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1

MASSIVE TRAINING ARTIFICIAL NEURAL
NETWORK (MTANN) FOR DETECTING
ABNORMALITIES IN MEDICAL IMAGLES

The present invention was made 1n part with U.S. Gov-
ernment support under USPHS Grant No. CA62625 and
Army Grant No. DAMD 17-96-1-6228. The U.S Govern-

ment may have certain rights to this 1nvention.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The 1nvention relates generally to the field of
computerized, automated assessment of medical 1mages,
and more particularly to methods, systems, and computer
program products for computer-aided detection and
computer-aided detection of abnormalities (such as lesions
and lung nodules) in medical images (such as low-dose CT

scans) using artificial intelligence techniques (such as arti-
ficial neural networks, ANNSs).

The present mnvention also generally relates to computer-
1zed techniques for automated analysis of digital images, for
example, as disclosed 1n one or more of U.S. Pat. Nos.
4,839,807; 4,841,555; 4,851,984; 4,875,165; 4,907,156;
4,918,534; 5,072,384; 5,133,020, 5,150,292; 5,224,177;
5,289,374; 5,319,549; 5,343,390; 5,359,513; 5,452,3677;
5,463,548; 5,491,627, 5,537,485; 5,598,481; 5,622,171;
5,638,458; 5,657,362; 5,666,434; 5,673,332; 5,668,888;
5,732,697; 5,740,268; 5,790,690, 5,832,103; 5,873,824;
5,881,124; 5,931,780; 5,974,165; 5,982,915; 5,984,870;
5,987,345; 6,011,862; 6,058,322; 6,067,373; 6,075,878;
6,078,680; 6,088,473; 6,112,112; 6,138,045; 6,141,437;
6,185,320; 6,205,348; 6,240,201; 6,282,305; 6,282,307,
6,317,617

as well as U.S. patent applications Ser. Nos. 08/173,935;
08/398,307 (PCT Publication WO 96/27846), Ser. Nos.
08/536,149; 08/900,189; 09/027,468; 09/141,535; 09/471,
088; 09/692,218; 09/716,335; 09/759,333; 09/760,854;
09/773,636; 09/816,217; 09/830,562; 09/818,831; 09/842,
860; 09/860,574; 60/160,790; 60/176,304; 60/329,322;
09/990,311; 09/990,310; 60/332,005; 60/331,995; and
60/354,523;

as well as co-pending U.S. patent applications (listed by

attorney docket number) 215752US-730-730-20,
216439US-730-730-20, 218013US-730-730-20, and
218221US-730-730-20;

as well as PCT patent applications PCT/US98/15165;
PCT/US98/24933; PCT/US99/03287;, PCT/US00/41299;
PCT/US01/00680; PCT/US01/01478 and PCT/USO01/
01479,

all of which documents are incorporated herein by refer-
ence.

The present invention includes use of various technolo-
oles referenced and described 1n the above-noted U.S.
Patents and Applications, as well as those described 1 the
documents identified in the following List of References that
are cited throughout the specification:
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DISCUSSION OF THE BACKGROUND

LLung cancer confinues to rank as the leading cause of
cancer death among Americans and has expected to cause
157,400 deaths in the United States in 2001 (Ref. 1). Some
evidence suggests that early detection of lung cancer may
allow more timely therapeutic intervention and thus a more
favorable prognosis for the patient (Refs. 2, 3). The sensi-
tivity of helical computed tomography (CT) for lung nodule
detection 1s significantly superior to that of conventional CT.
Accordingly, screening programs for lung cancer with low-
dose helical CT have been carried out 1n the United States
and Japan (Refs. 4, 5). With helical CT, a number of CT

images are acquired during a single CT examination.

Radiologists have to read many CT 1mages. This may lead
to “information overload” for the radiologists. Furthermore,
radiologists may miss many cancers during interpretation of
CT images in a lung cancer screenings (Refs. 6, 7).
Therefore, a computer-aided diagnosis (CAD) scheme for
detection of lung nodules 1n low-dose CT 1mages has been
investigated as a useful tool for lung cancer screening.

Many 1nvestigators have developed a number of methods
for the automated detection of lung nodules 1n CT scans,
based on morphological filtering (Refs. 8, 9), geometric
modeling (Ref. 10), fuzzy clustering (Ref. 11), and gray-
level thresholding (Refs. 12-17). Giger et al. (Ref. 12)
developed an automated detection scheme based on multiple
oray-level thresholding and geometric feature analysis.
Armato et al. (Refs. 13—16) extended the method to include

a three-dimensional approach and linear discriminant analy-
S1S.

A major problem with certain known CAD schemes for
lung nodule detection 1s a relatively large number of false
positives, which cause difficulty 1n the clinical application of
the CAD scheme. Alarge number of false positives are likely
to disturb the radiologist’s task 1in lung nodule detection and
interpretation, thus lowering the efficiency of the radiolo-
o1st’s task with the CAD scheme. In addition, radiologists
may lose their confidence 1n using the CAD scheme.
Theretore, 1t 1s very important to reduce the number of false
positives as much as possible, while maintaining a high
sensifivity.

A database used 1n a study discussed throughout this
specification included 38 non-infused, low-dose thoracic
helical CT (LDCT) scans acquired from 31 different patients
who participated voluntarily 1n a lung cancer screening,
program between 1996 and 1998 in Nagano, Japan (Refs. 3,
18, 7). The CT examinations were performed on a mobile
CT scanner (CT-W950SR; Hitachi Medical, Tokyo, Japan).

The scans used for this study were acquired with a low-dose
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protocol of 120 kVp, 25 mA (11) or 50 mA (27 scans),
10-mm collimation, and a 10-mm reconstruction interval at
a helical pitch of two (Ref 18). The pixel size was 0.586 mm
for 33 scans and 0.684 mm for five scans. Each recon-
structed CT section had an 1image matrix size of 512x512
pixels. The 38 scans consisted of 1057 sections, and
included 38 “missed” nodules that represent biopsy-
confirmed lung cancers and were not reported during the
initial clinical interpretation (Ref. 7).

Technical details of a known scheme have been published
previously in Refs 13-16, in which lung nodule identifica-
tion proceeds in three phases: two-dimensional (2D)
processing, followed by three-dimensional (3D) analysis,
and then the application of classifiers. A gray-level thresh-
olding technique 1s applied to a 2D section of a CT scan for
automated lung segmentation. Modifications to the resulting,
lung segmentation regions are made by use of a rolling-ball
technique (Refs. 19, 8) that eliminates the trachea and
main-stem bronchi when they are erroneously included
within the lung regions.

A multiple gray-level-thresholding technique 1s applied to
the segmented lung volume. Individual structures are 1den-
tified by grouping of spatially contiguous pixels that remain
in the volume at each of 36 gray-level thresholds. Because
a nodule 1s defined radiologically as any well-demarcated,
soft-tissue focal opacity with a diameter less than 3 cm (Ref.
20), a structure is identified as a nodule candidate if the
volume of the structure 1s less than that of a 3-cm-diameter
sphere.

The categorization of nodule candidates as “nodule™ or
“non-nodule” 1s based on a combination of a rule-based
classifier and a series of two linear discriminant classifiers
applied to a set of nine 2D and 3D features extracted from
cach nodule candidate. The features are 3D gray-level-based
features, 3D morphological features, and 2D morphological
features: (1) the mean gray level of the candidate, (2) the
gray-level standard deviation, (3) the gray-level threshold at
which the candidate was identified, (4) volume, (5)
sphericity, (6) radius of the sphere of equivalent volume, (7)
eccentricity, (8) circularity, and (9) compactness.

In this CAD scheme, the multiple gray-level-thresholding
technique 1nitially 1dentified 20,743 nodule candidates in
1057 sections of LDCT images (Ref 7). Then a rule-based
classifier followed by a series of two linear discriminant
classifiers was applied for removal of some false positives,
thus yielding a detection of 41 (82.0%) of 50 nodules
together with 1,078 (28.4 per case and 1.02 per section) false
positives (Ref. 21). In this study, all 50 nodules and all 1078
false positives were used; the 1078 false positives included
in this evaluation were considered as “very difficult” false
positives.

Recently, 1n the field of signal processing, nonlinear filters
based on a multilayer artificial neural network (ANN), called
neural filters, have been studied. In the neural filter, the
multilayer ANN 1s employed as a convolution kernel. The
neural filters can acquire the functions of various linear and
nonlinear filters through training. It has been demonstrated
that the neural filters can represent an averaging filter,
welghted averaging filters, weighted median filters, morpho-
logical filters, microstatistic filters, generalized-weighted-
order statistical filters, an epsilon {ilter, and generalized
stack filters (Refs. 22-25). In the applications of the neural
filters to reduction of the quantum mottle 1n X-ray fluoro-
scopic and radiographic 1images, 1t has been reported that the
performance of the neural filter was superior to that of the
nonlinear filters utilized in medical systems and a well-
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known nonlinear filter (Refs. 26—-32). The performance of
the neural filter was superior to that of the conventional
nonlinear filters.

On the other hand, in the field of computer vision, a
supervised edge detector based on a multilayer ANN, called
a neural edge detector, has been developed (Refs. 33-36).

The neural edge detector can acquire the function of a
desired edge detector through training. It has been reported
that the performance of the neural edge detector on edge
detection from noisy images was far greater than that of the
conventional edge detectors such as the Canny edge
detector, the Marr-Hildreth edge detector, and the Huckel
edge detector (Refs. 33, 34). In its application to the contour
extraction of the left ventricular cavity in digital
angiography, 1t has been reported that the neural edge
detector can accurately detect the subjective edges traced by

cardiologists (Refs. 35, 30).
SUMMARY OF THE INVENTION

First, the invention provides a method of training an
artificial neural network including network parameters that
covern how the artificial neural network operates, the
method having the steps of receiving at least a likelihood
distribution map as a teacher image; receiving at least a
fraining 1mage; moving a local window across plural sub-
regions of the training 1mage to obtain respective sub-region
pixel sets; inputting the sub-region pixel sets to the artificial
neural network so that the artificial neural network provides
output pixel values; comparing the output pixel values to
corresponding teacher 1mage pixel values to determine an
error; and training the network parameters of the artificial
neural network to reduce the error.

Second, the mvention provides a method of detecting a
target structure 1n an 1mage by using an artificial neural
network, the method having the steps of scanning a local
window across sub-regions of the image by moving the local
window for each sub-region, so as to obtain respective
sub-region pixel sets; inputting the sub-region pixel sets to
the artificial neural network so that the artificial neural
network provides, corresponding to the sub-regions, respec-
tive output pixel values that represent likelihoods that
respective 1mage pixels are part of a target structure, the
output pixel values collectively constituting a likelihood
distribution map; and scoring the likelihood distribution
map to detect the target structure.

Third, the mnvention provides an apparatus for detecting a
target structure 1 an 1mage, the apparatus having a network
configured to receive sub-region pixel sets from respective
sub-regions of the 1mage, and to operate on the sub-region
pixel sets so as to produce a likelihood distribution map
including output pixel values that represent likelithoods that
corresponding 1image pixels are part of the target structure.

Fourth, the mnvention provides a method for detecting a
target structure 1n an 1mage, the method having the steps of
training first through N-th artificial neural networks, N being
an integer greater than 1, on either (A) a same target
structure and first through N-th mutually different non-target
structures, or (B) a same non-target structure and first
through N-th mutually different target structures, the first
through N-th artificial neural networks being configured to
output first through N-th respective indications of whether
the 1mage includes a target structure or a non-target struc-
ture; and combining the first through N-th indications to
form a combined indication of whether the 1mage includes
a target structure or a non-target structure.

Fifth, the invention provides an apparatus for detecting a
target structure in an 1mage, the apparatus having first
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through N-th artificial neural networks, N being an integer
greater than 1, that have been trained on either (A) a same
target structure and first through N-th mutually different
non-target structures, or (B) a same non-target structure and
first through N-th mutually different target structures, the
first through N-th artificial neural networks being configured
to output first through N-th respective indications of whether
the 1mage 1ncludes a target structure or a non-target struc-
ture; and a combiner configured to combine the first through
N-th indications to form a combined indication of whether
the medical image includes a target structure or a non-target
structure.

The 1nvention further provides various combinations of
the foregoing methods and apparatus.

The 1nvention further provides computer program prod-
ucts storing program instructions for execution on computer
systems, which when executed by the computer systems,
cause the computer system to perform the mventive method
steps.

In particular embodiments and applications of the present
invention to which the scope of the claims should not be
limited, none, one or more of the following may apply:

the 1mage may be a medical image;

the target structure may be an abnormality in the medical
image;

the non-target structures may be normal anatomical struc-
tures 1n the medical 1image;

the network may be configured to receive sub-region pixel
sets from respective consecutively physically overlap-
ping sub-regions of the medical 1image that are dis-
placed by a predetermined distance;

the predetermined distance may be a pixel pitch value 1n
the medical 1mage, so that successive sub-regions are

offset from each other by a separation distance of
adjacent pixels in the medical 1image; and/or

the artificial neural network provides the respective output
pixel values that represent the likelihoods that the
respective medical 1mage pixels are part of an abnor-
mality.

Other objects, features and advantages of the invention

will become apparent to those skilled in the art when reading

the following Detailed Description with reference to the

accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of the invention and many
of the attendant advantages thercof will be readily obtained
as the same becomes better understood by reference to the
following detailed description when considered 1n connec-
tion with the accompanying drawings, 1n which like refer-
ence numerals refer to identical or corresponding parts
throughout the several views, and 1n which:

FIG. 1(a) illustrates an architecture of an exemplary
massive training artificial neural network (MTANN) in
conjunction with a training portion that trains the network by
adjusting network parameters. (The training portion is some-
times considered to be part of the network 1itself.)

FIGS. 1(b), 1(c) and 1(d) illustrate two flow charts and a
schematic block diagram of an MTANN’s training phase,
according to a preferred embodiment of the present inven-
tion. The block diagram of FIG. 1(d) adopts the convention
that teacher 1mages are “forced” into the outputs of the
neural network 1n order to adjust network parameters; more

literally the teacher 1images are input to a training portion
(see FIG. 1 (a) element 102) that for simplicity is not
illustrated in FIG. 1 (d).
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FIGS. 1(e) and 1(f) illustrate a flow chart and a schematic
block diagram of an MTANN’s execution (operational)

phase, according to a preferred embodiment of the present
invention.

FIGS. 2(a) and 2(b) show, respectively, examples of

nodules and non-nodules used as training cases for training
an actual embodiment of the mventive MTANN.

FIGS. 3(a) and 3(b) show output images of an embodi-
ment of the MTANN for nodule candidates of the nodules
and non-nodules, respectively, shown in FIGS. 2(a) and
2(b), 1n training cases; the images illustrate results obtained
with a consistency test.

FIGS. 4(a) and 4(b) illustrate, respectively, ten nodules
and ten corresponding output images of the embodiment of
the MTANN, for non-training cases 1n a validation test.

FIGS. 5(a) and 5(b) illustrate, respectively, fifteen false-
positives (non-nodules) and fifteen corresponding output
images of an embodiment of the MTANN, for non-training
cases 1n a validation test. The top, second, and third row
show typical examples of peripheral vessels, medium-size
vessels, and part of normal structure and soft-tissue
opacities, respectively. In the third row, the first two 1mages
are large vessels of the hilum, the trachea, and the bronchi;
the last three 1mages are opacities caused by the partial
volume effect between the lung region, including pulmonary
vessels and soft tissue.

FIG. 6 is a histogram of scores for forty nodules (white
bars) and 1068 non-nodules (gray bars) in a validation test,
which were different from training cases of ten nodules and
ten non-nodules.

FIG. 7 1s a FROC curve of an actual embodiment of the
MTANN i1ndicating 100% nodule detection sensitivity with
a simultaneous a reduction i1n the false-positive rate from
1.02 to 0.35/section, for 40 nodules and 1068 false positives
in a validation test.

FIGS. 8(a) and 8(b) show, respectively, comparisons of
ROC curves and Az values and the mean absolute error of
the training set, obtained with various numbers of training
sub-regions 1n a validation test.

FIG. 9(a) shows the effect of the number of training
epochs on the generalization ability of an actual embodiment
of the MTANN: As the number of training epochs increased,
the Az value representing the generalization ability did not
decrease, while the training error decreased. FIG. 9(b)
further shows how nodule detection sensitivity (true
positives) as a function of false positives, improves with the
number of sub-regions even if consecutive sub-regions are
sparsely sampled and not maximally overlapping: FIGS.
9(c) and 9(d) show shaded object pixels, in sub-regions used
in the training that yielded the results in FIG. 9(b).

FIG. 10 1s a schematic block diagram illustrating an
exemplary architecture of a multiple massive training arti-
ficial neural network (Multi-MTANN). In a preferred
embodiment, each MTANN 1s trained using a different type
of non-nodule, but with the same nodules so that each
MTANN acts as an expert for distinguishing nodules from a
specific type of non-nodule. The performance of plural
MTANNS 1s mtegrated by a logical AND operation.

FIG. 11 shows two nodules (top row) used as training
cases for traming an actual embodiment of the Multi-

MTANN, and ten sets of output images of ten trained
MTANNS; the ten MTANNs were trained separately with
different types of non-nodules, as shown in FIGS. 12(a) and

12(b).
FIGS. 12(a) and 12(b) illustrate, respectively, ten sets of
non-nodules (two examples in each group), and ten sets of
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corresponding output 1mages, of ten trained MTANNSs with
fraining cases, 1n a consistency test.

FIG. 13 illustrates four nodules (non-training cases) in the

top row, and ten sets of corresponding output 1images of the
ten trained MTANNS, 1n a validation test.

FIGS. 14(a) and 14(b) show, respectively, ten sets of
non-nodules (four cases in each group) and ten sets of
corresponding output images of the ten trained MTANNS, 1n
a validation test.

FIGS. 15(a) and 15(b) show, respectively, FROC curves
of trained MTANNSs 1-5 and 6-10, for 40 nodules and 978
false positives, 1n a validation test.

FIG. 16 shows FROC curves of embodiments of the
Multi-MTANNs obtained with various numbers of
MTANNSs, for 40 nodules and 978 false positives, 1n a
validation test. The FROC curve of the Multi-MTANN
including ten MTANNSs indicates 100% nodule detection
sensifivity and a reduction of false-positive rate from 1.02 to
0.08 per section.

FIG. 17 1s a chart showing the number of remaining false
positives obtained by a Multi-MTANN at a sensifivity of
100%, obtained with various numbers of MTANNSs. The
number of false positives reported by a known CAD scheme
was reduced from 978 to 85 by use of the Multi-MTANN
including ten MTANNS.

FIG. 18(a) shows original images of vessels (which are
normal structures) input to an MTANN that had been trained
on input images containing medium-size vessels (also nor-

mal structures) in vertical and horizontal directions. FIG.
18(b) shows the output 1mages of the trained MTANN.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

In describing preferred embodiments of the present inven-
tion 1llustrated in the drawings, specific terminology 1is
employed for the sake of clarity. However, the invention 1s
not mtended to be limited to the specific terminology so
selected, and 1t 1s to be understood that each specific element
includes all technical equivalents that operate in a similar
manner to accomplish a similar purpose. Moreover, features
and procedures whose implementations are well known to
those skilled 1n the art, such as initiation and testing of loop
variables 1n computer programming loops, are omitted for
brevity.

The present mnvention provides various image-processing,
and pattern recognition techniques in arrangements that may
be called a massive training artificial neural networks
(MTANNSs) and their extension, Multi-MTANNs. The
invention 1s especially usetul in reducing false positives in
computerized detection of lung nodules i low-dose CT
images. A preferred embodiment of the MTANN 1ncludes a
modified multilayer ANN that can directly handle image
pixels.

The exemplary MTANN 1s trained by use of input 1mages
together with the desired teacher 1mages containing a dis-
tribution representing the likelihood of a particular pixel
being a nodule (lesion). To achieve high performance, the
MTANN 1s trained by using a large number of overlapping
sub-regions that are obtained by dividing an original 1nput
image. The output 1mage 1s obtained by scanning an input
image with the MTANN: the MTANN acts like a convolu-
tion kernel of a filter. A nodule (abnormality) is distin-
guished from a non-nodule (normal anatomical structure) by
a score defined from the output image of the trained

MTANN.
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FIG. 1(a) illustrates an architecture of an exemplary
massive training artificial neural network (MTANN) 100 in
conjunction with a training portion 102 that trains the
network by adjusting network parameters. (The training
portion 1s sometimes considered to be part of the network
itself.) It is understood that the functions of the elements
may be 1mplemented 1n software on a general purpose
computer, as well as 1n the hardware elements shown 1n FIG.

1(a).
Briefly, during the training phase, sub-regions 105A,

105B . . . of training medical images 104 are input to the
MTANN 100 while one or more teacher likelihood distri-

bution maps (loosely called “teacher images”) 106A,
106B . . . (collectively, “106”) are input to training portion
102. MTANN 100 outputs a likelihood distribution map
(loosely called an “output image”) 108. In block 110,
traimning portion 102 compares the pixel values of the
MTANN'’s likelithood distribution map 108 to the values of
the pixels 1n teacher likelihood distribution map 106. Block
112 calculates errors between the pixels being compared,
and block 114 adjusts MTANN parameter values to mini-
mize the error.

The MTANN 1s preferably implemented using a three-
layer artificial neural network (ANN). The number of layers
1s preferably at least three, because a two-layer ANN can
solve only linear problems. A three-layer ANN structure
(including one hidden layer) is a particularly preferred ANN
structure because three-layer artificial neural networks can
realize any continuous mapping (function). The links con-
necting the nodes 1n the artificial neural network need not be
of any special design or arrangement; however, the network
parameters, the weights or multipliers that characterize the
links, are preferably adjusted during a network training
phase as described 1n this specification.

During the operational (execution) phase, medical images
104 are 1nput to the trained MTANN 100, which provides a
likelihood distribution map (output image) 108. Filter 120
filters the MTANN’s likelihood distribution map 108 to
form a score that element 122 compares to a threshold 1n
order to arrive at a decision.

FIGS. 1(b), 1(c) and 1(d) illustrate two flow charts and a

schematic block diagram of an MTANN’s training phase,
according to a preferred embodiment of the present inven-
tion. The block diagram of FIG. 1(d) adopts the convention
that teacher 1mages are “forced” into the outputs of the
neural network to adjust network parameters; more literally
the teacher images are input to a training portion 102 (see
FIG. 1(a) element 102) that for simplicity is not illustrated
in FIG. 1(d).

As briefly described above, MTANN 100 involves a
training phase and an execution (or operational) phase. FIG.
1(a) illustrates elements that are used in either or both
phases, with the understanding that elements and steps used
in one phase need not necessarily be present or executed 1n
the other phase. For example, the training portion 102 may
be omitted from products that have already been trained and

are merely desired to be used operationally (FIGS. 1(e),
1(f)). Conversely, filter 120 and threshold element 122 are

not mvolved 1in the training phase (FIGS. 1(b), 1(c), 1(d)),
but are discussed with reference to the execution
(operational) phase.

Referring to the FIG. 1(b) flow chart in conjunction with
the FIG. 1(a) block diagram, during a training phase, pixels
from training medical images 104 are received 1n step 502.
A given training medical 1mage 104 may include an
abnormality, no abnormalities, or set of both abnormalities
and normal structures that are desired to be distinguished
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from abnormalities. The pixels of the training medical image
are mput to the MTANN 1n accordance with steps 204
through 208.

In step 204, a local window begins to scan across the
training medical image. In step 204, the local window moves
from one sub-region 105 (see FIG. 1(d)) of the training
medical image to another, preferably one pixel distance at a
fime. A set of pixel values 1n the sub-region currently in the
local window are acquired in step 206, and are stored 1n step
208. In the loop including steps 204 through 208, the local
window scans across the rows of the training medical 1image
in a manner shown in FIG. 1(d).

Sets of 1put pixel values that were stored 1n the loop
204-208 arc then mput to the MTANN 1n step 210, which
calculates pixel values (step 212) in accordance with net-
work parameters. Network parameters include, for example,
multipliers 1n the links between neural network nodes. The

calculated pixel values are output from the MTANN as an
MTANN likelihood distribution map 108 (FIG. 1(a)).

The MTANN likelihood distribution map’s pixels are

calculated to be a likelithood that a corresponding “object
pixel” 400 (see FIG. 1(d)) from the training medical image
1s part of an abnormality. The likelihood distribution map
may be loosely referred to as an “output image” even though
it 1s not strictly an image 1n the sense of a photograph of a
structure. The description of the likelihood distribution map
as an “1mage” 1s valid, inasmuch as its pixel values may be
represented graphically to emphasize which parts of the
original training medical 1mage are abnormal and which
parts are normal. For example, pixels that are more likely
part of abnormalities can be made brighter and pixels that
are less likely to be abnormalities can be made darker.

Referring again to FIG. 1(b), step 222 illustrates the
reception of one or more teacher likelihood distribution
maps (also called “teacher images”). As shown by broad
bi-directional arrow 201, the teacher likelihood distribution
maps 106 should correspond to the training medical images
104 discussed above, because the training process involves
a progressively finer tuning of MTANN network parameters
so that the MTANN 100 reliably recognizes the abnormali-
ties that are known to exist in the training medical images.

In a preferred embodiment, training portion 102 receives
a first teacher likelihood distribution map 106A (FIG. 1(a))
showing a distribution of pixel intensities representing the
likelihood that that particular pixel 1s part of an abnormality.
In a particular preferred embodiment, that distribution is
likely to follow a two-dimensional Gaussian distribution
pattern, preferably with a standard deviation proportional to
a size ol the abnormality. Further, training portion 102
receives a second teacher likelihood distribution map 106B
(FIG. 1(a)) that is “blank™ or “black,” representing a distri-
bution of pixel intensities when that particular pixel is not
part of an abnormality.

In FIG. 1(b), the training portion iteratively acquires a
pixel from the teacher likelihood distribution map(s) 106
that corresponds to a object pixel in the training medical
image (step 224) and stores that pixel as a teacher pixel in
preparation for a pixel comparison (step 226).

Step 228 1nvolves comparison of pixel value differences
(error) between (A) the likelihood distribution map 108 the
MTANN 1in response to the training medical image 104, and
(B) the teacher likelihood distribution map 106. This step is

performed by comparison and error calculation blocks 110,
112 in training portion 102 of FIG. 1(a).

Step 230 shows the calculation of corrections to the
MTANN’s existing network parameters in order to minimize
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an error between the MTANN'’s output and the teacher map.
Step 232 shows the application of the corrections to the
existing network parameters so as to form adjusted network

parameters. These two steps are performed by parameter
adjustment block 114 in training portion 201 of FIG. 1(a).

Decision block 234 determines if a stopping condition for
the training phase has been fuliilled. The stopping condition
may 1involve a counting of a certain number of iterations of
the training loop with respective medical images and teacher
likelihood distribution maps. Alternatively, the stopping
condition can involve stopping the training when error
adjustments have been reduced to bencath a certain
threshold, indicating that further training 1s unnecessary or
even counter-productive.

If the stopping condition 1s not fulfilled, control returns to
step 210 so that further sets of pixel values can be mput to
the MTANN. If the stopping condition 1s fulfilled, the
training phase is ended (block 299), after which time the
execution phase of FIGS. 1(¢) and 1(f) may begin.

The flowchart of FIG. 1(c¢) illustrates an alternative
embodiment of the training method shown in FIG. 1(b). The
two methods differ in whether the MTANN processes a set
of medical image pixels after an entire set is stored (FIG.
1(b)), or whether the MTANN processes the medical image
pixels “on the fly” (FIG. 1(c)).

FIG. 1(c) avoids the need for FIG. 1(b)’s storage steps
208, 226. FIG. 1(c) also avoids FIG. 1(b)’s “tight” iterative
loops 204/206/208 and 224/226. Instead, FIG. 1(c) executes
a "wider" pair of loops “204/206/210/212+228/230/232”
and “224+228/230/232.” Otherwise, the steps that are com-
mon to the two training methods are essentially the same,
and discussion of the common steps 1s not repeated.

Turning now to a description of the execution
(operational) phase, the training portion 102 (FIG. 1(a)) is
not active, or even not present. Also, the medical images 104
that are mput to MTANN 100 are not training medical
images with known and verified abnormalities, but generally
are “new’ medical 1mages that have not been used to
previously train the MTANN. However, filter element 120
and threshold element 122 are used during the execution
phase.

FIGS. 1(e) and 1(f) illustrate a flow chart and a schematic

block diagram of an MTANN’s execution (operational)
phase, according to a preferred embodiment of the present
invention.

Referring to the execution phase flow chart of FIG. 1(e),
step 502 shows the reception of a medical image 104 for
input to the MTANN 100. It 1s generally not known 1n
advance whether structures 1n the medical 1mage for execu-
fion contain abnormalities or merely normal structures.

A loop 1ncluding steps 504, 506, 508, 510 and 512
correspond generally to steps 204, 206, 208, 210, and 212 of
the training phase (FIG. 1(b)), except that the medical image
that 1s being operated on 1s not a training medical 1mage.

In FIG. 1(e), step 504 illustrates the moving of a local
window from one sub-region of the medical image to a
subsequent sub-region. The sub-regions have respective
“object pixels” shown in FIGS. 1(d) and 1(f). Step 506
shows how sets of pixels from a present sub-region are
acquired through the local window, and step 508 represents
the mput of those pixel sets to the MTANN. Step 510 shows
that the MTANN calculates an output pixel value for each
window location (sub-region), with step 512 assigning that
pixel value to an output pixel location 1n an output likelihood
distribution map that corresponds to the object pixel for that
sub-region. The loop of steps 504 through 512 1s repeated,
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with the local window 1teratively moving from sub-region to
sub-region, preferably one pixel’s distance at a time, as

shown in FIG. 1(f).

When the loop has been completed, the entire medical
image (or all that 1s desired to be scanned) has been scanned.
Control passes to step 514, which indicates how a filter 120
(FIG. 1(a)) filters the MTANN’s likelihood distribution map
108 to arrive at a score. Finally, threshold block 122 com-
pares a threshold value to the score to arrive at a decision
concerning the detection of an abnormality in the medical
image, as illustrated by step 516.

The foregoing procedure may be repeated for each medi-
cal image (or plural portions of a same medical image), as
indicated by the return path from step 516 to step 502. When
there 1s no more medical 1mage 1nformation to be analyzed,
the execution phase is completed (block 599).

The exemplary MTANN i1ncludes a modified multilayer
ANN that can directly handle mput gray levels and output
oray levels. This embodiment 1s 1n contrast to many con-
ventional ANNs, which commonly mput 1mage discretely-
valued features as distinguished from continuous-valued
image pixels. Many conventional ANNs are usually
employed as a classifier that handles classes as distinguished
from the gray levels that are handled by the inventive
MTANN. Of course, the invention should not be limited to
levels that are “gray” in the sense of being a shade between
black and white; use of color pixels also lies within the
contemplation of the present invention.

In the exemplary embodiment of the MTANN described
herein, image processing or pattern recognition 1s treated as
the convolution on an i1mage with the modified ANN 1n
which the activation functions of the units in the input,
hidden, and output layers are a linear function, a sigmoid
function, and a linear function, respectively.

In a particular preferred embodiment, the activation func-
tion of output layer 600 (FIG. 1(f)) 1s a linear function, as
distinguished from step functions, the sign function or
sigmold functions. The choice of a linear function m the
output layer comports with the feature of the invention, that
the output of the artificial neural network 1s not a binary
decision, class, diagnosis, or other discrete-value
conclusion, but may constitute a continuous-value element
such as a picture element of arbitrarily fine precision and
resolution. Here, continuous-value means essentially means
that a pixel may take on any of a variety of values so that a
pixel 1s for practical purposes represented as an analog
entity, even though it 1s recognized that digital computers
have a finite number of bits allocated to represent entities
such as pixels.

In a particular preferred embodiment analyzing low-dose
CT scans and corresponding output 1mages, a pixel 1s
represented by 12 bits representing a gray scale tone.
However, other degrees of precision and resolution, and
multi-dimensional pixels such as color pixels, are also
contemplated by the mnvention.

In contrast to the described embodiment, the activation
function of output layer units of conventional ANNSs 1is
commonly a sigmoid function. However, a preferred
embodiment of the invention employs a linear output unit
activation function instead of a sigmoid function one
because the characteristics of ANN are significantly
improved i1n the application to the continuous mapping

1ssues dealing with continuous values in 1mage processing
(Refs. 37, 38, 34), for example.

The basic architecture and operation of the embodiments
of the MTANN having been described above, the following
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discussion provides more detail concerning the MTANN and
certain explanations of its design. Of course, the scope of the
claims should not be limited by particular applications of the
invention or demonstrations of 1ts success.

The pixel values of the original 1mages are normalized
first. The pixel values 1n a local window R _ are mput to the
MTANN: the mputs to the MTANN are a normalized pixel
value g(x, y) of an original image and spatially adjacent
normalized pixel values. Although the most common use of
a multilayer ANN 1s as a classifier that determines whether
a certain pixel belongs to the class, such as normal or
abnormal, the output of the MTANN 1s not a class, but a
continuous value, which corresponds to the object pixel (for
example, center pixel) in the local window, represented by

f,y)=NN{I(x,y) }=NN{gx-iy-)/i,j eR.} (Eqn. 1: Teacher Value)

where:

f(x, y) denotes the estimate for the desired teacher value,
X and y are the indices of coordinates,

NN{-} is the output of the modified multilayer ANN,

[ (X, y) is the input vector to the modified multilayer ANN,
g(x, y) 1s the normalized pixel value, and

R. 1s the local window of the modified multilayer ANN.

In a preferred embodiment, only one unit 1s employed in
the output layer. The desired teacher values and thus the
outputs of the MTANN are changed according to the appli-
cation; when the task 1s distinguishing nodules from non-
nodules, the output represents the likelihood that a given
output pixel 1s part of a nodule.

All pixels 1n an 1mage may be input by scanning the entire
image with the MTANN. The MTANN, therefore, functions
like a convolution kernel of a filter. In a particular preferred
embodiment, the local window of the MTANN 1s shifted one
pixel’s distance at a time to cover successive sub-regions of
the 1nput 1mage.

The MTANN 1s trained so that the input images are
converted to the desired teacher images. The MTANN may
be trained in the following manner.

In order to learn the relationship between the input 1image
and the desired teacher 1image, the MTANN 1s trained with
a set of 1nput 1mages and the desired teacher 1mages by
changing of the weights between the layers. The error E to
be minimized by training 1s defined by:

1 Eqn. 2: Error)
F = TPy _ £iP) Z (Bqn. 2:
T Ep' { P

where:

p 1S a training pixel number,
T is the p-th training pixel in the teacher images,

f'” is the p-th training pixel in the output images, and

P 1s the number of training pixels.

The MTANN may be trained by any suitable technique
known to those in the art. In one embodiment, a modified
back-propagation algorithm of Ref. 37 may be derived for
the arrangement described above, 1 the same way as the
standard back-propagation algorithm of Refs. 41, 42. In this
embodiment, the weight correction AW of the weight W
between the m-th unit in the hidden layer and the unit in the
output layer O 1s represented by:

AW, “=-n60, "=n(T-NH0,"” (Eqn. 3: Weight Correction)
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where:
0 15 a delta value that may be computed, for example, as
in Refs. 41, 42, and may be represented by:

ﬁ_BE_ JE dfx
T 90X T Af X

§, 1s an activation function of the unit in the output layer
(according to the preferred embodiment of the invention,
preferably a linear function),

X 1s the 1nput value to the activation function,

N 1s the learning rate, and

O, denotes the output (O) of the m-th unit in the hidden
(H) layer.

By use of the delta, the corrections of any weights can be
derived 1n the same way as the derivation of the back-
propagation algorithm.

For distinguishing between nodules and non-nodules, the
desired teacher 1mage contains a distribution representing
the likelihood of being a nodule. That 1s, a teacher 1mage for
nodules should contain a certain distribution, the peak of
which 1s located at the center of the nodule; and that for
non-nodules should contain zero. As the distance increases
from the center of the nodule, the likelihood of being a
nodule decreases; therefore, a two-dimensional (Gaussian
function with standard deviation o, at the center of the
nodule 1s used as the distribution representing the likelihood
of being a nodule, where 0-may be determined as a measure
representing the size of a nodule.

FIG. 1 illustrates the traming for one nodule 1mage. First,
the 1mage displaying a nodule at the center 1s divided into a
large number of overlapping sub-regions. The consecutively
adjacent sub-regions i1n the input image differ just by a
pixel’s separation distance. In other words, a sub-region
overlaps with and differs by one pixel’s separation distance
from four adjacent sub-regions. The size of the sub-region
corresponds to that of the local window R, of the MTANN.

All pixel values 1n each of the sub-regions are input to the
MTANN. However, only one pixel in the teacher 1image 1s
selected at the location in proportion to the displacement (or

shift) of the central pixel in the input sub-region, and is
entered 1nto the output unit 1n the MTANN as the teacher
value. By presenting each of the input sub-regions together
with each of the teacher values, the MTANN 1s trained. The
training set {I}, {T} for each nodule or non-nodule image
may be represented by the following equations:

{151: Iszp =t I.sp: =t ISNT}={15(X_£:y_f)|iJ ERT}
{Tslﬂ TSE!‘ SR T.sp! SR TSNT}={Ts(x_i?y_j)
i,j eR+} (Eqn. 4: Training Set)
where:

s 1s the image (case) number,

R 18 the tramning region,

N 1s the number of pixels in R, and

T.(x, y) 1s the teacher image.

Thus, a large number of 1nput sub-regions overlap each
other, and the corresponding teacher values in the teacher
image are used for training. The MTANN 1s trained with
massive training samples to achieve high generalization
ability.

The MTANN 1s robust against variation in patterns,
especially shifting of patterns, because it 1s trained with
numerous shifted patterns. The MTANN learns the essential
features for nodules without the dependence on shifted
locations.

After tramning, the MTANN outputs the highest value
when a nodule 1s located at the center of the input region of
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the MTANN, a lower value as the distance increases from
the center, and zero when the input region 1s a non-nodule.

The preferred embodiment of the output filter forms a
score 1n the following manner.

When an original image for the s case is entered into the
trained MTANN for testing, the output image for the s case
1s obtained by scanning of the original image with the
frained MTANN. A nodule 1s distinguished from a non-
nodule by a score S defined from the output 1mage of the

trained MTANN:

(Eqn. 3: Score of output image)

So= ), feloix )X filxy)

x,YeRE

where:
S. is the score for the s case,
R,. 1s the region for evaluation,

f.(x, y) is the output image for the s” case,
X 18 arithmetic multiplication, and

o (0; X, ¥ ) 1s a two-dimensional Gaussian function with
standard deviation O.

This score represents the weighted sum of the estimate for
the likelihood of being a nodule near the center, 1.€., a higher
score 1ndicates a nodule, and a lower score indicates a
non-nodule. Other methods for determining a score can be
employed. For example, the score may be calculated by
averaging pixel values 1n the region R, 1n the output 1mage
of the MTANN.

Results of a study for a particular application of the
MTANN are presented as follows.

The database used 1n this experiment consisted of 1057

LDCT images (512x512 pixels) obtained from 38 scans,
which included 50 nodules.

Ten nodules and ten false positives were used as the
training cases for the MTANN. Examples of the training
cases with the region of 40 by 40 pixels are shown 1n FIG.

2. Typical nodules included a pure ground-glass opacity
(pure GGO; 40% of nodules in the database), solid nodule

(32%), and mixed GGO (28%), and also dominant false
positives such as medium-size vessels and peripheral vessels
from the false positives reported by the known CAD
scheme.

The majority of false positives can be classified as periph-
eral vessels (40% of false positives), medium-size vessels
(30%), soft-tissue opacities including the opacities caused
by the partial volume etfect between the lung region and the
diaphragm (20%), and part of normal structures in the
mediastinum, including large vessels in the hilum (10%).

A three-layer ANN structure may be employed in the
modified multilayer ANN, because any continuous mapping
can be approximately realized by three-layer ANNs (Refs.
39, 40).

The local window of the MTANN may be selected to be
nine by nine pixels. The number of units 1n the hidden layer
was 25 initially. Thus, the numbers of units 1n the input,
hidden, and output layers were 81, 25, and 1, respectively.

The standard deviation of the two-dimensional Gaussian
function was determined as 5.0 pixels, which corresponds to
the average elfective diameter of the nodules.

The matrix size of the training region was select to be 19
by 19 pixels.

The mput CT 1mages were normalized such that —1000
HU (Hounsfield units) is zero and 1000 HU is one.

With the parameters above, the training of the MTANN
was performed on 500,000 epochs. One epoch means one
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training run for one training set. The training converged with
a mean absolute error of 11.2%. The training took 29.8 hours
on a PC-based workstation (CPU: Pentium IV, 1.7 GHz),
and the time for applying the trained MTANN to nodule
candidates was negligibly small.

After training, a method for designing an ANN (see Refs.
43-45) was applied to the trained MTANN.

The redundant units in the hidden layer were removed on
the basis of the effect of removing each unit on the training
error, and then the MTANN was retrained to recover the
potenfial loss due to the removal. Each process was per-
formed alternately, resulting 1n a reduced architecture 1n
which redundant units were removed. As a result, the
optimal number of units 1n the hidden layer was determined
as 22 units.

The results of applying the trained MTANN to nodule
candidates in training cases, which corresponds to a consis-
tency test, are shown 1n FIG. 3. Before applying the trained
MTANN, regions outside the lung regions reported by the
lung segmentation algorithm of a known scheme for lung
nodule detection (Refs. 13—16) were set to —1000 HU. The
nodules in the output image of the MTANN are represented
by light distributions near the center, whereas the output
images for false positives (non-nodules) are almost dark.

It 1s apparent that the distinction between nodules and
non-nodules in the output images of the MTANN 1s superior
to that 1n the original images. Therefore, the MTANN learns
important features related to the input images and the
teacher 1mages.

The trained MTANN was applied to nodule candidates 1n
all of the 1068 non-training test cases for a validation test.
The execution time was very short: only 1.4 seconds for
1000 nodule candidates.

The results for non-training cases in the validation test are
shown 1n FIGS. 4 and 5. In the output image of the MTANN
for nodules, the nodules are represented by light distribu-
tions. The output 1images for peripheral vessels and medium-
size vessels are almost dark, as shown 1n FIG. 4. Because
70% of false positives are peripheral and medium-size
vessels, 1t 15 possible to reduce the large number of false
positives by using the output images of the MTANN.

However, the output images for part of a normal structure
indicate relatively lighter small regions. In addition, the
output 1mages for soft-tissue opacities are almost light.
Thus, the trained MTANN was not effective for these false
positives that included part of normal structures and soft-
fissue opacities.

The scoring method was applied to the output images of
the MTANN 1n a validation test, in which 0=4.0 by trial and
eITOT.

FIG. 6 shows the distribution of the scores for 40 nodules
and 1068 non-nodules, which are different from training
cases of ten nodules and ten non-nodules. Although the two
distributions overlap, it 1s possible to distinguish some
non-nodules from nodules.

The performance of the MTANN 1s evaluated by free-
response receiver operating characteristic (FROC) curves
(see Ref. 46), which are generated by plotting of the nodule
detection sensitivity as a function of the number of false
positives per section, as shown in FIG. 7. A 66% (706/1068)

reduction of false positives (non-nodules) was achieved

without reducing the number of true positives: a sensitivity
of 100% (40/40) with 0.35 false positives per section was
achieved.
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The number of false positives per section FPS 1s defined
by:

FPS = REP (Eqn. 6: FPS)
TFP— FPT
SECx( )
TFP
where:

REFP 1s the number of remaining false positives after
application of a false-positive reduction method,

SEC 1s the number of sections,

TFP 1s the total number of false positives reported by the
CAD scheme,

X 1s arithmetic multiplication, and

FPT 1s the number of false positives used as training
Cases.

The false-positive rate was improved from 1.02 to 0.35
false positives per section, while maintaining sensitivity.
This constitutes a significant 1improvement in the nodule
detection scheme 1n CT because all false positives 1n the
validation test are considered as “very difficult” false posi-
fives. Moreover, the nodules used in this study are consid-
ered as “very difficult” nodules because 38 cancers “missed”
by radiologists are included.

In order to gain 1nsight into such a high performance of
the MTANN, the effect of the number of training sub-
regions on performance was investigated, evaluating perfor-
mance using receiver operating characteristic (ROC) analy-
sis (Refs. 47, 48). FIG. 8 shows the ROC curves and the
areas under the ROC curves (Az value) (Ref. 49). The results
show that the performance of the MTANN decreased as the
number of training sub-regions decreased. However, there
was no increase 1n Az value when the size of the training
sub-region was 1ncreased from 19x19 to 25x25. This 1s the
reason for employing 19x19 as the size of the training
sub-region. This result leads to the conclusion that the
reason for the high performance of the MTANN i1s the large
number of training samples used.

The performance 1n the case of a small number of training,
sub-regions was not caused by insufilicient training, because

the mean absolute error of the training set was very small,
as shown 1 FIG. 8(b).

Table 1 shows the comparison of the MTANN and the
conventional ANN 1n terms of the total number of training
samples (sub-regions) and the total number of iterations
used for training with ten nodules and ten non-nodules.

TABLE 1
MTANN (Invention) Conventional ANN

Nodule Non-nodule Nodule Non-nodule
Number of 10 10 10 10
training cases
Number of sub- 19 x 19 19 x 19 1 1
regions per
case
Number of 50x 10° 5.0 x 10° 1.0 x 10* 1.0 x 10*
training epochs
Total number 1.8 x 10° 1.8 x 10° 1.0 x 10° 1.0 x 10°

of iterations

Because a large number of sub-regions that overlapped
cach other were used for training in the MTANN, the total
number of training samples of the MTANN was far greater
than that of the conventional ANN (Ref. 50), which included
the shift-invariant neural network and the convolution neural
networks (Refs. 51-56).

In general, the greater the number of training samples, the
orecater the number of iterations required to perform
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adequate training. Therefore, a large number of epochs are
required for training of the MTANN. In Table 1, the total

numbers (20x19x19 and 2x1.8x10°) of samples (sub-
regions) and iterations of the MTANN are far greater than
those (20 and 2x10°) of the conventional ANN, which
indicates clearly the massive training required by the
MTANN. These 3.6 billion iterations of massive training
lead to the high performance of the MTANN, whereas the
conventional ANN can be trained with only 200,000
iterations, and yielded an Az value of 0.53.

This large number of 1terations did not cause overtraining,
because Az values obtained with test cases, representing the
generalization ability, did not decrease as the number of
training epochs increased, while the error of the training
cases decreased, as shown in FIG. 9(a).

The effect on performance of “thinning out” training
sub-regions was 1nvestigated. Here, “thinning out” denotes
“sparse sampling” of sub-regions, as compared with sub-
regions that are consecutively maximally overlapping
(shifted by the minimal separation distance of immediately
adjacent pixels). FIG. 9(b) shows how nodule detection
sensitivity (true positives) as a function of false positives,

improves with the number of sub-regions. Reference 1is
made to FIGS. 9(c) and 9(d) which show shaded object

pixels, 1n the 3x3 pixel sub-regions used for training.
Using the 100 sub-regions 1n the pattern shown in FIG.

9(c) yielded an Az=0.86, and using the nine sub-regions in
the pattern shown in FIG. 9(d) yielded an Az=0.81. FIG. 9(b)

presents these two curves with the Az=0.92 found when
using 361 maximally overlapping consecutive sub-regions,
previously presented in FIG. 8(a). Thus, it may be concluded
that efficient training can be performed using thinned out
(sparsely sampled) sub-regions in the training region.
Thus, the mvention provides a novel pattern recognition

technique based on an artificial neural network, which may
be called a massive training artificial neural network

(MTANN), especially useful for reduction of false positives
in computerized detection of lung nodules 1 low-dose CT
images. Results demonstrate that the MTANN reduces false
positives while maintaining sensitivity.

The MTANN and the Multi-MTANN are particularly
useful for improving the specificity (reducing false
positives) of a computer aided diagnosis (CAD) scheme for
lung nodule detection, while maintaining sensitivity (true
positives). To improve sensitivity, the MTANN may be
applied to the 1nitial step of a CAD scheme for detection of
nodules.

Briefly, the MTANN 1s trained to distinguish between
typical nodules and typical non-nodules (normal tissues and
structures). The trained MTANN is then applied to a medical
image such as a CT image (section). Gaussian filtering is
performed on the trained MTANN’s output image (or map),
to arrive at a score that 1s compared to a threshold to arrive
at a decision.

A multiple gray-level-thresholding technique initially
identified 20,743 nodule candidates in 1057 CT sections

with a sensitivity of 86% (43/50). An MTANN that had been
trained to distinguish between nodules and medium-size
vessels was applied to 1057 original CT 1mages. Then
Gaussian filtering and thresholding together with removal of
small and large region were applied to the output 1images of
the trained MTANN. Results showed that 14,267 nodule
candidates including all 50 nodules were 1dentified: a sen-
sitivity of 100% (50/50) with 13.5 false positives per
section, was achieved. Therefore, the sensitivity of a known
CAD scheme was improved from 86% to 100%, while the
number of nodule candidates is reduced from 20,743 (19.6
false positives per section) to 14,267 (13.5 false positives
per section).
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It has thus been demonstrated that the inventive MTANN
1s able to improve the sensitivity of a CAD scheme for lung
nodule detection. Therefore, both the sensitivity (true posi-
tive detection) and the specificity (false positive reduction)
of CAD schemes are improved by use of a combination of
the MTANN for nodule candidate detection and a first level
of distinguishing between nodules and non-nodules, and the
Multi-MTANN {for an enhanced level of distinguishing
between nodules and non-nodules.

The 1nventive MTANN can handle three-dimensional
volume data by increasing the numbers of 1nput units and
hidden units. Thus, the MTANN 1s applicable to new
modalities such as multi-slice CT and cone-beam CT for
computerized detection of lung nodules.

The inventive MTANN 1s also to perform many different
tasks for distinction, classification, segmentation, and detec-
fion of normal regions and/or lesions in various CAD
schemes 1n medical 1images, such as detection and classifi-
cation of lung nodules 1n chest radiography and CT; detec-
fion and classification of clustered microcalcifications and
masses 1n mammography, ultrasonography, and magnetic
resonance imaging (MRI); detection and classification of
polyps 1in CT colonography; and detection and classification
of skeletal lesions in bone radiography.

Another mventive embodiment 1s now described: The
multiple massive training artificial neural network (Multi-
MTANN) includes plural units of the MTANN described
above.

A single MTANN 1s effective for distinguishing between
nodules and peripheral and medium-size vessels. However,
other non-nodules, such as large vessels in the hilum,
soft-tissue opacities caused by the diaphragm or the heart,
parts of normal structures, and some other abnormal
opacities, prove more problematic. Compared to the Multi-
MTANN, 1t 1s difficult for a single MTANN to distinguish
between nodules and various such types of non-nodules
because the capability of a single MTANN 1s limited com-
pared to the Multi-MTANN.

In order to distinguish between nodules and various types
of non-nodules, the Multi-MTANN extends the capability of
a single MTANN. The architecture of an exemplary Multi-
MTANN 1is shown in FIG. 10.

The 1llustrated exemplary Multi-MTANN includes plural
(here, N) MTANNS arranged in parallel in an MTANN array
1000. In a preferred embodiment, each MTANN 1s trained
by using a different type of normal anatomical structure
(sometimes referred to herein a non-lesion or a non-nodule),
but with the same abnormality (lesion or nodule). Each
MTANN acts as an expert for distinguishing between abnor-
malities (nodules) and its specific type of normal anatomical
structure (non-nodule). For example, a first MTANN may be
trained to distinguish nodules from medium-size vessels; a
second MTANN may be trained to distinguish nodules from
soft-tissue opacities caused by the diaphragm; and so on.
Various normal structures that may be distinguished include:

larege vessels 1n the hilum,

large vessels with opacities,

medium-sized vessels,

small vessels,

solt-tissue opacities caused by a heart,
solt-tissue opacities caused by a diaphragm,

solt-tissue opacities caused by a partial volume effect
between peripheral vessels and the diaphragm,

abnormal opacities,
focal infiltrative opacities,
and other normal anatomical structures.
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At the output of the MTANNS are respective {filters 1 a
filter array 1020 that perform a scoring function on the

likelihood distribution maps (output images) that are pro-
vided by the MTANNs. The f{ilters in filter array 1020

correspond generally to MTANN filter 120 (FIG. 1(a)). In a
preferred embodiment, the same scoring method may be
applied to the output of each MTANN.

At the output of the filter/scoring element array 1020 1s a
threshold element array 1022 whose individual elements
correspond generally to threshold element 122 (FIG. 1(a)).
Thresholding of the score for each MTANN 1is performed to

distinguish between a nodule and the type of non-nodule that
1s specific to that MTANN. The threshold elements in array
1022 arrive at N respective decisions concerning the pres-
ence of an abnormality.

The performance of the N MTANNSs 1s then merged or
integrated, for example, by a logical AND operation, shown
in FIG. 10 by a logical AND operator 1024. Because each
MTANN expertly eliminates a specific respective type of
non-nodule with which that particular MTANN 1s trained,
the multi-MTANN elimimnates a largcer number of false
positives than does any single MTANN. The operation of the

logical AND element depends on the training of the various
MTANN:S.

The Multi-MTANN may be trained in the following
manner. In a preferred embodiment, each MTANN 1s trained
independently by a same abnormality (nodule) but with
different normal structures (non-nodules).

First, the false positives (non-nodules) reported by the
CAD scheme for lung nodule detection 1n CT are classified
into a number of groups. The number of groups may be
determined by the number of obviously different kinds of
false positives.

In a preferred embodiment, typical non-nodules 1in each
group are selected as training cases for a particular respec-
tive MTANN, whereas typical nodules are selected as train-
ing cases for all MTANNSs. The original 1mages of nodule
candidates are used as the input images for training. The
teacher 1image 1s designed to contain the distribution for the
likelihood of being a nodule, 1.e., the teacher 1mage for
nodules contains a two-dimensional Gaussian distribution

with standard deviation o,; and that for non-nodules con-
tains zero (-1000 HU (Hounsfield units)).

Each MTANN i1s trained by a modified back-propagation
algorithm with training cases. Then, the input images and the
desired teacher image are used to train each MTANN 1n the
same way as a single MTANN 1s trained. The MTANN acts
as an expert for the specific type of non-nodules after
fraining.

The outputs of the MTANNs may be scored as follows.
The output from each trained MTANN 1s scored 1ndepen-
dently. The score S, | for the n” trained MTANN is defined

dS.

(Eqn. 7: Score of output images)

Sn,s — Z fG(G-n;xay)xfn,s(-xa y)

X, YERE

where:

R,. 1s the region for evaluation,

£ (X, y) is s” output image (case) of the n”* MTANN,
X 15 arithmetic multiplication, and

Jt(0,; X, y) is a two-dimensional Gaussian function with
standard deviation o, .

The parameter o, may be determined by the output

images of the trained MTANN with training cases. Distin-

ouishing between nodules and the specific type of non-
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nodules 1s performed by thresholding of the score with a
threshold 0, for the n-th trained MTANN.

The distinctions of the expert MTANNSs are combined by
use of a logical AND operation such that each of the trained
MTANNs maintains the detection of all nodules, but
removes some of the specific type of non-nodules, and thus
various types of non-nodules can be eliminated.

The 1nvention envisions that the logical AND function
may be performed 1n at least two ways. First, a logical AND
combiner may provide an indication of an abnormality
(lesion or nodule), only if all the individual MTANNS
indicate an abnormality. Alternatively, the logical AND

combiner may provide an indication of no abnormality (no
lesion or no nodule), only if all the individual MTANNS

indicate no abnormality.

The first embodiment of the logical AND combiner, in
which the AND function indicates an abnormality only when
all MTANNSs indicate an abnormality, 1s preferred 1n most

circumstances. However, this preference depends on the
training of the individual MTANNS: the first embodiment 1s

preferred when the MTANNSs are trained with different
non-lesions but with the same lesions. However, when the

MTANNSs are trained with different lesions but with the
same non-lesions, the alternative realization of the AND

function 1s appropriate.

Usually, the wvariation among abnormalities (lesions,
nodules) 1s small, and the variation among normal structures
1s large, so that the first embodiment 1s generally preferred.
However, 1n many applications, such as when the abnor-
malities are interstitial opacities, the alternative embodiment
1s preferred. The choice of implementations of the AND
function 1s based on the anatomical structures mmvolved and

the corresponding MTANN training.
As an alternative to the embodiment shown 1 FIG. 10, 1t

1s possible to form a “merged 1image” by adding all the
individual MTANNs’ 1mages, and then apply scoring/
filtering and thresholding to the single merged i1mage.
However, the performance of the FIG. 10 embodiment is
superior to that of the alternative embodiment. If the per-
formances are combined by a linear operation such as pixel
addition, performance 1s not as high. An 1mportant advan-
tage of the FIG. 10 embodiment 1s to combine the different
performances of the MTANNSs by thresholding with diifer-
ent threshold values tailored to each performance.

Results of a study for a particular application of the
Multi-MTANN are presented as follows.

The false positives (non-nodules) reported by a known
CAD scheme were classified into ten groups, and thus the
Multi-MTANN employed ten MTANNSs. Ten nodules and
ten non-nodules were used as the training cases for each
MTANN. Therefore, ten nodules and 100 non-nodules were
used for training the Multi-MTANN.

Examples of the training cases 1 40 by 40 pixel regions
are shown in FIGS. 11 and 12(a). Non-nodules for MTANN
No. 1 to No. § ranged from medium-size vessels to small
peripheral vessels. Non-nodules for MTANN No. 6 to No.
10 were large vessels 1n the hilum, relatively larger-size
vessels with some opacities, soft-tissue opacities caused by
the partial volume effect between peripheral vessels and the
diaphragm, soft-tissue opacities caused by the diaphragm or
the heart, and some abnormal opacities (focal infiltrative
opacities), respectively. All parameters of the multi-
MTANN were the same as the parameters of the single
MTANN.

The training of each MTANN was performed on 500,000
epochs. The trainings converged with a mean absolute error
between 6.9% and 14.7%. Each of the trainings took 29.8
hours on a PC-based workstation (CPU: Pentium IV 1.7
GHz).
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The results of applying each of the trained MTANNS to
nodule candidates in training cases, which corresponds to a
consistency test, are shown in FIGS. 11 and 12(b). The
nodules in the output images of the MTANNSs are repre-
sented by light distributions at the center, whereas the output
images for false positives (non-nodules) are relatively dark.

The trained multi-MTANN was applied to nodule candi-
dates 1n all of 978 non-training test cases, which were
different from training cases of ten nodules and 100 non-
nodules. The results for non-training cases 1n a validation
test are shown 1n FIGS. 13 and 14(b). The output images of
MTANNS for nodules are represented by light distributions.
The output 1mages for false positives are relatively dark
around the center, as shown in FIG. 14b). The output
images for large vessels in the hilum (sixth row), soft-tissue
opacities (ninth row), and abnormal opacities (tenth row) are

also dark, whereas the single MTANN trained for vessels
(MTANN No. 1 to No. 5) were not effective for these false

posiItives.
The scoring method was applied to the output images of

the trained MTANNSs 1n the validation test, where o, was
empirically determined as 0.5 to 5.5 by use of the training
cases. The performance of the MTANN was evaluated by
FROC curves, as shown 1 FIG. 15. The FROC curve
expresses the nodule detection sensitivity as a function of
the number of false positives per section at a speciiic
operating point, which 1s determined by the threshold O, .
The performance of the MTANNs varied considerably,
because the FROC curves were obtained with all non-
training false positives (non-nodules). The MTANN trained
with dominant false positives such as medium-size and
peripheral vessels seems to have a better overall perfor-

mance for all false positives (non-nodules).
FROC curves of the Multi-MTANNS obtained with vari-

ous number of MTANNSs are shown 1n FIG. 16. When the
Multi-MTANN employed ten MTANNSs, 91% (893/978) of
false positives (non-nodules) were removed without a reduc-
tion 1n the number of true positives: a sensitivity of 100%
(40/40) with 0.08 false positives per section was achieved.
FIG. 17 shows the number of remaining false positives of
the multi-MTANN at the sensitivity of 100% obtained with
various number of MTANNSs. Theretfore, the false-positive
rate was 1mproved from 1.02 to 0.08 false positives per
section while maintaining sensitivity.

Thus, the Multi-MTANN reduced a large number of false
positives compared to a single MTANN, and the Multi-
MTANN 1s useful for reducing false positives in CAD
schemes for lung nodule detection 1n low-dose CT.

MTANN can detect normal structures in addition to
detecting abnormalities (lesions, nodules). FIG. 18(a) shows
original 1images of vessels (normal structures) input to an
MTANN that had been trained on mput images containing
medium-size vessels (normal structures) in vertical and
horizontal directions. FIG. 18(b) shows the output images of
the trained MTANN, demonstrating that the MTANN can
cliectively detect medium-size vessels 1n the vertical and the
horizontal directions. MTANNS trained in this manner are of
particular use as components of a multi-MTANN.

The 1nventive system conveniently may be implemented
using a conventional general purpose computer or micro-
processor programmed according to the teachings of the
present invention, as will be apparent to those skilled 1n the
computer art. Appropriate software can readily be prepared
by programmers of ordinary skill based on the teachings of
the present disclosure, as will be apparent to those skilled in
the software art.

In a particular preferred embodiment, the artificial neural
network was programmed 1n software using the C program-
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ming language on a Linux based machine. Of course, other
suitable programming languages operating with other avail-
able operating systems may be chosen to implement the
invention.

A general-purpose computer may implement the method
of the present invention, wherein the computer housing
houses a motherboard which contains a CPU (central pro-
cessing unit), memory such as DRAM (dynamic random
access memory), ROM (read-only memory), EPROM
(erasable programmable read-only memory), EEPROM

(clectrically erasable programmable read-only memory),
SRAM (static random access memory), SDRAM
(synchronous dynamic random access memory), and Flash
RAM (random access memory), and other optical special
purpose logic devices such as ASICs (application-specific
integrated circuits) or configurable logic devices such GAL
(generic array logic) and reprogrammable FPGAs (field
programmable gate arrays ).

The computer may also include plural input devices, (e.g.,
keyboard and mouse), and a display card for controlling a
monitor. Additionally, the computer may include a floppy
disk drive; other removable media devices (e.g. compact
disc, tape, and removable magneto-optical media); and a
hard disk or other fixed high density media drives, connected
using an appropriate device bus such as a SCSI (small
computer system interface) bus, an Enhanced IDE
(integrated drive electronics) bus, or an Ultra DMA (direct
memory access) bus. The computer may also include a
compact disc reader, a compact disc reader/writer unit, or a
compact disc jukebox, which may be connected to the same
device bus or to another device bus.

As stated above, the system 1ncludes at least one computer
readable medium. Examples of computer readable media
include compact discs, hard disks, floppy disks, tape,
magneto-optical disks, PROMs (¢.g., EPROM, EEPROM,
Flash EPROM), DRAM, SRAM, SDRAM, etc. Stored on
any one or on a combination of computer readable media,
the present 1nvention includes software for controlling both
the hardware of the computer and for enabling the computer
to interact with a human user. Such software may include,
but 1s not limited to, device drivers, operating systems and
user applications, such as development tools.

Such computer readable media further includes the com-
puter program product of the present invention for perform-
ing the mventive method herein disclosed. The computer
code devices of the present invention can be any interpreted
or executable code mechanism, including but not limited to,
scripts, interpreters, dynamic link libraries, Java classes, and
complete executable programs.

Moreover, parts of the processing of the present invention
may be distributed for better performance, reliability, and/or
cost. For example, an outline or image may be selected on
a first computer and sent to a second computer for remote
diagnosis.

The 1mnvention may also be implemented by the prepara-
tion of application specific integrated circuits (ASICs) or by
interconnecting an appropriate network of conventional
component circuits, as will be readily apparent to those
skilled 1n the art.

The 1nvention 1s embodied i1n trained artificial neural
networks, 1n arrangements for training such artificial neural
networks, and 1 systems including both the network portion
and the training portions. Of course, the 1nvention provides
methods of training and methods of execution. Moreover,
the 1mmvention provides computer program products storing
program 1nstructions for execution on a computer system,
which when executed by the computer system, cause the
computer system to perform the methods described herein.

10

15

20

25

30

35

40

45

50

55

60

65

26

The mvention may be applied to virtually any field 1n
which a target pattern must be distinguished from other
patterns in 1mage(s). The MTANN distinguishes target
objects (or areas) from others by using pattern (feature)
differences: artificial neural networks, trained as described
above, can detect target objects (or areas) that humans might
intuitively recognize at a glance. For example, the mnvention
may be applied to these fields, in addition to the medical
imaging application that 1s described above:

Detection of other vehicles, white line lane markers,
traffic signals, pedestrians, and other obstacles 1n road
1mages,

De

De

Detection of faulty wiring in semiconductor integrated
circuit pattern images,

ection of eyes, mouths, and noses 1n facial 1images,

ection of fingerprints 1n “dust” 1mages,

Detection of mechanical parts in robotic eye 1mages,

Detection of guns, knives, box cutters, or other weapons
or prohibited 1tems 1n X-ray images of baggage,

Detection of airplane shadows, submarine shadows,
schools of fish, and other objects, 1n radar or sonar
Images,

Detection of missiles, missile launchers, tanks, personnel
carriers, or other potential military targets, in military
images,

Detection of weather pattern structures such as rain

clouds, thunderstorms, incipient tornadoes or
hurricanes, and the like, 1n satellite and radar 1mages,

Detection of areas of vegetation from satellite or high-
altitude aircraft 1mages,

Detection of patterns 1n woven fabrics, for example, using,
texture analysis,

Detection of seismic or geologic patterns, for use 1n o1l or
mineral prospecting,

Detection of stars, nebulae, galaxies, and other cosmic
structures 1n telescope 1mages,

And so forth.

The various applications of detection, exemplified 1n the
list above, can be succeeded by a distinction of one speciiic
target structure from another specific structure, once they
have been detected. For example, after a fingerprint is
detected 1n a “dust” 1mage, the detected fingerprint can be
compared to suspects’ fingerprints to verity or disprove the
identify of the person leaving the detected fingerprint.

More generally, the inventive MTANN can identify target
objects (or areas) in images, if there are specific patterns (or
features) that represent those objects or areas. The patterns
or features may include:

texture,
average gray level,

spatial frequency,

orientation,

scale,

shape,

and so forth.
Thus, it 1s seen that the functionality and applicability of the
iventive MTANN extends far beyond analysis of medical
1mages.

Numerous modifications and variations of the present
invention are possible 1n light of the above teachings. For
example, the invention may be applied to 1images other than

low-dose CT lung images. Further, the particular technique
of training the artificial neural network, the particular archi-
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tecture of the artificial neural network, the particular filtering
of the output of the artificial neural network, the particular
likelihood distribution used in a training teacher 1image, and
the particular training medical 1mages, may be varied with-
out departing from the scope of the invention. Of course, the
particular hardware or software i1mplementation of the
invention may be varied while still remaining within the
scope of the present invention. It 1s therefore to be under-
stood that within the scope of the appended claims and their
equivalents, the mnvention may be practiced otherwise than
as speciiically described herein.

What 1s claimed as new and desired to be secured by
Letters Patent of the United States 1s:

1. A method of training an artificial neural network
including network parameters that govern how the artificial
neural network operates the method comprising:

receiving at least a training 1image including plural train-
Ing 1image pixels;

receiving at least a likelithood distribution map as a
teacher 1mage, the teacher image including plural
teacher 1mage pixels each having a pixel value 1ndi-
cating likelihood that a respective training image pixel
1s part of a target structure;

moving a local window across plural sub-regions of the
fraining 1mage to obtain respective sub-region pixel
sets,

inputting the sub-region pixel sets to the artificial neural
network so that the artificial neural network provides
output pixel values;

comparing the output pixel values to corresponding
teacher 1image pixel values to determine an error; and

training the network parameters of the artificial neural
network to reduce the error.
2. The method of claim 1, wherein:

the training 1mage receiving step includes receiving at
least a training medical 1mage; and

the local window moving step 1includes moving the local
window across the plural sub-regions of the training
medical 1mage to obtain the respective sub-region pixel
sets.
3. The method of claim 2, wherein the step of receiving
at least a training medical image 1ncludes:

receiving one or more ftraining medical 1mages that
include an abnormality and a normal anatomical struc-
ture.

4. The method of claim 3, further comprising:

coordinating the step of receiving at least an abnormality
likelihood distribution map and the step of receiving at
least a training medical 1mage, so that:

(1) when the training medical image includes an
abnormality, the teacher 1image pixel values represent
likelihoods that corresponding training medical 1mage
pixels are part of an abnormality; and

(2) when the training medical image does not include an
abnormality, the teacher 1image pixel values represent
an absence of an abnormality at corresponding training
medical image pixel locations.

5. The method of claim 4, wherein, when the training

medical image 1mncludes an abnormality, the step of receiving
the teacher image includes:

receiving a Gaussian distribution map whose pixels have
respective pixel values that represent a likelihood that
the pixel 1s part of an abnormality.
6. The method of claim §, wherein the step of receiving
a Gaussian distribution map includes:
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receiving the Gaussian distribution map having a standard
deviation proportional to a size of the abnormality.
7. The method of claim 2, wherein the local window
moving step 1ncludes:

scanning the local window across consecutively physi-
cally overlapping sub-regions of the training medical
image by moving the local window a predetermined
distance for each sub-region.
8. The method of claim 7, wherein the local window
moving step includes:

scanning the local window across the consecutively
physically overlapping sub-regions of the training
medical 1mage by moving the local window a prede-
termined distance equal to a pixel pitch value 1n the
training medical 1mage, so that successive sub-regions
are oifset from each other by a separation distance of
adjacent pixels 1n the training medical 1image.
9. A method of detecting an abnormality in a medical
image by using an artificial neural network, the method
comprising;

training the artificial neural network using the method of
claim 2;

scanning a local window across consecutively physically
overlapping sub-regions of the medical image by mov-

ing the local window a predetermined distance for each
sub-region, so as to obtain respective sub-region pixel
sets;

inputting the sub-region pixel sets 1nto the artificial neural
network so that the artificial neural network provides,
corresponding to the sub-regions, respective output
pixel values that each represent a likelihood that
respective medical 1mage pixels are part of an
abnormality, the output pixel values collectively con-
stituting a likelihood distribution map; and

scoring the likelihood distribution map to detect the
abnormality.
10. An artificial neural network including network param-
eters that govern how the artificial neural network operates,
the artificial neural network being trained by the steps of:

receiving at least a training image including plural train-
Ing 1mage pixels;

receiving at least a likelihood distribution map as a
teacher 1mage, the teacher 1mage including plural
teacher 1mage pixels each having a pixel value 1ndi-
cating a likelihood that a respective training image
pixel 1s part of a target structure;

moving a local window across plural sub-regions of the
fraining 1mage to obtain respective sub-region pixel
sets;

inputting the sub-region pixel sets to the artificial neural
network so that the artificial neural network provides
output pixel values;

comparing the output pixel values to corresponding
teacher 1image pixel values to determine an error; and

training the network parameters of the artificial neural
network to reduce the error.
11. The artificial neural network of claim 10, wherein:

the training 1mage receiving step includes receiving at
least a training medical 1mage; and

the local window moving step includes moving the local
window across the plural sub-regions of the training
medical 1mage to obtain the respective sub-region pixel
Sets.
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12. The artificial neural network of claim 11, wherein the
step of recerving at least a training medical 1image 1ncludes:

receiving one or more ftraining medical 1mages that
include an abnormality and a normal anatomical struc-
ture.
13. The artificial neural network of claim 12, trained by
the additional steps of:

coordinating the step of receiving at least an abnormality
likelihood distribution map and the step of receiving at
least a training medical 1image, so that;

(1) when the training medical image includes an
abnormality, the teacher 1mage pixel values represent
likelihoods that corresponding training medical image
pixels are part of an abnormality; and

(2) when the training medical image does not include an
abnormality, the teacher image pixel values represent
an absence of an abnormality at corresponding training
medical image pixel locations.

14. The artificial neural network of claim 13, wherein,

when the training medical 1image includes an abnormality,
the step of receiving the teacher 1mage includes:

receiving a Gaussian distribution map whose pixels have
respective pixel values that represent a likelihood that
the pixel 1s part of an abnormality.
15. The artificial neural network of claim 14, wherein the
step of receiving a Gaussian distribution map includes:

receiving the Gaussian distribution map having a standard
deviation proportional to a size of the abnormality.
16. The artificial neural network of claim 11, wherein the
local window moving step mncludes:

scanning the local window across consecutively physi-
cally overlapping sub-regions of the training medical
image by moving the local window a predetermined
distance for each sub-region.
17. The artificial neural network of claim 16, wherein the
local window moving step includes:

scanning the local window across the consecutively
physically overlapping sub-regions of the training
medical 1mage by moving the local window a prede-
termined distance equal to a pixel pitch value in the
training medical 1mage, so that successive sub-regions
are oifset from each other by a separation distance of
adjacent pixels 1n the training medical 1image.

18. A computer program product storing program 1nstruc-
fions for execution on a computer system, which when
executed by the computer system, cause the computer sys-
tem to train an artificial neural network having network
parameters that govern how the artificial neural network
operates by performing the steps of:

receiving at least a training 1mage including plural train-
Ing 1mage pixels;
receiving at least a likelihood distribution map as a
teacher 1mage, the teacher image including plural
teacher 1mage pixels each having a pixel value indi-

cating a likelihood that a respective training image
pixel 1s part of a target structure;

moving a local window across plural sub-regions of the
fraining 1mage to obtain respective sub-region pixel
sets,

inputting the sub-region pixel sets to the artificial neural

network so that the artificial neural network provides
output pixel values;

comparing the output pixel values to corresponding
teacher 1image pixel values to determine an error; and

training the network parameters of the artificial neural
network to reduce the error.
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19. The computer program product of claim 18, wherein:

the training 1mage receiving step includes receiving at
least a training medical 1mage; and

the local window moving step includes moving the local
window a across the plural sub-regions of the training
medical 1mage to obtain the respective sub-region pixel
Sets.
20. The computer program product of claim 19, wherein
the step of receiving at least a training medical image
includes:

receiving one or more tramning medical 1mages that
include an abnormality and a normal anatomical struc-
ture.

21. The computer program product of claim 20 storing
further program 1instructions for execution on the computer
system, which when executed by the computer system,
cause the computer system to train an artificial neural
network having network parameters that govern how the
artificial neural network operates by performing the addi-
tional steps of:

coordinating the step of receiving at least an abnormality
likelihood distribution map and the step of receiving at
least a training medical 1image, so that;:

(1) when the training medical 1image includes an
abnormality, the teacher 1mage pixel values represent
likelihoods that corresponding training medical 1mage
pixels are part of an abnormality; and

(2) when the training medical image does not include an
abnormality, the teacher 1mage pixel values represent
an absence of an abnormality at corresponding training,
medical image pixel locations.

22. The computer program product of claim 21, wherein,

when the training medical 1image includes an abnormality,
the step of receiving the teacher 1mage includes:

receving a Gaussian distribution map whose pixels have
respective pixel values that represent a likelihood that

the pixel 1s part of an abnormality.
23. The computer program product of claim 22, wherein
the step of receiving a Gaussian distribution map includes:

receiving the Gaussian distribution map having a standard
deviation proportional to a size of the abnormality.
24. The computer program product of claim 19, wherein
the local window moving step includes:

scanning the local window across consecutively physi-
cally overlapping sub-regions of the training medical
image by moving the local window a predetermined
distance for each sub-region.
25. The computer program product of claim 24, wherein
the local window moving step includes:

scanning the local window across the consecutively
physically overlapping sub-regions of the training
medical 1mage by moving the local window a prede-
termined distance equal to a pixel pitch value in the
training medical 1image, so that successive sub-regions
are offset from each other by a separation distance of
adjacent pixels 1n the training medical 1image.
26. A method of detecting a target structure 1n an image
by using an artificial neural network, the method compris-
Ing:

scanning a local window across sub-regions of the image
by moving the local window for each sub-region, so as
to obtain respective sub-region pixel sets;

inputting the sub-region pixel sets to the artificial neural
network so that the artificial neural network provides,
corresponding to the sub-regions, respective output
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pixel values that represent likelihoods that respective
image pixels are part of a target structure, the output
pixel values collectively constituting a likelithood dis-
tribution map; and

scoring the likelihood distribution map to detect the target
structure.

27. The method of claim 26, wherein:
the 1mage 1s a medical 1mage;

the target structure 1s an abnormality in the medical
1mage;

the scanning step includes scanning the local window

across sub-regions of the medical 1mage;

the artificial neural network provides the respective output
pixel values that represent the likelihoods that the
respective medical 1image pixels are part of an abnor-
mality; and

the scoring step includes scoring the likelihood distribu-
fion map to detect the abnormality.
28. The method of claim 27, wherein the scanning step
includes:

scanning the local window across consecutively physi-
cally overlapping sub-regions of the medical 1mage by
moving the local window a predetermined distance for
cach sub-region, so as to obtain respective sub-region

pixel sets.
29. The method of claim 28, wherein:

the predetermined distance 1s a pixel pitch value in the
medical 1image, so that successive sub-regions are offset
from each other by a separation distance of adjacent
pixels 1n the medical image.

30. The method of claim 28, wherein the scoring step

mcludes:

filtering the output pixel values 1n the likelihood distri-
bution map.
31. The method of claim 30, further comprising:

comparing results of the filtering to at least a threshold

value to detect the abnormality.
32. The method of claim 30, wherein the filtering step
includes:

filtering the output pixel values with a Gaussian function.
33. The method of claim 28, wherein the artificial neural
network includes:

an output layer mcluding units having linear activation
functions.
34. An artificial neural network system, comprising;:

an artificial neural network configured to detect a target
structure 1n an 1mage;

a scanning mechanism configured to scan a local window
across sub-regions of the image by moving the local
window for each sub-region, so as to obtain respective
sub-region pixel sets:

an 1nputting mechanism configured to input the sub-
region pixel sets to the artificial neural network so that
the artificial neural network provides, corresponding to
the sub-regions, respective output pixel values that
represent likelithoods that respective 1mage pixels are
part of the target structure, the output pixel values

collectively constituting a likelihood distribution map;
and

a scoring mechanism configured to score the likelihood
distribution map to detect the target structure.
35. The artificial neural network system of claim 34,
wherein:

the 1mage 1s a medical image;

5

10

15

20

25

30

35

40

45

50

55

60

65

32

the target structure 1s an abnormality 1n the medical
image;

the mechanism for scanning includes means for scanning
the local window across sub-regions of the medical
Image;

the artificial neural network 1s configured to output the
respective output pixel values that represent the likeli-
hoods that the respective medical 1mage pixels are part
of an abnormality; and

the mechanism for scoring includes means for scoring the

likelihood distribution map to detect the abnormality.

36. The artificial neural network system of claim 385,
wherein the mechanism for scanning includes:

means for scanning the local window across consecu-
tively physically overlapping sub-regions of the medi-
cal image by moving the local window a predetermined
distance for each sub-region, so as to obtain respective
sub-region pixel sefts.
37. The artificial neural network system of claim 36,
wherein:

the predetermined distance 1s a pixel pitch value m the
medical image, so that successive sub-regions are offset
from each other by a separation distance of adjacent
pixels 1n the medical image.
38. The artificial neural network system of claim 36,
wherein the means for scoring includes:

a filter configured to filter the output pixel values in the
likelihood distribution map.

39. The artificial neural network system of claim 38,

further comprising:

a comparing mechanism for comparing results of the
means for filtering to at least a threshold value to detect
the abnormality.

40. The artificial neural network system of claim 38,
wherein the filter 1s configured to filter the output pixel
values with a Gaussian function.

41. The artificial neural network system of claim 36,
wherein the artificial neural network includes:

an output layer including units having linear activation

functions.

42. A computer program product storing program instruc-
fions for execution on a computer system, which when
executed by the computer system, cause the computer sys-
tem to detect a target structure in an 1mage by using an
artificial neural network by performing the steps of:

scanning a local window across sub-regions of the image
by moving the local window for each sub-region, so as
to obtain respective sub-region pixel sets;

inputting the sub-region pixel sets to the artificial neural
network so that the artificial neural network provides
corresponding to the sub-regions respective output
pixel values that represent likelihoods that respective
image pixels are part of a target structure, the output
pixel values collectively constituting a likelihood dis-
tribution map; and

scoring the likelihood distribution map to detect the target
structure.

43. The computer program product of claim 42, wherein:

the 1mage 1s a medical 1mage;

the target structure i1s an abnormality in the medical
image;

the scanning step includes scanning the local window
across sub-regions of the medical 1mage;

the artificial neural network provides the respective output
pixel values that represent the likelihoods that the
respective medical image pixels are part of an abnor-
mality; and
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the scoring step includes scoring the likelihood distribu-
fion map to detect the abnormality.
44. The computer program product of claim 43, wherein
the scanning step includes:

scanning the local window across consecutively physi-
cally overlapping sub-regions of the medical 1mage by
moving the local window a predetermined distance for
cach sub-region, so as to obtain respective sub-region
pixel sets.

45. The computer program product of claim 44, wherein:

the predetermined distance 1s a pixel pitch value in the
medical 1image, so that successive sub-regions are offset
from each other by a separation distance of adjacent
pixels 1n the medical image.

46. The computer program product of claim 44, wherein

the scoring step includes:

filtering the output pixel values 1n the likelihood distri-

bution map.

47. The computer program product of claim 46 storing
program 1nstructions for execution on the computer system,
which when executed by the computer system, cause the
computer system to detect a target structure in an 1image by
using an a arfificial neural network by performing the
additional steps of:

comparing results of the filtering to at least a threshold
value to detect the abnormality.
48. The computer program product of claim 46, wherein
the filtering step includes:

filtering the output pixel values with a Gaussian function.
49. The computer program product of claim 44, wherein
the artificial neural network includes:

an output layer mcluding units having linear activation
functions.

50. An apparatus for detecting a target structure in an

image, the apparatus comprising:

a network configured to receive sub-region pixel sets from
respective sub-regions of the 1image, and to operate on
the sub-region pixel sets so as to produce a likelihood
distribution map including output pixel values that
represent likelithoods that corresponding 1image pixels
arc part of the target structure.

51. The apparatus of claim 50, wherein:

the 1mage 1s a medical image;

the target structure 1s an abnormality in the medical
image; and

the network 1s configured to receive the sub-region pixel
sets from the respective sub-regions of the medical
image, and to operate on the sub-region pixel sets so as

to produce the likelihood distribution map including

the output pixel values that represent the likelihoods

that corresponding medical 1mage pixels are part of the

abnormality.
52. The apparatus of claim 51, comprising;:

a pixel set generation mechanism configured to apply to
the network sub-region pixel sets from respective con-
secutively physically overlapping sub-regions of the
medical image.

53. The apparatus of claim 52, wheremn the network

operates 1n accordance with network parameters, and the
apparatus further comprises:

a training portion configured to train the network param-

eters in accordance with (a) teacher image pixel values
that represent a likelithood distribution of pixels por-
traying a detected abnormality, and (b) a training period
likelihood distribution map that includes output pixels
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produced by the network operating on at least one
training medical image, the output pixels respectively
representing likelithoods that corresponding medical
image pixels are part of the abnormality.

54. The apparatus of claim 53, wherein:

the network 1s further configured to receive, during a
training period, sub-region pixel sets from respective
consecutively physically overlapping sub-regions of
the at least one training medical 1image, and to operate
in accordance with the network parameters on the
sub-region pixel sets so as to produce the training
period likelihood distribution map.

55. An apparatus for detecting an abnormality 1n a medi-

cal 1mage, the apparatus comprising:

first through N-th artificial neural networks constituting
respective apparatus formed 1n accordance with any of
claims 52, 53 or 54, N being an integer greater than 1,
that have been commonly trained on a same abnormal-
ity and on first through N-th mutually different normal
structures, the first through N-th artificial neural net-
works being configured to output first through N-th

respective 1ndications of whether a structure in the
medical image 1s an abnormality or a normal anatomi-
cal structure; and

a combiner that 1s configured to combine the first through
N-th indications to form a combined indication of
whether the structure 1n the medical 1mage 1s an abnor-
mality or a normal anatomical structure.

56. A method for detecting an abnormality 1n a medical

image, the method comprising:

tramning first through N-th artificial neural networks con-
stituting respective apparatus formed in accordance
with any of claims 52, 53 or 54, N being an integer
oreater than 1, on a same abnormality and on {first
through N-th mutually different normal an anatomaical
structures, the first through N-th artificial neural net-
works being configured to output first through N-th
respective 1ndications of whether the medical 1mage
includes an abnormality or a normal anatomical struc-
ture; and

combining the first through N-th indications to form a
combined indication of whether the medical image
includes an abnormality or a normal anatomaical struc-
fure.

57. The apparatus of any of claims 52, 53 or 54, wherein:

the network constitutes an artificial neural network.

58. The apparatus of claim 57, wherein the artificial neural

network includes:

an output layer including at least one unit having a linear
activation function.
59. The apparatus of either of claims 53 or 54, wherein the
likelihood distribution constitutes:

a Gaussian function centered about a center of a portrayal
of a detected abnormality.
60. The apparatus of claim 59, wherein:

a standard deviation of the Gaussian function varies with
a size of the portrayal of the detected abnormality.
61. The apparatus of claim 52, further comprising:

a filter configured to receive the likelihood distribution
map from the network and to provide a score whose
value indicates whether the medical image includes an
abnormality.

62. The apparatus of claim 52, wherein the pixel set

generation mechanism comprises:

a scanning mechanism configured to scan a local window
across an mput 1image by moving the local window a
predetermined distance for each sub-region.
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63. The apparatus of claim 62, wherein:
the predetermined distance 1s a pixel pitch value in the

Input 1mage, so that successive sub-regions are offset
from each other by a separation distance of adjacent
pixels 1n the mput 1mage.

64. A method for detecting a target structure 1n an 1mage,

the method comprising:

traming first through N-th artificial neural networks, N
being an integer greater than 1, on either (A) a same
target structure and {first through N-th mutually differ-
ent non-target structures, or (B) a same non-target
structure and first through N-th mutually different tar-
get structures, the first through N-th artificial neural
networks being configured to output first through N-th
respective mdications of whether the 1image includes a
target structure or a non-target structure; and

combining the first through N-th indications to form a
combined indication of whether the 1mage includes a

target structure or a non-target structure.
65. The method of claim 64, wherein:

the 1mage 1s a medical 1mage;

the target structure 1s an abnormality 1 the medical
lmage;
the non-target structures are normal anatomical structures;

the training step includes training the first through N-th
artificial neural networks on either (A) a same abnor-
mality and first through N-th mutually different normal
anatomical structures, or (B) a same normal anatomical
structure and first through N-th mutually different
abnormalities, the first through N-th artificial neural
networks being configured to output first through N-th
respective indications of whether the medical image
includes an abnormality or a normal anatomaical struc-
ture; and

the combining step includes combining the first through
N-th indications to form a combined indication of
whether the medical image includes an abnormality or
a normal anatomical structure.
66. The method of claim 65, wherein the training step
includes:

training first through N-th artificial neural networks on the
same abnormality and on the first through N-th mutu-
ally different normal anatomical structures.
67. The method of claim 66, wherein the combining step
includes:

providing a combined indication of an abnormality using

a logical AND combiner.
68. The method of claim 67, wherein the combining step
includes:

providing a combined indication of an abnormality, only
if all first through N-th respective indications indicate

an abnormality.
69. The method of claim 65, wherein:

the training step includes training first through N-th
artificial neural networks on the same normal anatomi-
cal structure and on the first through N-th mutually
different abnormalities; and

the combining step mncludes providing a combined 1ndi-
cation of a normal anatomical structure, only 1f all first
through N-th respective indications indicate a normal
anatomical structure.

70. The method of claim 65, wherein the trammg step
includes training the artificial neural networks using a nor-
mal anatomical structure include at least one from a group
including:
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large vessels 1n the hilum;

large vessels with opacities;

medium-sized vessels;

small vessels;

soft-tissue opacities caused by a heart;

soft-tissue opacities caused by a diaphragm;

soft-tissue opacities caused by a partial volume ¢
between peripheral vessels and the diaphragm;

abnormal opacities; and

focal infiltrative opacities.

71. A computer program product storing program instruc-
fions for execution on a computer system, which when
executed by the computer system, cause the computer sys-
tem to detect a target structure 1n an 1mage by performing the
steps of:

training first through N-th artificial neural networks, N
being an integer greater than 1, on either (A) a same
target structure and {first through N-th mutually differ-
ent non-target structures, or (B) a same non-target
structure and first through N-th mutually different tar-
get structures, the first through N-th artificial neural
networks being configured to output first through N-th
respective mdications of whether the 1image includes a
target structure or a non-target structure; and

combining the first through N-th indications to form a
combined in 1ndication of whether the 1mage 1ncludes
a target structure or a non-target structure.

72. The computer program product of claim 71, wherein:

the 1mage 1s a medical 1mage;

the target structure 1s an abnormality 1n the medical
image;

the non-target structures are normal anatomical structures;

the training step includes training the first through N-th
artificial neural networks on either (A) a same abnor-
mality and first through N-th mutually different normal
anatomical structures, or (B) a same normal anatomical
structure and first through N-th mutually different
abnormalities, the first through N-th artificial neural
networks being configured to output first through N-th
respective indications of whether the medical image
includes an abnormality or a normal anatomaical struc-
ture; and

the combining step includes combining the first through
N-th indications to form a combined indication of
whether the medical image includes an abnormality or
a normal anatomical structure.
73. The computer program product of claim 72, wherein
the training step includes:

first through N-th artificial neural networks on the same
abnormality and on the first through N-th mutually
different normal anatomical structures.
74. The computer program product of claim 73, wherein
the combining step 1ncludes:

providing a combined indication of an abnormality using
a logical AND combiner.
75. The computer program product of claim 74, wherein
the combining step includes:

providing a combined indication of an abnormality, only
if all first through N-th respective indications indicate

an abnormality.
76. The computer program product of claim 72, wherein:

the training step includes training first through N-th
artificial neural networks on the same normal anatomi-
cal structure and on the first through N-th mutually
different abnormalities; and
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the combining step includes providing a combined 1ndi-
cation of abnormal anatomical structure, only 1f all first
through N-th respective 1ndications indicate a normal
anatomical structure.

structures, or (B) a same normal anatomical structure
and first through N-th mutually different abnormalities,

33

the first through N-th artificial neural networks being
configured to output first through N-th respective 1ndi-
cations of whether the medical 1mage includes an
abnormality or a normal anatomical structure; and

77. _Tl_le computer program P_deUCt of (?1311_111 72, wherein 5 the combiner 1s configured to combine the first through
he training step includes training the artificial neural net- N-th indications to form the combined indication of
works using a norl}lal aqatomieal structure mclude at least whether the medical image includes an abnormality or
one from a group including: a normal anatomical structure.

large vessels 1n the hilum; 80. The apparatus of claim 79, wherein:

larege vessels with opacities; 19 the artificial neural networks have been trained on a same

medium-sized vessels; abnormality and first through N-th mutually different

small vessels; normal anatomical structures. | |
ot " by a heart 81. The apparatus of claim 80, wherein the combiner

SO f-,%ssue opac% %es cause(%- y a cj.:ar ; y - eludes:

soft-tissue opacities caused by a diaphragm, a logical AND combiner that provides a combined indi-

solt-tissue opacities caused by a partial volume effect cation of an abnormality.

between peripheral vessels and the diaphragm; 82. The apparatus of claim 81, wherein the combiner
abnormal opacities; and includes:

focal infiltrative opacities. »g  a logical AND combiner that provides a combined 1ndi-

78. An apparatus for detecting a target structure i1n an cation of an abnormality, only 1f all first through N-th
image, the apparatus comprising: respective mdications indicate an abnormality.

first through N-th artificial neural networks, N being an 83. The apparatus ot claim 79, herein:

integer greater than 1, that have been trained on either the artificial neural networks have been trained on a same
(A) a same target structure and first through N-th 25 normal anatomical structure and first through N-th
mutually different non-target structures, or (B) a same mutually different abnormalities; and

non-target structure and first through N-th mutually the combiner includes a logical AND combiner that
different target structures, the first through N-th artifi- provides a combined indication of a normal anatomical
cial neural networks being configured to output first structure, only if all first through N-th respective indi-
through N-th respective indications of whether the 30 cations indicate a normal anatomical structure.

image includes a target structure or a non-target struc- 84. The apparatus of claim 79, wherein the artificial neural
ture; and networks have been trained on a normal anatomaical structure

a combiner configured to combine the first through N-th include at least one from a group including:

indications to form a combined indication of whether large vessels in the hilum;

. . . 35 ) o
the medical 1mage includes a target structure or a large vessels with opacities;
non-target structure. i o o

79. The apparatus of claim 78, wherein: HHCCIUTI=S12CE VESSEIS,

the 1mage 1s a medical 1mage; small. vessels; . |

the target structure is an abnormality in the medical soft-t%ssue opac%t%es cause(%- by a h(j..:art,

image; soft-tissue opacities caused by a diaphragm;

the non-target structures are normal anatomical structures; soft-tissue opacities caused by a partial volume etfect

the first through N-th artificial neural networks have been between per%p‘heral vessels and the diaphragm,

trained on either (A) a same abnormality and first abnormal opacities; and
through N-th mutually different normal anatomical 45  focal infiltrative opacities.



	Front Page
	Drawings
	Specification
	Claims

