US006820253B1
a2 United States Patent (10) Patent No.: US 6,820,253 Bl
Robison 45) Date of Patent: Nov. 16, 2004
(54) METHOD AND SYSTEM FOR 6,530,079 B1 * 3/2003 Midkiff et al. 717/158
INTERPROCEDURAL ANALYSIS WITH 6,671,693 B1 * 12/2003 Marpe et al. 707/102
SEPARATE COMPILATION 6,681,383 Bl * 1/2004 Pastor et al. 717/126

(75)

(73)

(%)

(21)
(22)

(51)
(52)

(58)

(56)

OTHER PUBLICATTONS

Inventor: Arch D. Robison, Champaign, IL (US)
Title: A comprehensive Approach to Parallel Data Flow
Assignee: Intel COI‘pOI‘RtiOH, Santa Clara, CA Analysis} author: Lee et al, ACM, 1992.*
(US) Title: Formal Callability and 1ts Relevance and Application
to Interprocedural Data—tlow Analysis, author: Jens Knoop,
Notice: Subject to any disclaimer, the term of this IEEE, 1998.*
patent 1s extended or adjusted under 35 Title: A Practical Interprocedural Data Flow Analysis Algo-
U.S.C. 154(b) by 482 days. rithm, author: Barth, ACM, 1978.*
Title: An Iterprocedural Data Flow Analysis Alogorithm,
Appl. No.: 09/672,229 author: Barth, ACM, 1997.%

o Lee, Yony—fong et al., “Performing Data Flow Analysis 1n
Filed:— Sep. 27, 2000 Parallel,” Nov. 1990, ACM Press, Proc. of the 1990 ACM/
Int. CL7 oo GO6F 9/45 IELE cont. on Supercomputing, p. 942-951.%

US.CL . 717/141; 717/140; 717/144; * cited by examiner
717/145; 717/151; 717/154; 717/155
Field of Search 717/153, 157, Primary Examiner—Chameli Chaudhuri Das
717/159, 161, 140, 141, 144, 145, 146, (74) Attorney, Agent, or Firm—3Blakely, Sokoloff, Taylor &
151, 155, 156, 124 ~ Zafman LLP
References Cited (57) ABSTRACT
US PATENT DOCUMENTS A method anq system ff;)r interprocedural analysis with
separate compilation 1s disclosed. In one embodiment, the
5,175,856 A * 12/1992 Van Dyke et al. 717/151 method 1s applied to a software program having a plurality
2,023,499 A ® 471997 Ko etal .c.oooernrnn. /147724 of separately compilable components. The method performs
gﬁgz’lé;jig 2 i 3? gg; gaf}“} et al. oo, ;;ﬁ gg analyzing each component separately to create a plurality of
, 740, * 111 OO 1 -
5778212 A 7/1998 Dehnert et al. 1‘1‘;‘;‘)%5;?;5“;@5; Zacll:) lf;mgggfené and merging the local
6,282,701 B1 * 8/2001 Wygodny et al. 7177125 P S P '
6,289,507 B1 * 9/2001 Tanaka et al. 717/155
6,438,594 B1 * 8/2002 Bowman-Amuah 709/225 37 Claims, 8 Drawing Sheets

start
251

.

For each translation unit i, create a local prablem p;

Set global problem P such that P< p; for all ;.

Create global solution S from P 954

Create local solutions s; such that si < S for all i.

Use local solution s; for optimizing translation unit 7.

end
259

, DI

US 6,820,253 Bl

01¢ 0¢¢

H0SS300dd Ol
v o
=

= —
V14 NG

=
S
&

m 12 Y44 ¥47

AHOW3IN

4OVH01S WO NIVIA
-
-
L
-
e
ol

42 002 _/

-

eve

AV1dSId

AL

QHUVOdAIA

W

TO41NOO
d0SdNO

NOILYIINNANOD

U.S. Patent Nov. 16, 2004 Sheet 2 of 8 US 6,820,253 Bl

start
251

For each translation unit i, create a local problem p;

e o . e - i

Set global problem P such that P< p; for all ;.

Create global solution S from P

Create local solutions s; such that si < S for all i.

Use local solution s; for optimizing translation unit ;.

end
259

Fig. 2

US 6,820,253 Bl

Sheet 3 of 8

Nov. 16, 2004

U.S. Patent

¢ ‘b4

e o'A Jo uolejidwod (oo}

0€€

2°X JO uolejidwiod |edo

LE
0L ~— edirA
09€ ~— edo'A
19AOS Vel Ve —~— edrx
T (06f ~— edox
00 —*

U.S. Patent Nov. 16, 2004 Sheet 4 of 8 US 6,820,253 Bl

Local Compilation-_410

431
411~Create local problem pizk | oroblerm PASolver-. 40
412 ~ Write visible part of Pi k 491 492
Read all py — |
| 432 | Global problem p,: = meet of p; for all
413~ Write requests for bj neged Create global solution Sy~ 423 404
4%3 Read requests for boundary values bi?k
known

1 Write local boundary values bk ~ 425

414 ™~ Read Dij k-1 ""#2134

| §
415 ~ Write Di k-1 require |

416 ~~ Create local solution §; .1

Read bjk.1 ~ 428
Compare bjy and bjk-1 - 427

417 ~ Use s;.1 for optimizing |

FIg. 4

by = Dk-1 Done

May recompile
(.0 possibly suboptimal)

| Must recompile
otherwise (.0 possibly invalid)

U.S. Patent Nov. 16, 2004 Sheet 5 of 8 US 6,820,253 Bl

600
605 |
For all I, compute b;

610
~ Set FLAG:=false
615 |
~ Set I to set of all translation units |
true
50+ 02

s Value of FLAG?

> Remove i from I

no
false
Set FLAG:=t - Compare « m
° -=iie Di & & Bj k-1
699
L __otherwise
640N | 635

Best optimization
desired?

o Fig. 6

Recompile i

ves

U.S. Patent Nov. 16, 2004 Sheet 6 of 8 US 6,820,253 Bl

UNREFE‘RENCED
STTTIC
EXTERNAL
Fig. /
Fig. 8

[*Translation Unit #1 */ Translation Unit #2 */
extern void b(); void b();
extern void e(); static void (*a)() = b;
static void f() { extern void d();

c(); extern void e();

e(); void b() {
} d();
void d() { (a)();

)]
} void ¢() {
void &() { e()
#if O }

b();
#endi
}
main()

d();

US 6,820,253 Bl

Sheet 7 of 8

Nov. 16, 2004

U.S. Patent

Fig. 9

,-lnl_irl-ll.l'l_lll.ll_l.l..lll‘illlll_llllli e s gl digh siplis NS RS- gl sk bl S S

Translation Unit #2

ll!ItII.IIII.l.l.l.llll.l.lll—l.ll[llllll-lllllllllltill

I._III.I_II.I.I.IIII"'III’I'I-II"IIIII_IIIIII_I_IIII

Translation Unit #1

|
!
|
!
l
l
l
l
{
|
|
i
|
!
|
1
|
|
|
|
l
|
|
i
!
l
{
l
|
|
|
|
|
I
l
|
|
)
l
|
!
L

- -
]]
- =

n&. 1)

O

sttt

= | LU LL]

e |o

1

s

N

L0l

ﬁ@ﬁ > ©

Slle |44

|

|

. |

..m...

E..ﬂnu &

| 1@ 4

w— | o

2la t ol -

2 md@A@

Fig. 10

U.S. Patent Nov. 16, 2004 Sheet 8 of 8 US 6,820,253 Bl

()5
Fig. 11

Fig. 12

US 6,320,253 B1

1

METHOD AND SYSTEM FOR
INTERPROCEDURAL ANALYSIS WITH
SEPARATE COMPILATION

FIELD OF THE INVENTION

This mvention relates to computer software compilation
systems, and more specifically to a compiler that performs
interprocedural analysis and optimization.

BACKGROUND OF THE INVENTION

A. Compilers and Interprocedural Analysis (IPA)

A program comprises one or more external source code
files. Each source code file contains one or more translation
units. A translation unit 1s a subroutine, function, or other
separately compilable software entity. A compiler translates
a program to one or more object files. In particular, a
compiler compiles the source files of a program one at a
time. For each source file, the compiler works on one
franslation unit at a time and generates a corresponding
object file. The developer does not have to compile an entire
program at one time, but rather, can compile the program in
separate pieces as 1t 1s developed. Aflter an entire program 1s
compiled, a linkage editor processes all of the object files of
the program and generates an executable program.
Therefore, 1n a conventional compilation system, a devel-
oper 1nvokes two separate steps: a compilation step and a
link step.

There are two major phases of a compiler: a front end and
a back end. The front end of a compiler consists of those
phases that depend on the source language and are largely
independent of the target computer. The front end typically
performs lexical and syntactic analysis, creates the symbol
table, performs semantic analysis, and generates intermedi-
ate code which 1s an intermediate representation of the
source code.

The back end of a compiler includes those phases of
compilation that depend on the target computer and gener-
ally do not depend on the source language, but depend on the
intermediate code. The back end typically performs code
optimization on the intermediate representation and gener-
ates the target object files.

A disadvantage of a conventional compilation system 1s
that during compilation the compiler only has local infor-
mation about the translation unit on which the compiler 1s
currently working. The compiler does not have any global
information pertaining to the enftire program or to the
relationships between the translation units of the program.
Because of this lack of global information, the back end of
the compiler 1s unable to perform certain optimizations, such
as optimizing the operations involving global variables and
the passing of constant parameters.

A well known technique that solves this disadvantage of
conventional compilation systems 1s 1nterprocedural analy-
sis (IPA). IPA is a phase that is added to a compilation
system to analyze an entire program and collect global
information related to the translation units. Global informa-
tion includes global variables and how the multiple trans-
lation units manipulate and reference the global variables.
Once the global information is collected, 1t 1s then passed to
the optimizer as part of the back end of the compilation
system. Thus, when the optimizer optimizes a translation
unit, the optimizer accesses this global mmformation and
performs additional and more aggressive optimization per-
taining to global variables. IPA improves the efficiency of

10

15

20

25

30

35

40

45

50

55

60

65

2

the generated object code by providing optimization at a
global level, thereby improving the run-time performance of
the executable program.

Existing IPA analysis defers analysis and optimization of
a program until link time, at which time all translation units
are ellectively merged 1nto one big aggregate translation
unit, which is then analyzed and optimized. This means that
if the programmer edits a single translation unit, the entire
program must be reanalyzed and reoptimized. Furthermore,
existing IPA analysis, by creating a monolithic translation
unit, prevents distributed compilation of translation units by
multiple processors.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included as part
of the present specification, illustrate the presently preferred
embodiment of the present invention and together with the
general description given above and the detailed description
of the preferred embodiment given below serve to explain
and teach the principles of the present invention.

FIG. 1 1illustrates a computer system representing an
integrated multi-processor, 1n which elements of the present
invention may be implemented.

FIG. 2 illustrates an exemplary flow diagram of the
techniques 1mplemented by the present method.

FIG. 3 illustrates an association of files with a translation
unit.

FI1G. 4 1llustrates mterplay between local compilation and
IPA solver.

FIG. 5 illustrates decisions of whether to recompile.

FIG. 6 1llustrates a flow diagram of an exemplary process
for recompilation.

FIG. 7 illustrates an example lattice for analysis.

FIG. 8 1llustrates an example program of two translation
units.

FIG. 9 illustrates problem graphs for the example pro-
gram.

FIG. 10 1llustrates transfer functions for edges 1n problem
oraphs.

FIG. 11 1llustrates global solutions for example problems.

FIG. 12 1llustrates global solutions after #1f O 1s changed
to #1f 1 1 FIG. 8.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

A method and system for interprocedural analysis with
separate compilation 1s disclosed. In one embodiment, the
method 1s applied to a software program having a plurality
of separately compilable components. The method performs
analyzing each component separately to create a plurality of
local problems for each component and merging the local
problems to create a global problem.

The invention 1s a method of interprocedural analysis
across multiple translation units. The method comprises
local compilations of individual translation units and a
global interprocedural solver (henceforth “IPA solver”). IPA
solver optimizes the entire program during compilation of
source files 1nto object files. It collects information about
global variables within the translation units, constants
passed and how the multiple translation units manipulate
and reference the global variables and constants. This infor-
mation 1s passed to the local compiler.

The present invention recompiles only the edited trans-
lation unit at first, and then recompiles other translation units

US 6,320,253 B1

3

only 1if the change caused relevant changes to boundary
conditions. Thus the present invention permits incremental
update of programs.

In the following description, for purposes of explanation,
specific nomenclature 1s set forth to provide a thorough
understanding of the present invention. However, 1t will be
apparent to one skilled 1n the art that these specific details
are not required 1n order to practice the present invention.

Some portions of the detailed descriptions which follow
are presented in terms of algorithms and symbolic repre-
sentations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are the means used by those skilled in the data processing
arts to most effectively convey the substance of their work
to others skilled 1n the art. An algorithm 1s here, and
generally, conceived to be a self-consistent sequence of steps
leading to a desired result. The steps are those requiring
physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of
clectrical or magnetic signals capable of beimng stored,
transferred, combined, compared, and otherwise manipu-
lated. It has proven convenient at times, principally for
reasons of common usage, to refer to these signals as bits,

values, elements, symbols, characters, terms, numbers, or
the like.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the following discussion, 1t 1s appreciated that
throughout the description, discussions utilizing terms such
as “processing”’ or “computing’ or “calculating” or “deter-
mining~ or “displaying” or the like, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the com-
puter system’s registers and memories 1nto other data
similarly represented as physical quantities within the com-
puter system memories or registers or other such informa-
fion storage, transmission or display devices.

The present mnvention also relates to apparatus for per-
forming the operations herein. This apparatus may be spe-
cilally constructed for the required purposes, or it may
comprise a general purpose computer selectively activated
or reconfigured by a computer program stored 1n the com-
puter. Such a computer program may be stored 1n a computer
readable storage medium, such as, but 1s not limited to, any
type of disk including floppy disks, optical disks,
CD-ROMs, and magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), EPROMs,

EEPROMs, magnetic or optical cards, or any type of media
suitable for storing electronic instructions, and each coupled
to a computer system bus.

The algorithms and displays presented herein are not
inherently related to any particular computer or other appa-
ratus. Various general purpose systems may be used with
programs 1n accordance with the teachings herein, or it may
prove convenient to construct more specialized apparatus to
perform the required method steps. The required structure
for a variety of these systems will appear from the descrip-
tion below. In addition, the present invention 1s not
described with reference to any particular programming
language. It will be appreciated that a variety of program-
ming languages may be used to implement the teachings of
the 1nvention as described herein.

An Exemplary Computer Architecture

FIG. 1 1llustrates a computer system 200 representing an
integrated multi-processor, 1n which elements of the present

10

15

20

25

30

35

40

45

50

55

60

65

4

invention may be implemented. One embodiment of com-
puter system 200 comprises a system bus 220 for commu-
nicating information, and a processor 210 coupled to bus
220 for processing information. Computer system 200 fur-
ther comprises a random access memory (RAM) or other
dynamic storage device 225 (referred to herein as main
memory), coupled to bus 220 for storing information and
instructions to be executed by processor 210. Main memory
225 also may be used for storing temporary variables or
other intermediate information during execution of nstruc-
tions by processor 210. Computer system 200 also may
include a read only memory (ROM) and/or other static
storage device 226 coupled to bus 220 for storing static
information and instructions used by processor 210.

A data storage device 227 such as a magnetic disk or
optical disc and its corresponding drive may also be coupled
to computer system 200 for storing information and instruc-
tions. Computer system 200 can also be coupled to a second
I/O bus 250 via an I/O interface 230. A plurality of I/O
devices may be coupled to I/0 bus 250, including a display
device 243, an input device (e.g., an alphanumeric input
device 242 and/or a cursor control device 241). For example,
video news clips and related information may be presented
to the user on the display device 243.

The communication device 240 i1s for accessing other
computers (servers or clients) via a network. The commu-
nication device 240 may comprise a modem, a network
interface card, or other well known 1nterface device, such as
those used for coupling to Ethernet, token ring, or other
types of networks.

IPA Solver

The present method 1s based on domain decomposition of
interprocedural analysis problems and solutions, coupled
with replay of local compilations. A technique can be
applied to solving interprocedural analysis problems, where
domains may be established that signify different translation
units. As defined above a translation unit means a
subroutine, function, or other separately compilable soft-
ware entity contained 1n each source code file. For example,
the “.c” file 1n the C programming language 1s a separately
compilable software entity. A program may comprise 1 to
many ol these separately compilable entities.

FIG. 2 illustrates an exemplary flow diagram of the
techniques 1implemented by the present method. The process
commences at block 251. At processing block 252, let there
be one or more translation units, each with a distinct label 1.
Each local compilation of a translation unit 1 creates a local
problem p; for which a solution 1s of interest. The set of all
possible problems must form a partial order, and the set of
all possible solutions must form a partial order. A partial
order 1s a relation, signified herewith by “=.,” that 1s

transitive: X<y and y=z implies x=z.
reflexive: Xx=x 1s always true.

antisymmetric: (x=y) implies that either x=y or not(y =x)

For example, the relation “1s a divisor of” 1s a partial order
for positive integers. So 1s “less or equal” for integers. If
cach element 1s a set, then the relation “1s a subset of” 1s a
partial order. The ordering 1s “partial” because not all pairs
of elements can be compared. For example, 2 1s not a divisor
of 3, nor vice-versa. When dealing with a partial order, for
any two elements x or y, one of the following four situations

hold:
X=y 1S true
XZvy 1s true but x=vy is false

US 6,320,253 B1

S

y=x 1s true but x=vy is false

both x=y and y=x are false.

In the last case, we say the values are “incomparable”.

The solutions must be a monotone function of the prob-
lems: for two problems p and p' with respective solutions s
and s', then p=p' must imply s=s'. A function f that maps a
lattice of values onto itself is monotone if X<y implies f(x)
=f{(y) for any two lattice elements x and y. The set of
monotone functions over a lattice of values form a lattice of
functions, where =g if and only if f(x)=g(x) for all lattice
values x.

At processing block 253, the IPA solver creates a global
problem P such that P=p, (for all 1). At processing block
254, the IPA solver computes a global solution s;=S to the
global problem. The IPA solver then finds local solutions s,
such that s, =S (for all 1) at processing block 255. Each local

solution s; 1s used to optimize the 1th translation unit at
processing block 256. The present process ends at block 259.

Typically, the partial orders are lattices. The present
inventive method and system solves for lattice values. A
lattice 1s a partial ordering closed under the operations of a
least upper bound and a greatest lower bound. Lattices are
a standard part of discrete mathematics.

The “meet” of a set of elements 1s an element that 1s less
or equal to every element 1n the set. For example, let “=”
denote “is a divisor of”. Then given {12,24,30}, the join is
6, because 6 1s a divisor of each element 1n the set, and there
is no larger divisor. 3 is a lower bound (divisor), but since
it 1s a divisor of 6, 1s not the greatest. The “join” 1s an
clement that 1s greater or equal to every element 1n the set.
For “1s a divisor of”, the “jo1n” 1s simply the least common
multiple. Closed means that the bounds exist in the set under
discussion. For example, if the set were composite (non-
prime) numbers only, then the meet of {12,15} (which is 3)
would not be 1n the set.

The “top” of a lattice 1s the element that 1s the join for the
set of all elements; the “bottom” 1s the meet for the set of all
elements. (Thus “top” and “bottom” are the identity ele-
ments for “meet” and “join” respectively.) E.g., infinity is
the top of the divisor lattice; and 1 1s the bottom of said
lattice.

If so, then the global problem P is the lattice-meet of all
p, and each local solution 1s chosen such that S 1s the
lattice-join of all s..

The lattices used 1n program optimization often relate to
pessimism and optimism 1n the following sense. The partial
ordering 1s that for two programs X and y, “x=y” if some
deduction logic about x also 1s provably valid for y. Usually
this means that y 1s somehow less complicated than x.
Typically, as programs get more complicated (harder to
understand), the answers we can deduce about their prop-
erties become more pessimistic. There’s a natural covari-
ance between the difficulty of the problem and the pessi-
mism of the answer.

Information between the local translation units and IPA
solver 1s conveyed by files. FIG. 3 shows the relationship
between two kinds of files, a translation unit and IPA solver
300. For each translation unit 1, there are two files. The file
1.opa 350, 360 conveys information from the local compi-
lation to the IPA solver 310. It persists after the local
compilations 320, 330 run until the local compilations 320,
330 run again. The file 1.1pa 340, 370 conveys information
from the IPA solver 310 to the local compilation 320, 330.
It persists after the IPA solver 310 runs until the IPA solver
310 runs again. In another embodiment, an 1implementation
using a single file 1s possible.

FIG. 4 1llustrates the interplay between local compilations
and the IPA solver. In particular, it shows how the local

10

15

20

25

30

35

40

45

50

55

60

65

6

compilations 320, 330 can be run separately from the IPA
solver, and shows when information 1s transferred between
the local compilations and IPA solver 310. The left side of
FIG. 4 describes the actions of a local compilation 410. First,
the local compilation 410 creates a local problem P, , at line
411. The subscript 1 denotes that the problem 1s for the 1th
translation unit. The subscript k denotes the kth execution of
the local compilation. Since the present system and method
use the replay of compilations, 1t 1s 1mportant to keep
straight from where execution information 1s generated.
After creating a local problem p,, the local compilation
determines what part of the local problem affects the global
solution. This part 1s called the visible part. The visible part
1s written to a “problem” section 431 of its opa file, to be
read later by the IPA solver at line 412. The local compila-
tion also writes out a request for boundary values b, , that are
used to compute a local solution S, ;.

The “boundary values” are also known as boundary
conditions. They describe the “flux” of information between
tfranslation units, without describing all the internal work-
ings of the translation units. For instance, the “ground fault
interrupter” circuits that are 1n most bathrooms and kitchens
these days can provide an example of boundary values. They
work by checking two boundary values: the current 1in each
of the two wires. By subtracting the two values, the inter-
rupter “knows” that all the electricity coming 1n 1s going
back out the right way, without knowing the mternal wiring
of the connected appliance. But if someone accidentally
shorts a connection, and electricity flows back through an
alternative route to ground the two boundary values differ,
indicating a problem. In the IPA solver 420, the boundary
values describe how a component of the software appears to
the rest of the program. A change in a boundary value
indicates a change that requires consideration. The changes
form a lattice, so they can be compared to see if the change
1s serious enough to require recompiling parts of the pro-
oram that depend upon assumptions based on the previous
value.

This request 1s written to a “needed” section 432 of its opa
file at line 413, to be read later by the IPA solver 420 at line
424. The local compilation then reads from a “known”
section 433 of its 1pa file the information b, ,_, which are the
boundary values for the previous run of the local compila-
tion at line 414. The local compilation writes these values to
a require” section 434 of 1ts opa file at line 415. The previous
boundary values are used to compute a local solution S; ;_;
to the current problem at line 416. At line 417, S, ,_; used for
optimization. The fact that local compilations may be using
incorrect boundary values 1s checked later by the IPA solver.

After all local compilations finish, the IPA solver 420
runs. It reads from the opa files all of the “problem” sections
431 at line 421. At line 422, it creates the global problem pk
as the lattice-meet of the local problems from the sections.
It solves for a global solution S, at line 423. It then reads
(from the “needed” sections 432 of the opa files) requests by
local compilations for boundary values at line 424. The IPA
solver 420 writes these boundary values to the “known”
section 433 of the 1pa file of the requesting local compilation
410 at line 425. It then reads the “require” section 434 of the
opa file to find the previous boundary conditions b, ,_,, at
line 426 and compares 1t with bk at line 427.

FIG. § shows what actions are taken depending upon the
result of comparing b, , and b,,_,. It the values are equal,
then translation unit 1 was optimized using information that
was both correct and not subject to further improvement.
There 1s no need to recompile translation unit 1 in this case.
If the new boundary value 1s greater than the old value, then

US 6,320,253 B1

7

the translation unit 1 was optimized using information that
was correct, but could have been better. In this case, trans-
lation unit 1 may be (but does not have to be) recompiled. If
the new boundary value 1s less than the old value, or
incomparable, then translation unit 1 was optimized using
information that was incorrect, and must be recompiled.
FIG. 6 1llustrates a flow diagram of an exemplary process
for recompilation. The process commences at block 600. At
processing block 603, processor 210 computes the boundary
values b, , as previously discussed for all translation units.

FLLAG 1s 1nitialized to “false” at block 610 as a processing
variable. At block 615, a set I 1s 1nitialized to the set of all

translation units that comprise the entire program being
compiled. At decision block 620, the system checks whether

I 1s empty. If I 1s empty, then flow passes on to decision
block 625 whose tlow 1s described below.
If I 1s not empty, then at block 630, the system compares

the current boundary value b, , with the previous boundary
value b; ,_,. It they are equal, at block 650 the translation
unit 11s removed from 1. If b, ,>b, ,_, then the system checks
whether the user wants the best optimization possible (at the
expense of perhaps more recompilation) at block 635. If the
user does not desire greater optimization, then flow contin-
ues to block 650 where the translation unit 1s removed from
I. If the user does desire great optimization, at block 640
translation unit I 1s recompiled and flow passes to block 6435.
Block 645 1s also mnvoked 1f at decision block the system
finds that neither b, ,=b,,_, nor b, ;>b,,_;.

At block 645, the variable FLLAG 1s set to true and flow
continues to block 650 where I 1s removed from I. From
block 650, flow continues to decision block 620 and pro-
cessing continues as described above. After all translation
units are considered, the system inspects the value of FLAG
at decision block 625. If 1t 1s set to true, that indicates that
some compilation unit I was recompiled, and the recompi-
lation process must be iterated starting at block 6035. If
FLLAG 1s set to false, that indicates that no recompilation 1s
necessary and the process terminates at block 699.

The usual form for representing the problem and solution
is a directed graph. A directed graph (in this sort of work) is
a set of “vertices” and a set of directed “edges”. Each edge
points from 1ts “tail” vertex to 1ts “head” vertex. An edge
from vertex u to vertex v 1s denoted u—v.

Each vertex of the graph has a lattice value, and each edge
has a monotone lattice transfer function. A “problem”™ sec-
tion 431 describes a subgraph, and associated lattice values
and transfer functions. A “need” section 432 1s a set of
vertices for which the lattice values are needed. The meet of
the problems 1s a graph that 1s the union of the subgraphs.
Multiple edges between the same pair of vertices are
reduced to a single edge by replacing them with a single
edge whose transfer function 1s the meet of the transfer
functions of the multiple edges. The lattice value of a vertex
for the global problem 1s the meet of the lattice values for the
same vertex 1n each local problem 1in which it occurs.

Taking the union of the graphs for local problems requires
a mechanism to identify vertices that should be merged. This
1s done by having the local compilations attach labels to
vertices that might have to be merged. The labeling depends
upon the type of problem being solved. For simple
problems, each vertex might correspond to the link name of
a symbol. The 1nvention also supports the notion of “anony-
mous symbols” 1n order to label vertices corresponding to
entities that are not visible to other translation unaits, but
nonetheless are useful for stating the global problem. The
example transform will transform file-scope objects
(routines and variables) entities in each translation unit as
follows:

10

15

20

25

30

35

40

45

50

55

60

65

3

(a) Unreferenced entities are removed (b) Entities refer-
enced within only a single translation unit are given
static linkage. The problem is interprocedural since one
translation unit may reference an object in another
translation unit. FIG. 7 shows a three-point value lattice
for the problem. The lattice ordering 1s
UNREFERENCED, STATIC, and EXTERNAL. FIG.
8 shows an example 1n the C programming language of
two translation units. FIG. 9 shows the corresponding
problem graph. The heavy circles are the “needed” set.
For the problem under discussion, the value of a vertex
1s 1n “needed” by a translation unit 1f the corresponding
file-scope entity 1s defined 1n the translation unit and
possibly exported to another translation unit. The glo-
bal solution value for said vertex will indicate whether
the entity can be removed or given static linkage.

Static linkage means that an entity (variable or routine) 1s

referenced by name only within the translation unit in which

it 1s defined. For example, if there are two translation units
(a) and (b) with:

(b) static int x = 2;
int z = v;

(a) static int x = 1;
int y = 2;

the “x”’s mentioned are each local to their respective trans-
lation units, but the y and z are globally shared (and z ends
up with the value 2 assigned from y). Translation unit (a) 1s
still allowed to pass a pointer to X as a parameter to a
function 1n (b).

The vertices for objects and a are labeled with anony-
mous symbols (@f and (@a respectively. They are anony-
mous because the corresponding entities have static linkage
and thus cannot be seen directly outside their respective
translation units. The values for anonymous vertices are not
needed, because their values can be computed from bound-
ary information. The lattice values at the vertices are all
UNREFERENCED (top of lattice), except for “main”,
which a prior1 1s known to be implicitly referenced, and thus
oets a value of EXTERNAL.

FIG. 10 shows the transfer functions on the edges. The
lattice points are abbreviated by their initial letter (U, S, and
E). For instance, the edge from d to ¢ (@,,€”) maps the
lattice value UNREFERENCED to UNREFERENCED, and
other lattice values to STATIC. The rationale 1s that if I 1s
referenced in the program, then e is (indirectly) referenced
via L. The other lattice values are mapped to STATIC since
the reference 1s between objects within the same translation
unit. Each subgraph (and associated lattice values and func-
fions are written to the opa file corresponding to the respec-
five translation unit.

Anonymous symbols would also be used for labeling
local variables 1f there were any that are relevant. For
example, a file-scope routine x might have a local variable
y to which 1s assigned the address of another file-scope
entity z. Then 1nvention may represent this as edges from x
to y and y to z. Of course the vertex y can be removed by
collapsing the edges 1nto a single edge from x to z, but this
destroys the sparsity of the graph if y has many mmcoming
and outgoing edges. Thus anonymous vertices are often
uselul for specilying problems, even when their solution
values are not of interest.

The IPA solver links named vertices together to build the
global problem shown in FIG. 11 and computes a fixed-point
solution. When the problem 1s represented as a graph with
transfer functions, a fixed-point solution 1s as follows. Let
val(v) denote the value associated with each vertex v, and

US 6,320,253 B1

9

fun(e) denote the transfer function associated with each edge
¢. The solution 1s a mapping of vertices to lattice values,
denoted sol(v) such that:

a. for all vertices v, sol(v)=val(v), and

b. for all edges ¢ of the form u—v: sol(v)=fun(e)(sol(u))

It 1s not necessary, but recommended that the maximal
fixed-point solution be computed. A solution “sol” 1s maxi-
mal 1if there 1s no other different solution “sol” such that

c. for all vertices v, sol(v)<sol'(v)

The abbreviated lattice values for the solution are shown
next to each vertex in FIG. 11. Then for each translation unait,
the values of 1its needed vertices are written to the “known”
section of that translation unit’s 1pa file.

The IPA solver then inspects the “required” sections, and
since this 1s the first run of the solver, they are trivially
lattice-bottom, which 1s worse than any other lattice value,
thus comparison of “known” and “required” indicates that
recompilation might improve things, but 1s not required.

For each recompilation performed, the “problem” and
“needed” sections are regenerated as before. The “known”
section 1s read, which provides boundary conditions for the
local solution. The section copied to “required” are the
boundary values. A solution to the local problem, which 1s
a subgraph, 1s computed. For translation unit #1, 1ts local
solution 1ndicates that routine d may be given static linkage.
For translation unit #2, its local solution indicates that
pointer a and routine b may be removed.

The subsequent run of the IPA solver will compute a new
global solution, and detect that the “required” values match

the “needed” values of the new global solution, and thus no
further recompilation 1s necessary.

Now suppose that translation unit #1 1s edited to change
the “#itf 0” to “#1f 17, and recompiled. When the IPA solver
1s subsequently run, 1t will discover that the solution for d 1s
now EXTERNAL (but “required” says STATIC), and the
solution for “b” 1s now STATIC (but “required” says
UNREFERENCED), as shown in FIG. 12. The solution for
(@, also has changed, but 1s irrelevant because 1t 1s not a
needed vertex. After both translation units are recompiled,
the “needed” and “required” values will match, and the IPA
solver 1s finished.

The present invention permits each translation unit to be
compiled 1n parallel by a different processor; the only serial
bottleneck 1s when the IPA solver itself runs. After the IPA
solver runs, required recompilations can also be done 1n
parallel. Experience indicates that the IPA solver runs quite
quickly compared to the rest of the compilation.

Boundary conditions, and not local solutions are
exchanged between the local compilations and the IPA
solver. Not only do the boundary conditions take up less file
space, but they are less likely to change than the local
solution. For mstance, the local problem might change 1n a
way that changes the local solution, but not the boundary
conditions. By transmitting (and comparing) boundary
solutions, the present 1nvention avoids unnecessary recom-
pilations.

A method for interprocedural analysis with separate com-
pilation 1s disclosed. Although the present invention has
been described with respect to specilic examples and
subsystems, 1t will be apparent to those of ordinary skill 1n
the art that the invention i1s not limited to these speciiic
examples or subsystems but extends to other embodiments
as well. The present 1nvention includes all of these other
embodiments as specified 1n the claims that follow.

What 1s claimed 1s:

1. A method, comprising;:

a) analyzing each separately compilable program compo-
nent of a software program having a plurality of

10

15

20

25

30

35

40

45

50

55

60

65

10

separately compilable program components, to create a
plurality of local problems for each separately com-
pilable program component;

b) merging the local problems to create a global problem;
¢) computing a global solution to the global problem; and

d) splitting the global solution into local solutions.
2. The method of claim 1, further comprising:

¢) removing uncallable routines within the software pro-
oram.
3. The method of claim 1, further comprising;:

¢) determining local routines that are only referenced
within a single separately compilable program compo-
nent.

4. The method of claim 1, further comprising;:

e¢) writing each local problem to storage for each sepa-
rately compilable program component;

f) reading from storage a previous local solution com-
puted for the local problem; and

g) using the previous local solution to optimize each
separately compilable program component.
5. The method of claim 1, further comprising:

¢) partially ordering the local problems and global prob-
lem 1nto a problem partial order;

f) partially ordering the local solutions and global solution
into a solution partial order; and

g) associating the local problems to the local solutions.
6. The method of claim 35, further comprising

h) comparing a present boundary value with a previous
boundary value to determine if the separately com-
pilable program component should be recompiled.

7. The method of claim 1, further comprising:

¢) representing the local problems as directed graphs
having edges and vertices, wherein
1) each edge has an associated monotone transfer func-
tion;
i1) each vertex has an initial value;
ii1) a subset of vertices is marked as needed values; and

f) representing the local solutions as maps from vertices
onto values.

8. The method of claim 7, wherein

the global problem precedes the local problems in the
problem partial order, and

the local solutions precede the global solution in the
solution partial order.
9. The method of claim 7, further comprising generating
a directed graph for the global problem by merging local
problem vertices that have 1dentical names.
10. A system, comprising:
a) means for analyzing each separately compliable pro-
oram component, of a software program having a
plurality of separately compliable program

components, to create a plurality of local problems for
cach separately compilable program component;

b) means for merging the local problems to create a global
problem;

c) means for computing a global solution to the global
problem; and

d) means for splitting the global solution into local
solutions.
11. The system of claim 10, further comprising:

¢) means for removing uncallable routines within the
software program.

US 6,320,253 B1

11

12. The system of claim 10, further comprising:

¢) means for determining local routines that are only
referenced within a single separately compliable pro-
gram component.

13. The system of claim 10, further comprising;:

¢) means for writing each local problem to storage for
cach separately compilable program component;

f) means for reading from storage a previous local solu-
tion computed for the local problem; and

g) means for using the previous local solution to optimize
cach separately compilable program component.
14. The system of claim 10, further comprising;:

¢) means for partially ordering the local problems and
global problem into a problem partial order;

f) means for partially ordering the local solutions and
global solution 1nto a solution partial order; and

g) means for associating the local problems to the local
solutions.
15. The system of claim 14, further comprising

h) means for comparing a present boundary value with a
previous boundary value to determine 1f the separately
compilable program component should be recompiled.

16. The system of claim 10, further comprising;:

¢) means for representing the local problems as directed
ographs having edges and vertices, wherein
1) each edge has an associated monotone transfer func-
tion;
i1) each vertex has an initial value;
111) a subset of vertices 1s marked as needed values; and

f) means for representing the local solutions as maps from
vertices onto values.
17. The system of claim 16, wherein

the global problem precedes the local problems in the
problem partial order, and

the local solutions precede the global solution in the

solution partial order.

18. The system of claim 16, further comprising means for
ogenerating a directed graph for the global problem by
merging local problem vertices that have i1dentical names.

19. A computer-readable medium having stored thereon a
plurality of instructions, said plurality of instructions when
executed by a computer, cause said computer to perform:

a) analyzing each separately compilable program
component, of a software program having a plurality of
separately compilable program components, separately
to create a plurality of local problems for each sepa-
rately compilable program component;

b) merging the local problems to create a global problem
c) computing a global solution to the global problem; and

d) splitting the global solution into local solutions.

20. The computer-readable medium of claim 19 having
stored thereon additional 1instructions, said additional
instructions when executed by a computer, cause said com-
puter to further perform:

¢) removing uncallable routines within the software pro-

gram.

21. The computer-readable medium of claim 19 having
stored thereon additional 1instructions, said additional
instructions when executed by a computer, cause said com-
puter to further perform:

¢) determining local routines that are only referenced

within a single separately compilable program compo-
nent.

22. The computer-readable medium of claim 19 having

stored thereon additional 1instructions, said additional

10

15

20

25

30

35

40

45

50

55

60

65

12

instructions when executed by a computer, cause said com-
puter to further perform;

¢) writing each local problem to storage for each sepa-
rately compliable program component;

f) reading from storage a previous local solution com-
puted for the local problem; and

g) using the previous local solution to optimize each

separately compliable program component.

23. The computer-readable medium of claim 19 having
stored thereon additional instructions, said additional
instructions when executed by a computer, cause said com-
puter to further perform:

¢) partially ordering the local problems and global prob-
lem 1nto a problem partial order;

f) partially ordering the local solutions and global solution
into a solution partial order; and

g) associating the local problems to the local solutions.

24. The computer-readable medium of claim 23 having
stored thereon additional 1nstructions, said additional
instructions when executed by a computer, cause said com-
puter to further perform:

h) comparing a present boundary value with a previous
boundary value to determine if the separately compli-
able program component should be recompiled.

25. The computer-readable medium of claim 19 having
stored thereon additional 1instructions, said additional
instructions when executed by a computer, cause said com-
puter to further perform:

¢) representing the local problems as directed graphs
having edges and vertices, wherein
1) each edge has an associated monotone transfer func-
tion;
i1) each vertex has an initial value;
ii1) a subset of vertices is marked as needed values; and

f) representing the local solutions as maps from vertices

onto values.

26. The computer-readable medium of claim 25 having
stored thereon additional 1nstructions, said additional
instructions when executed by a computer, cause said com-
puter to further perform:

g) ordering all problems such that the global problem
precedes the local problems in the problem partial
order, and

h) ordering all solutions such that the local solutions
precede the global solution 1n the solution partial order.

27. The computer-readable medium of claim 25 having
stored thereon additional 1nstructions, said additional
instructions when executed by a computer, cause said com-
puter to further perform generating a directed graph for the
global problem by merging local problem vertices that have
identical names.

28. A system, comprising:

a Processor;

memory connected to the processor storing instructions
for imterprocedural analysis executed by the processor;

storage connected to the processor that stores a software
program having a plurality of separately compliable
program components,
wherein the processor analyzes each separately com-
pilable program component separately to create a
plurality of local problems for each separately com-
pilable program component, merges the local prob-
lems to create a global problem, computes a global
solution to the global problem and splits the global
solution 1nto local solutions.

US 6,320,253 B1

13

29. The system of claaim 28 wherein the processor
removes uncallable routines within the software program
and determines local routines that are only referenced within
a single separately compliable program component.

30. The system of claim 28 wherein the processor
removes uncallable routines within the software program
and determines local routines that are only referenced within
a single separately compliable program component.

31. The system of claim 29, wherein the processor

writes each local problem to storage for each separately
compliable program component;
reads from storage a previous local solution computed
for the local problem; and
uses the previous local solution to optimize each sepa-
rately compliable program component.
32. The system of claim 29, wherein the processor:

arranges the local problems and global problem into a
problem partial order;

arranges the local solutions and global solution 1nto a
solution partial order; and

associates the local problems to the local solutions.
33. The system of claim 29, wherein the processor:

represents the local problems as directed graphs having
edges and vertices, wherein

1) each edge has an associated monotone transfer function;

5

10

15

20

25

14

i1) each vertex has an initial value;
i11) a subset of vertices is marked as needed values; and

represents the local solutions as maps from vertices onto
values.
34. The system of claim 29, wherem the processor:

arranges the local problems and global problem into a
problem partial order;

arranges the local solutions and global solution into a
solution partial order; and

associates the local problems to the local solutions.
35. The system of claim 29, wherein the processor:

orders all problems such that the global problem precedes
the local problems 1n the problem partial order, and

orders all solutions such that the local solutions precede
the global solution 1n the solution partial order.
36. The system of claim 34, further comprising;:

comparing a present boundary value with a previous
boundary value to determine if the separately compli-
able program component should be recompiled.

37. The system of claim 34, wherein the processor gen-

crates a directed graph for the global problem by merging
local problem vertices that have i1dentical names.

% o *H % x

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 6,820,253 Bl Page 1 of 1
DATED : November 16, 2004
INVENTOR(S) : Robison

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Column 35,
Line 12, delete “P<p,” and 1nsert -- P<p; --.

Column 6.
Line 47, before “used”, insert -- 18 --.

Column 7,
Lines 25, 29 and 34, delete “I”” and 1nsert -- 1 --.

Column 8,
Line 43, delete “(@14 €”)” and insert -- (“@ y —¢€”) --.

Column 9,
Line 36, delete “(@,” and 1nsert -- (@, --.

Signed and Sealed this

Twenty-eighth Day of June, 2003

JON W. DUDAS
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

