US006823338B1
a2 United States Patent (10) Patent No.: US 6,823,338 B1
Byrne et al. 45) Date of Patent: Nov. 23, 2004
(54) METHOD, MECHANISM AND COMPUTER 5,675,782 A 10/1997 Montague et al. 707/9
PROGRAM PRODUCT FOR PROCESSING 5,701,458 A 12/1997 Bsaibes et al.e.......... 707/9
SPARSE HIERARCHICAL ACL DATA IN A 5,717,902 A 2/1998 D’Souza et al. 395/500
5724575 A 3/1998 Hoover et al. 707/10
RELATIONAL DATABASK 5,761,669 A 6/1998 Montague et al. 707/103
(75) Inventors: Debora Jean Byrne, Austin, TX (US); g’;gg’ig i N gﬁggg gigk clal v 395/611
: : 878, S trrerereereneetereeeeranenan 707/9
Shaw-Ben Shi, Austin, TX (US) 5022074 A * 7/1999 Richard et al. 713/200
(73) Assignee: International Business Machines FOREIGN PATENT DOCUMENTS
Corporation, Armonk, NY (US) WO 0514966 5/1095
(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
patent 15 extended or adjusted under 35
U.S.C. 154(b) by 858 days. Primary Fxaminer—Jean Homere
Assistant Examiner—Luke S Wassum
(21) Appl. No.: 09/195,870 (74) Artorney, Agent, or Firm—Winstead Sechrest &
Minick P.C.; Jeffrey S. LaBaw
(22) Filed: Nov. 19, 1998
(57) ABSTRACT
(51) Imt.CL’7 ..o, GO6F 17/30; GOGF 7/00
(52) US.CL .o, 707/9; 707/10; 707/101; /A method for securing and processing sparse access control
713/201 list (ACL) data in a relational database used as a backing
(58) Field of Search 707/9, 10, 101; store for a hierarchical-based directory service. The sparse
713/201 ACL data 1s secured 1n a plurality of tables. An owner table
stores data objects with explicitly set ACLs. A propagation
(56) References Cited table stores data on whether individual ACLs are inherited
by descendant objects. A permissions table stores data
U.S. PATENT DOCUMENTS regarding permissions which a user may perform on an
4883681 A 12/1989 Bamnes ef al. 364/200 object. A source table stores data for a set of ancestor objects
5107419 A 4/1992 MacPhail «...ovoveoveovnn 395/600 having respective ACLs for each of a set of descendant
5113442 A 5/1992 MOIT eveveeereeeeeeerennn. 380,25 objects. Preferably, the tables are stored i the relational
5,173,939 A * 12/1992 Abadiet al.uenn........ 380/25 database together with the objects. For a given object, data
5,226,161 A 7/1993 Khoyi et al. 395/650 in the tables 1s used to determine the given object’s entry
5,283,830 A 2/1994 Hinsley et al. 380/25 owner and ACL. The inventive technique has particular
5,335,346 A 8/1994 Fabbiocccccceeueenennnn. 395/600 applicability in a Lightweight Directory Access Protocol
5,414,852 A >/1995 Kramer et al. 395/700 (LDAP) directory service having a relational database as a
5,432,924 A 7/1995 D’Souza et al. 395/500 backing store
5,504,866 A 4/1996 Hirasawa 395/200.16 '
5,560,005 A 9/1996 Hoover et al. 395/600
5,634,124 A 5/1997 Khoyi et al. 395/614 29 Claims, 3 Drawing Sheets
10 CLIENT ' DIRECTORY SERVER

.DAP H%°
RUNTIME

DIRECTORY 27

DAp HZ5 ROOT
RUNTIME
RDN L RDN
; RDN
DIRECTORY 9
ENTRY (ATTRIBUTES)

4

27

U.S. Patent Nov. 23, 2004 Sheet 1 of 3 US 6,823,338 Bl

10 CLIENT 3 DIRECTORY SERVER
LDAP
RUNTIME
DIRECTORY

LDAP H%°
RUNTIME

INITIALIZE

Fig. 1

LDAP SESSION

DIRECTORY
ROOT

ENTRY A'ITRIBUTES

4

27

Fig. 2

OPEN
CONNECTION

AUTHENTICATION

DIRECTORY
SERVER
OPERATION

34

iNestianEsitannl
Ty
HHIITHASHINEREE]
JERRLTERBRINITdat]
TR]

48 R

RETURN
RESULTS .
Fig. 3

EERES

50 LDAP CLENT _
CLOSE SESSION Fig. 4 LDAP SERVER

U.S. Patent Nov. 23, 2004 Sheet 2 of 3 US 6,823,338 Bl

RDBMS
LDAP SERVER K——>

37 SPARSE ACL T:é:LLes
MECHANISM 39
41

OWNER TABLE |7

PROPAGATION
TABLE

ACL
TABLES

PERMISSIONS [4/

TABLE

49
SOURCE TABLE

Fig. 5

U.S. Patent Nov. 23, 2004 Sheet 3 of 3 US 6,823,338 Bl

SELECT QUERY kgp
ON EID OF
OBJECT

64
YES STORE VALUE

NO

GO TO STEP /76
66
| CHECK PARENT

68

ACL

NO _~0r OWNER \YES

YE /2
2| STORE VALUE

PROPAGATION
FLAG TRUE

NO

/6

BOTH
OWNER AND
ACL
LOCATED
?

NO
Fig. 6

YES

STOP

US 6,323,335 Bl

1

METHOD, MECHANISM AND COMPUTER

PROGRAM PRODUCT FOR PROCESSING

SPARSE HIERARCHICAL ACL DATA IN A
RELATIONAL DATABASE

BACKGROUND OF THE INVENTION

1. Technical Field

This invention relates generally to providing directory
services 1n a distributed computing environment and, in
particular, to processing sparse hierarchical access control
list (ACL) data stored in a relational database.

2. Description of the Related Art

A directory service 1s the central point where network
services, security services and applications can form a
integrated distributed computing environment. The current
use of a directory services may be classified into several
categories. A “naming service” (e.g., DNS and DCE Cell
Directory Service (CDS)) uses the directory as a source to
locate an Internet host address or the location of a given
server. A “user registry” (e.g., Novell NDS) stores informa-
tion of all users 1n a system composed of a number of
interconnected machine. The central repository of user infor-
mation enables a system administrator to administer the
distributed system as a single system 1mage.

With more applications and system services demanding a
central information repository, the next generation directory
service will need to provide system administrators with a
data repository that can significantly ease administrative
burdens. In addition, the future directory service must also
provide end users with a rich information data warchouse
that allows them to access department or company employee
data, as well as resource information, such as name and
location of printers, copy machines, and other environment
resources. In the Internet/intranet environment, 1t will be
required to provide user access to such information 1n a
SeCure manner.

To this end, the Lightweight Directory Access Protocol
(LDAP) has emerged as an IETF open standard to provide
directory services to applications ranging from e-mail sys-
tems to distributed system management tools. LDAP 1s an
evolving protocol that 1s based on a client-server model 1n
which a client makes a TCP/IP connection to an LDAP
server, sends requests, and receives responses. The LDAP
information model 1n particular 1s based on an “entry,”
which contains information about some object. Entries are
typically organized 1n a specified tree structure, and each
entry 1s composed of attributes. The directory tree 1s orga-
nized 1n a predetermined manner, with each entry uniquely
named relative to its sibling entries by a “relative distin-
guished name” (RDN). An RDN comprises at least one
distinguished attribute value from the entry and, at most, one
value from each attribute 1s used in the RDN. According to
the protocol, a globally unique name for an entry, referred to
as a “distinguished name” (DN), comprises a concatenation
of the RDN sequence from a given entry to the tree root.

LDAP provides the capability for directory information to
be efficiently queried or updated. It offers a rich set of
scarching capabilities with which users can put together
complex queries to get desired information from a backing
store. Increasingly, 1t has become desirable to use a rela-
tional database for storing LDAP directory data. Represen-
tative database implementations include DB/2, Oracle,
Sybase, Informix and the like. As 1s well known, Structured
Query Language (SQL) is the standard language used to
access such databases. Security for the information kept

10

15

20

25

30

35

40

45

50

55

60

65

2

within the LDAP directory 1s provided through ACLs
(Access Control Lists). The ACL contains the information
about what distinguished names have permission to perform
particular actions on an entry. The model breaks this 1nfor-
mation 1nto two pieces: the entry owner, and the ACL entry.
While the owner and the ACL are distinct, their behavior
conceptually follows similar logic.

The ACL model requirements further specily that every
entry must have an owner and at least one ACL. However,
in the interest of usability, it 1s known 1n the art that an
administrator does not have to set an ACL and an owner on
every entry. This leads to a so-called sparse ACL model. It
an ACL (owner) is not explicitly set on a particular entry, its
value 1s inherited from an ancestor node within the directory.
Given that the LDAP directory 1s hierarchical, this inherit-
ance property means that an administrator may put an ACL
(owner) at strategic points within the tree and have that ACL
propagate to all entries below that point. Additionally, all
changes to the ACL will also propagate. In this scheme,
propagation of an ACL value continues until another propa-
gating value 1s reached.

Although the entry owner and the ACL entry are both
concepts within the known ACL model, they are not directly
related. Because the ACL and owner are distinct, an entry
with an owner speciiied may or may not have an explicit
ACL. Similarly, an entry with an explicitly set ACL may or
may not have an explicitly set owner.

To maintain the integrity of the sparse, hierarchical ACL
data, 1t would be desirable to store such data 1n the database
along with the information it protects. In the past, such data
has been stored 1n an editable flat file. As 1s well-known,
however, 1t 1s quite difficult to manage hierarchical data
within a relational database. It 1s even more challenging to
handle sparse heierarchical information, like ACLs, within
relational tables. Storing the ACL and owner information
with the entry 1s not feasible. It defeats some of the benefits
of a sparse model because the space and processing require-
ments are burdensome.

BRIEF SUMMARY OF THE INVENTION

The present invention solves the problem of efficiently
storing and processing sparse, hierarchical information 1n a
relational database. The particular invention is particularly
uselul for storing and processing ACL data 1n a relational
database used as a backing store to a Lightweight Directory
Access Protocol (LDAP) directory service.

The ACL data 1s stored 1n the relational database using a
plurality of tables. A first table, the owner table, contains
owner 1nformation. The second table, the propagation table,
contains propagation data. The third table, the permissions
table, contains the ACL information. Thus, three separate
tables are created and used to store two sets (ACL and
owner) of related, but distinct sparse data. Because there can
only be one entry owner DN per object, only one table is
needed for the owner data. Likewise, because there can be
multiple ACL entries per object, the propagation information
1s supported 1n its own table. Updates to propagation mfor-
mation therefore do not require excessive updates to mul-
tiple rows within the ACL entry table. Information 1s selec-
tively pulled from these tables whenever an operation 1is
requested.

In particular, the first, second and third tables are used to
determine an entry owner and ACL for a given object. In one
preferred method, a SELECT operation 1s performed based
on an 1dentifier of the object. If an ACL or owner 1s found,
that value 1s kept. If, however, either the ACL or owner 1s not

US 6,323,335 Bl

3

determined, the parent 1s checked. It the needed value 1s then
found, a propagation flag is checked. It the propagation flag
is TRUE, that value 1s kept. If the propagation flag is
FALSE, then processing continues recursively until both an
owner and an ACL value have been found. If the top of the
tree (the suffix) has been reached without locating a propa-
gating value, then system defaults are returned.

While this processing produces the desired results, search
speed 1s enhanced significantly according to the present
invention by implementing a fourth table, a source table.
This table keeps track of the actual entry that holds the
owner information (the owner source) and the entry that
holds the ACL information (the ACL information) for each
object within the directory. For a given object, the first,
second, third and fourth tables are used to find the ACL and
owner 1nformation using only a single SQL call. Use of this
table provides the added advantage of avoiding ACL propa-

gation when an explicit ACL or owner information 1is
modified.

The foregoing has outlined some of the more pertinent
objects and features of the present invention. These objects
and features should be construed to be merely illustrative of
some of the more prominent features and applications of the
invention. Many other beneficial results can be attained by
applying the disclosed invention 1n a different manner or
modifying the invention as will be described. Accordingly,
other objects and a fuller understanding of the mnvention may
be had by referring to the following Detailed Description of
the preferred embodiment.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion and the advantages thereof, reference should be made to
the following Detailed Description taken 1n connection with
the accompanying drawings 1n which:

FIG. 1 1s a representative LDAP directory service imple-
mentation;

FIG. 2 1s a simplified LDAP directory;

FIG. 3 1s a flowchart of an LDAP directory session;

FIG. 4 shows a representative LDAP directory service
implementation having relational database backing store;

FIG. 5 1s a ssmplified block diagram of the table structures
used to implement storage of sparse, hierarchical ACL data
according to the present invention; and

FIG. 6 1s a flowchart illustrating a representative software
routine for retrieving an object’s ACL and owner; and

FIG. 7 1s a representation of a hierarchical directory tree
corresponding to an exemplary source table.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

The present invention 1s preferably implemented 1n an
LDAP directory service having a relational database as a
backing store. By way of brief background, a block diagram
of a representative LDAP directory service in which the
present invention may be implemented 1s shown 1n FIG. 1.
As 15 well-known, LDAP 1s the lightweight directory access
protocol, and this protocol has been implemented 1n the prior
art, €.g., as either a front end to the X.500 directory service,
or as a standalone directory service. According to the
protocol, a client machine 10 makes a TCP/IP connection
over network 11 to an LDAP server 12, sends requests and
receives responses. LDAP server 12 supports a directory 21
as 1llustrated 1 a simplified form 1n FIG. 2. Each of the
client and server machines further include a directory “runt-

10

15

20

25

30

35

40

45

50

55

60

65

4

ime” component 25 for implementing the directory service
operations as will be described below. The directory 21 1is
based on the concept of an “entry” 27, which contains
information about some object (e.g., a person). Entries are
composed of attributes 29, which have a type and one or
more values. Each attribute 29 has a particular syntax that
determines what kinds of values are allowed 1n the attribute
(e.g., ASCII characters, jpeg file, etc.) and how these values
are constrained during a particular directory operation.

As discussed above, the directory tree 1s organized 1n a
predetermined manner, with each entry uniquely named
relative to its sibling entries by a “relative distinguished
name” (RDN). An RDN comprises at least one distinguished
attribute value from the entry and, at most, one value from
cach attribute 1s used 1n the RDN. According to the protocol,
a globally unique name for an entry, referred to as a
“distinguished name” (DN), comprises a concatenation of
the RDN sequence from a given entry to the tree root. The
L.DAP search can be applied to a single entry (a base level
search), an entry’s children (a one level search), or an entire
subtree (a subtree search). Thus, the “scope” supported by
L.DAP search are: base, one level and subtree.

LDAP includes an application programming interface
(API), as described in “The C LDAP Application Program

Interface”, IETF Task Force Working Draft, Jul. 29, 1997,
which 1s incorporated herein by reference. An application on
a given client machine uses the LDAP API to effect a
directory service ‘“session” according to the flowchart of
FIG. 3. At step 40, an LDAP session with a default LDAP
server 1s initialized. At step 42, an API function Idap__1nit()
returns a handle to the client, and this handle allows multiple
connections to be open at one time. At step 44, the client
authenticates to the LDAP server using, for example, an API
Idap_bind() function. At step 46, one or more LDAP
operations are performed. For example, the API function
Idap_ search() may be used to perform a given directory
scarch. At step 48, the LDAP server returns the results. The
session is then closed at step 50 with the API Idap_ unbind()
function then being used to close the connection.

It 1s desired to store LDAP directory data in a backing
store. FIG. 4 illustrates a representative LDAP directory
service implementations that use a relational database man-
agement system (RDBMS) for this purpose. This system
merely 1llustrates a possible LDAP directory services in
which the present mvention may be implemented. One of
ordinary skill should appreciate, however, that the invention
1s not limited to an LDAP directory service provided with a
DB/2 backing store. The principles of the present mnvention
may be practiced in other types of directory services (e.g.,
X.500) and using other relational database management
systems (e.g., Oracle, Sybase, Informix, and the like) as the
backing store.

In FIG. 4, an LDAP client 34 can connect to a number of
networked databases 38a—58# through an LDAP server 36.
The databases 38a—38n contain the directory information.
However, from the user’s perspective, the LDAP server 36
actually stores all the information without knowing the
database 38 in which the data 1s actually located. With this
configuration, the LDAP server 36 1s freed from managing
the physical data storage and 1s able to retrieve information
from multiple database servers 38 which work together to
form a huge data storage.

One of ordinary skill should appreciate that the system
architectures 1llustrated in FIG. 4 1s not to be taken as
limiting the present mnvention.

As discussed above, security for the information kept
within the LDAP directory 1s provided through ACLs

US 6,323,335 Bl

S
(Access Control Lists). The ACL contains the mformation

about what distinguished names have permission to perform
particular actions on an entry. This information includes two
pieces: the entry owner, and the ACL entry. Every entry must
have an owner and at least one ACL. However, an ACL and
an owner need not be set for every entry. This 1s a sparse
ACL model. If an ACL (owner) 1s not explicitly set on a
particular entry, its value 1s inherited from an ancestor node
within the directory. Given that the LDAP directory 1s
hierarchical, this inheritance property means that an admin-
istrator may put an ACL (owner) at strategic points within
the tree and have that ACL propagate to all entries below that
point. Additionally, all changes to the ACL will also propa-
gate. In this scheme, propagation of an ACL value continues
until another propagating value 1s reached.

With reference now to FIG. 5, a block diagram of the
present nvention 1s illustrated. In particular, the mmvention
provides a novel and efficient mechanism for storing and
processing sparse ACL mformation in a relational database
management system (RDBMS) 39. Relational database is
used as a backing store for an LDAP server 37. According
to the invention, RDBMS 39 includes a sparse access control
list (ACL) mechanism 41 as known in the art. ACL infor-
mation 1s stored 1n a plurality of tables located within the
backing store. These tables include an owner table 43, a
propagation table 45, a permissions table 47, and a source
table 49. As will be 1llustrated in more detail below, the
owner table 43 stores data on objects with explicitly set
ACLs, the propagation table 45 stores data on whether
individual ACLs are inherited by descendant objects, the
permissions table 47 stores data regarding permissions
which a user may perform on an object, and the source table
49 stores data for a set of ancestor objects having respective
ACLs for each of a set of descendant objects. The actual data
stored 1n these tables and the relationship of the tables will
now be described 1n detail.

By way of brief background, 1n conformance with the
LDAP model, the access control-related properties of an
entry are represented as attribute * value pairs. Furthermore,
a known syntax may be used to administer these values.
Based on the ACL model, five ACL related attributes are
considered a part of every directory entry. These include:
entryOwner, ownerPropagate, inheritOnCreate, aclEntry
and entryPropagate. The entryOwner attribute consists of a
user or group DN that 1s given full authority on that entry.
This DN 1s considered the administrator for that distin-
cguished name. The ownerPropagate attribute indicates if this
DN value should propagate to child entries that do not have
an owner explicitly set. The mheritOnCreate attribute 1s a
security feature that controls the ACL values at object
creation time. If inheritOnCreate 1s TRUE, the child object
must inherit all ACL and owner values from its parent (or
first propagating ancestor). If inheritOnCreate is false, ACL
values may be specified at object creation time. After the
object has been created, the attributes may be administered
as normal. The aclEntry attribute describes the user and
group distinguished names that have been given privileges
to perform particular operations on that entry.

The owner table (own) 43 contains information for every
explicitly set owner 1n the database. If an object has an
explicit owner, 1t will have a row in the owner table. A
representative owner table (own) is set forth below (Table I):

5

10

15

20

25

30

35

40

45

50

55

60

65

entry l'ype

(user/
Object entryOwner group) ownerPropagate
(uid) (dn) (dtp) (prp) inheritOnCreate
(value) (value) (value) (value) (value)

As noted above, the propagation table 45 describes whether
an ACL value applies to descendants of this entry. Any ACL
which has been explicitly set has a propagation value of
TRUE or FALSE. Each explicitly set ACL will have an entry
in the ACL propagation table (acl). A representative propa-
gation table (acl) is set forth below (Table II):

Object (uid) ACL Propagation flag

(value) (value)

The aclEntry attribute describes the user and group distin-
cuished names that have been given privileges to perform
particular operations on that entry. This information 1s stored
in the permissions table (cpt) 47. A representative class
permissions table is set forth below (Table III):

Permissions Granted

Object (uid) DN DN Type Attribute Class To Attribute Class

(Value) (Value) (Value) (Value) (Values)

As can be seen, this table stores mformation about what
permissions a particular user 1s granted for an attribute class.
According to the model, all LDAP user-modifiable attributes
belong to one of three attribute classes: normal, sensitive, or
critical. Permissions are set with regard to the attribute class
as a whole. The permissions set on a particular attribute class
apply to all attributes within that class. Attributes are
assigned to their respective classes 1n a configuration file.
The possible attribute class permissions are: read(r), write
(w), search(s) and compare(c). Additionally, object permis-
sions preferably apply to the entry as a whole. These
permissions are add child entries (a) and delete this entry (d).

The permissions table 47 preferably contains one row for
cach class permission of each distinguished name within the
ACL. For example, if an entry specified that DN:
cn=personA, ou=deptXYZ, o=IBM,c=US has (ad) permis-
sion on the object, (rwsc) permissions on normal and sen-
sitive attribute classes and (rsc) on critical attributes, four
rows would be created within the class permissions table. All
rows would be for DN or personA, with one row for object
permissions, one for normal attribute class permissions, one
for sensitive permissions and one for critical permissions.

According to a feature of the present invention, the source
table (src) 49 keeps track of the actual entry that holds the
owner information (the owner source) and the entry that
holds the ACL information (the ACL information) for each
object within the directory. As will be described below, this
table enables significant processing efliciencies to be
achieved during directory operations, especially the search
operation. A representative source table 1s set forth below

(Table IV):

US 6,323,335 Bl

Object (uid) Object ID (ACL Source) Object ID (Owner Source)

(Value) (Value) (Value)

Table Creation:

Upon mitialization, the ACL tables are created and 1ni-
tialized to the system default. This ensures that there will be
an ACL that can be propagated to all entries should the user
choose not to set an ACL. The system default preferably 1s
stored 1 the tables used an object eid of —1. This 1s an
invalid object eid and, therefore, 1t 1s assured that the default
cannot be overwritten. The system default ACL 1s set to
propagate. A current administrator is considered the entry
owner, and the owner properties are also set to propagating.
The InheritOnCreate attribute 1s set to true for security
purposes. Additionally, all users are given read, search and
compare permissions on the normal attribute class. After
successful initialization the first (own), second (acl) and
third (cpt) tables look at follows:

entry l'ype

(user/
Object entryOwner group) ownerPropagate
(uid) (dn) (dtp) (prp) inheritOnCreate
_1 am PP 2 1 1

Object (uid) ACL Propagation flag

-1 1

Permissions Granted

Object (uid) DN DN Type Attribute Class To Attribute Class

-1 cn=Any 1 1 3

body

Note that 1n the owner table, i1s translated into the current
administrator DN. Also, in the permissions table, “cn=
Anybody” 1s considered to be the group of all unauthenti-
cated users, or any user that does not have a specific ACL set
or does not belong to a group with a specified ACL set. As
illustrated above, it 1s preferred to use integer types are the
preferred table values when possible to allow a faster
response time by the database. The following definitions are
preferred:

Propagate Values:

TRUE: 1 FALSE: 0

DnTypes: ACL__GROUP: dnType 2 ACL__USER:
dnType 1

Attribute Classes:

NORMAL 1 SENSITIVE 2 CRITICAL 4 RESTRICTED
8 SYSTEM 16 OBJECT 32

Permissions:

ACL_READ: 1 ACL_WRITE: 2 ACL_SEARCH: 4
ACL_COMPARE 8 ACL__ADD: 16 ACL.__DELETE:
32

10

15

20

25

30

35

40

45

50

55

60

65

3

Granting Access

Access for a particular operation 1s granted or denied
based on the bind DN for that operation. Processing stops as
soon as access has been determined. If the bind DN matches
the administrator DN, permission 1s granted. If the bind DN
matches the entryOwner DN, access 1s granted. If the bind
DN 1s neither of these, the class permissions are evaluated.
Adding ACL/Owner Values to the Tables:

When receiving the ACL entry, the value 1s typically 1n a
string format, such as: access-id:cn=personA,o=IBM,c=
US:normal:rwsc:sensitive:rsc:object:a. This information 1is
parsed 1nto the component parts described above, namely:
dnType, dn, |class:permissions|*. The resulting values are
then inserted 1nto the class permissions table, for example,
by using the SQL query “INSERT into cpt (din, dtp, pma,
uid, atc) VALUES (7, 7, 2, 7)”. In an illustrative example, if
the object uid i1s 4, the resulting table has an additional 3
lines.

When adding an ACL, a row must be added to the
propagation table to record if this ACL applies to this entry
or to all entries. If the ACL value has not been specified, the
ACL propagation flag will default to “TRUE” Thus, the
following SQL query “INSERT into ACL (prp, uid) VAL-
UES (7, ?7)” may be used to insert the propagation values into
the ACL table.

If there are any owner values, these values must also be
inserted 1into the owner table. This can be accomplished, for
example, using the query “INSERT into own (din, dtp, uid,
prp, ioc) VALUES (7, ?, 2,7)”. The DNtype and DN are
provided in the entryOwner attribute. If the propagation
attribute has not been specified, the value defaults to TRUE.
Similarly, if the inheritOnCreate value 1s specified, the value
defaults to TRUE.

Adding an Object

To add an object, the user must have “a” permission on the
parent. The parent’s owner and ACL are first retrieved and
are checked for access. Next, if the object has either owner
or ACL attributes that are to be placed on the object, the
ACLs which the object inherits are determined. If the
inheritOnCreate attribute flag 1s set to TRUE, the new ACL
attributes are not accepted. Otherwise, 1f the flag 1s set to
FALSE, the new values are accepted and added to the
appropriate tables.

Deleting an Object:

To delete an object, the user must have “d” permission on
that object. The ACL information 1s retrieved and access 1s
verifled. Additionally, all references to that DN are removed
from the tables. All rows containing that DN within the
permissions table are updated. This can be accomplished, for
example, using the query “UPDAITE cpt SET din=" *,
pma=0, atc=0, dtp=2 WHERE din LIKE ?” and “UPDATE
own SET din=" “WHERE din LIKE?”. This statement
reverts any ownership by that DN back to the administrator
DN. If the object has an ACL or owner value set, such values
preferably are removed from the tables, for example, by
using the query “DELETE FROM %s WHERE uid=7",
where %s 1s filled 1n with values from the permissions table,
the propagation table and the owner table (preferably in
three separate calls to the database).

Performing a ModRDN:

When moditying the name of a distinguished name, the
modification 1s preferably done within the ACL tables. This
may be accomplished, for example, using the query:
“UPDATE %s SET din=? WHERE din LIKE ?”, where %s
refers either to the owner table or the propagation table. This
operation ensures that the ACL tables remain consistent with
the new value 1n the rest of the database.

US 6,323,335 Bl

9

Changing an ACL:

Updates to a particular ACL are accomplished by remov-
ing the ACL or owner record from the table and then
re-adding it with the new values.

Using the LDAP-DB/2 ACL Tables:

The above-illustrated tables are useful 1 retrieving an
object’s ACL and owner. An 1llustrated routine for accom-
plishing this 1s i1llustrated 1n FIG. 6. The routine begins at
step 60 with a SELECT query done based on the eid of the
object. Given the DB/2 nomenclature identified above, a
preferred query used to retrieve the information 1s:
“SELECT own.prp, 10c, own.din, own.dtp, acl.prp, cpt,din,
cpt.dtp, atc, pma, own.uid, cpt,uid FROM own, cpt, ACL
WHERE own.uid=? and cpt.uid=?". A test 1s then performed
at step 62 to determine it an ACL or owner 1s found. If the
result of the test at step 62 1s positive, that value 1s kept at
step 64 (and the routine continues at step 76. If neither the
ACL nor owner has been determined, the routine continues
at step 66 to check the parent. A test 1s then performed at step
68 to determine 1if the value has been found. If the outcome
of the test at step 68 1s positive, a test 1s performed at step
70 to determine whether the propagation tlag 1s TRUE. If so,
that value is kept at step 72 (and the routine continues at step
76). If the propagation flag is FALSE, then processing
returns to step 66. At step 76, a test 1s performed to
determine whether both an owner and an ACL value have
been found. If so, the routine terminates. If, however, the
outcome of the test at step 76 1s negative, the routine returns
to step 66 and continues recursively. If the top of the tree (the
suffix) has been reached with no propagating value found,
then the system defaults are returned. These are found by
search on the eid of -1.

As previously noted, processing efficiency 1s enhanced
significantly through use of the source table 49. The ACL
source table (src) preferably contains one row per directory
object and keeps track of the exact location of the object’s
ACL information and owner information. This allows for
fast lookup of the ACL and removes the cost of traversing
the tree 1n reverse as described above 1n connection with
FIG. 6. This table 1s created at startup time and 1nitialized to
show that the system default 1s set at an 1d of -1, an
otherwise mvalid LDAP-DB/2 uid. A representative initial-
1zed source table 1s set forth below:

Object (uid) Object ID (Ancestor ID)

Object ID (Owner Source)

-1 -1 -1

Because replication adds a cn=localhost entry to the
database, an additional row of(2, -1, —1) will be added
during startup.

Retrieval:

As noted above, for each object 1t 1s possible to determine
the entry owner and ACL using the source table 1n conjunc-
tion with the other ACL tables. In particular, if an object uid
appears 1n the ACL source column, there 1s a corresponding
entry in the ACL propagate (acl) and class permissions table
(cpt). Similarly, for each uid in the owner source column,
there exists a corresponding row in the owner table (own).
Thus, a single query may be used to retrieve the entire set of
owner and ACL information. This query, for example, may
be: “SELECT own.prp, 1oc, own.din, own.dtp, acl.prp, cpt,
din, cpt.dtp, atc, pma, own.uid, cpt,uid FROM own, cpt, acl,
src WHERE src.uid=? AND (own.uid=src.osr AND
(acl.uid=src.asr AND cpt.uid=src.asr))”. This query retrieves
the owner information from the owner table (corresponding

10

15

20

25

30

35

40

45

50

55

60

65

10

to the owner source value) and similarly retrieves the ACL
entry and propagation information from the propagation and
permissions tables (corresponding to the ACL source col-
umn value).

Updating the Source Table:

When performing add, delete, and modify operations on
the database, 1t may be necessary to update the source table.
Every time an object 1s added to the directory, preferably a
row 15 1nserted 1nto the source table. After the correct owner
source and ACL source values have been 1dentified, a row
may be added by using the query “INSERT into src (uid, osr,
asr,) VALUES (7, 7, 7)”. Thus, taking the example illustrated
above, 1f the source table 1s updated to include the entry with
uid 3 that has been added to the ACL and owner tables, the

source table looks as follows:

Object (uid) Object ID (Ancestor ID) Object ID (Owner Source)

-1 -1 -1
2 -1 -1
3 3 3

Every time an object 1s deleted, the row preferably 1is

removed using the query “DELETE FROM src WHERE
uid="?".

The more complicated operations are the modily opera-
tions. This set of operations encompasses all changes to the
ACL attributes, mcluding adding and deleting. When an
ACL 1s added or deleted, 1t may change the propagation of
the existing ACLs. Therefore, descendants of this node may
need to be updated to reflect a new source value. This 1s also
the case 1f the propagation of an ACL or owner changes.

There are three basic queries that may be used to update
the source table. By substituting different values into the
‘“‘WHERE asr=?" expression, all updates may be handled

using these three queries. These queries are set forth below:
A query to update a row: “UPDATE src SET asr=? WHERE

asr=? AND src.uid in (SELECT DEID FROM Idap_ desc

WHERE AEID=? AND AEID==DEID)”.

A query to update a row and some set of 1ts descendants:
“UPDATE src SET asr=? WHERE asr=? AND src.uid 1n
(SELECT DEID FROM Idap_desc WHERE AEID=?
AND AEID=?)".

A query to update just some set of descendants: “UPDATE
src SET asr=? WHERE asr=? AND src.uid in (SELECT
DEID FROM Idap__desc WHERE AEID=? AND AEID<
>DEID)”.

Additional Source Table Details:

The queries involved 1 updating this table affect only one
column at a time: the ACL source or owner source.
Therefore, the same queries can be used for either ACL
updates or owner updates. The following discussion
describes the case of an ACL update with the understanding
that the same logic can be used for owner updates.

Initially, the following details how the source table 1s kept
in synchronization as ACLs are added to the directory and
the cases where their propagation values are changed.
Assume that the source table currently looks as follows:

Object (uid) Object ID (Ancestor ID) Object ID (Owner Source)

-1 -1 -1
2 -1 -1
3 3 3

US 6,323,335 Bl

11

-continued

Object (uid) Object ID (Ancestor ID) Object ID (Owner Source)

OO0 -1 Oy
b L L L L
b L L L L

A hierarchical directory tree corresponding to this table 1s set
forth in FIG. 7. From this table, can be seen that a propa-
cgating ACL has been set on 3.

Adding a Non Propagating ACL:

If a non-propagating ACL 1s added, the update 1s straight-
forward. A single row 1s changed, namely, the row corre-
sponding to the entry ID. The following query may be used
for This purpose: “UPDATE src SET asr=? WHERE asr=?
AND src.uid in (SELECT DEID FROM ldap_ desc
WHERE AEID=? AND AEID=DEID)”. The Idap_ desc
table keeps track of the ancestor, and descendant value pairs.

AEID 1s the ancestor and DEID 1s the descendant. For
AEID=DEID, it 1s assured that a single entry will be
returned for a given value of AEID.

Thus, for example, to add non-propagating ACL on entry
5, the following query 1s used: “UPDAITE src SET asr=5
WHERE asr=3 AND src.uid in (SELECT DEID FROM
Idap_desc WHERE AEID=5 AND AEID=DEID)”. The

source table now looks as follows:

Object (uid) Object ID (Ancestor ID)

Object ID (Owner Source)

-1 -1 -1
2 -1 -1
3 3 3
4 3 3
5 5 3
0 3 3
7 3 3
8 3 3
9 3 3

Adding a Propagating ACL.:

The following query may be used to add a propagating
ACL to a given entry: “UPDATE src SET asr=? WHERE
asr=7 AND src.uid in (SELECT DEID FROM Ildap_ desc
WHERE AEID=?)”. If one adds a propagating ACL to entry

4 (by way of example), the source for entry 4 and all of its
descendants must be changed. The particular query 1s then:
“UPDATE src SET asr=4 WHERE asr=3 AND src.uid in
(SELECT DEID FROM Ildap_desc WHERE AEID=4)".
The select statement obtains all of the descendants of uid 4
(in this case objects 8 and 9). Now, taking those descendants,
the query finds all of the entries that used to inherit from the
same value as id 4 (both 8 and 9). These entries are the
candidates for inheriting the new propagated ACL placed on
object with uid 4. Additionally, a propagating ACL 1s placed
on leal 7. Since 7 1s a leaf node, no other nodes have a source
change. With this query, the representative source table now
looks as follows:

Object (uid) Object ID (Ancestor ID) Object ID (Owner Source)

-1 -1
2 -1

-1
-1

10

15

20

25

30

35

40

45

50

55

60

65

12

-continued

Object (uid) Object ID (Ancestor ID) Object ID (Owner Source)

Do -1 Oy i Bl
e VYRR, R C N ¥V
2) L L L L

Changing from Propagatine—:>Non Propagating:
To change an ACL from propagating to non-propagating,
any values which used to inherit from this node must be

changed to a different node. The following query may be

used for this purpose: “UPDATE src SET asr=? WHERE
asr=? AND src.uid in (SELECT DEID FROM Ildap_ desc
WHERE AEID=? AND AEID< >DEID)”. Thus, for
example, to change the propagating value at entry 3 to non
propagating, the next ancestral propagating ACL must be
determined. In the above example, this happens to be the
system default as there 1s no ancestor node with a propa-
cgating ACL. Note also that the query changes any children
who used to inherit their values from the node without
changing the actual node itself Given this example, the
query reads: “UPDATE src SET asr=—1 WHERE asr=3
AND src.uid in (SELECT DEID FROM Idap_ desc
WHERE AEID=3 AND AEID< >DEID)”. The select state-
ment returns all the descendants of entry 3 without returning
entry 3 1tself. The WHERE clause then filters out all objects
that were not previously mheriting from entry 3. The 1llus-
frative source table now looks as follows:

Object (uid) Object ID (Ancestor ID)

Object ID (Owner Source)

-1 -1 -1
2 -1 -1
3 3 3
4 4 3
5 5 3
0 -1 3
7 7 3
8 4 3
9 4 3

Changing from Non Propagating—->Propagating;:

To change a non-propagating ACL to a propagating ACL,
the first propagating ACL ancestor for this node 1s identified.
Thus, for example, to change object 5 from a non propa-
gating to a propagating ACL, the tree 1s traversed 1n reverse
and the first propagating ACL 1s the system default (-1).
From this point, the query that updates descendants 1is
preferably used (although the query that updates a node and
its descendants works as well). The illustrative query there-
fore reads: “UPDATE src SET asr=5 WHERE asr=-1 AND
srcuid in (SELECT DEID FROM Idap_desc WHERE
AEID=5 AND AEID< > DEID).” The select statement

returns values that currently inherit from (-1) and these
values are both updated to inherit from object 5. It should be
noted that the scope of a propagating ACL 1s only until
another propagating ACL 1s reached. Thus, 1n the 1llustrative
example, because object 7 has a propagating ACL, the scope
of the ACL placed on object 5 stops once object 7 1s reached.
The source table now looks as follows:

US 6,323,335 Bl

13

Object (uid) Object ID (Ancestor ID) Object ID (Owner Source)

-1 -1 -1
2 -1 -1
3 3 3
4 4 3
5 5 3
0 -5 3
7 7 3
3 4 3
9 4 3

Deleting a Propagating ACL.:

To delete a propagating ACL, the first step 1s to find the
first ancestral propagating ACL. This 1s the value from
which inheritance then occurs. For object 4, for example, the
system default (-1) 1s the first ancestral propagating ACL.
To update the node and its descendants, the following query
1s used: “UPDATE src SET asr=?7 WHERE asr=?7 AND
srcuid in (SELECT DEID FROM Idap_ desc WHERE
AEID=?)”". With the appropriate values filled in, the query
becomes: “UPDATE src SET asr=—-1WHERE asr=4 AND
srcuid in (SELECT DEID FROM Idap_desc WHERE
AEID=4)". The select statement obtains all the descendants
of uid 4 (in this case objects 8 and 9). Within those
descendants, the query then find all of the entries that used
to inherit from the same value as 1d 4 (both 8 and 9). These
values then are changed to inherit from the system default.
The source table then looks as follows:

Object (uid) Object ID (Ancestor ID) Object ID (Owner Source)

-1 -1 -1
2 -1 -1
3 3 3
4 -1 3
5 5 3
0 5 3
7 7 3
8 -1 3
9 -1 3

Deleting a Non Propagating ACL.:

To delete a non-propagating ACL, the source for that
particular object 1s updated. First, the new ACL source 1s
found. Thus, for example, for object 3, there 1s no parent, so

the system default is used (-1). The appropriate query reads:
“UPDATE src SET asr=—-1 WHERE asr=3 AND src.uid 1n

(SELECT DEID FROM Idap_desc WHERE AEID=3 AND

AEID=DEID)”. The resulting source table is then as fol-
lows:

Object (uid) Object ID (Ancestor ID)

Object ID (Owner Source)

-1 -1 -1
2 -1 -1
3 -1 3
4 -1 3
5 5 3
0 5 3
7 7 3
3 -1 3
9 -1 3

One of ordinary skill in the art will appreciate that the
designation of a “first” (or other number) as describing a

10

15

20

25

30

35

40

45

50

55

60

65

14

ogrven table 1s merely provided for convenience of illustra-
tion. Preferably, the first, second, third and fourth tables are
conceptually distinct, but they may or may not be physically
distinct. Thus, for example, the individual tables may simply
comprise different addressable portions of the same physical
memory of other storage areca. Moreover, the storage of ACL
information as described herein can be used as a model for
storage of any model requiring sparse data (and not just ACL
data).

The source table provides significant advantages. Without
this table, a directory search (for example) would require the
ACL and owner information to be retrieved for each object
to be returned to the client. If the search 1s a general query,
such as cn=s*, hundreds of entries might be returned, and
cach of these would then have multiple SQL statements to
execute. Other directory operations would have similar
(although not as severe) processing inefficiencies. The
source table enhances processing by keeping track of the
actual entry that holds the owner information and the entry
that holds the ACL information for each object within the
directory. This greatly enhances performance for search
operations. To find the ACL and owner information for a
particular object requires only a single SQL call. While the
source table must be updated during modity, add and delete
routines, the time taken to update the table 1s much less than
the time taken to find the original values using the recursive
approach described 1in FIG. 6. Therefore, all LDAP opera-
tions are faster (as compared to the recursive approach)
when 1mplemented using the source table. Compared with
the one ACL per entry approach, the source table requires
the storage of only two 1ntegers mnstead of the actual owner
information and access control lists. In addition, when an
explicit ACL or owner information 1s modified, no ACL
propagation 1s needed. The source table technique can be
used for enhancing the performance of any hierarchical
sparse data model that 1s stored within a relational database.

As noted above, the invention may be implemented 1n
conjunction with a sparse ACL mechanism 1n any hierar-
chical directory service in which a relational database man-
agement system (RDBMS) is used to provide a backing
store function. A preferred implementation 1s LDAP running
a DB/2 relational database as the backing store. As 1s well
known, an SQL query 1s generated and used to access the
relational database, and results are then returned in response
to this query.

A preferred implementation of table generation and stor-
age routines 1s as a computer program and, 1n particular, as
a set of instructions (computer program code) in a code
module resident 1n or downloadable to the random access
memory of a computer.

Having thus described our invention, what we claim as
new and desire to secure by letters patent 1s set forth 1n the
following claims.

What 1s claimed 1s:

1. A method for processing sparse hierarchical ACL data
stored 1n a relational database used as a backing store for a
directory service, comprising the steps of:

for each directory object, maintaining 1n a table the
identity of an entry that holds the directory object’s
ACL and the entry that holds the directory object’s

owner information; and

responsive to a directory operation, using mformation in
the table to 1dentify ACL and owner information for a
particular directory object.
2. The method as described 1n claim 1 further including
the step of updating the table as given operations are
performed 1n the relational database.

US 6,323,335 Bl

15

3. The method as described in claim 2 wherein the
updating step 1nserts a row 1n the table when an object 1s
added to the directory.

4. The method as described mm claim 2 wherein the
updating step deletes a row from the table when an object 1s
deleted from the directory.

5. The method as described 1 claim 2 wherein the
updating step modifies given information 1n the table when
a directory object 1s modified.

6. The method as described 1n claim 1 further including
the step of modifying values 1 the table when a non-
propagating ACL 1s added to the directory.

7. The method as described 1n claim 1 further including
the step of modifying values in the table when a propagating
ACL 1s added to the directory.

8. The method as described in claim 1 further including
the step of modifying values 1n the table when an ACL 1s
changed from propagating to non-propagating.

9. The method as described 1n claim 1 further including
the step of modifying values 1n the table when an ACL 1s
changed from non-propagating to propagating.

10. The method as described 1n claim 1 further including
the step of modifying values in the table when a propagating
ACL 1s deleted from the directory.

11. The method as described 1n claim 1 further including
the step of modifying values 1 the table when a non-
propagating ACL 1s deleted from the directory.

12. In a sparse access control list (ACL) mechanism
wherein entries without an explicitly set ACL inherit an ACL
set for an ancestor entry, the mechanism operative 1n a
relational database used as a backing store for a directory
service, a method for processing ACL data, comprising the
steps of:

storing ACL data 1n the relational database;

for each directory object, maintaining 1n a source table the
identity of an entry that holds the directory object’s
ACL and the entry that holds the directory object’s

owner mformation; and

responsive to a directory operation, using the stored ACL

data and information 1n the source table to identity ACL

and owner mformation for a particular directory object.

13. The method as described 1n claim 12 wherein the step

of storing ACL data 1n the relational database comprises the
steps of:

storing 1n a first table data on objects with explicitly set
ACLs;

storing 1n a second table data on whether individual ACLs
are mherited by descendant objects; and

storing 1n a third table data regarding permissions which
a user may perform on an object.

14. The method as described 1n claim 13 wherein data in
the source table 1dentifies a set of ancestor objects having
respective ACLs for each of a set of descendant objects.

15. The method as described 1n claim 13 wherein the
source table 1s maintained in the relational database together
with the first, second and third tables.

16. The method as described 1 claim 13 wherein the
particular directory object’s entry owner 1s determined by
using owner source data in the source table and locating
corresponding owner information in the first table.

17. The method as described m claim 13 wherein the
particular directory object’s entry ACL 1s determined by
using ACL source data in the source table and locating
corresponding ACL propagation and entry information in
the second and third tables.

18. The method as described 1n claim 12 wherein the
relational database 1s used as a backing store for a Light-
welght Directory Access Protocol (LDAP) directory service.

5

10

15

20

25

30

35

40

45

50

55

60

65

16

19. In a directory service having a directory organized as
a naming hierarchy, the hierarchy including a plurality of
entries each represented by a unique 1dentifier, the improve-
ment comprising:
a relational database management system having a back-
ing store for storing directory data;
a sparse access control list (ACL) mechanism wherein
entries without an explicitly set ACL inherit an ACL set
for an ancestor entry;

means for storing ACL data i1n the backing store in a
plurality of tables, wherein at least one table maintains,

for each directory object, the 1dentity of an entry that
holds the directory object’s ACL and the entry that
holds the directory object’s owner information; and

means responsive to a directory operation for using the

stored ACL data and information in the table to identily

ACL and owner information for a particular directory
object.

20. In the directory service as described 1n claim 19

wherein the directory service 1s compliant with the Light-

welght Directory Access Protocol (LDAP).

21. A directory service, comprising:

a directory organized as a naming hierarchy having a
plurality of entries each represented by a unique 1den-
tifier;

a relational database management system having a back-
ing store for storing directory data;

a sparse access control list (ACL) mechanism wherein
entries without an explicitly set ACL inherit an ACL set
for an ancestor entry;

means for storing ACL data i1n the backing store in a

plurality of tables, wherein at least one table maintains,
for each directory object, the 1dentity of an entry that
holds the directory object’s ACL and the entry that

holds the directory object’s owner information; and

means responsive to a directory operation for using the
stored ACL data and information 1n the table to identify
ACL and owner information for a particular directory
object.

22. The directory service as described 1n claim 21 wherein
the directory 1s compliant with the Lightweight Directory
Access Protocol (LDAP).

23. A computer program product in a computer-readable
medium for use in a sparse access control list (ACL)
mechanism wherein entries without an explicitly set ACL
inherit an ACL set for an ancestor entry, wherein the sparse
ACL mechanism 1s used 1n a relational database used as a
backing store for a directory service, the computer program
product comprising:

means for storing ACL data i1n the backing store in a

plurality of tables, wherein at least one table maintains,
for each directory object, the 1dentity of an entry that
holds the directory object’s ACL and the entry that
holds the directory object’s owner information; and

means responsive to a directory operation for using the
stored ACL data and information 1n the table to identify
ACL and owner information for a particular directory
object.

24. The computer program product as described 1n claim
23 further including means for updating the table as given
operations are performed 1n the relational database.

25. The computer program product as described 1n claim
23 further including means for modifying values in the table
as ACLs are added to the directory.

26. The computer program product as described 1n claim
23 further including means for modifying values in the table
as ACLs are deleted from the directory.

US 6,323,335 Bl
17 13

27. The computer program product as described 1n claim a first table storing data on objects with explicitly set
23 further including means for modifying values 1n the table ACLs;
as ACLs are changed from propagating to non-propagating. a second table storing data on whether individual ACLs
28. The computer program product as described in claim are mherited by descendant objects; and
23 further including means for modifying values in the table 5 a third table storing data regarding permissions which a
as ACLs are changed from non-propagating to propagating. user may perform on an object.

29. The computer program product as described in claim
23 wherein the plurality of tables further comprise: £k ok k%

	Front Page
	Drawings
	Specification
	Claims

