US006813734B1
12 United States Patent (10) Patent No.: US 6,813,734 B1
Bhardwaj 45) Date of Patent: Nov. 2, 2004
(54) METHOD AND APPARATUS FOR DATA FOREIGN PATENT DOCUMENTS
ALIGNMENT CA 2360951 8/2000
: : EP 0502544 9/1992
(75) Inventor: Sanjay Bhardwaj, Fremont, CA (US) - 1507340 5/1994
_ C EP 0752800 1/1997
(73) Assignee: Catamaran Communications /
Incorporated, Fremont, CA (US) OTHER PUBIICATIONS
(*) Notice: Subject to any disclaimer, the term of this English language abstract of EP0597349 published May 18,
patent 1s extended or adjusted under 35 1994,
U.S.C. 154(b) by 696 days. “Method and Apparatus for Byte Rotation™, U.S. Ser. No.
09/771,172, Filed on Jan. 26, 2001.
(21) Appl. No.: 09/771,173 _ ‘
* cited by examiner
(22) Filed: Jan. 26, 2001
Primary Fxaminer—Dieu-Minh Le
7
(51) Int. CL7 e, GO6F 11/00 (74) Attorney, Agent, or Firm—Dicke, Billig & Czaja,
(52) US.Cl o, 714/48, 370/366 PII1C
(58) Field of Search 714/48, 49, 50,
714/774, 776; 710/51-53, 54, 57, 65, 66; (57) ABSTRACT
370/351, 366, 367, 412 A scheme is described for distributing data operations on an
(56) References Cited irregular data stream over multiple stages of a.data aligner
to generate a regular data stream having continuous filled
U.S. PATENT DOCUMENTS byte positions. In one particular embodiment, the number of
5392406 A * 2/1995 Petersen et al. 710/316 gnahgned dati‘ SUCHIATIOS Ay bzreduc‘:‘id thgough the use ol
5410677 A * 4/1995 Roskowski et al. 710/65 ata stream clement mapping. A complex data stream may
5517.627 A 5/1996 Petersen be mapped onto a su:nple data stream with only thp addition
5594927 A * 1/1997 Lee et al. wovvveveveeenne... 710/66 ~of multiplexers and simple logic to the data aligner. The
5,721,841 A 2/1998 Szczepanek implementation 1n network protocol related hardware, where
5,787,094 A 7/1998 Cecchi et al. a data stream 1s encoded and decoded for error detection and
5,859,990 A * 1/1999 Yarch ...l 710/33 correction, may lead to a faster and more efficient pipelined
5,922,066 A 7/1999 Cho et al. design of checkers and generators, thereby, making them
5,983,305 A 11/1999 Szczepanek more desirable for higher frequency and higher bandwidth
6,122,281 A 9/2000 Donovan et al. desions
6,130.804 A 10/2000 Ojard et al. SHS-
6,145,017 A * 11/2000 Ghaffaricccevvnenennen.n. 710/5
6,557,096 B1 * 4/2003 Ganapathy et al. 712/221 35 Claims, 11 Drawing Sheets
400
o
- 461 "\, 451
B B
460 C
481
\ P 481 481
471 %
N & ;
412 441 N up\ g
- mux
% \ rotator g Mux
buffer f g 440 = 480 _+ buffer "4 B buffer "
— 459 /‘/
410 —/ :F 420 430
452‘/ controller 455 421
trol trol trol
buffer | > 450 ——>! butfer buer -
415 413 459 429 435
O 453

- S .
404

US 6,813,734 B1

Sheet 1 of 11

Nov. 2, 2004

U.S. Patent

N Wnipajy YIoMieN

001

IIIIIII-i--l..l.ll.*lu-n‘-ll--lll'lll""lil-l.l'.f..‘."..l.ll.l.ll.llllllllll.l.l.l-.'.l..l.llllul+‘---lllll '.-.l..l.ll.l.l...ll-.I.---Il.l.---lllllllll.‘..’.ll..l.l-.'ll.l.l.l.lu lllllll

- g o it - x TFI T, . i
g g E - PETRIRAS (e - ST . S PR L L oo
o e g T e e T Mg N Rl TR Foaorin TEEL oM)
- ? Mo, [; : y W . E oo A L R
o R e T T ,.M., ..qxﬁme.:n”m.wJ ¥ ...mnww..x AT LR H L R R T T A
.

| og1
19ubIy
ele(

_ _
| N 1oubi|y
eje(

82IA8(] 8oelelU] HIOMION N 83dlre(8oelaiu] YIOMIBN

sng

-
I
L
|
e -
.
n
[*-—ﬁ------—-—__._.._..-'*-F——----“‘—----'-—* o omk B W W WE W m mr e omk w9 s BN T TE ED ER ED Em S EE Em Em

.-l....n.u.l.l.l.l.llll.l.l.l.l.llnr-l.l..l--.i..l.llllllt.l...‘:..lIl-....lI.l-.l..l.l.

US 6,813,734 B1

Sheet 2 of 11

Nov. 2, 2004

U.S. Patent

562
| IomiaN

2 ainbi4

ov¢e

Ge

18%08Y")
10113 19M0Rd

Itllll“i*:lllll“t'lllii'lIIII""!I‘"'--*“III.II.IIIIIIII.I'III.I-lll.l..l.llIll'lliiliilllll"[ij:ilrllllll

- Ofe

™ 18ubyy
" lojejnsdedag ereq
| 9G¢

“ LSC

m EEC

" gee __
_ 0€2
| | 10)el8UBY) o

m 3oy 13UDIY
| 19¥oed cied

ilii*i:llIllll|"Iill|lllll|ll'1l||I-iuIIIII.IIIII.I.IIII.-InI..lTnIIFFIIIIIIIIII'!*‘:Illlll

Gee

loje|nsdedsu]y

ove m

o4l m

12 m
ove

0ce m

oE[E m

vee 112

—py- ——-——— @ gma s s —-—.—. - ke aslkes W A A A T AT P S SS-—- TE—— TE—— T .

G0¢
LWBISAS

.

SOP 325

. Patent

Head Element
320

”

MO
ML
M NN
RN
DO
MmN
ML
MMM

Nov. 2, 2004

Byte Enable
321

1]1 11 1|1]1 1 0]_0 o[oJo]ojofo} ™

] ﬂ

Partial Body
Element
330

=

DO
NN
MO
JHLIHINN
DO
MO
NHNNN
NI
11NN
MMUDIDIIY

Byte Enable

Sheet 3 of 11

1]_1_[0 JE o|o|0}_/\

Bod

Packet

331

Body Element
340

MDD

NN
N
N\
N

=1 NN
NN
L
N
\\
K
N
NN
N
NI

335

310

Byte Enable

341

US 6,813,734 B1

}1]1 1|T|1 1\1|1[1|1J1M1 1]1[1}\/\

_
NN
NNNK
N\
NI
NI
NN
MM

Byte Enable

1J1-1 1 1[1[1'(0 ojofofoJo]ofok

EOP
355

351

Figure 3

 a1nbiy

m 1484
-

US 6,813,734 B1

——

esy </ -

_

e | | I
- Joynq | lepng | HL
— |01uo? | {ONUOD
vt g4 | SS¥
e
— ™~
<t | OEV f oy
>
et Jaynq _ 18nq yoroTs
m\ﬂu - . 0/v _ | 08Y
AL Xnuwi
.‘l
! }
<t /
= /\ |
“ + YA
)
b - \
M L8V 2:14

Sty

314

__ eLY ﬁ
0St lalnq
_ w |05U0D
18]|OUOD % et
——/ _
8 7
Alu—- e
o5¥ Yy m 194NQ
. -
m 10}e}0! w
L b clLy
v 09¢ _
4% XN
L9t

00V

U.S. Patent

US 6,813,734 B1

Sheet 5 of 11

Nov. 2, 2004

U.S. Patent

09

(el e

jeadeol

0SS

$24°

Uaulag|o IXau S

layng o} indino
pue sajAq ajejol

!

A

0cS

s)

(Apoq 1o |ie)
jueisle 1xe

G ainbi4

!
ejep indin
P ARGINO _/\/ 0LS

N
91 =< S8l q
juswee Apoq pue
peey ji sejAq ssed

selAq
pjoy pue ssed

t

{se1Aq 9| uey
SS9 8184) 8.y

ejep

indino pue ssed

> oes

f

ejep Suinejuos

SalAq Jo
laquinu auiule(g

" N_ - 0ls

US 6,813,734 B1

Sheet 6 of 11

Nov. 2, 2004

U.S. Patent

=

9 ainbi4
‘uonendwon 1oy ssedAq oN
‘leubis [01uod o1=< (a 1eL)
d0O3 jo uoneieueb ssesddng Uno N 5 eyl 5 om_ _.m_._. o
'dOS 'so|qeus a)Aq sseiddns jou o) Hinoo 1°N POd [Blled
:jnq esuanbss |Ie) Mmojj0
‘ynses pessedun
Buisn uoneinojes wioped 91> - (v pet)
‘18)jnq ejeipauualul ssedAg _ junon 18N . Apog |eluegd
‘ndino |0u09 seubije ejep ssesddng
:Ing esusnbes jie} mojjo4
81elS P|IOH PIOH 9|0H
wealss ejep ejdwlis Ul se
eosusnbes aweq =1 el
weals eyep ejdudis Ul se
eousnbes eweg | Apog Apog
weaJs ejep sjduwis U se - .
aousnbas eweg PEOH | PECH
juewss|g | juswe|3
mo|4 buiddepy jayienth WweaJjs ejeq weals rle(y
paddep xa|duwon

C 5555 8

099

059

ov9

0£9

0c9

019

US 6,813,734 B1

Sheet 7 of 11

Nov. 2, 2004

U.S. Patent

4874

8LL

6.4

/ 91nbi4
90L
_.l ! o e
1GL
oo 65,
_ e/ £ G2l
| J9ynq 10NQ |4 wL
| [04juod |OJJUOT | 18|01u02
1474
o - 1Sese
0EL 0c.
194Nq — iayng 08.
. e 0LL % -1
| Xnuw 122 i
p kK
VLL

104}U0D

7 €L
557 v o4ng

mmn“, m « oLz
Ov.L 194NQq
10)e)0. N

| } | \W L2
Ryand by

o 00/

US 6,813,734 B1

Sheet 8 of 11

Nov. 2, 2004

U.S. Patent

|
088 /\/_

uolneinduwod
10} ssedAq ON

A

G/8

0.8

vA

|leubis [0Jjuo0d
d0O3 sieieuab Jou o

}

sojqeus
8lAq pue ‘403
‘dOS ‘sindino jonuos
sseaiddns jou o

!

nq ‘esuenbes
re} sjdwis mojjo4

q ainbi4

(91 >

L

0Es uolloe

/\z ou exe)} pue

e1e)s pioH

A

uoneNoies Wwiopsd

1|ng
ajeipaulajul ssedAig /\/

1

s|qeus 8}Aq

'd03 ‘dOS ‘sindino |/
jouo0 ssaiddng

$

IUN0J J8U Sj

jeloy e

4%¢8

juswio|e si

el

GI8

‘Ing ‘esusnbes
e} ajdwiis moj|o4 /\/

ov8

rej o} uj Apoq |eipred dewy </ GER

nsal pessedun buisn /\/
098

GS8

0S8

Sv8

G 2Inbi4 o) Buipioooe
sse20.d pue weal)s

10 ‘Apoq ‘peay
e Juswa|e s

adAl Juswiaje sauulala(

i

i

ejep sidwis o JUsWale
Buipuodsailoo 0) dewy

oLg 0c8

US 6,813,734 B1

Sheet 9 of 11

Nov. 2, 2004

U.S. Patent

vi6

66

XNl

6.6
96

006

856

ssedAq

| ¥86

g8 Aq
8lelol

-

clb

h 966

ssedAq

6 9.nbi4

£.6

LG6

ssedAqQ

|

{
€86 _

£S6
c96

b Aq
9)e)0]
| G6 M
£96

286

2 Ag
8)elol

¢S6

1 L6
GG6
ssedAq
186 |
| 166 |
Lhkg [T
Xnwi 2)e10
1G6
196

U.S. Patent Nov. 2, 2004 Sheet 10 of 11 US 6,813,734 Bl

Serial Number | Shift Amount Value | Value of the Mux Control signal
mxcntl[15:01}

4 4’b0011 16’b111000000000000{)
6 4’00101 16°b1111100000000000
B 4’0110 ' 16’b1111110000000000
5 ‘ 4’b0111 16’b1111111000000000
9 4’b1000 16 b1111111100300000

4’b1011 16’b1111111111100000

4] #bl101 F 0 16’b1111111111111000 00 |
|5 +’b1110 16’b1111111111111100
16 +’bllll 16’b1111111111111110

FICwWE L

U.S. Patent Nov. 2, 2004 Sheet 11 of 11 US 6,813,734 Bl

Rotate_Amaoaunt | [nput QOutput
{ ABCDEFGHIJKI.MNOQOP! { ABCDEFGHUKIMNOP}

||

| { ABCDEFGHUUKLMNOP! | {PABCDEFGHUUKIMNO}

3 { ABCDEFGHUKIMNOP/ INOPABCDEFGHIJKIL M|

4 {ABCDEFGHUKIMNOP! | (MNOPABCDEFGHUKL !

N {ABCDEFGHUKIMNOP} | {LMNOPABCDEFGHIK)
{JKLMNOPABCDEFGHI

g {ABCDEFGHUJKI.MNOP) {UKIMNOPABCDEFGH

9 {ABCDEFGHUKIMNOQOP) { HUKLMNOPABCDEFG!
10 | {ABCDEFGHUKILMNOP} | {GHUKLMNOPABCDEF}
11 | {ABCDEFGHUKIMNOP) | (FGHUKLMNOPABCDE}

ABCDEFGHIJKIMNOP) CDEFGHUKIMNOPAB |
{ABCDEFGHUKIMNOP) BCDEFGHUUKLMNOPA |

s |
Wl
ll

b X

US 6,313,734 Bl

1

METHOD AND APPARATUS FOR DATA
ALIGNMENT

FIELD OF THE INVENTION

This invention relates to the field of network systems and,
more speciiically, to data aligners used in network systems.

BACKGROUND

The Internet may be described 1n a simplified manner as
a collection of computer systems that are interconnected by
networks (e.g., transmission lines, switches and routers) to
enable the transfer of data among the computer systems.
Data 1s typically transmitted in networks along a data path
in the form of data packets. An important characteristic of a
data path 1s bit width. Bit width 1s the number of bits
manipulated or passed contemporaneously on the data path.
The bit width of a data path determines 1ts bandwidth along
with clock speed. Bandwidth 1s a measure of how fast data
flows on the data path. In digital systems, bandwidth may be
expressed as data speed in bits per second (bps).

At one time data was exclusively carried on a traditional
Plain-Old Telephone System (POTS), or Public Switched
Telephone Network (PSTN), using copper wire transmission
lines that have limited bandwidth capability. Later, other
types of networks were developed using higher bandwidth
transmission lines that enabled greater amounts of data to be
transmitted over a given time (higher bps), for example, an
Integrated Services Digital Network (ISDN). ISDN provides
digital transmission over ordinary PSTN copper wires on a
narrow band local loop.

Higher bandwidths are the need of the time given the
explosive growth and doubling of data traffic over the
Internet. Two solutions for meeting the need for increased
bandwidths are higher clock speeds and wider data paths.
System designers are capitalizing on technology advance-
ments by running the data path at higher clock speeds.
System designers are also increasing the bit width to make
data paths wider. Despite wider data paths, these systems
still may be required to support legacy systems, 1.e., older
systems designed earlier on narrower data paths. Thus, the
use of wider data paths may lead to data stream 1rregulari-
ties.

Other 1mportant parameters associated with a data path
are the type of network and protocol used to transmit data on
the data path. Computer systems communicate with each
other using a variety of networks such an Internet Protocol
(IP) network and a Synchronous Optical Network (SONET).
SONET 1s the United States standard for synchronous data
transmission on optical media. The international equivalent
of SONET 1is synchronous digital hierarchy (SDH).
Together, they ensure standards so that digital networks can
interconnect internationally and that existing conventional
fransmission systems can take advantage of optical media.

Computer systems use network protocol related circuitry,
such as network adapters, to encode and decode the data that
1s transmitted on a network for error detection and correction
purposes. Selective byte removal and addition 1s common-
place 1n various protocol 1implementations and internet-
working specifications. These two factors lead to the gen-
eration of arbitrary data streams, from a hitherto regular data
stream, which have to be gathered and aligned for efficiency
and ease of manipulation. The generation of regular data
streams allows for efficient use of line bandwidth for faster
data transmit times. In addition, regular data streams are
casier to manipulate, more conducive to pipelining, and

10

15

20

25

30

35

40

45

50

55

60

65

2

casier to fetch and store. These factors are accorded high
importance 1n network circuits and systems since they
impact the key differentiating parameters for customers and
the marketplace.

One type of circuit that operates to map arbitrary data
streams to a regular data stream 1s known as a data aligner.
More speciiically, a data aligner takes unaligned data 1n
various byte sizes and aligns the data to achieve a packed
byte size. One problem with some prior data aligners 1s that
they contain an extensive amount of logic in the first of
multiple stages of a design 1n order to deal with as many
unaligned data scenarios as possible. Another problem with
some prior data aligners 1s that they feedback the output of
an output selection multiplexer to an intermediate bulifer,
thereby leading to congestion of logic in the first stage of a
design. This 1s because such a solution, when 1t realizes that
there 1s not enough data in certain packets to pass on as
output, may tend to hold concatenated data in the interme-
diate buffer rather than run and restore the data. Such
approaches may not only be difficult to design but may also
result 1n higher processing times 1n the data aligner’s first
stage, thereby, limiting the frequency at which such data
aligners may operate.

SUMMARY OF THE INVENTION

The present 1nvention pertains to a method and apparatus
for data alignment. The apparatus may include a plurality of
circuitry stages coupled between a plurality of buifers. Later
stage circuitry and corresponding buflers may be used to
distribute the generation of an aligned data packet to reduce
the operational time of earlier stage circuitry.

In one particular embodiment, the apparatus may include
first stage circuitry coupled to a first builer. The first stage
circuitry may include a rotator coupled to the first buffer, a
controller coupled to the rotator, and a first multiplexer
coupled to the controller. The apparatus may also include a
seccond buffer coupled to the rotator and second stage
circuitry coupled to the second buifer. The second stage
circuitry may include a second multiplexer. A third butfer
may also be coupled to the second stage circuitry.

In one embodiment, the method may include receiving a
first data element having a plurality of bytes and determining
a first number of the plurality of bytes that contain data. The
method may also include passing the first data element
without operating on the first data element 1f all of the
plurality of bytes that contain data and holding the data
clement 1f less than all of the plurality of bytes contain data.

In another embodiment, the method may include receiv-
ing a head element having empty byte positions out of a
plurality of byte positions and receiving a first succeeding
body element. The method may also include operating on
the head element to generate a first packed element by
combining the head element with the first succeeding body
clement to fill the empty byte positions of the head element
with data from the first succeeding body element. The first
packed element may have the plurality of byte positions. The
method may also include transmitting the first packed ele-
ment if the plurality of byte positions of the first packed
clement are filled by the operation.

In yet another embodiment, the method may include
receiving a first number of bytes of a non-continuous data
stream and passing the first number of bytes through first and
second buffers to a third buifer. The first number of bytes
may be less than a predetermined number of bytes. The first
buffer may be coupled to the second buffer and the second
buffer may be coupled to the third buffer. The method may

US 6,313,734 Bl

3

also include receiving a second number of bytes and passing
on the first number of bytes from the second buflfer to the
third buffer. The method may also include feeding back the
third buffer to the second buffer if the sum of the first and
seccond numbers of bytes i1s less than the predetermined
number.

Additional features and advantages of the present mven-
tion will be apparent from the accompanying drawings and
from the detailed description that follows.

BRIEF DESCRIPTION OF THE DRAWINGS

The present mvention 1s illustrated by way of example,
and not by way of limitation, 1n the figures of the accom-
panying drawings and 1n which:

FIG. 1 illustrates a digital processing system including
one embodiment of a data aligner.

FIG. 2 1llustrates a network 1nterface device including one
embodiment of a data aligner.

FIG. 3 1llustrates one embodiment of a packet structure
and corresponding exemplary byte enables.

FIG. 4 illustrates one embodiment of a data aligner.

FIG. 5 illustrates one embodiment of a method of data
alignment.

FIG. 6 1llustrates one embodiment of a complex to simple
data stream mapping scheme.

FIG. 7 illustrates an alternative embodiment for a data
aligner.

FIG. 8 1llustrates another embodiment of a method of data
alignment.

FIG. 9 1llustrates one embodiment of a rotator.

FIG. 10 illustrates one embodiment of a relationship
between a rotated amount and a value of a multiplexer
control vector.

FIG. 11 1s an exemplary embodiment illustrating outputs
of a rotator based on 1nputs and rotate amounts.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth such as examples of speciiic components, devices,
methods, etc., 1n order to provide a thorough understanding
of the present invention. It will be apparent, however, to one
skilled 1n the art that these specific details need not be
employed to practice the present invention. In other
mstances, well-known materials or methods have not been
described 1n detail in order to avoid unnecessarily obscuring
the present invention.

A scheme 1s described for distributing data operations on
an irregular data stream over multiple stages of a data aligner
to generate a regular data stream having contiguously filled
bytes. Distribution of data operations may allow for the data
aligner to operate at higher frequencies by utilizing later
stage circuitry for some data operations 1n order to free-up
first stage circuitry for receipt of additional data bytes.

In one particular embodiment, the number of unaligned
data scenarios may be reduced through the use of data
stream element mapping. A complex data stream may be
mapped onto a stmple data stream with only the addition of
multiplexers and combination logic gates to the control
outputs of the data aligner.

It should be noted that while the scheme 1s described in
relation to 16 byte data elements, the scheme 1s also appli-
cable for other data element byte sizes, such as, 32 bytes, 8
bytes, and 4 bytes. In an alternative embodiment, the scheme

10

15

20

25

30

35

40

45

50

55

60

65

4

described herein may be implemented with a variable data
width where the data width i1s a configurable parameter. It
should also be noted that the “lines” discussed herein that
connect components may be either single bit lines, multiple
bit lines, or buses.

FIG. 1 1llustrates one embodiment of a digital processing,
system 100 representing, for examples, a workstation, per-
sonal computer, server, etc., 1n which a data aligner 150 may
be implemented. Digital processing system 100 includes a
bus or other communication means 105 for communicating
information, and a processing means such as processor 110
coupled with bus 105 for processing information and con-
trolling the movement of data packets to and from network
interface device 140. Processor 110 may represent one or
more processors such as a general purpose processor (e.g.,
a Motorola PowerPC processor or an Intel Pentium
processor), a special purpose processor (e€.g., a digital signal
processor (DSP)), and a controller.

Digital processing system 100 further includes system
memory 120 that may include a random access memory
(RAM), or other dynamic storage device, coupled to bus 105
for storing information (e.g., packets) and instructions to be
executed by processor 110. System memory 120 also may be
used for storing temporary variables or other intermediate
information during execution of instructions by processor
110. System memory 120 may also include a read only
memory (ROM) and/or other static storage device coupled
to bus 120 for storing static information and instructions for
processor 110.

One or more network interface devices (network interface
device 140 to network interface device N) may be coupled
to bus 105. In an alternative embodiment, network interface
device 140 may reside external to digital processing system
100. Network interface device 140 includes network proto-
col related circuitry to encode and decode the data that is
transmitted on network 160 for error detection and correc-
tion purposes. In one embodiment, network 1nterface device
140 1includes circuitry for the generation of regular data
streams. Network interface device 140 includes data aligner
150. Data aligner 150 operates to map arbitrary data streams
to a regular data stream, as discussed 1n detail below.

Depending upon the particular design environment
implementation, the network interface device 140 may be a
SONET card, an Ethernet card, token ring card, or other
types of interfaces for providing a communication link to
network 160. SONET and Ethernet are known 1n the art;
accordingly, a detailed discussion 1s not provided.

It will be appreciated that the digital processing system
100 represents only one example of a system, which may
have many different configurations and architectures, and
which may be employed with the present invention. For
example, some systems often have multiple buses, such as a
peripheral bus, a dedicated cache bus, etc. As another
example, digital processing system 100 may also include a
controller (not shown) coupled to bus 105 to assist processor
110 1n the movement of data packets to and from network
interface device 140. In an alternative embodiment, digital
processing system may be an intermediate node (e.g., a
switch or a router) in a network that provides a network to
network interface. Such an intermediate node may provide
an 1nterface between similar networks or different networks.
For example, network medium 160 may be a fiber opftic
medium and network medium N may be a transmission line
medium.

FIG. 2 illustrates one embodiment of an network interface
device including a data aligner. Network Interface device

US 6,313,734 Bl

S

210 may be network 1nterface device 140 of FIG. 1. Data, in
the form of packets, 1s transmitted along a data path from a
system 205 to a network 295 through interface device 210.
The data path i1s the structural portion of the network
interface device which, under the influence of control,
manipulates and passes data from a one side (e.g., on line
211) to the other side (e.g., on line 236). Network interface
device 210 formats the data into a packet protocol structure
that 1s conducive to transmission on network 295. The
packet protocol speciiies the arrangement of information
within the packet. In one embodiment, for example, system
205 may be a client or a server, and network 295 may be a
SONET or Ethernet as mentioned above.

Packets are transmitted 1n an egress direction from system
205 through network interface device 210 to network 295.
Packets are received in an ingress direction from network
2935 through network 1ntertface device 210 to system 205. In
one embodiment, network interface device 210 may include
first-in-first-out (FIFO) memories 220 and 240, data aligners
230 and 250, packet check generator 235, packet error
checker 245, encapsulator 225 and decapsulator 255.

Packets are received by FIFO 220 from system 205 on
line 211. Packets arriving faster than the throughput capacity
of network interface device 210 may result 1n a dropped
transmission. FIFO 220 operates to buifer the data stream
received from system side 2035 1n order to handle overloads
of packets 1n the data stream. Similarly, FIFO 240 operates
to buffer the data stream received from network 295. In
alternative embodiments, buflering may be accomplished by
other means, for example, using a memory (e.g., RAM,
FIFO) coupled to network interface device 210 or a memory
residing in system 205 (e.g., system memory 120 of FIG. 1).

Packets are transmitted from FIFO 220 to encapsulator
225 on line 224. Encapsulator 225 frames a packet according,
to a framing specification. The framing specification 1s a
specification of the “protocol bits” that surround the “data
bits” to allow the data to be “framed” into segments. The
framing specification allows a receiver to synchronize at
points along the data stream.

The data stream packets are output from encapsulator 225
on line 229 to data aligner 230. Data aligner 230 operates to
gather bytes 1n the received packets that may arrive arbi-
trarily 1n time. Data aligner 230 receives unaligned data in
various byte sizes and aligns the data to achieve a packed
bytes. Data aligner 230 outputs aligned data packets on line
234 to packet check generator 235. The byte elements within
a packet that are output to packet error checker may not
always contain valid data due to the packing operation. As
such, data aligner 230 also transmits a control signal on line
233 to packet check generator 235 that indicates which bytes
in the packet are valid. Data aligner 230 may also transmut
other control signals to packet check generator 235, such as
SOP and EOP control signal. The operation of data aligner
230 1s discussed 1 detail below.

In one embodiment, a packet check generator 235 1s used
to verily the accuracy of the data stream. The packet check
generator 235 generates an output 1n addition to the data
stream that may be used by a packet error checker of a
receiving system (e.g., packet error checker 245) to deter-
mine whether a packet 1s good or whether errors are present
in the data stream. The data stream 1s transmitted to network
295 on line 236. Some packets such as Ethernet packets, for
example, have a 32 bit cyclic redundancy check. In one
embodiment, an error detecting code such as 32 bit cyclic
redundancy check (CRC) may be appended at the end of the
packet to provide automatic error detection functionality. It

5

10

15

20

25

30

35

40

45

50

55

60

65

6

should be noted, however, that the 32 bit CRC data may be
located anywhere 1n the packet. Error detecting code such as
CRC code 1s a number derived from a block of data in order
to detect corruption. In an alternative embodiment, error
detection codes and methods other than CRC may be used.

Using packet error checking, a receiver system (not
shown) coupled to network 295 can detect transmission
errors by recalculating a check code from the data packet
and comparing 1t to a check value originally transmatted. It
should be noted that packet check generator 235 need not be
placed at the end of the transmit stage but may be placed at
any location along the data stream path.

Packets received from network 295 are 1nput to decapsu-
lator 255 on line 256. Decapsulator 255 removes the framing
data from data stream packets. When framing data 1s remove

from the data stream, the data stream may become 1rregular
(i.e., non-continuous). This data stream is input to data
aligner 250 on line 251. Data aligner 250 operates to gather
non-continuous bytes 1n the received data stream and pack,
or align, bytes 1n the packets to achieve a continuous data
stream.

The output of data aligner 250 1s provided to packet error
checker 245 on line 246. Packet error checker 245 may be
used to verily the accuracy of the data stream. The packet
error checker 245 generates a code using the received data
stream and compares the generated code with a received
code embedded 1n the data stream to determine whether a
packet 1s good or whether errors are present in the data
strcam. The output of packet error checker 245 may be

passed to FIFO 240 on line 241. FIFO 240 operates to butfer
the data stream output to system 205 on line 242.

A FIFO, packet error checker, encapsulator, and decap-
sulator are known 1n the art; accordingly, a detailed discus-
sion of their operation 1s not provided. It should be noted that
the interface device 210 has been shown with separate
components merely to 1illustrate the operations on data
flowing in both an ingress and egress direction. In an
alternative embodiment, the components of network inter-
face device 210 may be combined into one or more inte-
orated circuits.

FIG. 3 1llustrates one embodiment of a packet structure
and corresponding exemplary byte enables. A packet 310
may 1nclude one or more elements 320, 330, 340, and 350.
Each packet element may have one or more bytes, for
example, 16 bytes. Although the following discussion uses
a 16 byte packet element size as an example, other packet
clement byte sizes may be used, for examples, 32 bytes, &
bytes, and 4 bytes.

Packet 310 includes a single head element 320, a single
tail element 350, and a body 335 that may includes one or
more body elements (e.g., elements 330 and 340). A head
clement 320 signifies the start of a packet and its byte
positions may be either partially or fully filled with data bits.
Head 320 may be determined by the assertion of a start of
packet (SOP) control signal 325 that either partially or fully
fills the bytes of head element 320 with data bits.

A tail element 350 signifies the end of a packet and 1ts byte
positions may be either partially or fully filled with data bits.
Tail element 350 may be determined by the assertion of an
end of packet (EOP) control signal 355 that may either
partially or fully {ill the bytes of tail element 350 with data
bits. A body element has all of its byte positions filled with
data bits (e.g., body element 340). A partial body refers to a
body element (e.g., element 330) that is partially filled with
data bits which 1s neither a head element 320 or a tail
clement 350. A hole 1s an empty element either within packet
310 or between packet 310 and another packet (not shown).

US 6,313,734 Bl

7

FIG. 3 also illustrates exemplary byte enables 321, 331,
341, and 351 that may correspond to the packet elements. A
byte enable of “1” indicates that data i1s present in the
corresponding byte position. A byte enable of “0” indicates
that data 1s absent from the corresponding byte position. The

byte enables are sent to the control portion of buifers, as
discussed below 1 relation to FIGS. 4 and 7.

FIG. 4 1llustrates one embodiment of a data aligner. In one
embodiment, data aligner 400 includes a two stage (stages
404 and 406) plpelme separated by an intermediate buifer
420. Intermediate buifer 420 operates to store all unpassed
data between stages 404 and 406. Data aligner 400 also
includes buffers 410 and 430 coupled to the input of stage
404 and the output of stage 406, respectively. In one
embodiment, buifers 410,420, and 430 may be registers.
Buffers 410, 420, and 430 operate to store data received
from a previous stage. Data aligner 400 may also include
control buffers 415, 425, and 435 that operate to store byte
enables for packet elements, as discussed below. Buflers and
registers are known in the art; accordingly, a detailed
description 1s not provided.

In one embodiment, for example, buifers 410, 420, and
430 may have a size of 16 bytes. In an alternative

embodiment, buffers 410, 420, and 430 may have other sizes
depending on the particular byte scheme used by a system,
for examples, 32 bytes, 8 bytes, and 4 bytes.

Buifers 410, 420, and 430 each have a clock input coupled

to receive a clock signal via line 481. The clock signal may
be recovered from the data signal or, alternatively, may be
generated by a clock generator (not shown). The clock signal
contains multiple clock cycles on which the timing of
operations in data aligner 400 may be performed.

Buifer 410 has an mput coupled to receive data packets on
line 411. Buffer 410 outputs the data packets to rotator 440
and controller 450 on lines 412 and 413, respectively. The
output of rotator 440 1s coupled to intermediate butfer 420
and multiplexer 460 via line 441. The output of intermediate
buffer 420 1s coupled to a data input of multiplexer 470 on

line 421. The output of multiplexer 470 1s coupled to buifer
430 via line 471.

Controller 450 may be used to control the operation of
multiplexers 460 and 470 to pass on byte data; to control the
operation of rotator 440; to generate external control signals
such as SOP, EOP; and to generate byte enable control
signals (as illustrated in FIG. 3). Controller 450 also has
control outputs coupled to rotator 440 and a control mput of
multiplexer 460 on lines 452 and 459, respectively, and to a
control input of multiplexer 470 on line 453.

Rotator 440 operates to rotate one or more bytes 1nto
different byte slots, or positions, of an element under the
control of controller 450. In one embodiment, a rotate
amount control signal may be applied to rotator 440 on line
452 by controller 450. The output of rotator 440 1s applied
as input data to buifer 420 through multiplexer 480, and also
as an 1nput to multiplexer 460. The function of the rotate
amount control signal 1s to determine the amount by which
contents of bulfer 410 are rotated so that the remainder, 1f
any, of buffer 410 and the remainder, if any, of butfer 420 are
concatenated and the contents of buffer 420 are properly
byte aligned. For the determination of the rotate amount,
various bytes states may be recognized by controller 450 one

clock cycle betfore the actual rotation occurs.

In a first byte state, the content of buifer 410 1s written to
buffer 420 m a pass through manner. No byte lanes are
crossed such that byte 0 of buffer 410 goes to byte 0 of buifer
420; byte 1 of butfer 410 goes to byte 1 of butler 420; etc.

10

15

20

25

30

35

40

45

50

55

60

65

3

This byte state occurs when controller 450 determines that
cither buffer 420 1s empty or contains an EOP signal where
the packet level granularity i1s required to be maintained.
This byte state may also occur when, irrespective of the state
of buffer 420, buffer 410 contains an SOP signal. As such,
there 1s no dependency between bufler 410 and butfer 420.
In either case, no data bytes require alignment and byte data
1s written 1n a pass through manner. The rotation amount for
the next cycle may be predicted to be 16 minus the number

of bytes in buifer 410.

In a second byte state, the entire 16 bytes of butfer 410 are
written to buifer 420, implying that buifer 420 1s full in the
next cycle. The rotate amount 1n this case may be predicted
to be zero, again implying no byte lane crossing.

In a third byte state, no byte from buifer 410 1s written to
bufler 420. Such a state represents the case where builer 410
contains an EOP signal and the state of buffers 410 and 420
are such that the data may be directly passed between bullers
410 and 420 to buflfer 430, precludmg a need for shifting for
the subsequent data input to buifer 410. The rotate amount
in this case may be predicted to be zero.

In a fourth byte state, the net valid byte count in butier 410
and buffer 420 exceeds 16 and a remainder of the content 1n
buffer 410 1s written into buffer 420 with proper byte lane
crossings. For this case a prediction 1s made for a subsequent
input to buifer 410. The rotate amount for this case may be
predicted to be 32 minus the net number of bytes 1 bufler

410 and the number of bytes 1n buifer 420.

As an example, buifer 420 may have 14 bytes as valid
(containing data) and buffer 410 may have 6 bytes as valid.
In the following clock cycle, 16 bytes will be passed to
buffer 430, while four remaining bytes are stored in bufler
420. The rotate amount 1s thus 32-20=12 for the next set of
input. For a vector of {15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,
0}, a rotate amount of 12 results in a vector {11,10,9,8,7,
6,5,4,3,2,1,0,15,14,13,12} thereby ensuring that a subse-
quent mput starts from position 4 onwards accounting for 4
byte leftover. The one clock cycle look ahead enables the
performance of calculation in a previous clock cycle.

Multiplexers 460, 470, 480 are used to select between two
of their data inputs based on the value of a control signal
applied to their control input. Multiplexers are known 1n the
art; accordingly, a detailed discussion 1s not provided herein.
The output of multiplexer 460 1s coupled to a data input of
multlplexer 470 on line 461. The output of multiplexer 470
1s coupled to buifer 430 on line 471. The output of mulit-
plexer 480 1s coupled to bufler 420. Multiplexers 460, 470,
and 480 receive control signals on control nputs from
controller 450 on lines 452, 453, and 455, respectively. It
should be noted that the multiplexers have been 1llustrated
separate from other components for the purposes of discus-
sion. The multiplexers may reside within other component

blocks, for example, mulitplexer 480 may reside within
buffer 420.

The function of the control signals that are applied to
multiplexers 460 and 470 1s to select the multiplexer’s
output form the contents of buffer 420 and the rotated
contents of buffer 410. In one embodiment, the applied
control signal may be a 16 bit control signal that 1s a function
of the rotator amount, 1nvolving a one 16 byte spanning
operation, as 1llustrated in FIG. 10. A “1” at a position
implies that the rotated output of rotator 440 1s selected,
while a “0” at a position implies that the output of buifer 420
1s selected. The value of the rotate amount signifies the
number of “1”s 1n the multiplexer control signal vector
starting from position 0.

US 6,313,734 Bl

9

Controller 450 also has a control output coupled to buifer
420 via line 459. In one embodiment, the control signal
output to bufler 420 via line 459 may be 16 bits wide and
controls the writing byte by byte of buffer 420 after contents
for the buffer are chosen based on the rotate amount signal
discussed above. The control signal output to buifer 420 may
also determine the valid bytes in buffer 420 in a next clock
cycle. For the determination of the buifer 420 write enable,
various states may be recognized by controller 450 during a
current clock cycle.

In one case, the content of buifer 410 may be written to
buffer 420 1n a pass through manner. This case occurs when
buffer 420 1s empty or contains an EOP signal where the
packet granularity i1s required to be maintained. This case
may also occur when, irrespective of the state of buffer 420,
buffer 410 contains a SOP signal. In such a situation, the
byte enables corresponding to butfer 410 become the write

enables to buffer 420.

In a second case, the entire 16 bytes of buifer 410 may be
written to buifer 420, implying a full buffer 420 in the next

clock cycle. In such a situation, the write enables to buifer
420 are all “1”s.

In a third case, no byte from bufifer 410 1s written to bufler
420. Buffer 410 contains an EOP signal and the state of
buffer 410 and 420 1s such that the data may be directly
passed to bufler 430, precluding a need for shifting for the
subsequent 1nput. In such a situation, the write enables to

bufter 420 are all “0”’s.

In a fourth case, the net valid byte count 1n buifer 410 and
buffer 420 exceeds 16 and a remainder of the content in
buffer 410 1s written to buffer 420 with proper byte lane
crossings. In this situation, the write enables to buiter 420
are calculated as the number of valid bytes 1n buifer 410 plus
the number of valid bytes 1n buifer 420 minus 16.

The data aligner 400 discussed above may be used to
receive unaligned data on line 411 1n various byte sizes and
align the data to achieve a particular byte size, as discussed
below 1n relation to FIG. 5. Data aligner 400 may support
data packets that have head elements, body elements, and
tail elements.

FIG. 5 1llustrates one embodiment of a method of data
alignment. The method 1s discussed herein in relation to a
data scheme wherein the data elements have 16 bytes.
Similar methods may be used with other byte packet
schemes, as previously mentioned. In one embodiment, data
aligner 400 may be 1nitially empty of data. At the arrival of
a head element of a data packet, controller 450 determines
whether the head element contains less than 16 bytes of data,
step 510. If the head element contains less than 16 bytes of
data, then the bytes are passed to and held 1n buffer 420 for
future packing, step 520. If the head element contains a full
16 bytes of data, the data 1s passed to buifer 430 to be
outputted with control signals, step 530.

The head element may be followed by a body element or
a tail element. If the head element 1s followed by a body
clement then, since the number of bytes of data 1in 1nterme-
diate builer 420 and the number of bytes 1n the following
body element are greater than or equal to 16 bytes, all 16
bytes, after due processing, are passed to butfer 430 along
with a control signal generated by controller 450 to mdicate

a SOP, step 540.

A determination 1s made to either select bytes from
intermediate buiter 420 or newly mput bytes 1nto butfer 410
based on the number of bytes containing data in each. The
newly mputted bytes in buffer 410 are rotated by the number
of bytes previously passed directly from the buffer 410 to

10

15

20

25

30

35

40

45

50

55

60

65

10

make up for a net of 16 bytes, step 550. The rotated bytes are
written to intermediate buffer 420. Steps 540 to 550 are
repeated until controller 450 determines that a tail is
reached, step 560.

When a tail 1s reached, the data 1n buffer 430 1s output on
line 431 1rrespective of the net packet size to maintain packet
boundaries at each element, step 570. In this manner, the
data aligner 400 converts a head element, body elements,
and a tail element (of which the head and/or tail element may
be partially filled) into a continuous packet having one or
more body elements and one tail element.

As an example of the above method, a head element may
be received 1n register 410 and determined by controller 450
to contain 7 bytes of data. Because the head element
contained less than 16 bytes, the 7 bytes are passed to and
stored 1n intermediate butier 420. The next element received
1s a body element. The body element 1s determined by
controller 450 to have 16 bytes of data and controller 450
calculates that a total of 23 bytes of data have been received.
Because the total exceeds the 16 byte size of data aligner
400, controller 450 selects the lower 9 bytes of the 16 byte
body element to output with the 7 bytes from the header
clement as a packed 16 byte body element. To do this
controller 450 passes the selected 9 bytes of data through
rotator 440 to be applied to an 1nput of multiplexer 460. The
9 rotated bytes, along with 7 bytes from buffer 420, are
applied as an mput to multiplexer 470. Controller 450 sends
a multiplexer control signal on line 433 to multiplexer 470
to output the 16 concatenated bytes from multiplexer 460,
which are outputted.

Data aligner 400 now has 16 bytes in register 430, that are
outputted, and 7 bytes remaining 1n register 410. Because
the lower 9 bytes of the 16 byte body element were passed
out, the remaining 7 bytes 1n register 410 are output from
rotator 440 nto the lower byte positions and written into
register 420. The rotated bytes are then 1nputted and stored
in 1intermediate buffer 420. When the next body element 1s
received, the above steps are repeated to generate a packed
16 byte element to output to register 430.

When a tail element 1s received, as determined by con-
troller 450 from receipt of an EOP signal, then the bytes of
the tail element that contain data are combined with the
bytes 1n 1mntermediate butfer 420 and output to register 430
without waiting for the packed byte size to equal 16 bytes.
For example, if there are 7 bytes stored in intermediate
buffer 420 and a tail element 1s received that contains 1 byte
of bit data, then controller 450 passes the 1 byte through
rotator 440. Then the 7 bytes stored in intermediate buifer
420 and the 1 byte rotated output are fed into multiplexer
470 by controller 450 to be outputted in the next clock cycle.

The method described above in relation to FIG. 5 may
handle relatively regular data streams having head, body,
and tail elements 1n packets. In an alternative embodiment,
other types of data streams (hereafter referred to as a
complex data stream to distinguish from the simple data
stream discussed in relation to FIGS. 4 and §5) may be
encountered 1in network protocols where regularity may be
impacted by arbitrary enabling and disabling of bytes, for
example, a dry sequence 1n a standardized Packet Over
SONET (POS) protocol. In one embodiment, a complex data
strcam may contain holes and partial body elements, as
defined above 1n relation to FIG. 3. Such a complex data
stream may be handled by mapping these elements to the

clements of the simple data stream discussed 1n relation to
FIGS. 4 and 5.

FIG. 6 1llustrates one embodiment of a mapping scheme
to handle hole and partial body elements 1n a data stream. In

US 6,313,734 Bl

11

one embodiment, a head element of a complex data stream
may be mapped 610 to a head element of a simple data
stream; a body element of a complex data stream may be
mapped 620 to a body element of a simple data stream; and
a tail element of a complex data stream may be mapped 630
to a tail element of a simple data stream. A hole may be
handled by holding states 640 and taking no action in a data

aligner, such as data aligner 700 discussed below 1n relation
to FIG. 7.

Partial body functions may be mapped 650 and 660 to that
of the tail of a simple data stream by categorizing the tail into
two different tail elements: Tail A and Tail B. A Tail A
clement 1s one where the net count of bytes containing data
bits 1n the partial body and the intermediate buifer 720 of
data aligner 700 of FIG. 7 are less than 16. A Tail B element
1s one where the net count of bytes containing data bits in the
partial body and intermediate buffer 720 of data aligner 700
of FIG. 7 1s greater than or equal to 16.

FIG. 7 illustrates an alternative embodiment for a data
aligner that may be implemented with a complex data
stream. In one embodiment, data aligner 700 may include

two pipelined stages (stages 704 and 706) separated by
buffers 720 and 730. Data aligner 700 includes buifer 730,

rotator 740, controller 750, and multiplexers 760, 770, 7735,
and 780. Rotator 740 and controller 750 may operate 1 a
manner similar to rotator 440 and controller 450 of FIG. 4,
unless otherwise specified.

Buffers 710, 720, and 730 each have a clock input coupled
to receive a clock signal via line 781. The clock signal may
be recovered from the data signal or, alternatively, may be
generated by a clock generator (not shown). The clock signal
contains multiple clock cycles on which the timing of
operations in data aligner 700 may be performed.

Buifer 720 operates to store all unpassed data between
stages 704 and 706. Data aligner 700 also includes buifers
710 and 730 coupled to the mput of stage 704 and the output
of stage 706, respectively. In one embodiment, buffers 710,
720, and 730 may be registers. Control buftfers 715, 725, and
735 are coupled to controller 750 and operate to store byte
enables.

Buifer 710 has an input coupled to receive data packets on
line 711 and output the data packets to rotator 740 and
controller 750 on lines 712 and 713, respectively. The output
of rotator 750 1s coupled to a data mput of multiplexer 780
with the other data mput of multiplexer 780 coupled to
receive the output of multiplexer 775 on line 776. The output
of rotator 740 1s also coupled to a data input of multiplexer
760 with the other data mput of multiplexer 760 coupled to
receive the output of multlplexer 775 via line 776. The
output of multiplexer 780 1s coupled to the mput of buifer
720. Rotator 750 operates to rotate one or more bytes into
different byte slots, or positions, of an element under the
control of controller 750. In one embodiment, a rotate
amount control signal may be applied to rotator 750 via line
758 by controller 750. The function of the rotate amount
control signal 1s to determine the amount by which contents
of buffer 710 are rotated so that the remainder, 1f any, of
buffer 710 and the remainder, 1f any, of buffer 720 are
concatenated and the contents of buffer 720 are properly
byte aligned.

For the determination of the rotate amount, various bytes
states may be recognized by controller 750 one clock cycle
before the actual rotation occurs, as discussed above 1n
relation to rotator 440 of FIG. 4. The clock cycle look ahead
approach may be maintained while supporting a partial body
clement structure. In a complex data stream, the number of

5

10

15

20

25

30

35

40

45

50

55

60

65

12

bytes 1n buffer 720 1n a next clock cycle are predicted and
replaced as the net valid count of the current calculation. In
the current calculation, the net valid count 1s the number of
bytes 1n buffer 710 plus the number of bytes 1n butfer 720.
For the case of a partial body support and prediction of the
rotate amount for the subsequent input, the current net valid
byte calculation becomes the byte count of buffer 720. The
rotate amount serves as the control and as a seed for other
control signals.

Controller 750 has control outputs coupled to rotator 740
and control inputs of multiplexers 760, 770, 775, and 780 via
line 752, 753, 754, and 755, respectively. Controller 750 also
a control output coupled to rotator 740 via line 759 and a
control output coupled to butfer 720 via line 759.

The output of multiplexer 760 1s coupled to a data 1nput
of multiplexer 770 via line 761. The output of buffer 720 1s
coupled to the other data input of multiplexer 770 and to a
data mput of multiplexer 775, via line 721. The output of
multiplexer 770 1s coupled to buifer 730 on line 771. Buifer
730 1includes a data output and a control output. The data
output of butfer 730 1s coupled:to a data input of multiplexer
775 via line 779. The control output of buifer 730 1s output
on line 778.

Controller 750 also has control outputs coupled to bufler
720 via line 759 and buffer 730 via line 751. In one
embodiment, the control signal output to butfers 720 and
730 via lines 759 and 751, respectively, may be 16 bits wide.
The control signal to buifer 720 controls the writing of the
buffer byte by byte after contents for the builfer are chosen
based on the rotate amount signal. The control signal output
to buffer 720 may also determine the valid bytes 1n buifer
720 1n a next clock cycle. For the determination of the butfer
720 write enable, various states may be recognized by
controller 750 during a current clock cycle, similar to those
discussed above 1n relation to FIG. 4. The receipt of a hole
may be handled by the retention of states.

The case where a partial body 1s received 1s explained
with the following example. Assume a sequence of 6 bytes
followed by 6 bytes followed by 8 bytes on start up of data
aligner 700 within the same packet. The case where 8 bytes
are 1n bufler 710 and 6 bytes are 1n buffer 720 and buitfer 710
does not contain an EOP signal 1s not cover by the cases
discussed above 1n relation to FIG. 4. In this situation, an
attempt 1s made to pass all 14 bytes to bufler 730. In the next
clock cycle, controller 750 determines that 1t 1s a partial
body element case and restores the merged output of bufler
730 (control and data) to intermediate buffer 720 and the
generation of an output enable by controller 750 to butfer
730 1s suppressed. Merging happens as a bypass for one
cycle and restoration 1n a subsequent cycle 1f no new data 1s
obtained. Otherwise, if new data 1s coming, bypass contin-
ues until the Tail A test 1s met.

For the purpose of rotate amount calculation, the feed 1n
of the net valid count already takes care of subsequent
calculations. The restoration shows buffer 720 as having 14
bytes and buifer 710 as having 6 bytes. This represents the
case of Tail A discussed above 1n relation to FIG. 6. As such,
a calculation 1s performed as 1f a stmple data stream tail were
received, calculated and restored. The rotate amount predic-
fion with respect to 14 bytes 1s 32-14=18 byte rotation
which is the same as a 2 byte rotation (4 bits only). So, for
the 6 byte buifer 710, a rotate by 2 puts bytes 0 and 1 1n
positions 14 and 15, respectively, which are merged with 14
bytes of buffer 720. If this 1s a true tail, the 16 bytes are
passed to bufler 730. The write enables are 20-16, so 4 left

over bytes are written to buffer 720. For the case where 14

US 6,313,734 Bl

13

bytes 1n buffer 720 and 6 bytes 1n buffer 710, the predicted
rotate amount 1s 32-20=12. In this case, the 4 leftover bytes
from butfer 720 retain their position and a rotation of 12 puts
byte 0 of a new 1nput bytes at position 4, accounting for
subsequent concatenation, etc. This process may be repeated
ad 1nfinitum.

Data aligner 700 described above may be used to receive
unaligned data on line 711 1n various byte sizes and aligns
the data to achieve a particular byte size, as discussed below
in relation to FIG. 8. Data aligner 700 may support data
packets that have hole and partial body elements 1n addition
to head elements, body elements, and tail elements.

Rotator 740 operates 1n a similar one clock cycle look
ahead manner discussed above 1n relation to rotator 440 of
FIG. 4 1 supporting a partial body element structure. The
mapping scheme discussed above in relation to FIG. 6 1is
realized by predicting and replacing the number of bytes in
buffer 720 1n a next clock cycle as the net valid count of the
current calculation. In the current calculation, the net valid
count 1s the number of bytes 1n butfer 710 plus the number
of bytes 1in buffer 720. For the case of partial body element
support and prediction of the rotate amount for subsequent
input, the current net valid byte calculation becomes the
buffer 720 byte count. The rotate amount is the primary
control and may also serves as a seed for other control
signals.

FIG. 8 1llustrates another embodiment of a method of data
alignment for a complex data stream. In one embodiment, a
packet element 1s received and analyzed to determine what
type of element 1t 1s, step 810. If the element 1s determined
to be a head, body or tail, step 815, then the element is
mapped to that of a corresponding element type of a simple

data stream and processed as discussed above 1n relation to
FIG. 5, step 820.

If the element 1s not a head, body or tail, 1t 1s analyzed to
determine whether it 1s a hole or a partial body, step 825. It
the element 1s determined to be a hole, then states of the
buffers 710, 720, and 730 of data aligner 700 are held and
no action 1s taken, step 830. However, if the element 1is
determined to be a partial body, then the partial body
function of the element may be mapped to that of a tail, step
835. When performing this mapping, the partial body ele-
ment may be categorized into one of two mapped elements,
a Tail A and a Tail B, based on the number of bytes (net
count) containing data in the partial body and intermediate

buffer 720, step 840.

If the net count 1s less than 16 bytes, then the tail sequence
discussed above 1n relation to FIG. 5 may be followed, step
845 with the following modifications: suppress the control
output of data aligner 700, step 850 (This essentially means
that the control signals indicating the validity of bytes at
locations 1 to 16 are generated 1n second stage 706 but are
suppressed through logic 1n controller 750 when a Tail A 1s
detected); bypass the intermediate buffer 720, step 855; and
perform the next calculation of the net count using the
unpassed result in intermediate bufifer 720, step 860. In
certain 1mplementations, the net count 1n the current clock
cycle may be predicted as the mntermediate butfer 730 count
in the next clock cycle. Steps 850, 855, and 860 are repeated
until the net count exceeds or becomes equal to 16.

For example, 1f intermediate buffer 720 contains 7 bytes
and buffer 710 receives 1 byte, then all 8 bytes are passed to
buffer 730. Because there are less than 16 bytes stored in
buffer 730, controller 750 suppresses control output 778. In
one embodiment, control output 778 1s suppressed until the
net count equals or exceeds 16 bytes or an EOP signal 1s

10

15

20

25

30

35

40

45

50

55

60

65

14

received. In an alternative embodiment, another logic con-
figuration and control signal may be used to suppress control
output 778 of data aligner 700.

Then, using control signals transmitted by controller 750,

the output of buifer 730 1s fed back through multiplexers
775, 760 and 770 to be 1nput to bufler 730 on a subsequent

clock cycle. In this manner, the output of intermediate buifer
720 1s bypassed with contents of butfer 730. The calculation
to determine the net count when additional bytes are
received at buifer 710 may then be performed using the
prediction scheme discussed above 1n relation to FIG. 7. The
steps are repeated until the net count of bytes 1n buffer 710
and 720 (inclusive of buffer 730 bypass as and when it may
occur) equals or exceeds 16 bytes.

If the net count 1s equal to or greater than 16 bytes, then
the tail sequence discussed above 1n relation to FIG. 5 may
be followed, step 865, with the following modifications: the

control outputs (inclusive of SOP and byte enables) are not
suppressed, step 870; the EOP control signal 1s not
generated, step 875; and the intermediate butfer 720 1s not
bypassed, step 880, since 1t 1s properly updated.

Continuing the previous example, if buffer 720 (inclusive
of buffer 730 bypass) stores 8 bytes of data and an additional
8 bytes are received then the 8 bytes are passed to multi-
plexer 760 along with rotator 760 output. Because the sum
equals 16, the concatenated output 1s passed to multiplexer
770 to be outputted 1n the next clock cycle. No EOP control
signal 1s generated by controller 750. In this manner, a
partial body element that causes a net count at buffers 710
and 720 (inclusive of buffer 730 bypass) to equal or exceed
16 bytes 1s treated similar to that of a tail element 1n the
simple data stream without the generation of an EOP control
signal.

The above method allows for a complex data stream to be
mapped onto a relatively simple apparatus with only the
addition of multiplexers and combinational logic. This struc-
ture eases the burden on the control design 1n a first stage,
that may have a strict timing requirement, and distributes
logic between stages rather than over packing the first stage
with logic. Such a circuit structure may lead to better timing
and a higher frequency of operation.

FIG. 9 illustrates one embodiment of a rotator. In one
embodiment, rotator 900 may be used as rotator 440 of FIG.
4 or rotator 740 of FIG. 7. Rotator 900 represents a 4 stage
chain of byte rotation circuitry in which each byte rotation
circuit 981-984 is capable of rotating 1, 2, 4, or 8 bytes by
themselves. Byte rotation circuitry 1s known in the art;
accordingly, a detailed discussion 1s not provided.

Each of byte rotation circuitry 981-984 may be bypassed
based on a rotate input function. In this configuration, rotator
900 can generate a rotated output 979 from a 16 byte input
based on control signals 971 to 974 that indicated an amount
of byte rotation from 0 bytes to 15 bytes. FIG. 11 1s an
exemplary embodiment illustrating outputs of rotator 900
based on 1nputs and rotate amounts.

Control signals 971-974 are applied as control 1nputs to
multiplexers 991-994, respectively. Control signals
971-974 sclect between outputs 961-964, respectively, of
byte rotation circuitry 981-984, respectively, and the mputs
951-954, respectively, of byte rotation circuitry 981-984.
Inputs 951-954 are applied as data inputs 955-9358,
respectively, to multiplexers 991-994. FIG. 10 1llustrates the
output 979 based on the data of mputs 951-954 and the
rotate amounts. In an alternative embodiment, another type
of rotator may be used, for example, a barrel rotator.

The method and apparatus described herein may be used
to solve a generic and recurring problem 1n complex data

US 6,313,734 Bl

15

path designs. The implementation in network protocol
related hardware, where a data stream 1s encoded and
decoded for error detection and correction, may lead to a
faster and more efficient pipelined design of checkers and
generators, thereby, making them more desirable for to
higher frequency and higher bandwidth designs.

In an alternative embodiment, the method and apparatus
described herein may be used 1n other types of systems and
components that require data alignment, for example, pro-
cessor load and storage engines where unaligned data in
various byte lanes may be aligned. As another example, the
method and apparatus may be used 1n store gathering
functions where multiple byte wide stores from internal
Instructions are mapped as a single store operation on an
external bus.

In the foregomg specification, the invention has been
described with reference to specific exemplary embodiments
thereof. It will, however, be evident that various modifica-
tions and changes may be made thereto without departing
from the broader spirit and scope of the invention as set forth
in the claims. The specification and drawings are,
accordingly, to be regarded 1n an 1illustrative rather than a
restrictive sense.

What 1s claimed 1s:

1. A data alignment apparatus, comprising:

an mput for receiving an mput temporal series of parallel-
formatted input groups of digital data units;

a data aligner coupled to said input and responsive to said
input series for producing an output temporal series of
parallel-formatted output groups of said digital data
units;

an output coupled to said data aligner for outputting said
output series;

said data aligner including a buffer coupled to said input
for storing data units of a first said 1nput group while a
second said input group 1s received at said input, and a
combiner coupled to said buffer and said input for
producing a temporary parallel-formatted group of data
units received 1n said input series by combining in
parallel format all of said data units stored in said bufler
and all of said data units of said second 1nput group,
said data aligner operable for using said temporary
group to produce one of said output groups;

said data aligner including a further buifer for storing said
temporary group while a third said input group i1s
received at said 1nput, and a data path coupled to said
combiner and said further buffer for permitting said
temporary group to be transferred to said further buffer
without being stored 1n said first-mentioned buil

er; and

said combiner coupled to an output of said further buffer

for permitting re-use of said combiner to produce a

further parallel-formatted group of data units received

in said mput series by combining 1n parallel format all

of said data units stored in said further buffer and
selected data units of said third input group.

2. The apparatus of claim 1, wherein said combiner 1s
operable for combining 1n parallel format all of said data
units stored in said further buffer and all of said data units
of said third mput group to produce said further group,
wherein said further group i1s a further temporary group,
wherein said data path 1s for permitting transfer of said
further temporary group to said further buffer without being
stored 1n said first-mentioned buffer, wherein said further
buffer 1s for storing said further temporary group while a
fourth said input group 1s received at said input, and wherein
saild combiner 1s for producing a still further parallel-

10

15

20

25

30

35

40

45

50

55

60

65

16

formatted group of data units received 1n said
combining in parallel format all of said data units of said
further temporary group stored in said further buffer and
selected data units of said fourth input group.

3. The apparatus of claim 1, wheremn said still further
group 1S said one output group.

4. The apparatus of claim 1, wherein said combiner 1s
operable for combining 1n parallel format all of said data
units stored in said further buffer and all of said data units
of said third input group to produce said further group, and
wherein said further group 1s said one output group.

5. The apparatus of claiam 1, wherein said data aligner
includes a further data path coupled to said combiner and
said output of said further buffer for permitting data units
stored 1n said further buffer to be 1nput to said combiner.

6. The apparatus of claim §, wheremn said combiner
includes a selector having inputs respectively coupled to
said first-mentioned 1nput and said further data path, and
having an output coupled to said first-mentioned data path.

7. The apparatus of claim 6, wherein said data aligner
includes a further selector having an 1nput coupled to said
output of said further buifer and having an output coupled to
said further data path.

8. The apparatus of claim 7, wherein said further selector
has an 1nput coupled to an output of said first-mentioned
buffer.

9. The apparatus of claim 5, wherein said data aligner
includes a selector having an input coupled to said output of
said further buifer and having an output coupled to said
further data path.

10. The apparatus of claim 9, wherein said selector has an
input coupled to an output of said first-mentioned buffer.

11. The apparatus of claim 1, wherein said combiner 1s for
performing said combining operations as parallel concat-
enating operations.

12. The apparatus of claim 1, wherein each said input
group 1s one of a head element, a body element and a tail
clement of a data packet.

13. The apparatus of claim 12, wherein one of said body
clements 1s a partial body element.

14. The apparatus of claim 1, wherein each of said data
units 1s a byte.

15. The apparatus of claim 1, wherein said further group
1s said one output group.

16. The apparatus of claam 1, wherein said data path
bypasses said first-mentioned buifer.

17. A data alignment method, comprising;:

receiving an input temporal series of parallel-formatted
input groups of digital data units;

in response to the input series, producing an output
temporal series of parallel-formatted output groups of
said digital data units, including storing data units of a
first said mput group in a buffer while a second said
Input group 1s received;

said producing step including producing a temporary
parallel-formatted group of data units received 1n said
input series, including combining 1n parallel format all
of said data units stored 1n the buffer and all of said data
units of said second mput group; and

said first-mentioned producing step including using said
temporary group to produce one of said output groups,
said using step including storing said temporary group
in a further buffer while a third said iput group 1is
received, said last-mentioned storing step including
transferring said temporary group to the further bufler
without storage thereof 1n the first-mentioned buffer,

and said using step including producing a further

input series by

US 6,313,734 Bl

17

parallel-formatted group of data units received 1n said
input series, said last-mentioned producing step 1nclud-
ing combining 1n parallel format all of said data units
stored 1n the further buffer and selected data units of
said third mput group.

18. The method of claim 17, wherein said last-mentioned
combining step 1ncludes combining 1 parallel format all of
said data units stored in the further buffer and all of said data
units of said third input group, wherein said further group 1s
a further temporary group, wherein said using step includes
using said further temporary group to produce a still further
parallel-formatted group of data units received 1n said input
series, said last-mentioned using step including storing said
further temporary group 1 the further buffer while a fourth
said mput group 1s received, said last-mentioned storing step
including transferring said further temporary group to the
further buffer without storage thereof in the first-mentioned
buffer, said last-mentioned using step including combining,
in parallel format units of said data units of said further
temporary group stored in the further buffer and selected
data units of said fourth mnput group.

19. The method of claim 18, wherein said still further
group 1s said one output group.

20. The method of claim 17, wherein said last-mentioned
combining step 1ncludes combining 1 parallel format all of
said data units stored 1n the further buffer and all of said data
units of said third mput group, and wheremn said further
group 1S said one output group.

21. The method of claim 17, wherein said further group 1s
said one output group.

22. The method of claim 17, wherein said transferring step
includes said further temporary group bypassing the first-
mentioned buffer.

23. An apparatus for interfacing a digital data processor to
a digital communication network, comprising;:

a first data port that permits exchange of digital data with
the data processor;

a second data port that permits exchange of digital data
with the communication network; and

a data alignment apparatus coupled between said first and
second data ports, including an 1nput for receiving an
input temporal series of parallel-formatted input groups
of digital data units, a data aligner coupled to said input
and responsive to said mput series for producing an
output temporal series of parallel-formatted output
groups of said digital data units, and an output coupled
to said data aligner for outputting said output series;

said data aligner including a buffer coupled to said input
for storing data units of a first said 1nput group while a
second said input group 1s received at said input, and a
combiner coupled to said buffer and said input for
producing a temporary parallel-formatted group of data
units received 1n said input series by combining in

10

15

20

25

30

35

40

45

50

138

parallel format all of said data units stored 1n said butfer
and all of said data units of said second 1nput group,
said data aligner operable for using said temporary
group to produce one of said output groups;

said data aligner including a further buffer for storing said
temporary group while a third said 1nput group 1is
received at said 1nput, and a data path coupled to said
combiner and said further buffer for permitting said

temporary group to be transferred to said further buifer
without being stored 1n said first-mentioned buifer; and

said combiner coupled to an output of said further buffer
for permitting re-use of said combiner to produce a
further parallel-formatted group of data units received
in said 1input series by combining in parallel format all
of said data units stored in said further buffer and
selected data units of said third input group.

24. The apparatus of claim 23, provided as one of a
SONET card, an Ethernet card and a token ring card.

25. The apparatus of claim 23, wherein said data path
bypasses said first-mentioned buifer.

26. The apparatus of claim 23, wherein said data aligner
includes a further data path coupled to said combiner and
said output of said further buffer for permitting data units
stored 1n said further buffer to be 1nput to said combiner.

27. The apparatus of claim 26, wherein said combiner
includes a selector having inputs respectively coupled to
said first-mentioned i1nput and said further data path, and
having an output coupled to said first-mentioned data path.

28. The apparatus of claim 27, wherein said data aligner
includes a further selector having an 1nput coupled to said
output of said further buffer and having an output coupled to
said further data path.

29. The apparatus of claim 28, wheremn said further
selector has an 1nput coupled to an output of said first-
mentioned buifer.

30. The apparatus of claim 26, wherein said data aligner
includes a selector having an input coupled to said output of
said further buffer and having an output coupled to said
further data path.

31. The apparatus of claim 30, wherein said selector has
an 1put coupled to an output of said first-mentioned buifer.

32. The apparatus of claim 23, wherein said combiner 1s
for performing said combining operations as parallel con-
catenating operations.

33. The apparatus of claim 23, wherein each said input
ogroup 1s one of a head element, a body element and a tail
clement of a data packet.

34. The apparatus of claim 33, wherein one of said body
clements 1s partial body element.

35. The apparatus of claim 23, wherein said further group
1s said one output group.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

