(12) United States Patent

Rajan et al.

US006823510B1

US 6,823,510 B1
Nov. 23, 2004

(10) Patent No.:
45) Date of Patent:

(54) MACHINE CUT TASK IDENTIFICATION
FOR EFFICIENT PARTITION AND
DISTRIBUTION

(75) Inventors: Vadekkadathu T. Rajan, Briarclif
Manor, NY (US); Douglas N.
Kimelman, Yorktown Heights, NY
(US); Tova Roth, Woodmere, NY (US);
Mark N. Wegman, Ossining, NY (US);
Karin Hogstedt, Chester, NJ (US)

(73) Assignee: International Business Machines
Corp., Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35

U.S.C. 154(b) by 738 days.

(21) Appl. No.: 09/676,423

(22) Filed: Sep. 29, 2000

(51) Int. CL7 e, GO6F 9/46

(52) US.CL ., 718/100; 718/102; 718/104

(58) Field of Search 718/100, 102,
718/104, 106—107; 709/200, 201, 203

(56) References Cited

U.S. PATENT DOCUMENTS

6,266,053 B1 * 7/2001 French et al. 715/500.1
6,437,804 B1 * 8/2002 Ibeetal. .ccoovvvnvunnnnnn. 345/736
6,629,123 B1 * 9/2003 HUNL vevvvinrinninnninnnnn, 709/106

OTHER PUBLICAITONS

M. Padberg et al., “An Efficient Algorithm For The Mini-
mum Capacity Cut Problem”, Mathematical Programming
47 (1990) pps. 19-36 North—Holland.

E. Dahlaus et al., “The Complexity of Multiterminal Cuts”,

1994 Society for Industrial and Applied Mathematics, pps.
864—-894.

* cited by examiner

Primary Examiner—Meng-Al T. An
Assistant Examiner—Syed 1 All
(74) Attorney, Agent, or Firm—Law Office of Charles W.

Peterson, Jr.; Louis P. Herzberg

(57) ABSTRACT

A task management system, method and computer program
product for determining optimal placement of task compo-
nents on multiple machines for task execution, particularly
for placing program components on multiple computers for
distributed processing. First, a communication graph 1is
generated representative of the computer program with each
program unit (e.g., an object) represented as a node in the
ograph. Nodes are connected to other nodes by edges repre-
sentative of communication between connected nodes. A
welght 1s applied to each edge, the weight being a measure
of the level of communication between the connected edges.
Terminal nodes representative of the multiple computers are
attached to the communication graph. Independent nets may
be separated out of the communication graph. A cut 1s made
at each terminal node and the weights of the cut edges are
summed. The second heaviest terminal 1s 1dentified from the
cut and edges connected to at least one internal node and not
connected to the second heaviest edge are compared against
the weight of the second heaviest edge. Any edge found 1n
the comparison to be at least as heavy as the second heaviest
terminal node need not be 1ncluded 1n the min cut for the
communication graph and so, 1s removed from consideration
for the final min cut solution. Finally, program components
which may be a single program unit or an aggregate of units
are placed on computers according to the communication
graph min cut solution.

25 Claims, 7 Drawing Sheets

QFD
2

‘lETWM\

PERFORM I TERMNAL CUTS" (RESULTING N Wy..

" ¥, ONE ¥ FOR EACH OF TERIRNAL NODES 1 THOUGH
“a—{ I, WITH W RENG THE SUM OF THE WEIGHTS OF ALL

EDGES NCIENT 70 TERMINAL NODE TERMNAL)

—

PND THE 2 LARGEST W , AND CALL T
Vi GALL THE TERMINAL THAT AS THAT CUT “TERSNAL

13 THERE AN EDGE WITHWEIGHT > Wy
BNCDENT TO A HON-TERMINAL NODE 7

R
13 THERE AN EDGE WITH WEIGHT = Warg
BUT HOT BMEDATELY INCDENT T0

TERMINAL 29

U.S. Patent Nov. 23, 2004 Sheet 1 of 7 US 6,823,510 B1

ANALYZE COMMUNICATION PATTERNS
ANALYZE COMMUNICATION GRAPH
AND DETERMINE INITIAL PARTITION

OPTIMIZE PARTITION FOR MINIMUM
INTER-PARTITION COMMUNICATION

FIG.1

U.S. Patent Nov. 23, 2004 Sheet 2 of 7 US 6,823,510 B1

U.S. Patent Nov. 23, 2004 Sheet 3 of 7 US 6,823,510 B1

U.S. Patent Nov. 23, 2004 Sheet 4 of 7 US 6,823,510 B1

GENERATE INITIAL
COMMUNICATION GRAPH

ADD MACHINE NODES T0
THE COMMUNICATION GRAPH

D INDEPENDENT NETS AND PARTITION

THE COMMUNICATION GRAPH INTO
INDEPENDENTNETS

170
FIND THE MIN CUT FOR
EACH INDEPENDENT NET

FIG.3

US 6,823,510 B1

Sheet 5 of 7

Nov. 23, 2004

U.S. Patent

FIG.4

. T4

~”

/

/

/

U.S. Patent Nov. 23, 2004 Sheet 6 of 7 US 6,823,510 B1

FIG.S

PERFORMFIND TERMINAL CUTS" (RESULTING IN W4..
Wi, ONE W; FOR EACH OF TERMINAL NODES 1 THOUGH

N, WITH Wi BEING THE SUM OF THE WEIGHTS OF ALL
EDGES INCIDENT TO TERMINAL NODE TERMINAL;)

v FIND THE 2 LARGEST W, AND CALL I
Wopg: CALLTHE TERMIAL THAT HAS THAT CUT TERMINAL

28

1S THERE AN EDGE WITHWEIGHT > Wapg
YES INCIDENT TO A NON-TERMINAL NODE ? NO

OR
IS THERE AN EDGE WITH WEIGHT = Woyg
BUTNOT IMMEDIATELY INCIDENT TO
TERMINAL 9ng ?

M

INDICATE THAT THE

MACHINE CUT

HEURISTIC WAS ABLE
TOREDUCE THE GRAPH

U.S. Patent Nov. 23, 2004 Sheet 7 of 7 US 6,823,510 B1

2440

MERGE NODES CONNECTED BY
THE DOMINANT EDGE

DISCARD THE DOMINANT EDGE

2444

MERGE PARALLEL EDGE GROUPS

FIG.6

US 6,323,510 B1

1

MACHINE CUT TASK IDENTIFICATION
FOR EFFICIENT PARTITION AND
DISTRIBUTION

RELATED APPLICATION

The present application 1s related to U.S. patent applica-
tion Ser. No. 09/676,422 entitled “INDEPENDENT NET
TASK IDENTIFICATION FOR EFFICIENT PARTITION
AND DISTRIBUTION” to Kimelman et al.; U.S. patent
application Ser. No. 09/676,425 entitled “NET ZEROING
FOR EFFICIENT PARTITION AND DISTRIBUTION” to
Roth et al.; and U.S. patent application Ser. No. 09/676,424
enfitled “DOMINANT EDGE IDENTIFICATION FOR
EFFICIENT PARTTTION AND DISTRIBUTION” to Weg-
man et al. all filed coincident herewith and assigned to the
assignee of the present mvention.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to distributed
processing and more particularly, the present invention
relates to efficiently assigning tasks across multiple com-
puters for distributed processing.

2. Background Description

Any large, multifaceted project, such as a complex com-
puter program, may be segmented into multiple smaller
manageable tasks. The tasks then may be distributed
amongst a group of individuals for independent completion,
¢.g., an engineering design project, distributed processing or,
the layout of a complex electrical circuit such as a micro-
processor. Ideally, the tasks are matched with the skills of the
assigned individual and each task 1s completed with the
same effort level as every other task. However, with such an
1deal matched task assignment, intertask communication can
become a bottleneck to project execution and completion.
Thus, to minimize this potential bottleneck, 1t 1s important to
cluster together individual tasks having the highest level of
communication with each other. So, for example, 1n distrib-
uting eight equivalent tasks to pairs of individuals at four
locations, (e.g., eight design engineers in four rooms)
optimally, pairs of objects or tasks with the highest com-
munication rate with each other are assigned to individual
pairs at each of the four locations.

Many state of the art computer applications are, by nature,
distributed applications. End-users sit at desktop worksta-
tions or employ palmtop information appliances on the run,
while the data they need to access resides on distant data
servers, perhaps separated from these end-users by a number
of network tiers. Transaction processing applications
manipulate data spread across multiple servers. Scheduling
applications are run on a number of machines that are spread
across the companies of a supply chain, etc.

When a large computer program 1s partitioned or seg-
mented mnto modular components and the segmented com-
ponents are distributed over two or more machines, for the
above mentioned reasons, component placement can have a
significant impact on program performance. Therefore, effi-
ciently managing distributed programs 1s a major challenge,
especially when components are distributed over a network
of remotely connected computers. Further, existing distrib-
uted processing management software 1s based on the
assumption that the program installer can best decide how to
partition the program and where to assign various-program
components. However, experience has shown that program-
mers often do a poor job of partitioning and component
assignment.

10

15

20

25

30

35

40

45

50

55

60

65

2

So, a fundamental problem facing distributed application
developers 1s application partitioning and component or
object placement. Since communication cost may be the
dominant factor constraining the performance of a distrib-
uted program, minimizing inter-system communication 1s
one segmentation and placement objective. Especially when
placement involves three or more machines, prior art place-
ment solutions can quickly become unusable, 1.€., what 1s
known as NP-hard. Consequently, for technologies such as
large application frameworks and code generators that are
prevalent 1n object-oriented programming, programmers
currently have little hope of determining effective object
placement without some form of automated assistance. En
masse 1nheritance from towering class hierarchies, and gen-
eration of expansive object structures leaves programmers
with little chance of success 1n deciding on effective parti-
floning.

This 1s particularly true since current placement decisions
are based solely on the classes that are written to specialize
the framework or to augment the generated application.

Furthermore, factors such as fine object granularity, the
dynamic nature of object-based systems, object caching,
object replication, ubiquitous availability of surrogate sys-
tem objects on every machine, the use of factory and
command patterns, etc., all make partitioning 1n an object-
oriented domain even more difficult. In particular, for con-
ventional graph-based approaches to partitioning distributed
applications, fine-grained object structuring leads to enor-
mous graphs that may render these partitioning approaches
impractical.

Finally, although there has been significant progress in
developing middleware and 1n providing mechanisms that
permit objects to 1nter-operate across language and machine
boundaries, there continues to be little to help programmers
decide object-system placement. Using state of the art
management systems, 1t 1s relatively straightforward for
objects on one machine to invoke methods on objects on
another machine as part of a distributed application.
However, these state of the art systems provide no help in
determining which objects should be placed on which
machine 1n order to achieve acceptable performance.
Consequently, the 1nitial performance of distributed object
applications often 1s terribly disappointing. Improving on
this 1nitial placement performance 1s a difficult and time-
consuming task.

Accordingly, there 1s a need for a way of automatically
determining the optimal program segmentation and place-
ment of distributed processing components to minimize
communication between participating distributed processing
machines.

SUMMARY OF THE INVENTION

It 1s therefore a purpose of the present invention to
improve distributed processing performance;

It 1s another purpose of the present invention to minimize
communication between distributed processing machines;

It 1s yet another purpose of the invention to 1mprove
object placement 1n distributed processing applications;

It 1s yet another purpose of the invention to determine
automatically how objects should best be distributed in
distributed processing applications

it 1s yet another purpose of the invention to minimize
communication between objects distributed amongst
multiple computers 1 distributed processing applica-
tions.

US 6,323,510 B1

3

The present mmvention 1s a task management system,
method and computer program product for determining
optimal placement of task components on multiple machines
for task execution, particularly for placing program compo-
nents on multiple computers for distributed processing.
First, a communication graph 1s generated representative of
the computer program with each program unit (e.g., an
object) represented as a node in the graph. Nodes are
connected to other nodes by edges representative of com-
munication between connected nodes. A weight 1s applied to
cach edge, the weight being a measure of the level of
communication between the connected edges. Terminal
nodes representative of the multiple computers are attached
to the communication graph. Independent nets may be
separated out of the communication graph. A cut 1s made at
cach terminal node and the weights of the cut edges are
summed. The second heaviest terminal 1s 1dentified from the
cut and edges connected to at least 1n one 1ternal node and
not connected to the second heaviest edge are compared
against the weight of the second heaviest edge. Any edge
found 1n the comparison to be at least as heavy as the second
heaviest terminal node need not be 1ncluded in the min cut
for the communication graph and so, 1s removed from
consideration for the final min cut solution. Finally, program
components which may be a single program unit or an
ageregate of units are placed on computers according to the
communication graph min cut solution.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects and advantages
will be better understood from the following detailed pre-
ferred embodiment description with reference to the
drawings, 1n which:

FIG. 1 shows an example of a flow diagram of the
preferred embodiment of the present invention wherein a
program 15 segmented, initially, and initial segments are
distributed to and executed on multiple computers;

FIGS. 2A-C show an example of a communication graph;

FIG. 3 1s a flow diagram of the optimization steps for
determining an optimum distribution of program compo-
nents;

FIG. 4 shows an example of a simple communication
ograph reducible by the preferred embodiment Machine Cut
method of the present invention;

FIG. 5 1s an example of the Machine Cut method steps of
identifying non-terminal edges that may be removed from
consideration;

FIG. 6 1s an example of the steps in contracting or
collapsing edges that are at least as heavy as the second
heaviest edge.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS OF THE INVENTION

As referred to herein, a communication graph 1s a graphi-
cal representation of a multifaceted task such as a computer
program. Each facet of the task 1s an independent task or
object that 1s represented as a node and communication
between tasks or nodes is represented by a line (referred to
as an edge) between respective communicating nodes. Par-
ticipating individuals (individuals receiving and executing
distributed tasks) are referred to as terminal nodes or
machine nodes. A net 1s a collection of nodes connected
together by edges. Two nets are independent 1f none of the
non-terminal nodes of one net shares an edge with a non-
terminal node of the other. Thus, for example, a communi-

10

15

20

25

30

35

40

45

50

55

60

65

4

cation graph of a computer program might include a node for
cach program object and edges would be between commu-
nicating objects, with edges not being included between
objects not communicating with each other. In addition, a
welght indicative of the level of communication between the
nodes may be assigned to each edge. Graphical representa-
tion and modeling of computer programs 1s well known 1n
the art.

Referring now to the drawings, and more particularly,
FIG. 1 1s an example of a flow diagram 100 of the preferred
embodiment of the present invention wherein a program 1s
secgmented, 1nitially, and 1nitial segments are distributed to
and executed on multiple computers. First, in step 102 the
communication patterns of a program are analyzed to form
a communication graph. Then, in step 104, the traces of the
communication graph are analyzed, and an 1nitial partition 1s
determined. In step 106, the partition 1s optimized for
minimum 1nterpartition communication. In step 108, the
individual objects are distributed amongst participants for
execution according to the optimize partition of step 106.

A component refers to an independent unit of a running
program that may be assigned to any participating
individual, e.g., computers executing objects of a distributed
program. Thus, a component may refer to an mstance of an
object 1n an object oriented program, a unit of a program
such as Java Bean or Enterprise Java Bean or, a larger
collection of program units or components that may be
clustered together intentionally and placed on a single
participating machine. Further, a program 1s segmented or
partitioned 1nto segments that each may be a single com-
ponent or a collection of components. After segmenting,
analyzing the segments and assigning each of segments or
components to one of the multiple participating machines or
computers according to the present invention, the final
machine assignment 1s the optimal assignment.

Thus, a typical communication graph includes multiple
nodes representative of components with weighted edges
between communicating nodes. Determining communica-
tfion between components during program execution may be
done using a typical well known tool available for such
determination. Appropriate communication determination
tools 1nclude, for example, Jinsight, for Java applications
that run on a single JVM, the Object Level Tracing (OLT)
tool, for WebSphere applications or, the monitoring tool 1n
Visual Age Generator.

FIGS. 2A—C show an example of a communication graph
of a net 110 that includes multiple nodes 112, 114, 116, 118,
120 and 122. Each node 112, 114, 116, 118, 120 and 122
represents a program component connected to communica-
tion edges 124,126, 128, 130, 132, 134, 136 and 138 to form
the net 110. Adjacent nodes are nodes that share a common
edge, e.g., nodes 114 and 122 share edge 126. Each edge
124,126,128, 130,132,134, 136 and 138 has been assigned

a welight proportional to, for example, the number of mes-
sages between the adjacent components.

In FIG. 2B, Machine nodes 140, 142 and 144 represen-

tative of each participating machine (three in this example)
are shown connected by edges 146, 148, 150. Initially,anode

112,114, 116,118, 120 and 122 may be placed on a machine
140, 142, 144 by adding an edge 146, 148, 150 with infinite

welght (indicating constant communication) between the
node and the machine. Typically, initial assignment places
nodes with specific functions (e.g., database management)
on a machine suited for that function. After the initial
placement assigning some nodes 112, 114 and 122 to

machines 140, 142, 144, other nodes 116, 118, 120 are

US 6,323,510 B1

S

assigned to machines 140, 142, 144, if they communicate
heavily with a node 112, 114, 122 already assigned to that
machine 140, 142, 144. Additional assignment 1s effected by
selectively collapsing edges, combining the nodes on either
end of the collapsed edge and re-assigning edges that were
attached to one of the two former adjacent nodes to the
combined node. When assignment 1s complete, all of the

nodes 112, 114, 116, 118, 120 and 122 will have been placed
on one of the machines at terminal nodes 140, 142, 144 and
the final communication graph may be represented as ter-
minal nodes 140, 142, 144 connected together by commu-
nication edges.

For this subsequent assignment, the graph 1s segmented

by cutting edges and assigning nodes to machines as rep-

resented by 152, 154 and 156 1n FIG. 2C to achieve what 1s
known 1n the art as a minimal cut set or min cut set. A cut
set 1s a set of edges that, 1f removed, eliminate every path
between a pair of terminal nodes (machine nodes) in the
oraph. A min cut set 1s a cut set wherein the sum of the
welghts of the cut set edges 1s minimum. While there may
be more than one min cut set, the sum 1s 1dentical for all min
cut sets. A min cut may be represented as a line intersecting
the edges of a min cut set. So, 1n the example of FIG. 2C,
the sum of the weights of edges 124, 126, 128, 132 and 138
1s 2090, which 1s cost of the cut and 1s representative of the
total number of messages that would be sent between
machines at terminal nodes 140, 142, 144 with this particu-
lar placement. The min cut i1dentifies the optimum compo-
nent placement with respect to component communication.
While selecting a min cut set may be relatively easy for this
simple example, it 1s known to increase 1n difficulty expo-
nentially with the number of nodes 1n the graph.

FIG. 3 1s a flow diagram 160 of the optimization steps for
determining an optimum distribution of program compo-
nents to mndividual participating computers according to a
preferred embodiment of the present invention. First, in step
162, an initial communication graph i1s generated for the
program. Then, 1n step 164 machine nodes are added to the
communication graph. As noted above, certain types of
components are designated, naturally, for specific host
machine types, €.g., graphics components are designated for
clients with graphics capability or, server components des-
ignated for a data base server. After assigning these host
specific components, 1n step 168 independent nets are 1den-
fified and the communication graph 1s partitioned 1nto the

identified i1ndependent nets as described m U.S. patent
application Ser. No. 09/676,422 entitled “INDEPENDENT

NET TASK IDENTIFICATION FOR EFFICIENT PARTI-
TION AND DISTRIBUTION” to Kimelman et al. assigned
to the assignee of the present invention and incorporated
herein by reference. In step 170 the Machine Cut reduction
method described hereinbelow is used to reduce the inde-
pendent nets and then, 1n step 172 a min cut for the reduced
independent nets, the min cuts for all of the independent nets
being the min cut for the whole communication graph.

FIG. 4 shows an example of a simple communication
oraph 180 reducible by the preferred embodiment Machine
Cut method of the present invention. In this example, the

graph 180 includes five (5) non-tri nodes 182, 184, 186, 188
and 190 connected together by edges 192, 194, 196, 19B,
200 and 202, referred to herein as non-terminal edges. Three
(3) terminal nodes 204, 206 and 208 are connected to
respective non-terminal nodes 182, 84, 186, 188 and 190 by
edges 210, 212, 214, 216 and 218, referred to herein as
[[non-||terminal edges. A weight is represented as being

attached to each edge 192202 and 210-218. Dotted line W,
[1220]] represents a terminal cut at terminal node 204 cutting

10

15

20

25

30

35

40

45

50

55

60

65

6

terminal edges 210, 212. Dotted line W, [[222]] represents
a terminal cut at node 206 cutting terminal edges 214, 216.
Dotted line W, [[224]] represents a terminal cut at terminal
node 208 cutting terminal edge 218. Essentially, the
Machine Cut method eliminated from inclusion 1n the min
cut solution, any terminal or non-terminal edge with heavier
communication (i.e., its weight exceeds) than all but the
terminal node with the heaviest level of communication.

Thus, 1n this example, edge 202 1s heavier than terminal cut
W, [[222]]. So, edge 202 can be excluded from consider-
ation for inclusion in the min cut solution Preferably, edge
202 1s collapsed, combining nodes 182 and 188, as well as
merging (then) parallel edges 198 and 200.

FIG. § 1s an example of the Machine Cut method steps
230 of 1dentifying non-terminal edges that may be removed
from consideration according to the preferred embodiment
of the present invention. First, 1n step 232, an independent
net 1s selected for reduction. In step 234 terminal cuts are
made at each terminal node on the selected net. For each
terminal cut, the weights of the edges at the terminal are
summed, the sum being the terminal’s weight. Then, 1n step
236, the second heaviest terminal node (the terminal with the
second heaviest weight) is identified. In step 238, edges are
checked to determine if they are at least as heavy as the
1dentified second heaviest cut weight. All edges connected to
at least one non-terminal node are checked in step 238,
except that those edges connected to the second heaviest
node are excluded. If no edges are found that are as heavy
or heavier than the second heaviest cut weight, 1n step 240,
it 1s determined that the Machine Cut method 1s unable to
reduce the net and 1n step 242, net reduction ends.
Otherwise, 1 step 244, cach edge that was 1dentified 1n step
238 need not be part of the min cut solution and so, 1s
collapsed. In step 246 1t 1s determined that the independent
net has been reduced using the Machine Cut method 230
and, net reduction ends 1n step 242.

In other words, for each terminal node 204, 206, 208 the
welght of all connected edges are summed. Then, the
summed are sorted 1n descending order and the second
largest weight 1s selected and labeled W, ., for example.
Next, any edge 192-202, 210, 212 and 218 not connected to
the second heaviest node but connected to at least one
non-terminal node are compared against W, .. Any com-
pared edge that 1s at least as heavy as W, . need not be part
of the (only) multiway minimum cut of the graph, and as
such, may be collapsed. Collapsing each edge results 1n a
simpler graph wherein the min cut solution can be found
much more quickly and efficiently, with the min cut solution
welght being the same as the original unreduced graph.

FIG. 6 1s an example of the steps 1n contracting or
collapsing edges that are at least as heavy as the second
heaviest edge 244. First 1n step 2440 the two nodes con-
nected by the collapsed edge are merged, resulting in a
single merged node that includes the components of both
original nodes. Then, 1n step 2442 the collapsed edge 1is
discarded. Finally, in step 2444 any “parallel” edge groups
(edges connecting the merged node to the same adjacent
node) resulting from the merger are replaced with a single
edge with 1ts weight equal to the sum of parallel edge
weilghts. Thus, as a result of contracting dominant edges, the
ograph has been reduced wherein a min cut solution may be
found with less effort.

In the preferred embodiment, the min cut step 170 1s an
iterative process, wherein independent nets arc reduced
using the Machine Cut steps described herein and, when
necessary, in combination with other linear complexity
methods such as the Dominant Edge identification method

US 6,323,510 B1

7

of U.S. patent application Ser. No. 09/676,424 entitled
“DOMINANT EDGE IDENTIFICATION FOR EFFI-
CIENT PARTITION AND DISTRIBUTION” to Wegman et
al. and the Net Zeroing method of U.S. Patent application
Ser. No. 09/676,425 entitled “NET ZEROING FOR EFFI-
CIENT PARTITION AND DISTRIBUTION” to Roth et al.,

all filed coincident herewith, assigned to the assignee of the
present 1nvention and incorporated herein by reference.
Further, as independent nets are reduced, those reduced nets
are further checked as 1n step 168 above to determine 1if they
may be divided into simpler independent nets. Then, the
Machine Cut method of the preferred embodiment 1s applied
to those simpler independent nets. To reach a solution more
quickly, on each subsequent pass, only nodes and edges of
a subgraph that were adjacent to areas reduced previously
are rechecked. Thus, the communication graph 1s simplified
by eliminating machine cut edges to reach a min cut solution
much quicker and much more efficiently than with prior art
methods.

The reduction method of the preferred embodiment
reduces the number of idependent components in the
communication graph of a complex program. In the best
case, an appropriate allocation of every component 1n the
program 1s provided. However, even when best case 1s not
achieved, the preferred embodiment method may be com-
bined with other algorithms and heuristics such as the
branch and bound algorithm or the Kernighan-Lin heuristic
to significantly enhance program performance.
Experimentally, the present invention has been applied to
communication graphs of components in several programs
with results that show significant program allocation
improvement, both in the quality of the final solution
obtained and 1n the speed in reaching the result.

Although the preferred embodiments are described here-
inabove with respect to distributed processing, it 1s intended
that the present invention may be applied to any multi-task
project without departing from the spirit or scope of the
invention. Thus, for example, the task partitioning and
distribution method of the present invention may be applied
to VLSI design layout and floor planning, network reliability
determination, web pages information relationship
identification, and “divide and conquer” combinatorial prob-
lem solution approaches, e¢.g., “the Traveling Salesman

Problem.”

While the invention has been described in terms of
preferred embodiments, those skilled 1n the art will recog-
nize that the invention can be practiced with modification
within the spirit and scope of the appended claims.

What 1s claimed 1s:

1. A task management method for determining optimal
placement of task components, said method comprising:

a) generating a communication graph representative of a
task, task components represented as nodes of said
communication graph and edges connecting ones of
said nodes, said edges representing communication
between connected nodes and being weighted propor-
tional to communication between connected nodes;

b) assigning terminal nodes to said communication graph;

¢) identifying high communication edges within said
communication graph, said high communication edges
having a weight idicating a communication level
exceeding the communication level for a selected ter-
minal node, identitying said high communication edges
comprising the steps of:

1) identifying independent nets in said communication
oraph, each of said independent nets being connected
between a plurality of said terminal nodes,

10

15

20

25

30

35

40

45

50

55

60

65

3

11) summing the weight of terminal edges connected to
terminal nodes of an independent net,
111) 1dentifying the terminal node having the second
largest sum as the second heaviest terminal node,
iv) identifying any edge connected to at least one
non-terminal node and not connected to said second
heaviest node and at least as heavy as the second
largest sum, and

v) collapsing each identified edge;

d) determining a min cut solution for said communication
oraph, high communication edges being excluded from
determined min cut solutions; and

¢) placing task components on said terminal nodes
responsive to said min cut solution.
2. A task management method as 1n claim 1, further
comprising the step of:
v) repeating steps (1)—(1v) until no edges are identified as
being heavier than the second largest sum.
3. A task management method as 1n claim 2, wherein
identified edges are selectively collapsed comprising the
steps of:

1) merging nodes at opposite ends of each identified edge
to form a single merged node 1ncluding the components
of both original nodes;

i1) discarding the identified edge; and

i11) replacing groups of parallel edges with a single edge
having a weight equal to the sum of parallel edge
welghts.

4. A task management method as 1n claim 3, wherein the
step (d) of determining a min cut solution comprises the
steps of:

1) identifying independent nets in reduced nets;

i1) identifying and collapsing edges selectively identified
as being heavier than the second heaviest terminal node
in said identified independent nets, said independent
nets being further reduced; and

ii1) repeating steps (i1)—(i1) until a min cut solution has
been found.

5. Atask management method as in claim 4, wherein each

said task component 1s a unit of the computer program.

6. A task management method as 1n claim §, wherein said
cach computer program unit 1s an instance of an object 1in an
object oriented program.

7. A task management method as 1n claim 5, wherein 1n
step (¢) computer program units are placed on computers,
computer program units being placed on a common com-
puter being combined 1nto a single component.

8. A task management method as 1n claim 4, wherein said
task 1s mtegrated circuit chip functional element placement
and said task components are logic elements, said logic
clements being placed on an itegrated circuit chip 1n
placement step (e).

9. A distributed processing system for determining opti-
mal placement of computer program components on mul-
tiple computers, said distributed processing system compris-
Ing:

means for generating a communication graph of nodes
interconnected by edges and representative of a com-
puter program, computers executing said computer
program being represented as terminal nodes, computer
program components being represented as non-
terminal nodes, said edges representing communication
between connected nodes and being weighted propor-
tional to communication between connected nodes;

means for summing the weight of edges connected to
terminal nodes;

US 6,323,510 B1

9

means for identifying a second heaviest terminal node;

means for comparing edges with the sum for said second
heaviest terminal node;

means for determining a min cut solution for said com-
munication graph, edges heavier than said sum being
exclude from determined min cut solutions responsive
to said comparison; and

means for placing program components on ones of said
computers responsive to said determined min cut solu-
tion; and
said computer program being executed by said computers.
10. A distributed processing system as in claim 9, further
comprising:
means for i1dentifying independent nets connected
between a plurality of said terminal nodes.
11. A distributed processing system as 1n claim 10, further
comprising:
means for collapsing said edges heavier than said sum.
12. A distributed processing system as 1n claim 11,

wherein the means for identifying edges heavier than said
SUMmM COmprises:

means for summing the weight of terminal edges con-
nected to terminal nodes;

means for 1dentifying the terminal node having the second
largest sum as the second heaviest terminal node;

means for comparing edge weights against said second
largest sum; and

means for selectively collapsing edges 1dentified as hav-
ing a weight at least as heavy as the second largest sum.

13. A distributed processing system as in claim 12, the
means for selectively collapsing edges further comprising;:

means for merging nodes on either end of a selected edge
and discarding said selected edge; and

means for replacing pairs of parallel edges attached to
said merged node with a single edge.
14. A distributed processing system as i claim 13,
wherein the means for comparing edge weights further
COMPrises:

means for selecting edges attached to at least one non-
terminal node and not attached to said second heaviest
terminal node.

15. A distributed processing system as i claim 14,
wheremn each said program component 1s a unit of the
computer program.

16. A distributed processing system as in claim 135,
wherein said each program unit 1s an instance of an object
in an object oriented program.

17. A computer program product for determining optional
placement of functional components, said computer pro-
gram product comprising a computer usable medium having
computer readable program code thereon, said computer
readable program code comprising;:

computer readable program code means for generating a
communication graph of nodes interconnected by
cdges and representative of a function, a plurality of
said nodes being terminal nodes, functional compo-
nents being represented as non-terminal nodes, said
edges representing communication between connected
nodes and being weighted proportional to communica-
tion between connected nodes;

computer readable program code means for summing the
welght of edges connected to terminal nodes;

10

15

20

25

30

35

40

45

50

55

60

10

computer readable program code means for identifying a
second heaviest terminal node;

computer readable program code means for comparing
edges with the sum for said second heaviest terminal
node;

computer readable program code means for determining a
min cut solution for said communication graph, edges
heavier than said second heaviest edge being excluded
from determined min cut solutions responsive to said
comparison; and

computer readable program code means for placing func-
tional components responsive to said determined min
cut solution.
18. A computer program product as 1n claim 17, further
comprising:
computer readable program code means for identifying
independent nets connected between a plurality of said
terminal nodes.
19. A computer program product as 1n claim 18, further
comprising:
computer readable program code means for collapsing
edges heavier than said sum.
20. A computer program product as 1n claim 19, wherein
the computer readable program code means for 1dentifying
edges heavier than said sum comprises:

computer readable program code means for summing the
welght of terminal edges connected to terminal nodes,

computer readable program code means for identifying
the terminal node having the second largest sum as the
second heaviest terminal node;

computer readable program code means for comparing,
cdge weighs against said second largest sum; and

computer readable program code means for selectively
collapsing edges 1dentified as having a weight at least
as heavy as the second largest sum.
21. A computer program product as 1n claim 20, wherein
the computer readable program code means for selectively
collapsing edges further comprising:

computer readable program code means for merging
nodes on either end of a selected edge and discarding,
said selected edge; and

computer readable program code means for replacing
pairs ol parallel edges attached to said merged node
with a single edge.
22. A computer program product as 1n claim 21, wherein
the computer readable program code means for comparing
edge weights further comprises:

computer readable program code means for selecting
edges attached to at least one non-terminal node and
not attached to said second heaviest terminal node.

23. A computer program product as 1n claim 22, wherein
said function 1s a computer program and each said functional
component 1s a unit of the computer program.

24. A computer program product as 1n claim 23, wherein
cach said program unit 1s an instance of an object 1n an
object oriented program.

25. A computer program product as 1n claim 22, wherein
said function 1s an 1ntegrated circuit chip and said functional
components am logic elements.

	Front Page
	Drawings
	Specification
	Claims

