US006813641B2
(12) United States Patent (10) Patent No.: US 6,813,641 B2
Fomenko et al. 45) Date of Patent: Nov. 2, 2004
(54) TEAMWARE SERVER WORKING OVER (56) References Cited

HTTP/HTTPS CONNECTIONS
U.S. PATENT DOCUMENTS

(75) Inventors: Anatoli Fomenko, San Jose, CA (US);

5,928,323 A 7/1999 Gosling et al. 709/203
Sadhana S. Rau, Palo Alto, CA (US) 6,098,093 A * 82000 Bayehget al. e, 709/203
_ _ 6,463,457 B1 * 10/2002 Armentrout et al. 709/201
(73) Assignee: Sun Microsystems, Inc., Santa Clara, 6591272 B1 * 7/2003 Williamsooervvon... 707/102
CA (US) 6.604.106 B1 * 82003 Bodin et al. 707/101
6,735,771 B1 * 5/2004 Houlding 719/315
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 * cited by examiner

U.S.C. 154(b) by 663 days.
Primary Examiner—Moustata M. Meky

(21) Appl. No.: 09/899,473 (74) Artorney, Agent, or Firm—Osha & May L.L.P.
(22) Filed: Jul. 5, 2001 (57) ABSTRACT
(65) Prior Publication Data A system for remotely accessing a resource in a network

having a client-side and a server-side includes a server

US 2003/0009476 Al Jan. 9, 2003 L2 : :
/ - application having at least one server object that can access

(51) Int. CL7 e, GO6F 13/00 the resource, a client application comprising an interface
(52) US.CL ..., 709/230; 709/203; 709/217; through which a method of a proxy object can be called

709/225; 709/302 locally and converted to a request, a servlet that delegates
(58) Field of Searchcccccceenn... 709/200, 201, Processing of the request to the server object, and a con-

709/203, 204, 205, 217, 218, 219, 220, nection for sending the request to the servlet.
221, 225, 226, 227, 229, 230, 231, 300,
302, 303-305 24 Claims, 4 Drawing Sheets

22

2 RESOURCE

GUI cLr | Il oBiecT] [omiect] | oBiecT ||} L34
| A B || C

' e e —— l

" jrm?zz/ 1 SERVER APPLICATION
L 77 q 28 -
PRDXY! PROXY | 1 26
I C l ~ ,

7 ////W G || 48 | [SER{/LETJ EVLE . 36

AL\ S1
CONNECTION

R

—

“‘l‘

L IIII
L SERVLET RUNNER

LS llrl 7

A

CLIENT APPLICATION

WEB SERVER ‘!

| 44 L /L: -
{

12

US 6,813,641 B2

81

4

o

Yo

E 97T

e

7 9

<t

—

&

o DIAD(

2 UO11D3aULOYD)

z 374NOS3Y AHOMISN
27 0C

U.S. Patent

[JUNOIA

A

AJOWID A

921N
UOI3D3UU0D
NIOMISN

14!

Ot

o
o C JHNDOI-
o
er,
s
<& 8T 8¢E cT
Z \
bt
YIAHIS 9IM NOLLYOI1ddV IN3I1D
0¥
— IR T T T 777777 .\\\.\.\\L\\.\
b
\\mmzz:,n_ LITIAYAS T “u ‘ €
\.\\\\\\.\\.\\\\.\.\\\\.\.\ /d1L \ NOILDANNQOD 12331d0O
N H \ 310W3Y \ ¥ad1aH |
3 _‘ I m A —“ \
2 IERLYEL 131AM3S \ - \
7>
Y
- 37
T NOLLVYOITddV d3IAY3S _
S
2.,,
- m_ao m_mmo
7

J2UNOSIY

ccC

U.S. Patent

U.S. Patent Nov. 2, 2004 Sheet 3 of 4 US 6,813,641 B2

ST54 Method invoked on

proxy object by
GUI or CLI

Analyze requested
method and translate ST56
requested method to
HTTP request

ST58
Open a HTTP connection

and send HTTP request
to web server

ST60 ST62

Is servlet
NO | Load servlet into
memory

identified in HTTP
request loaded into
memory?

ST64

Create request and
response abjects and
pass objects to serviet

Delegate processing of
request to server-side
object and receive

results

STE6

ST70

ST68 | Use methods of
response object to
return results to

web server

Send results to proxy
object over HTTP
connection

FIGURE 5

U.S. Patent Nov. 2, 2004 Sheet 4 of 4 US 6,813,641 B2

50

AUTHENTICATION SERVICE
52
LOGIN MODULE

DIRECTORY SERVICE PROVIDER
54

FIGURE 4

US 6,313,641 B2

1

TEAMWARE SERVER WORKING OVER
HTTP/HTTPS CONNECTIONS

BACKGROUND OF INVENTION

1. Field of the Invention

The 1nvention relates generally to “teamware,” a category
of software that enables a team of people, especially people
distributed over multiple locations, to collaborate on
projects. More specifically, the invention relates to methods
and systems for executing transactions between teamware
workspaces.

2. Background Art

One of the major challenges in developing large-scale
(multi-platform) software is coordinating the activities of a
team of people, 1.e., developers, testers, technical writers,
and managers. To improve productivity, time-to-market, and
quality of the software, the various phases of the develop-
ment life cycle typically evolve concurrently, 1.€., 1n parallel.
Concurrent software development requires that the devel-
opers have access to common software base for the purpose
of developing and building the software. The main challenge
with this type of development process 1s how to control
access to the software base and track the changes made to
the software base so that the mtegrity of the software base
1s maintained. It should be noted that at any point 1n time,
various configurations of the software base may exist
because the various phases of the development cycle are
evolving concurrently.

Most development teams use a Software Configuration
Management (SCM) system to manage the software base.
SCM systems, such as Concurrent Versions System (CVS),
track the changes made to the files under their control and
facilitate merging of code. Sophisticated SCM systems, such
as Rational® ClearCase® from Rational Software Corpo-
ration and Forte™ TeamWare from Sun Microsystems, Inc.,
provide other capabilities such as software building and
process management (€.g., what changes can be made to the
software base and who can make the changes).

SCM systems, such as Forte™ TeamWare, allow creation
of one or more isolated workspaces (also known as
sandbox). The term “workspace,” as used herein, refers to a
directory, 1ts subdirectories, and the files contained 1n those
directories. Typically, the files are maintained under a ver-
sion control system, such as Source Code Control System
(SCCS) or Revision Control System (RCS). To use Forte
TeamWare, for example, the developers 1nitially place their
project directories and files (if available) in one high-level
directory. Forte™ TeamWare then transforms the high-level
directory into a top-level (or parent) workspace. If project
directories and files are not available, an empty parent
workspace 1s created. After creating the parent workspace,
the developers create their own child workspaces with
copies of the parent workspace files. The developers can
then modify individual versions of the same file 1n their child
workspaces without interfering with the work of other
developers. After the files are modified 1n the child
workspaces, they are merged and copied to the parent
workspace. Merging of files generally involves resolving
conilicts between individual versions of the same file.

Transactions between a child workspace and a parent
workspace generally revolve around three relationships:
bring over files from the parent workspace, modify files in
the child workspace, and put back files to the parent work-
space. Forte™ TeamWare (version 6) as currently imple-
mented only supports transactions between two local work-

10

15

20

25

30

35

40

45

50

55

60

65

2

spaces. Two workspaces are “local” 1f local access methods
or standard network file sharing protocols, such as Network
File System (NFS) on UNIX® or Server Message Block
(SMB) on Windows®, can be used to transfer files between
the workspaces. NFS, for example, operates as a client-
server application. A computer that shares its resources with
other computers on the network using the NFS service 1s
known as an NFS server. The computers sharing the
resources of the NFS server are known as NFS clients. Using
NFES service, a resource physically linked to a NFS server
may be NFS mounted. Once the resource 1s NFS mounted,
it becomes accessible to all NFS clients as if 1t were stored
locally at each client. Similarly, SMB server provides file
sharing services to SMB clients.

Typically, the parent workspace 1s located on a different
machine than the one on which the child workspace 1is
located. In this arrangement, the computer on which the
parent workspace resides can be referred to as a server, and
the computer on which the child workspace resides can be
referred to as a client. Thus, 1f the server 1s a UNIX® system
and the client 1s a Windows® system, either the server would
have to install an implementation of SMB or the client
would have to install an implementation of NFS to execute
fransactions between the workspaces. In other words, both
the server and client are required to have an implementation
of the same file sharing protocol to execute transactions
between the workspaces. This may not always be possible or
convenient because there are several operating systems on
the market and an implementation of a particular file sharing
protocol may not be available for all operating systems. In
this situation, a mechanism that allows transactions between
workspaces to be executed regardless of the operating
system of the client and server computers 1s desired.

SUMMARY OF INVENTION

In one aspect, the invention relates to a method for
remotely accessing a resource in a network having a client-
side and a server-side. The method comprises calling a
method of a proxy object at the client-side, converting the
call for the method of the proxy object to a request,
transmitting the request to the server-side, and invoking a
servlet at the server-side to generate a response to the
request. The servlet delegates processing of the request to a
server object having access to the resource.

In another aspect, the invention relates to a method for
executing transactions 1n a network having a client-side and
a server-side. The method comprises requesting access to a
remote workspace by calling a method of a proxy object at
the client-side, converting the call for the method of the
proxy object to a request, transmitting the request to the
server-side, and invoking a servlet at the server-side to
generate a response to the request. The servlet delegates
processing of the request to a server object having access to
the remote workspace.

In another aspect, the invention relates to a method for
executing transactions 1n a network having a client-side and
a server-side. The method comprises requesting access to a
remote resource by calling a method of a proxy object at the
client-side, converting the call for the method of the proxy
object to a request, transmitting the request to the server-side
using HTTP protocol, and 1invoking a servlet on the server-
side to generate a response to the request. The servlet
delegates processing of the request to a server object having
access to the remote resource.

In another aspect, the invention relates to a system for
remotely accessing a resource 1n a client-server network.

US 6,313,641 B2

3

The system comprises a server application having at least
one server object that can access the resource, a client
application comprising an interface through which a method
of a proxy object can be called locally and converted to a
request, a servlet that delegates processing of the request to

the server object, and a connection for sending the request
to the servlet.

In another aspect, the invention relates to a software
conilguration management system which comprises a server
application having at least one server object that can access
a workspace, a client application comprising an interface
through which a method of a proxy object can be called
locally and converted to a request, a servlet that delegates
processing ol the request to the server object, and a con-
nection for sending the request to the servlet.

Other aspects and advantages of the invention will be
apparent from the following description and the appended
claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1s a block diagram of a client-server network.

FIG. 2 1s a block diagram of a system for remotely
accessing a resource i1n a client-server network.

FIG. 3 1s a flowchart 1llustrating a method for remotely
accessing a resource 1n a client-server network.

FIG. 4 1s a block diagram of an authentication mechanism
for use 1n the system shown 1 FIG. 2.

DETAILED DESCRIPTION

In the following detailed description of the invention,
numerous specific details are set forth 1n order to provide a
more thorough understanding of the mvention. However, 1t
will be apparent to one of ordinary skill in the art that the
invention may be practiced without these specific details. In
other 1nstances, well-known features have not been
described 1n detail to avoid obscuring the invention.

Referring now to the accompanying drawings, FIG. 1
shows a block diagram of a client-server network 2 suitable
for practicing the invention. The client-server network 2
includes a client machine 4 and a server machine 6. The
client machine 2 and server machine 6 are connected by a
transmission channel 8, which may be a wire or wireless
transmission channel. The client machine 4 may be any
standard computer system running any standard operating

system, such as Microsoft Windows® 2000, Windows® NT,
UNIX®, Solaris®, and so forth. The client machine 4
includes standard computer components such as CPU
(“Central Processing Unit”) 10, (primary and/or secondary)
memory 12, and network connection device 14. The server
machine 6 may be any standard computer system, such as
sold under the trade name Ultra™ 10 Workstation by Sun
Microsystems, Inc., Palo Alto, Calif. The server machine 6
includes standard server components such as CPU 16,
(primary and/or secondary) memory 18, and network con-
nection device 20.

The client-server network 2 1ncludes one or more
resources 22 (only one is shown) which may be installed on
the server machine 6 or on another server machine (not
shown) in the client-server network 2. The term “resource”
typically means any disk drive, printer, peripheral device,
directory, program file, or data that can be shared among
users on a network. In the context of software configuration
management, the term “resource” would generally refer to a
workspace or repository containing components of a soft-
ware product (i.e., shared and interdependent source files)

10

15

20

25

30

35

40

45

50

55

60

65

4

stored 1n a computer memory, such as memory 18, or on a
secondary storage device (not shown), such as disk,
CD-ROM, DVD, and so forth. Multiple users on client
machines, such as client machine 4, can access and make
modifications to the software product. Typically, some form
of version control, such as SCCS (“Source Code Control
System™), 1s used to keep track of the changes made to the

files.

FIG. 2 shows a system for remotely accessing the
resource 22 1 the client-server network 2. For convenience
and clarity, not all the parts of the client-server network 2 are
shown 1n FIG. 2. The system includes a client application 24,
a server application 26, and a communication layer 28
between the client application 24 and the server application
26. In one embodiment, the client application 24 1s stored 1n
memory 12 and provides a Graphical User Interface (GUI)
30 and/or a Command Line Interface (CLI) 32 through
which a user can remotely access the resource 22. In one
embodiment, the server application 26 is stored 1n memory
18 and includes server-side objects, collectively indicated at
34, which can directly access the resource 22 using local
access methods or standard network file sharing protocols,
such as NFS or SMB. It should be noted that the number of
server-side objects 34 1s arbitrary and will depend on the
programmer’s implementation of the system. For a single-
user system, 1t 15 also possible to have the client application
24, server application 26, and resource 22 installed on the
same host machine. In this case, the host machine serves as
both the client machine and server machine.

In one 1mplementation, the client application 10 and the
server application 26 are Java™ applications. A Java™
application 1s made up of one or more classes compiled 1nto
an architecture-neutral machine code, commonly known as
bytecodes. The Java™ application 1s executed by running
another program called a Java™ Virtual Machine (JVM).
When executing the Java™ application, the JVM 1s invoked,
causing the class loader (not shown) to load the bytecodes in
the application into memory. Abytecode verifier (not shown)
confirms that all bytecodes are valid and do not violate
Java’s security restrictions. Then the JVM reads the byte-
codes and interprets them 1nto a language that the computer
can understand.

The communication layer 28 1s responsible for marshaling
and unmarshaling requests made by client application 24
and responses generated by server application 26. The term
“marshaling” 1s the process of packing one or more items of
data 1nto a message bufler, prior to transmitting that message
buffer over a communication channel. The term “unmar-
shaling” 1s the process of unpacking a marshaled stream. On
the server-side, the communication layer 28 includes serv-
lets 36. Each servlet 36 1s a piece of software code which 1s
used to dynamically generate information. Servlets are typi-
cally written 1n Java™, but they could also be written 1n
other programming languages. Once the servlets are
instantiated, they process requests 1n a continuous loop until
they are destroyed. As will be further explained below, the
servlets 36 parse requests from the client application 24 and
delegate processing of the requests to an appropriate one of
the server-side objects 34 1n the server application 26. It
should be noted that the number of servlets 36 1s arbitrary
and would depend on the programmer’s implementation of
the system.

The servlets 36 are deployed on a web server 38. In the
illustration, the web server 38 1s stored 1n memory 18 of the
server machine 6. In alternate embodiments, the web server
38 or a portion of the web server 38 may be stored on a
secondary storage device (not shown), such as a disk,

US 6,313,641 B2

S

CD-ROM, DVD and so forth. The web server 38 may be any
standard web server having an integrated or plug-in servlet
container 40. One example of a web server which includes
a servlet container 1s Tomcat, version 3.2.1. Tomcat 1S an
open-source software project jointly run by Apache Soft-
ware Foundation and Sun Microsystems, Inc.

On the client-side, the communication layer 28 includes
client-side proxy objects, collectively indicated at 42. In one
embodiment, each of the proxy objects 42 corresponds to

one of the server-side objects 34 and implements all of the
interfaces of the corresponding server-side object 34. The
communication layer 28 keeps track of which client-side
proxy object 42 corresponds to which server-side object 34.
For example, special ids, such as session_1d for client
session, workspace_ 1d for workspace to be accessed, and
transaction__1d for type of transaction, can be present 1n
client/server calls. The special 1ds can then be used to map
client-side proxy objects to server-side objects. In one
embodiment, the client-side proxy objects 42 are Java™
classes and run in the same JVM (not shown) as the client
application 24.

In one embodiment, the underlying communications pro-
tocol used in the communication layer 28 is HTTP (or
HTTPS) protocol. HTTP (“Hypertext Transfer Protocol”) is
an application-level protocol used in connecting servers and
clients (browsers) on the World-Wide Web. HTTP 1s based
on a request-response paradigm and uses TCP
(“Transmission Control Protocol”) connections to transfer
data. HTTPS (“Hypertext Transfer Protocol Secure”) is a
variant of HT'TP that implements the SSL (“Secure Sockets
Layer”) mechanism. SSL is a standard protocol developed
by Netscape Communications Corporation for implement-
ing cryptography and enabling secure transactions on the
Web. SSL uses public key signatures and digital certificates
to authenticate a server and client and provides an encrypted
connection for the client and server to exchange messages
securely.

The GUI 30 or CLI 32 calls a method of one of the proxy
objects 42, passing parameters to the proxy object 42 1n a
manner similar to passing parameters for a conventional
procedure call. For example, the method may be instructions
to bring files over from a remote workspace on the server
machine 6 to a local workspace on the client machine 4. The
proxy object 42 passes the parameters to a helper object 43,
which analyzes the parameters, marshals the parameters 1nto
a predetermined message format, and converts the method
call into a HTTP request. The HTTP request includes HT'TP
headers and objects (if the request method takes objects as
parameters) or an input stream (if the request method takes
an input stream as a parameter). The requested method
would take an mput stream as a parameter, for example, if
a file 1s to be returned as part of the response to the GUI 30
or CLI 32. The HTTP headers include information such as
the request method, the marshaled parameters, the ID of the
client-side proxy 42, and the protocol version. The HTTP
request also includes a URL (“Uniform Resource Locator™)
which specifies the address of the web server 38 and the
servlet that will handle dispatching of the request to the
appropriate server-side object 34. The communication layer
28 includes a remote connection object 44 on the client-side
that 1s responsible for setting up and managing the remote
connection 46 between the client application 24 and the
server application 26.

In operation, the GUI 30 or CLI 32 invokes a method on
one of the client-side proxy objects 34, ¢.g., client-side
proxy A, (ST54 in FIG. 3). Client-side proxy A intercepts the
function call, analyzes the requested method, and uses the

10

15

20

25

30

35

40

45

50

55

60

65

6

helper object 43 to generate a corresponding HT'TP request
(ST56 in FIG. 3). The client-side proxy A then opens the
connection 46 and transmits the HT'TP request to the web
server 38 (ST38 in FIG. 3). The HTTP request specifies that

one of the servlets 36, ¢.g., servlet S1, should handle the
request. The web server 38 checks 1f the servlet S1 has been
loaded into memory 18 (ST60 in FIG. 3). If the servlet S1
has not been loaded, the web server 38 loads and creates an
instance of the servlet S1 (ST62 in FIG. 3). The web server
38 then calls the it method of the servlet S1 to initialize the
servlet S1. The it method 1s called only once during the
lifetime of the servlet. Once the servlet S1 1s instantiated, the
requests to the servlet S1 are processed 1n a continuous loop
until the web server 38 1s shut down or a destroy method 1s
called on the servlet S1. After initializing the servlet B, the
web server 38 creates a request object (not shown) and a
response object (not shown). In Java™ servlets, there are
classes HitpServletRequest and HttpServletResponse that
handle HT'TP request/response operations. The web server
38 invokes the service method of the servlet S1, which takes
the request object and the response object as parameters
(ST64 in FIG. 3). These parameters encapsulate the data sent
by the client-side proxy A, thereby allowing the servlet S1
to report status mnformation, such as errors.

The servlet S1 invokes methods from the request object 1n
order to discover information about the environment of the
client application 24, the environment of the web server 38,
and all the information provided by the client application 24.
A more detailed discussion of how servlets operate can be
found 1 U.S. Pat. No. 5,928,323 1ssued to Gosling et al.,
entitled “Apparatus and Method for Dynamically Generat-
ing Information with Sever-side Software Objects,” and
assigned to the assignee of the present invention. The servlet
S1 delegates processing of the request to an appropriate one
of the server-side objects 34, e.g., server-side object A (ST66
in FIG. 3). The server-side object A processes the request
and returns the result to the servlet S1. The servlet S1
prepares the response and mmvokes methods for the response
object to send the response back to the Web server 38 (ST68
in FIG. 3). The web server 38 then sends the response to the
client-side proxy A over the connection 46 (ST70 in FIG. 3).
The client-side proxy A closes the connection 46 after it
receives the response. The client-side proxy A passes the
results to the object making the function call, 1.e., GUI 30 or

CLI 32.

Typically, the servlets 36 perform authentication before
handling a task, 1.e., before delegating processing of a
request to the server-side objects 34. The term “authentica-
tion” refers to the process by which one subject, which may
be a user or a computing service, verifles the identity of
another subject 1n a secure fashion. This process typically
involves the subject demonstrating some form of evidence,
such as a password or signed data using a private key, to
prove 1ts 1denfity. Depending on the security parameters of
a particular service, different kinds of proof may be required
for authentication. In one embodiment, the system uses a
multi-layer pluggable architecture for authentication. This
architecture allows administrators to plug in the appropriate
authentication services to meet their security requirements.
Also, the architecture enables the server-side objects 34 to
remain 1ndependent from the underlying authentication ser-
vices. Hence as new authentication services become avail-
able or as current services are updated, administrators can
casily plug them in without having to modily or recompile
the server-side objects 34.

In one embodiment, as shown 1n FIG. 4, the upper layer
50 of the authentication architecture 1s based on Java

US 6,313,641 B2

7

Authentication and Authorization Service (JAAS). JAAS 1s
a framework and programming interface that augments the
Java™ platform with both user-based authentication and
access control capabilities. Additional information about
JAAS 1s available from Sun Microsystems, Inc., both in
print and via the Internet at “java.sun.com.” Also, see
Charlie La1 et al., User Authentication and Authorization 1n
the Java™ Platform, Proceedings of the 15” Annual Com-
puter Security Applications Conference, Phoenix, Ariz.,
December 1999.

Below the upper layer 50 1s a pluggable login module 52
that determines the authentication service. The pluggable
login module 52 may be a standard pluggable login module,
such as Java Naming and Directory Interface™ (JNDI) login
module, or may be a specific login module created by the
user. For cross-tier functionality, the login layer 52 includes
a pluggable service provider 54, such as Network Informa-
tion Services (NIS) or Lightweight Directory Access Proto-

col (LDAP) for directory lookups.

The login context of the JAAS layer 50 performs the
authentication steps 1n two phases. In the first phase, the
login context 1nvokes the login module 52 and instructs the
logimn module 52 to attempt authenfication. If the login
module 52 successtully passes this phase, the login context
then formally 1nstructs the login module 52 to complete the
authentication process. During this phase, the login module
52 associates the relevant authenticated principals (names)
and credentials with the subject. A “credential” 1s a security-
related attribute such as password, Kerberos ticket, public
key certificate, and cryptographic key. JAAS defines a
security policy to specily what resources are available to
authorized principals.

The 1nvention provides several advantages. Using the
system described above, transactions can be executed
between two workspaces, regardless of the operating system
of the machines on which the workspaces are located. In
other words, the transactions can be executed between two

workspaces when local access methods or network file
sharing protocols, such as NFS or SMB, are not available to
transfer data between the two workspaces. Using HT'TP/
HTTPS connections for remote access allows the server
application to be deployed across the Internet or intranet.
Using HTTP/HTTPS connections will also ensure more
security than, for example, using socket-based connections.
This 1s because a fully debugged SSL implementation that
can send encrypted information 1s readily available for these
connections.

While the invention has been described with respect to a
limited number of embodiments, those skilled in the art,
having benefit of this disclosure, will appreciate that other
embodiments can be devised which do not depart from the
scope of the invention as disclosed herein. Accordingly, the
scope of the mmvention should be limited only by the attached
claims.

What 1s claimed 1s:

1. A method for remotely accessing a resource In a
network having a client-side and a server-side, comprising:

calling a method of a proxy object at the client-side;

converting the call for the method of the proxy object to
a request;

transmitting the request to the server-side; and

invoking a servlet at the server-side to generate a response
to the request, wherein the servlet delegates processing
of the request to a server object having access to the
resource.
2. The method of claim 1, further comprising transmitting
the response to the client-side and returning the call for the
method of the proxy object.

10

15

20

25

30

35

40

45

50

55

60

65

3

3. The method of claim 1, wherein a method of the proxy
object 1s called by executing a command on the client-side.

4. The method of claim 1, wherein converting the call for
the method of the proxy object comprises marshaling param-
eters passed to the proxy object.

5. The method of claim 1, wherein the request 1s a HT'TP
request.

6. The method of claim 1, wheremn transmitting the
request to the server-side 1s based on HTTP protocol.

7. The method of claim 1, wheremn transmitting the
request to the server-side 1s based on HT'TPS protocol.

8. The method of claim 1, further comprising authenti-
cating the request prior to delegating processing of the
request to the server object.

9. The method of claim 1, wherein the servlet delegating
processing of the request to a server object comprises the
serviet selecting the server object corresponding to the proxy
object.

10. A method for executing transactions 1n a network
having a client-side and a server-side, comprising;:

requesting access to a remote workspace by calling a
method of a proxy object at the client-side;

converting the call for the method of the proxy object to
a request;

transmitting the request to the server-side; and

invoking a servlet at the server-side to generate a response
to the request, wherein the servlet delegates processing,
of the request to a server object having access to the
remote workspace.

11. The method of claim 8, wherein transmitting the
request comprises using HTTP protocol to transmit the
request.

12. The method of claim 8, wherein transmitting the
request comprises using HTTPS protocol to transmit the
request.

13. A method for executing transactions 1n a network
having a client-side and a server-side, comprising;:

requesting access to a remote resource by calling a
method of a proxy object at the client-side;

converting the call for the method of the proxy object to
a request;

transmitting the request to the server-side using HTTP
protocol; and

invoking a servlet on the server-side to generate a
response to the request, wherein the servlet delegates
processing ol the request to a server object having
access to the remote resource.

14. A method for executing transactions 1in a network

having a client-side and a server-side, comprising;:

requesting access to a remote resource by calling a
method of a proxy object at the client-side;

converting the call for the method of the proxy object to
a request;

transmitting the request to the server-side using HTTPS
protocol; and

invoking a servlet on the server-side to generate a
response to the request, wherein the servlet delegates
processing ol the request to a server object having
access to the remote resource.

15. A system for remotely accessing a resource 1n a
client-server network, comprising;:

a server application having at least one server object that
can access the resource directly;

a client application comprising an interface through which
a method of a proxy object can be called locally and
converted to a request;

US 6,313,641 B2

9

a servlet that delegates processing of the request to the
server object; and

a connection for sending the request to the servlet.

16. The system of claim 15, wherein the server application
and servlet are deployed on a web server.

17. The system of claim 15, wherein the connection 1is

based on HTTP protocol.
18. The system of claim 15, wherein the connection 1is

based on HTTPS protocol.
19. The system of claim 15, further comprising a mecha-

nism for authenticating the request.
20. The system of claim 15, wherein the resource com-

prises a workspace.
21. A software conifiguration management system, com-
prising:
a server application having at least one server object that
can access a workspace;

10

15

10

a client application comprising an interface through which
a method of a proxy object can be called locally and

converted to a request;

a servlet that delegates processing of the request to the
server object; and

a connection for sending the request to the servlet.

22. The software configuration management system of
claim 21, wherein the workspace 1s maintained under a
version control system.

23. The software configuration management system of
claim 21, wherein the connection 1s based on HTTP proto-
col.

24. The software configuration management system of
claim 21, wherein the connection 1s based on HTTPS
protocol.

	Front Page
	Drawings
	Specification
	Claims

