing commandsl—" pending last scheduled
Time command disc access

14 5163

L

Initialize GO and Pointing to CZ?:EEd
command i YES=> Reference to GO
indicator List

i .

NO
Increment GO
Calculate total processing timJ counter

Serviceable in Schedule GO List
allnwad time
END

I

Increment
command M

indicator
&
YES
r—529 *
" Indicated curnmand 32
Accumulate "GO
Listl':l prl.l;.mising raference to GO list
time +

f 28
Increment GO counter




U.S. Patent Nov. 30, 2004 Sheet 1 of 7 US 6,826,630 B2

134

104

FIG.1



US 6,326,630 B2

AHOWdWNW
TJOYUINQOD {47
ONA3S J0OSSIV0HdOHIIN
912
877 JOYLNOD cee 31NAON
J1ANIdS NOILVYZILIHOINd
— ANVWWOD ONION3d
-
L\
D 922 Oce
—
S
Q01
= TANNVHO WY
: wasna |
=3 d344Ng
,.m AR
M ¢0c

0l¢

8L1

U.S. Patent

d31NdNQO

00¢



U.S. Patent Nov. 30, 2004 Sheet 3 of 7 US 6,826,630 B2

300?‘l

Direction of
Rotation
E
G
308 310
LDP
O 302
F
312 D
32C
304
C
306

108

FIG. 3



U.S. Patent Nov. 30, 2004 Sheet 4 of 7 US 6,826,630 B2

AN

40

42€

41

416

FIG. 4



U.S. Patent Nov. 30, 2004

01

START

Any pending
commands?

Sheet 5 of 7 US 6,826,630 B2

s

504

Perform basic |
RPS sort

Determine ldentify first Obtain location of
: sort :
Processing commands pending last scheduled
Time command disc access
12 14 516

Initialize GO and
command
indicator

021

Increment

Pointing to
pending
command?

Serviceable In

Pendin
Command
Reference to GO

YES

List

Increment GO
counter

518

NO

Calculate total processing time
24

52(

Schedule GO List|

c:on?mand ~NO allowed time
indicator
22
END
YES 26 —
Accumulate "GO Indicated command —5H32

List" processing |
time

reference to GO list

28

Increment GO counter

]
i

FIG. 5



U.S. Patent Nov. 30, 2004 Sheet 6 of 7 US 6,826,630 B2

600—&
- 618—
\

fF?eFé r-é_n-é_eti-s? |

gl

RefF

. B Queue
406 606
604 LDP > C

608 "
630
6’ e
408
616
e

416

FIG. 6



U.S. Patent Nov. 30, 2004 Sheet 7 of 7 US 6,826,630 B2

AN

Direction of
Rotation
310
308 LDP
302
70
F
D
312
304
C
30¢
108

FIG. 7



US 6,326,630 B2

1

PRIORITIZING COMMANDS IN A DATA
STORAGE DEVICE

RELATED APPLICATIONS

This application claims priority of U.S. provisional appli-
cation Ser. No. 60/322,492, filed Sep. 14, 2001.

FIELD OF THE INVENTION

This application relates generally to command optimiza-
flon 1n a data storage device and more particularly to
ellectively prioritizing read and/or write commands 1n a disc
drive.

BACKGROUND OF THE INVENTION

Many data storage devices use microprocessors to execute
commands. Typically, a data storage device can accommo-
date multiple microprocessor commands. For example, the
microprocessor 1n a disc drive device may receive multiple
commands to read or write data from or to media within the
disc drive. When commands are received 1n a data storage
device faster than the commands can be executed, the
commands are typically buffered to await their turn for
processing by the microprocessor 1n the data storage device.
Additionally, data associated with a write command 1s
typically held in a cache memory until the associated
command 1s processed.

Performance in a data storage device can often be
improved by executing the received commands 1n an order
different from the order they were origimally received.
Ordering the commands 1n this manner 1s called command
reordering. Command reordering allows for a more efficient
use of the microprocessor as well as a more efficient use of
the hardware being controlled by the microprocessor. For
instance, a disc drive may receive commands to read and/or
write data at a variety of locations on the hard discs within
the disc drive. Ideally, these commands would be processed
in a manner that would that would optimize user perceived
performance.

There are a number of ways to order the commands 1n a
command queue. Traditionally, disc drives have employed
algorithms to sort commands 1n an order that minimizes seek
fime between the various commands. The seek time 1s the
time required for the read/write element to radially move
across or traverse cylinders between a current cylinder over
which the read/write element 1s positioned and a target
cylinder to be addressed in response to a particular com-
mand. However, seek time 1s only one of two components of
the true access time of a command. Another component 1s
the rotational latency time or the amount of time the disc
drive spends waiting for the appropriate data to rotate under
the read/write element. The rotational latency time may be
a significant part of the total access time. Often, 1t 1s the
dominant component of the total access time for relatively
short seeks. As such, many current command ordering
algorithms are optimized to reduce rotational latency, either
alone or 1n conjunction with some form of seek time
minimization.

One significant drawback associated with prior command
ordering algorithms 1s that they do not give preference to
pending commands 1n the reordering process. When a pend-
ing command 1s not given preference over non-pending
commands, performance of the data storage device suifers.
As used herein, a pending command 1s a command for which
the command has not returned status. For example, a read
command 1s pending until the host computer receives the

10

15

20

25

30

35

40

45

50

55

60

65

2

data and status from the disc drive. As another example, a
write command 1s pending until the disc drive notifies the
host that the disc drivereceives the data and sends comple-
tion status to the host. Hence, non-pending commands are
those that the host computer perceives as complete, but are
not completed 1n the data storage device.

An example of a non-pending command 1n the disc drive
1s a ‘writeback’ command. Frequently, when a disc drive
receives a write command, the associated data 1s not imme-
diately written to the disc, but rather 1t 1s cached until the
write becomes favorable to commit to the media. When the
write data 1s cached and completion status 1s sent to the host,
the write command becomes a writeback command. Write-
back commands are not pending because the host computer
has been given notification that the associated data has been
received by the disc drive. In other words, from the host
computer’s perspective, the write command has been com-
pleted; however the disc drive still must execute the write-
back command while 1t 1s cached.

As noted, traditional reordering algorithms do not give
preference to pending commands 1n the reordering process.
That 1s, these algorithms give the same priority to the
pending command(s) as to the non-pending commands.
Often the number of buffered non-pending commands
exceeds the number of pending commands and the non-
pending commands become more favorable to commit to the
media. As a result, a pending command, for which the host
computer requires prompt processing by the data storage
device, may be delayed for a substantial amount of time
while non-pending commands are processed. When pending
commands are delayed, performance 1s reduced from the
host computer’s perspective. In particular, when the pro-
cessing of pending commands 1s delayed, a computer user
may perceive a lower level of data through-put between the
host computer and the disc drive than if the pending com-
mands are not delayed.

There 1s strong motivation 1n the industry to improve all
aspects of performance, including through-put. Accordingly,
there 1s a continual need for improvements i1n the art
whereby pending commands and non-pending commands
are executed 1n an efficient order while giving preference to
pending commands, thereby reducing latency and improving
performance.

SUMMARY OF THE INVENTION

Embodiments of the present invention minimize disc
access latency using a unique system and method for order-
ing commands. More particularly, embodiments involve
oving preference to pending commands in the priority
queue. Still more particularly, embodiments involve 1denti-
fying a pending command and processing other commands
enroute to the pending command only if such processing
will not delay the execution of the pending command.

An embodiment mncludes a method of prioritizing a plu-
rality of commands involving storing a plurality of com-
mand nodes in memory, identifying a pending command
node 1n the plurality of command nodes, and scheduling the
pending command node for processing. More particularly,
the method may employ steps of identifying intermediate
command nodes 1n the plurality of command nodes that can
be processed m addition to the pending command node
within a predetermined amount of time and scheduling the
intermediate command nodes before the pending command
node.

The step of 1dentifying mntermediate command nodes may
involve storing the plurality of command nodes 1n a first



US 6,326,630 B2

3

queue, and for each of the plurality of command nodes,
determining an associated required processing time from a
last scheduled command node. The method may further
include sorting the plurality of command nodes according to
their associated required processing times, selecting the one
or more command nodes having an aggregated processing
time which, when added to the processing time of the
pending command, 1s less than the predetermined processing,
time.

These and various other features as well as advantages
that characterize the present invention will be apparent from
a reading of the following detailed description and a review
of the associated drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a plan view of a disc drive incorporating an
embodiment of the present invention.

FIG. 2 1s a simplified functional block diagram of the disc
drive shown 1 FIG. 1.

FIG. 3 1s an elevation view of a disc showing disc
locations that may be accessed 1n response to commands
using Rotational Position Sorting (RPS).

FIG. 4 illustrates a set of queues that are used 1n accor-
dance with an embodiment of the present invention.

FIG. 5 1s a flow chart of a pending command prioritization
operation 1n accordance with an embodiment of the present
invention.

FIG. 6 depicts exemplary scheduling and routing of
command nodes m a data storage device utilizing an

embodiment of the pending command prioritization opera-
tions 1llustrated in FIG. 5.

FIG. 7 1s an elevation view of a disc showing exemplary
disc locations associated with the command nodes of FIG. 6.

DETAILED DESCRIPTION

Embodiments of the present invention are described with
reference to a series of figures. Generally, embodiments of
the present mvention relate to systems and methods incor-
porated 1n a data storage device for receiving commands
from an attached host computer, ordering the commands
according to the methods described herein, and processing
the commands 1 a determined order. The systems and
methods utilize a number of queues and a list of command
node references to receive and sort command nodes and
synchronize the processing of commands with the disc
rotation to optimize performance as perceived by the host.

A disc drive 100 constructed 1n accordance with a pre-
ferred embodiment of the present invention 1s shown 1n FIG.
1. The disc drive 100 includes a base 102 to which various
components of the disc drive 100 are mounted. A top cover
104, shown partially cut away, cooperates with the base 102
to form an 1nternal, sealed environment for the disc drive 1n
a conventional manner. The components include a spindle
motor 106 that rotates one or more discs 108 at a constant
high speed. Information 1s written to and read from tracks on
the discs 108 through the use of an actuator assembly 110,
which rotates during a seek operation about a bearing shaft
assembly 112 positioned adjacent the discs 108. The actuator
assembly 110 includes a plurality of actuator arms 114 that
extend towards the discs 108, with one or more flexures 116
extending from each of the actuator arms 114. Mounted at
the distal end of each of the flexures 116 1s a head 118 that
includes an air bearing slider enabling the head 118 to fly in
close proximity above the corresponding surface of the
associated disc 108.

10

15

20

25

30

35

40

45

50

55

60

65

4

During a seck operation, the track position of the heads
118 1s controlled through the use of a voice coil motor
(VCM) 124, which typically includes a coil 126 attached to
the actuator assembly 110, as well as one or more permanent
magnets 128 that establish a magnetic field 1n which the coil
126 1s immersed. The controlled application of current to the
coll 126 causes magnetic interaction between the permanent
magnets 128 and the coil 126 so that the coil 126 moves 1n
accordance with the well known Lorentz relationship. As the
coil 126 moves, the actuator assembly 110 pivots about the
bearing shaft assembly 112, and the heads 118 are caused to
move across the surfaces of the discs 108. The heads 118 are
positioned over one or more tracks 120 containing data and
servo 1nformation for controlling the position of the heads

118.

A flex assembly 130 provides the requisite electrical
connection paths for the actuator assembly 110 while allow-
ing pivotal movement of the actuator assembly 110 during
operation. The flex assembly includes a printed circuit board
132 to which head wires (not shown) are connected; the head

wires being routed along the actuator arms 114 and the
flexures 116 to the heads 118. The printed circuit board 132

typically includes circuitry for controlling the write currents
applied to the heads 118 during a write operation and a
preamplifier for amplifying read signals generated by the
heads 118 during a read operation. The flex assembly
terminates at a flex bracket 134 for communication through
the base deck 102 to a disc drive printed circuit board (not
shown) mounted to the bottom side of the disc drive 100.

FIG. 2 1s a functional block diagram of the disc drive 100
of FIG. 1, generally showing the main functional circuits
that may be resident on a disc drive printed circuit board for
controlling the operation of the disc drive 100. As shown 1n
FIG. 2, a host computer 200 1s operably connected 206 to an
interface application specific integrated circuit (interface)
202. The interface 202 typically includes an associated

buffer 210 that facilitates high speed data transfer between
the host computer 200 and the disc drive 100. The buffer 210

1s a cache memory for caching commands and/or data to
reduce disc access time. Data to be written to the disc drive

100 are passed from the host computer to the interface 202
and then to a read/write channel 212, which encodes and
serializes the data and provides the requisite write current
signals to the heads 118. To retrieve data that has been
previously stored by the disc drive 100, read signals are
generated by the heads 118 and provided to the read/write
channel 212, which performs decoding and error detection
and correction operations and outputs the retrieved data to
the mterface 202 for subsequent transfer to the host com-
puter 100. Such operations of the disc drive 100 are well
known 1n the art and are discussed, for example, in U.S. Pat.

No. 5,276,662 to Shaver et al.

As also shown 1n FIG. 2, a microprocessor 216 1s operably
connected 220 to the interface 202. The microprocessor 216
provides top level communication and control for the disc
drive 100 1n conjunction with programming for the micro-
processor 216, which may be stored 1 a non-volatile micro-
processor memory (MEM) 224. The MEM 224 may include
random access memory (RAM), read only memory (ROM)
and other sources of resident memory for the microprocessor
216. Additionally, the microprocessor 216 provides control
signals for spindle control 226 and servo control 228. The
embodiment 1llustrated in FIG. 2 mcludes a pending com-
mand prioritization module (PCPM) 232 being executed by
the microprocessor 216. The PCPM 232 1s executable code
initially resident in the MEM 224 and read and executed by
the microprocessor 216 to perform unique operations to
prioritize commands giving preference to pending com-
mands.




US 6,326,630 B2

S

In operation, the host computer 200 sends commands to
the disc drive 100 instructing the disc drive 100 to read or
write data from or to the discs 108. A “write” command
typically includes data to be written to the discs 108 along
with a logical address indicating where the data i1s to be
written and the number of bytes to write. A “read” command
typically includes a logical address indicating the location or
locations of data to be read, and a size indicator indicating
the number of bytes to be read. The commands are received
by the interface 202, where they may be processed 1mme-
diately or stored for later processing. The mnterface 202 may
store the commands and their associated data and/or
addresses so that the commands can be sorted, ordered, or
prioritized 1n such a way that disc drive 100 performance
may be improved. In one embodiment, the commands
received from the host 200 are first sorted according to
required processing time irrespective of command type. In
this embodiment, the commands are subsequently priori-
tized based on command type with preference to pending
commands.

As used herein, pending commands are commands that
are recognized by the host computer 200 as not yet pro-
cessed by the disc drive 100. An example of a pending
command 1s a pending read command. During a typical read
operation, the host computer 200 sends a command to the
disc drive 100 requesting the disc drive 100 to send the host
200 data that has been written to the disc drive 100. The host
200 then waits for the disc drive to return the requested data.
As such, until the requested data 1s delivered to the host 200
from the disc drive 100, the command 1s pending. In contrast
to a pending read command, a ‘writeback’ command 1s a
command that 1s not considered a pending command. A
writeback command 1s a command that 1s internal to the disc
drive 100 that prompts the disc drive 100 to write previously
cached data to the discs 108. A writeback command 1s not
pending from the host computer 200 perspective, because
the host computer 200 considers the data associated with the
writeback command to have already been written.

To 1mprove performance, it 1s often desirable to process
the host commands 1n an order different from the order in
which they are received. As 1s described below, embodi-
ments of the present invention include unique methods and
systems of prioritizing commands depending on the type of
command, and giving pending commands a higher priority
than non-pending commands.

Methods of prioritizing commands with preference to
pending commands to 1mprove disc drive 100 performance
are described 1n detail below with reference to FIGS. 4-7. In
one embodiment (illustrated in FIG. 2), the microprocessor
216 cxecutes software resident in the memory 224 to carry
out the methods. In another embodiment, the methods are
performed by the interface 202. Many other embodiments
not shown herein will be readily apparent to those skilled in
the art to implement the various embodiments and features
of the present invention. As will be understood, the various
embodiments of the methods described herein may be
implemented in any combination of hardware, software, or
firmware.

In the various embodiments described herein, commands
from the host computer 200 are represented 1n the disc drive
100 by “command nodes.” When a command 1s received by
the disc drive 100, a command node 1s created that has
information (described in detail below) including references
to other command node(s) for logically arranging command
nodes 1n an order that optimizes disc drive 100 performance.
Command nodes are maintained and ordered in one or more
command node queues. Commands from the host 200, and

10

15

20

25

30

35

40

45

50

55

60

65

6

hence command nodes, have associated disc locations that
are to be accessed to read or write data from and to the discs
108. Ordering the command nodes 1n the queues 1s based 1n
part on the disc locations, because the disc locations largely
determine the time required to process the command nodes.

FIG. 3 1s an elevation view of a disc 108 showing disc
locations that may be accessed in response to commands
using a rotational position sorting (RPS) algorithm to sort
commands 1 a command node queue. Six exemplary disc

locations, last disc position (LDP) 302, D 304, C 306, G 308,
E 310, and F 312, are illustrated at various positions around
a disc 108. To 1illustrate, 1t 1s assumed that disc locations D
304, C 306, G 308, and E 310, are associated with writeback
commands (i.e., non-pending commands). It is further
assumed that disc location F 312 1s associated with a read
command (i.e., a pending command). Using basic RPS, the
read command associated with the disc location F 312, 1s not
ogrven any preference in the prioritization process. Rather,
the basic RPS algorithm gives all of the commands the same
relative priority, without regard to a command’s status as
pending or non-pending. The basic RPS algorithm schedules
disc accesses based solely on the time latency to access the
locations associated with the commands. As a result, the
writeback commands associated with disc locations D 304,
C, 306, G 308, and E 310, are scheduled prior to the read
command associated with disc location F 312, as 1s indicated
by sequencing arrows 320.

The exemplary situation illustrated mm FIG. 3 1s not
optimal, primarily because the read command associated
with location F 312 is delayed in time 1n favor of the
writeback commands, even though the host 200 considers
the read command to be pending and does not consider the
writeback commands to be pending. In other words, the
writeback commands associated with locations D 304, C
306, G 308, and E 310, are considered to have been
completed from the host computer’s perspective, whereas
the read command associated with disc location with F 312
has not been completed. Because the basic RPS algorithm
does not base command priority on the type of command
(pending or non-pending), disc drive performance is
adversely 1mpacted as, as described above. Embodiments
described 1n FIGS. 4—7 base command prioritization on disc
location as well as command type to prioritize command
nodes 1 queues of the disc drive 100.

FIG. 4 1llustrates a set of queues that are utilized by the
pending command prioritization module 232 to prioritize
commands with preference to pending commands 1n an
embodiment of the present invention. In this exemplary
embodiment, an ‘A’ queue 402 holds new command nodes
404 representing commands that have recently been
received from the host 200 (FIG. 2). As is discussed in more
detail below, a ‘B’ queue 416 holds command nodes 408
while they are sorted and selected for scheduling. As 1s also
discussed 1 more detail below, a ‘C’ queue 412 holds
command nodes 406 that are scheduled for disc access.
Before describing in detail how the A, B, and C queues (402,
416, and 412, respectively) are used by the pending com-
mand prioritization module 232, the content and format of

command nodes (e¢.g., 404, 406, and 408) will now be
described.

As described, commands are represented 1n the disc drive
100 by command nodes, such as the command node 404. For
illustrative purposes, the content and format of command
node 404 are described here, but the described content and
format of command nodes 404 applies equally to the com-
mand nodes 406 and 408. Command nodes 404 typically
include a number of fields containing data relevant to




US 6,326,630 B2

7

specific commands and specific systems. For example, a
command node for a disc drive, such as disc drive 100, may
include fields that specily the buffer address of the infor-
mation to be transferred, the transfer length of the informa-
tion to be transferred, the start of the logical block address

(LBA) issued or requested by the host computer 200 (FIG.
2), the start of the physical cylinder where data is to be
written/read, the start of the physical head, the start of the
physical sector/starting wedge where data 1s to be written/
read, the end of the physical cylinder where data 1s to be
written/read, the end of the physical head, the end of the
physical sector/starting wedge where data 1s to be written/
read, the end of the physical cylinder where data 1s to be
written/read. Additionally, each command node 404 prefer-
ably 1ncludes fields for a previous link pointer and fields for
a next link pointer. In one embodiment, the logical order of
the command nodes 404 1s defined by the previous link and
next link pointers. For example, 1n one embodiment, the
queue 402 1s arranged as a doubly linked list of command

nodes 404.

A command node 404 will also typically include a field
for specifying what type of command (read, write, etc.) is to
be executed 1n relationship to the command node 404. For
example, the command node 404 may include a field for
control flags that specify the command associated with the
command node 404. The structure of the command node
404, that 1s, the number of ficlds and the types of data that
arec required 1n the fields, 1s dependent on the types of
commands executed by the system and by the type of system
employing the pending command prioritization module 232,
such as a SCSI device or an AT device. The structure of the
command node 404 1s preferably set at the compile time of
the pending command prioritization module 232. It should
be understood that the command node 404 illustrates but one
example of the configuration and contents of a command
node for a disc drive device. Any number of different
command node configurations and contents may be used 1n
accordance with the various embodiments described herein,
depending on the environment or application 1n which or for
which the pending command prioritization system may be
used or employed.

When a new command 1s sent from the host computer 200
to the disc drive 100, 1t 1s assigned a command node 404 in
the A queue 402. Command nodes 1n the A queue 402 will
be routed to the B queue 416 where they will be sorted and
prioritized.

Data associated with write commands 1s received from the
host computer and cached before the write command node
1s put 1n the B queue 416. While the data associated with the
write command 15 being received and cached, the write
command node 1s temporarily buifered. In one embodiment,
the write command 1s temporarily buffered in the C queue
412. In another embodiment, the write command node 1s
temporarily buifered in another memory independent from
the A, B, and C queues (402, 412, and 416). While a write
command node 1s 1n temporarily buifered, data associated
with a write command node 1s transferred from the host 200
to the buffer 210 (FIG. 2). After data associated with the
write command node 1s transferred from the host 200 to the
buffer 210, the write command node 1s moved to the B queue
416 and the disc drive 100 notifies the host 200 that the write
command has been completed. After the host 200 1s notified
of the completion, the write command node 1s no longer a
pending command and 1s referred to as a writeback com-
mand node. As previously 1o described, the term ‘writeback’
indicates that the data associated with a right command still
resides 1n the buffer 210 that must be written to the disc 108.

10

15

20

25

30

35

40

45

50

55

60

65

3

The command nodes 404 that get routed directly from the
A queue 402 to the B queue 416 represent commands for
which no interim processing 1s required, and can be 1mme-
diately sorted for scheduling. Examples of command nodes
that are routed directly from the A queue 402 to the B queue
416 are write command nodes with no cache (i.e., non-cache
write command nodes) and read command nodes. All com-
mand nodes 408 (e.g., read, write, and writeback command
nodes) in the B queue 416 will be sorted and selected for
scheduling based both on the disc locations associated with
the command nodes and the type of command node 408.
Command nodes 408 1n the B queue 416 are sorted accord-
ing to the required processing time from a last scheduled
command 1n the C queue 412. In one embodiment, the

command nodes 408 1n the B queue are sorted using a basic
RPS sort algorithm.

After commands nodes 408 1n the B queue 416 are sorted,
one or more of the command nodes 408 may be scheduled
for disc access. Commands nodes 408 1n the B queue 416 are
scheduled by routing 426 them to the C queue 412. When a
scheduled command node 406 1s in the C queue 412, the
command node 406 1s executed in the order it was sched-
uled. After the scheduled command node 406 1s executed,
the command node 406 1s removed from the C queue 412.
For example, if the command node 406 represents a write-
back command, after the associated writeback data 1n the
buffer 210 1s written to the disc 108, the writeback command
node 406 1s eliminated from the C queue 412.

The A queue 402 and the C queue 412 are preferably
first-in-first-out (FIFO) buffers storing sequences of new
command nodes 404 and scheduled command nodes 406,
respectively. The commands nodes are ordered 1n the queues
logically, and 1t 1s to be understood that the commands nodes
may be physically located anywhere in memory 1n the disc
drive 100. The commands nodes may be logically arranged
in the queues using any means known 1n the art, including
arrays and/or linked lists.

FIG. 5 1s an operational flow 500 illustrating various
operations that are implemented by the PCPM 232 in
carrying out command prioritization in accordance with an
embodiment of the present invention. Generally, the opera-
tional tlow 500 schedules queued command nodes based
both on command type (e.g., pending and non-pending) as
well as disc locations associated with the command nodes.
More particularly, the operational flow 500 schedules a
pending command node along with any other command
nodes that can be performed 1n an allowable time before the
pending command node. The operational flow 500 utilizes
one or more queues, such as the A, B, and C queues (402,

416, and 412, respectively of FIG. 4).

As shown 1n FIG. 5, following a start operation 501 of the
operation flow 500, a querying operation 502 determines
whether any pending commands exist. Preferably, the que-
rying operation 502 checks any command nodes 1n the B
queue 416 to determine 1if they are pending. If it 1s deter-
mined by the querying operation 3502 that no pending
commands exist, an RPS sort operation 504 executes a basic

Rotational Position Sort (RPS).

In the RPS sort operation 504, the buffered command
nodes are sorted according to their positions on the disc 108
(FIG. 2). The RPS sort operation 504 may use any RPS
algorithm known 1n the art. The RPS sort operation 504
ogenerally determines how long it will take to process the
commands 1n the B queue 416, taking into account a number
of latencies, mncluding, but not limited to, the rotational
latency, the seek time, and the disc access time. After




US 6,326,630 B2

9

completion of the RPS sort 1s operation 504, the operational
flow 500 ends. The querying and performing operations, 502
and 504, generally save processing time 1n the operational
flow 500, by avoiding subsequently described steps if there
are no pending commands 1n the B queue 416. As such, these
operations are performed in a preferred embodiment.
However, 1n other embodiments, the querying and perform-
ing operations, 502 and 504, may not be mcluded and the
operational flow 500 may begin at determining operation

505 rather than querying operation 502.

If it 1s determined in the querying operation 502 that
pending commands do exist in the B queue 416, or if the
querying and performing operations 502 and 504 are omitted
from the operational flow 500, a determining operation 505
determines a processing time required to process each
command in the B queue 408 from the last scheduled
command node 406 in the C queue 412. A sorting operation
506 then sorts the commands 1n the B queue 416 according
to the determined processing times calculated 1n the deter-
mining operation 505. The processing times determined 1n
the sorting operation 506 may be based on a multitude of
latency values, including, but not limited to, the rotational
latency, seek time, sequencer latency, and disc access time.
The processing time associated with a waiting command
node 408 1s generally a function of the node’s associated
position (e.g., disc location F 312 of FIG. 7) to be accessed
on the disc 108, as well as a previously accessed position
(c.g., the LDP 302 of FIG. 7) on the disc 108. The LDP 302
1s the last sector, 1n a set of sectors, of the last scheduled
command node 406 (FIG. 4) in the C queue 412 (FIG. 4). In
addition, the processing time depends on mechanical and
electrical tolerances of the components 1n the disc drive 100
(FIG. 1), and thus will vary from model to model. Any
sorting algorithm known 1n the art may be used 1n the sorting
operation 506, including a basic RPS.

Generally, the determining operation 505 1teratively steps
through each command node 408 1n the B queue 416 and
determines a processing time assoclated with each wait
command node 408. The processing time 1s generally the
amount of time to process the command node 408 after
processing the last scheduled command node 406 in the C
queuc 412. The sorting operation 506 then compares the
determined processing time with the processing time of an
adjacent waiting command node 408. If the first processing
fime 1s greater than the next processing time, the sorting
operation 506 swaps the queue position of the first command
node 408 1n the B queue 416 with the queue position of the
adjacent command node 408 1n the B queue 416. Many other
algorithms are envisioned that fall within the scope of the
determining operation 505 and the sorting operation 506.

After the command nodes in the B queue 304 are sorted
in the sorting operation 506, an identifying operation 508
identifies a first pending command 1n the B queue 416. The
identifying operation 508 checks each command node 1n the
B queue 416 for 1ts associated command type. The 1denti-
fying operation 508 may be an iterative looping process,
wherein each command node of the B queue 416 1s 1tera-
tively tested for 1ts command type, and the location of the
first command node that 1s of a pending command type 1s
stored 1n a ‘pendstart’ variable for future use in the opera-
tional flow S00. In one embodiment, i1f the associated
command type 1s either a write command with no cache or
a read command, the command 1s identified as a pending
command. Because the command type may be frequently
checked during the operational flow 500, the command type
1s preferably stored 1n a format that 1s quickly accessible and
testable. In one embodiment each of the command types 1s

10

15

20

25

30

35

40

45

50

55

60

65

10

defined as a word with a unique bit asserted (e.g., set to a
value of ‘1°). In this format, testing the command type can
be implemented quickly in a bit masking operation, which 1s
relatively fast for the microprocessor 216. Other formats will
be readily apparent to those skilled 1n the art.

After the first pending command 1s identified by the
identifying operation 3508, an obtaining operation 510
obtains the disc location associated with the last scheduled
command node 406. The last scheduled command node 406
1s the most recently scheduled command node 1n the C queue
412. The obtaining operation 510 uses the last scheduled
command node 406 to determine an associlated physical
location on the disc 108. For example, if the last scheduled
command node 406 represents a read command, the location
(e.g., LDP 302 i FIG. 7) to be read on the disc 108 is
determined. In the example, the determination may be made
by reading a Logical Block Address (LBA) value associated
with the read command node 406, and/or determining an
associated Cylinder Head Sector (CHS) position on a disc
108. The obtaining operation 510 obtains the calculated
CHS value and may store it to be used later 1n the operational
flow 500. Following the obtaining operation 510, an 1nitial-
1zing operation 512 then 1nitializes an indicator variable that
1s used to index the command nodes 1n the B queue 416. In
the 1mitializing operation 512, the indicator variable 1s set to
‘point to’ the first command node 1n the B queue 412.

In one embodiment, a command node reference list,
called a “GO List”, 1s utilized to schedule command nodes
in the B queue 416 to the C queue 412. How the “GO List”
1s used 1s discussed 1n more detail in the description of FIG.
6. Referring to the initializing operation 512, the “GO List”
1s mitialized along with a “GO List” counter, and an accu-
mulated “GO List” processing time value. As 1s discussed
below 1n further detail, the “GO List” 1s a temporary array
or buifer that holds references to the command nodes that
will be scheduled for disc access. Preferably the initializa-
fion operation 512 clears the “GO List” of any command
node references and sets a “GO List” counter equal to zero
in preparation for an iterative process of i1dentifying com-
mands 1n the B queue 416 that can be processed 1n an
allowable time. The accumulated “GO List” processing time
value 1s set equal to zero in the initializing operation 512.
The commands that can be processed 1n the predetermined
allowable time will be scheduled using the “GO List.” After
the 1ndicator variable and the “GO List” data are 1nitialized,
a querying operation 514 determines whether the command
node indexed, or pointed to, by the indicator 1s a pending
command. To determine whether the command node 1s a
pending command, the command type 1s tested. In one
embodiment, the command type 1s tested using bit-masking
techniques described with respect to the 1dentifying opera-

tion 508.

In another embodiment of the querying operation 514, the
indicator variable 1s compared to the ‘pendstart” variable that
was stored 1n the identifying operation 508. If 1t 1s deter-
mined that the indicator 1s pointing to a pending command
node, a creating operation 516 creates a reference to the
pending command node 1n the “GO List.” In the creating
operation 516, a reference to the pending command node 1s
stored 1n the “GO List.” An incrementing operation 518 then
increments by one to keep track of the number of command
node references in the “GO List. 7 A scheduling operation
520 then schedules the command nodes that are referenced
by the “GO List.” The scheduling operation 520 copies any
command nodes referenced by the “GO List” from the B
queue 416 mto the C queue 412 at a position following the
last scheduled command node 406 in the C queue 412.




US 6,326,630 B2

11

If there is only one command node (i.e., the pending
command node) referenced by the “Go List”, the command
node 1s copied 1nto the C queue 412 from the B queue 416.
As will be shown, the “GO List” may contain command
node references (e.g., reference 620 in FIG. 6) in addition to
the pending command node reference. If there 1s more than
one command node reference in the “GO List” (i1.e, non-
pending command nodes ahead of the pending command
node), the scheduling operation 520 schedules the pending
command node last. After the command nodes referenced by
the “GO List” are scheduled, the operational flow 500 ends

at ending operation 532.

If, 1n the querying operation 514, it 1s determined that the
command 1ndicator 1s not referencing a pending command,
a calculating operation 521 calculates how long 1t will take
to process the pending command (identified in the i1dentify-
ing operation 508) from the last scheduled command. The
calculating operation 521 preferably sums the seek time,
rotational latency, disc access time, and all other relevant
latencies associated with moving from the disc location
assoclated with the last scheduled command to process the
pending command.

In one embodiment, the GO List processing time includes
the processing time from the tail of the last scheduled
command through the last command referenced in the GO
List. The calculating operation 521 first calculates the time
to service the identified command from the tail of the last
command in the GO list (or last scheduled disc access if the
GO list 1s empty). The calculating operation 521 then
calculates the time to service the pending command from the
tail of the identified command. The calculating operation
521 then adds to the existing GO list processing time to the
two processing times previously calculated to obtain a total
processing time 1f the indicated command 1s processed
before the pending command. After the calculating opera-
tion 521, another querying operation 522 determines
whether the indicated command, the pending command, and
all the commands referenced by the GO List can be pro-
cessed within a predetermined allowed time. If the total
processing time 1s greater than the allowed time value, the
command will not be scheduled prior to the pending com-
mand. However, i the total command processing time 1s not
oreater than the predetermined allowed time, the command
will be scheduled prior to the pending command.

In one embodiment, the predetermined allowed time used
in the querying operation 522 1s selected when the disc drive
100 1s designed and/or manufactured. The allowed time
value 1s based on the desired level of performance of the disc
drive 100. In particular, the throughput of the disc drive will
largely depend on the selected allowed time. In one
embodiment, the allowed time value 1s represented by a
number of allowable “skipped revolutions.” In this
embodiment, the total processing time 1s also represented 1n
“skipped revolutions” for ease of comparison in the query-
ing operation 522. The number of skipped revolutions
associated with a command refers to the number of disc 108
rotations that will occur before the command can be
executed (1.e., before the disc location associated with the
command can be accessed). Generally, a higher number of
skipped revolutions for a command corresponds to a higher
rotational latency. Therefore, a designer may reduce rota-
tional latency by selecting a lower value (a minimum of
zero) for the allowed skipped revolutions.

In one embodiment, the predetermined allowed time 1s a
user selectable option through a mode page that 1s dependent
upon the type of workload that the disc drive 100 1s
operating under. In this embodiment, the user i1s able to

10

15

20

25

30

35

40

45

50

55

60

65

12

adjust the predetermined allowed time based on perceived
performance 1n order to improve performance. In another
embodiment, the predetermined allowed time 1s an auto-
matically set value based on workload. The disc drive 100 1n
this embodiment 1s operable to calculate performance or
recognize a particular mode of disc access and automatically
change the predetermined allowed time accordingly to opti-
mize performance.

If, 1n the querying operation 522, it 1s determined that the
total command processing time 1s greater than the allowed
fime, an incrementing operation 524 increments the com-
mand 1ndicator to reference the next command node 1n the
B queue 416. In a preferred embodiment, the command
nodes are retained 1n an array indexable by the command
indicator. In this embodiment, the next command node may
be referenced simply by incrementing the command indica-
tor by one. After the incrementing operation 524 updates the
command indicator, the querying operation 514 again deter-
mines 1f the command indicator is referencing a pending
command as described above.

If 1t 1s determined in the querying operation 522 that the
indicated, pending, and GO List commands can be pro-
cessed within the allowed time, a creating operation 526
creates a reference to the indicated command node in the
“GO List.” After the command node reference 1s stored 1n
the “GO List,” an incrementing operation 528 imcrements a
“GO List” counter that monitors the number of command
node references 1n the “GO List.” After the “GO List”
counter 1s 1ncremented, an accumulating operation 529
updates the accumulated processing time value (initialized
in the initializing operation 512) that holds the accumulated
processing time of all command nodes referenced in the
“GO List” up to the indicated command. The accumulating
operation 529 adds the command node processing time of
the reference just created 1n the “GO List” to the accumu-
lated processing time value that was 1nitialized in the
initializing operation 512.

After the accumulating operation 529, the incrementing
operation 524 imncrements to the next command node 1n the
B queue 416. The operational flow 500 iterates through the
loop of operations 514, 521, 522, 526, 528, and 524 to create
a “GO List” that contains at least one pending command
node reference. The “GO List” may also contain one or more
non-pending command node references. When the schedul-
ing operation 520 moves the command nodes from the B
queue 416 to the C queue 412, the non-pending command

nodes are placed ahead of the pending command node 1n the
C queue 412.

The operational flow 500 1s executed repeatedly during
operation of the disc drive 100 (FIG. 1). The frequency of
execution 1s 1mplementation specific. In one embodiment,
the operational flow 500 1s a task that 1s scheduled and
executed by an operating system running on the micropro-
cessor 216 (FIG. 2). In another embodiment, the operational
flow 3500 1s interrupt driven, wherein the frequency of
mterrupts 1s determined by an external source, such as
receipt of a command from the host 200. In another
embodiment, an interrupt may be generated when a new
command node 1s iserted in the B queue 416. Other
implementations are envisioned that fall within the scope of
embodiments of the present 1nvention.

Turing now to FIG. 6, depicted therein are exemplary
command nodes 1 the B queue 416 being scheduled and
routed to the C queue 412 utilizing an embodiment of the
operational flow 500 illustrated in FIG. 5. For illustrative
purposes, FIG. 6 1s described 1n conjunction with FIG. 7,



US 6,326,630 B2

13

which shows exemplary disc locations associated with the
command nodes of FIG. 6. Each command node 604, 606,

608, 612, 614, and 616 has a corresponding disc location
304, 302, 306, 312, 308, and 310 (FIG. 7), respectively. The

C queue 412 has scheduled command nodes 406 that are
scheduled to be executed (and their corresponding disc
locations accessed). The waiting command nodes 408 in the
B queue 416 are sorted according to a sorting operation,

such as the sorting operation 506, and selectively scheduled.
The C queue 412 has an LDP command node 606 corre-

sponding to the disc location 302 (FIG. 7) accessed by the
last scheduled command. For illustrative purposes it 1s

assumed that command nodes 604, 608, 614, and 616 are

‘writeback’ (non-pending) commands, and command node F
612 is a read (pending) command.

The waiting command nodes 408 are sorted according to

required processing time relative to the LDP command node
606 and its LDP 302. The waiting command nodes 406 are

sorted 1rrespective of the type of command. During sorting,
for example, 1t 1s determined that command node D 604

requires the least amount of processing time starting from
the LDP 302. Command node C 608 requires the next least

amount of processing time starting from the LDP 302, and
SO On.

After the waiting command nodes 408 have been sorted,
they are selectively scheduled using a “GO List” 618. The
process of selectively scheduling command nodes depends
on the command type associated with each waiting com-
mand node 408. It 1s first determined that the command node

F 612 represents a read command, and 1s thus a pending
command node. A command node F reference 624 to the
command node F 612 1s created in the “GO List” 618. The
processing time for command node D 604 plus the process-
ing time for the command node F 612 is not greater than a
predetermined maximum processing time. Therefore, 1t 1s
determined that command node D 604 can be processed 1n
route to processing command node F 612, and a command
node D reference 620 to command node D 604 1s created in
the “GO List” 618. When the processing time of command
node C 608 1s added to the processing time of command
nodes F and D, 604 and 612, and compared to the prede-
termined allowed time, it 1s determined that the total pro-
cessing time 1s greater than the allowed processing time.
Therefore, a reference to command node C 608 1s not
created 1n the “GO List” 618. The process then continues to
F612 and determines that the command 1s a pending com-
mand. The creating, incrementing and scheduling operations
516, 518, and 520 (FIG. §5) then respectively create a
pending command reference 1n the “GO List,” increment the
count 1 the “GO List”, and schedule all the referenced
nodes of the “GO List.”

The process of selectively scheduling the waiting com-
mand nodes 408 next mvolves using the command node
references 620 and 624 1n the “GO List” 618 to move the
corresponding command nodes 604 and 612 to the C queue
412. The ‘writeback” command node D 604 is scheduled by
moving 640 1t to the C queue 412 at a logical position
immediately after the LDP command node 606. The read
command node F 612 1s scheduled by moving 642 1t to the
C queue 412 after the command node D 630. In operation,
after the LDP command node 606 is processed (and disc
location 302 is accessed), the command node D 630 will be
processed (and cached data will be written to the disc
location 304). After the command node D 630 is processed,
the read command node F 632 will be processed by reading
data from the disc location 312.

The logical operations of the various embodiments of the
present invention are implemented (1) as a sequence of

10

15

20

25

30

35

40

45

50

55

60

65

14

computer implemented acts or program modules running on
a computing system and/or (2) as interconnected machine
logic circuits or circuit modules within the computing sys-
tem. The implementation 1s a matter of choice dependent on
the performance requirements of the computing system
implementing the invention. Accordingly, the logical opera-
tions making up the embodiments of the present mnvention
described herein are referred to variously as operations,
structural devices, acts or modules. It will be recognized by
one skilled 1n the art that these operations, structural devices,
acts and modules may be 1mplemented 1n software, 1n
firmware, 1n special purpose digital logic, and any combi-
nation thereof without deviating from the spirit and scope of
the present 1nvention as recited within the claims attached
hereto. The algorithms and/or operations illustrated and
discussed herein may be implemented 1n microprocessor
executable software. Any software language known 1n the
art may be used, including, but not limited to, Visual Basic,
C, C++, Fortran, Assembler, etc. The choice of software
language may be dependent on the type of microprocessor
216 as well as other design parameters.

In summary, embodiments of the present invention may
be viewed as a method of prioritizing a plurality of com-
mands by storing (such as 422) a plurality of command
nodes (such as 408) in memory (such as 210), identifying
(such as 514) a pending command node (such as 408) in the
plurality of command nodes (such as 408), and scheduling
(such as 520, 516) the pending command node (such as 408)
for processing. The method may further include 1dentifying
(such as 514,522) intermediate command nodes (such as
408) in the plurality of command nodes (such as 408) that
can be processed 1n addition to the pending command node
within a predetermined amount of time, scheduling (such as
520, 526) the intermediate command nodes for processing
prior to the pending command node.

Still further, identifying (such as 514,522) intermediate
command nodes that can be processed prior to the pending
command node 1 a predetermined amount of time may
include storing (such as 422) the plurality of command
nodes in a first queue (such as 416), determining (such as
521) an associated required processing time from the last
scheduled command node (such as 406), sorting (such as
506) the plurality of command nodes (such as 408) accord-
ing to their associated required processing times, selecting
(such as 526) the one or more command nodes having an
ageregated processing time which, when added to the pro-
cessing time of the pending command, 1s less than the
predetermined processing time. The predetermined amount
of time may be given 1n terms of a number of disc revolu-
fions and 1n one embodiment the predetermined processing
fime 1s zero disc revolutions.

Embodiments may be viewed as a command prioritization
module (such as 232) that receives a pending command
(such as 612) and non-pending commands (such as 604,
608), and schedules the pending command (such as 612) and
one or more of the non-pending commands (such as 604,
608) if processing time associated with all the one or more
non-pending command(s) (such as 604, 608) and the pend-
ing command (such as 612) is less than a predetermined
allowed time. The command prioritization module (such as
232) may include a first command queue (such as 402)
having command nodes (such as 404) associated with a set
of most recently received commands, a second command
queue (such as 416) having one or more command nodes
(such as 406) to be scheduled, a third command queue (such
as 412) having one or more scheduled command nodes (such
as 406). Executable software or a state machine may sort



US 6,326,630 B2

15

(such as 506) all of the pending and non-pending command
nodes in the second command queue (such as 416) accord-
ing to processing time from a last scheduled command,
identify a pending command (such as 612) in the second
command queue (such as 416), calculate (such as 521) a
total processing time for one or more of the plurality of
non-pending commands and pending command, and sched-
ule (such as 520) the pending command and one or more of
the non-pending commands 1if the total processing time 1s
less than the predetermined allowed time.

Further yet, an embodiment may be viewed as a priori-
tization module (such as 232) for a data storage device (such
as 100) including a set of queues (such as 402, 416, 412)
holding command nodes (such as 406) representing com-
mands received by the data storage device (such as 100), and
a means (such as 216, 224, 202) for prioritizing command
nodes giving preference to one or more pending command

(s). The queues (such as 402, 416, 412) of the prioritization
module (such as 232) may include a first queue (such as 402)
holding command nodes representing new commands
received by the data storage device, a second queue (such as
416) receiving the command nodes from the first queue
(such as 402), a third queue (such as 412) holding pending
command nodes received from the second queue (such as
416).

It will be clear that the present invention 1s well adapted
to attain the ends and advantages mentioned as well as those
inherent therein. While a presently preferred embodiment
has been described for purposes of this disclosure, various
changes and modifications may be made that are well within
the scope of the present invention. For example, the sched-
uling operation 520 may initialize the “GO List” and “GO
List” counter after the scheduling, so that upon reentry into
the operational flow 500, the “GO List” 1s already nitial-
1zed. Numerous other changes may be made that will readily
suggest themselves to those skilled 1n the art and that are
encompassed 1n the spirit of the mvention disclosed and as
defined 1n the appended claims.

What 1s claimed 1s:

1. A method of prioritizing commands comprising steps

of:

(a) sorting non-pending and pending command nodes
according to assoclated processing times;

(b) identifying a pending command node;

(¢) determining whether any of the non-pending com-
mand nodes are non-penalizing command nodes, which
can be processed prior to the pending command node 1n
the same or less time as the pending command node
processed alone; and

(d) scheduling the non-penalizing non-pending command
nodes and the pending command node, such that the
non-penalizing non-pending command nodes are pro-
cessed before the pending command node.

2. The method of claim 1 wherein the determining step (c)
comprises steps of:

(c)(1) comparing an accumulated processing time to a
predetermined allowable time, wherein the accumu-
lated processing time 1s the summation of processing
times for one or more non-pending command node(s)
and the pending command node; and

(c)(2) if the accumulated processing time is not greater
than the predetermined allowable time, storing one or
more references to the non-pending command node(s).

3. The method of claim 1 wherein the scheduling step (d)
comprises steps of:

5

10

15

20

25

30

35

40

45

50

55

60

65

16

(d)(1) moving the non-penalizing non-pending command
node(s) and the pending command node from a first
queue holding the sorted command nodes to a second
queue holding scheduled command nodes.

4. The method of claim 1 wherein the scheduling step (d)
comprises steps of:

(d)(1) creating a list of command node references, each
command node reference corresponding to one of the
non-penalizing non-pending command node(s) or the
pending command node; and

(d)(2) moving the command nodes referenced by the list
of command node references from the first queue to a
second queue having scheduled command nodes.

5. A disc drive comprising;:

a command prioritization module operable to receive a
pending command and a plurality of non-pending
commands, and schedule the pending command and
one or more of the plurality of non-pending commands
if processing time associated with the one or more
non-pending commands(s) and the pending command
1s less than a predetermined allowed time,

wherein the command prioritization module comprises:

first command queue having command nodes associated
with a set of most recently recerved commands;

ot

a second command queue having one or more command
nodes to be scheduled;

a third command queue having one or more scheduled
command nodes; and

executable software operable to sort the pending and
non-pending command nodes 1n the second command
queue according to processing time from a last sched-
uled command, identify a pending command 1n the
second command queue, calculate a total processing
time for one or more of the plurality of non-pending
commands and pending command, and schedule the
pending command and one or more of the non-pending
commands if the total processing time 1s less than the
predetermined allowed time.

6. The disc drive of claim 5 wherein the pending com-
mand prioritization module 1s a state machine.

7. A method of scheduling commands 1n a data storage
device comprising steps of:

(a) sorting pending and non-pending commands nodes
according to time to process from a last scheduled
command node 1rrespective of command type; and

(b) selectively scheduling one or more of the sorted
command nodes depending on the command type,

wherein the scheduling step (b) comprises steps of:

(b)(1) 1identifying a pending command node to be sched-
uled and any non-pending command nodes that can be
processed before processing the pending command
node within a predetermined time;

(b)(2) creating a command node reference to each of the
identified command nodes 1n a command node refer-
ence list; and

(b)(3) scheduling the command nodes referenced in the
command node reference list such that the non-pending
command nodes are scheduled prior to the pending
command node.

8. A prioritization module for a data storage device
comprising:




US 6,326,630 B2
17 13

a set of queues holding command nodes representing wherein the means for prioritizing comprises:

commands received by the data storage device; and a pending command prioritization module operable to

a means for prioritizing command nodes giving prefer-
ence to one or more pending command(s),

identify a pending command node associated with a

5 pending command 1n the second queue and schedule

wherein the set of queues comprises: non-pending command nodes prior to the pending

a first queue holding command nodes representing new command node whereby the pending command and the
pending and non-pending commands received by the

non-pending commands can be processed in a prede-
data storage device;

0 termined allowed time.

a second queue receiwving the command nodes from the
first queue, the command nodes 1n the second queue
being sorted according to processing time; and

9. The prioritization module of claim 8 wherein each of
the first, second, and third queues comprises a linked list of

one or more command nodes.
a third queue holding scheduled command nodes received

from the second queue, and I



	Front Page
	Drawings
	Specification
	Claims

