US006810448B1
12 United States Patent (10) Patent No.: US 6,810,448 B1
Johnson et al. 45) Date of Patent: Oct. 26, 2004
(54) METHOD AND APPARATUS FOR 5278834 A * 1/1994 Mazzola 370/469
PROCESSING CHAIN MESSAGES (SGL 5,991,797 A * 11/1999 Futral et al. 709/216
CHAINING 6,336,150 B1 * 1/2002 Ellis et al. 710/5
) 6,445,680 Bl * 9/2002 Moyal ...ovevereernnne.. 370/236
(75) Inventors: Stephen B. Johnson, Colorado Springs,
CO (US); Timothy E. Hoglund, OTHER PUBLICATIONS
Colorado Springs, CO (US); Guy W,
Kendall, Colorado Springs, CO (US) “Intelligent I/O (1,0) Architecture Specification”, Version
_ _ _ o 1.5, Mar. 1997, pp. 1-1 to 6-127.
(73) Assignee: LSI Logic Corporation, Milpitas, CA
(US) “Intelligent I/O (1,0) Architecture Specification”, Version
2.0, Mar. 1999, pp. 1-1 to 7-125.
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 * cited by examiner
U.S.C. 154(b) by 483 days.
(21) Appl. No.: 09/848,569 Primary Examiner—Rehana Perveen
(74) Attorney, Agent, or Firm—Christopher P. Maiorana,
(22) Filed: May 2, 2001 PC
(51) Imt.CL7 ..o, GO6F 13/14; GO6F 13/38 (57) ABSTRACT
(52) US.CL .. 710/52; 710/24; 710/36;
710/310; 709/216 A message-based 1I/0 architecture comprising a list describ-
(58) Field of Search 710/5, 24, 36, in OnC Of MOIC SOULCE .buffers.and d MES5AEL hei&lder. The
710/52, 100, 310; 709/216 list may be segmented 1n multiple memory locations. The
message header may be configured to (1) indicate whether
(56) References Cited the list is segmented and (i1) provide information for linking
the list when the list 1s segmented.
U.S. PATENT DOCUMENTS
4467411 A * 81984 Fryetal ..coooveveeenn... 711/136 24 Claims, 2 Drawing Sheets
102 104 106
3 3 2¢ 23 2 6 1% 1 87 0 0 byte
Function ChainOffset Function Dependent DCh
|2 unction Depe
MessageFlags Function Dependent D4h
108 MessageContext 08n
110

112

U.S. Patent Oct. 26, 2004 Sheet 1 of 2 US 6,810,448 B1

/'100
102 104 106

3 3 24 13 2 6 16 L byte

§ 7 0 0
Function Function Dependent OCh
MessageFlags Function Dependent O4h
108 MessageContext 08h
112

110

FIG. 1

122 124 120

3 3 4 23 2 19 15 1 87 4 0 byte
T " S
Address {low) 04h

(high) 08h

126
132 134 136

31 3 24 .23 2 16 15 1 87 0 0 byte
— o
Address (low) O4h

(high) 08h

138

FIG. 3

142 144 146 148

31 3 24 23 2 18 15 1 87 0 0 byte

Flags __ DaisLongh ooh

TransactionContext (0/32/64/36/128 bit) 04h
180
n

1592

FIG. 4

U.S. Patent Oct. 26, 2004 Sheet 2 of 2 US 6,810,448 B1

100\
202\\

Chain Offset indicating a Chain
element is present at this offset.
 1oh | 16h&f—O0h | Olh |

00h | 10h | O0h | O6h

87654321h
SCSI VO message body tart © . First Simple
element.
206
00010000 200h _ _ _
Fourth Simple element with LE bit
ADDG1000h e . ’
set indicating this is the last element |
" of the curent chain segment.
10010000 800h [
ADDQ3000h . : .
. First Chain element with a Next
—80h Chain Offset of 1Eh,
P CO00ADDON W,
e | 204
/
N\
N4
_ Start of next SGL chain segment.
00010000 ADD%OOC?I?% Fifth Simple element.
10010000 ADDle}OiGOh Last Chain e¢lement with a Next
ADD210OR Chain Offset of Oh indicating this is
00110000 10k) the last chain element of the SGL.
COADD100h
p 208"
!
\
N
4 210 - _
00010000 200h The last SGL chain segment with the
last Simple elements LE, EOB, and
11010001 EOL bits set.

ADD23000h

Ll
2

US 6,310,448 Bl

1

METHOD AND APPARATUS FOR
PROCESSING CHAIN MESSAGES (SGL
CHAINING)

FIELD OF THE INVENTION

The present invention relates to a message-based 1/0
architecture generally and, more particularly, to a method
and/or apparatus for processing chain messages.

BACKGROUND OF THE INVENTION

A device driver interfaces a particular hardware device to
a specific operating system (OS). The device driver can be
split into two modules: one that contains all the OS-speciiic
code and the other for hardware-specific code. The
OS-specific module of the device driver can convert oper-
ating system calls 1nto I/O transactions. The hardware-
specific module of the driver contains vendor-specific code
that converts the hardware level interface of the hardware
device to the functions required for the particular class of
device.

A message-based interface can be used to enable direct
message passing between any two device driver modules for
a particular class of I/O (message class). Message classes
can include (1) LAN ports, such as Ethernet or Token Ring
controllers; (i1) random block storage devices, such as hard
disk drives and CD-ROM drives; (iii) sequential storage
devices and variable block-size devices, such as tape drives;
(1iv) host bus adapters such as SCSI ports; (v) SCSI devices;
(vi) peer data services; (vii) hot plug controller; (viii) IDE
controllers and devices; (ix) floppy disk controllers and

devices; (x) Fibre Channel; and (x1) WAN ports, such as
ATM controllers.

When information 1s sent to a storage controller, the
information frequently does not fit into a single message
frame. The mmformation can be split into multiple message
frames. When the information is split (segmented) into
multiple frames, a “link™ or “chain” 1s needed to re-assemble
the 1nformation from the multiple message frames.

Conventional hardware and/or firmware solutions
traverse a scatter gather list (SGL) to find a “link” or
“chain”. The conventional methods for finding the link or
chain can require significant processor and hardware over-
head. Conventional message chaining 1s limited to extending

SGLs.
SUMMARY OF THE INVENTION

The present invention concerns a message-based 1/0
architecture comprising a list describing one or more source
buffers and a message header. The list may be segmented in
multiple memory locations. The message header may be
configured to (1) indicate whether the list is segmented and
(i1) provide information for linking the list when the list is
segmented.

The objects, features and advantages of the present inven-
tion 1nclude providing a method and apparatus for process-
ing chain messages that may (1) simplify checks for chains
for dedicated hardware components and embedded
firmware, (i1) provide an indication that a chain exists in a
message frame header, and/or (iii) provide a location where
chain mnformation 1s located.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects, features and advantages of the
present 1nvention will be apparent from the following
detailed description and the appended claims and drawings
in which:

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1 1s a block diagram 1illustrating a message header 1n
accordance with a preferred embodiment of the present
mvention;

FIG. 2 1s a block diagram illustrating an example of a

simple scatter gather element 1n accordance with a preferred
embodiment of the present invention;

FIG. 3 15 a block diagram 1llustrating a chain SG element
in accordance with a preferred embodiment of the present
mvention;

FIG. 4 1s a block diagram 1illustrating a transaction context
SG element 1n accordance with a preferred embodiment of
the present invention; and

FIG. 5 1s a flow diagram 1illustrating an example SCSI I/0O
message with a chained SGL 1n accordance with a preferred
embodiment of the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Referring to FIG. 1, a block diagram illustrating a mes-
sage header 100 implemented 1n accordance with a preferred
embodiment of the present invention 1s shown. The message
header 100 may be implemented as a number of bytes at the
begmning of a message frame. In one example, the message
header 100 may be implemented as the first 12 bytes of a
message frame. The message header 100 may comprise a
field 102, a field 104, a field 106, a field 108, a field 110, and
a field 112. The field 102 may be implemented as a function
field. The field 104 may be implemented as a chain offset
field. The field 106 may be implemented as a function
dependent field. The field 108 may be mmplemented as a
seccond function dependent field. The field 110 may be
implemented as a message flags field. The field 112 may be
implemented as a message context field.

The field 102 may contain a function number for a
particular message. The function number may be used to
differentiate one message from another message. The func-
tion number may be used to set a format for a remainder of
the message.

The field 104 may contain information indicating whether
a scatter gather list (SGL) associated with the message
header 100 1s segmented into multiple memory locations.
When the SGL 1s not segmented, the field 104 may contain
a null value. When the SGL 1s segmented, the ficld 104 may
contain an offset from the beginning of the message frame
to a location of a scatter gather (SG) element containing
chaining information. In one example, the offset may be
expressed as a number of 32-bit words.

The fields 106 and 108 may be formatted to support the
function specified by the field 102. The field 110 may
contain a number of bits indicating a state of a number of
message flags. In one example, a reserved bit may be set to
a logical LOW (“0”). However, other states for reserved bits
may be 1denfified 1n specific messages.

The field 112 may contain a value specified by a host
driver to uniquely 1dentify a particular message when pro-
cessing replies. The value specified by the host 1s generally
returned unmodified 1 a reply. However, when a protocol
that uses context replies 1s implemented, the values that may
be used 1n the field 112 may be restricted. In particular, the
protocol may restrict the use of one or more bits of the field
112. For example, a protocol for SCSI 10 message passing,
may use a number of bits of the field 112 (e.g., the upper
three bits) to implement (1) an address field (e.g., one or
more bits that indicate whether a reply 1s an address reply or
a context reply) and (i1) a type field (e.g., one or more bits
that indicate a type of the context reply) when the reply is a
context reply.

US 6,310,448 Bl

3

In one example, the address field may be implemented as
1-bit and the type field may be implemented as two bits.
When the address field or bit is set (€.g., a non-null value or
a logical “17), the reply may be an address reply and the rest
of the field 112 may be a 32-bit address that 1s shifted left by
one bit. When the address field or bit is not set (e.g., a null
value or a logical “07), the reply may be a context reply and
the type field or bits may describe a format for context
information 1n the remainder of the field 112. However,
other conventions may be implemented to meet the design
criteria of a particular application.

A scatter gather list (SGL) may be used to describe any
number of source buffers. The SGL 1s generally composed
of a structured list of scatter gather (SG) elements. In one
example, three types of SG elements may be implemented:
a simple element, a chain element, and a transaction context
clement. However, other types of SG elements may be
implemented to meet the design criteria of a particular
application. The simple element may be implemented as an
address length pair that may be used to describe a physically

contiguous block of memory. A data buffer as used herein
refers to a consecutive list of simple elements bounded by an
end of buffer flag. The chain element may be 1implemented
as an address length pair that may be used to link an SGL
that 1s segmented 1n multiple memory locations. Each physi-
cally contiguous piece of the SGL 1is generally called a
secgment. The transaction context element 1s generally used
when multiple buffers are implemented (used).

The transaction context element may be implemented to
correlate data buffers with a ftransaction reference. The
fransaction context elements may be associated with one or
more simple elements. Transaction context elements asso-
cilated with each simple element may provide a mechanism
for the host driver to manage buffers independently of the
message context. The interpretation of the transaction con-
text may vary depending on the particular message. The
transaction context element generally assigns a transaction
context to the group of simple elements 1mmediately fol-
lowing the transaction context element in the scatter gather
list. The group of consecutive simple elements may span
multiple segments. The multiple segments may be chained.
The transaction context generally continues until a simple
element is encountered with an End of Buffer (EOB) bit
(flag) set.

The entries 1n a SGL are generally of the same addressable
type (e.g., 32 or 64 bit). When no data transfer is associated
with a given request that has an optional SGL, the SGL

ogenerally consists of a zero-length simple element with a
LastElement bit, an EndOfBuffer bit, and an EndO{fList bit

set to an asserted logic level (e.g., a logical HIGH, or “17).

Referring to FIG. 2, a block diagram illustrating an
example of a simple SG clement 120 implemented 1n
accordance with a preferred embodiment of the present
invention 1s shown. The simple SG element 120 may be used
to 1dentily a single buifer segment in contiguous physical
memory. The simple SG element 120 may have a field 122,

a field 124, and a field 126. The field 122 may be 1mple-
mented as a FLAGS field. The field 124 may be imple-
mented as a LENGTH field. The field 126 may be imple-

ed
mented as an ADDRESS field. The field 122 may contain a

ed
number of bits that may be used as flags. In one example, the
number of bits may be eight. An example of a number of the
flags that may be implemented in the field 122 may be
summarized in the following TABLE 1:

10

15

20

25

30

35

40

45

50

55

60

65

4

TABLE 1

Bit Flag Description

7 LastElement 0 - Not the last element of the current
segment.
1 - Last non-chain element of the current
segment.

6 EndOfBuffer 0 - Not the last element of the current
buffer.
1 - Last element of the current buffer.

5,4 ElementType 01 - Simple element type

3 Local Address 0 - System address.
1 - Local address.

2 Direction 0 - Buffer to be filled by the transaction.
1 - Buffer contains data.

1 AddressSize 0 - 32 bit addressing in this element.
1 - 64 bit addressing in this element.

0 EndOfList 0 - Not the last element of the entire SGL.
1 - Last element of the entire SGL

The field 124 generally contains a value representing the
total number of contiguous bytes 1n a data buifer starting at
an address specified by the element. The field 126 generally

contains the physical address of the first byte of the data
buffer. The size of the field 126 may be based on the

AddressSize bit in the field 122. When 32-bit addressing 1s
selected, the address field 1s generally 32 bits wide. When
64-bit addressing 1s selected, the address field 1s generally 64
bits wide with the first 32 bits being the low order 32 bits of

the address. Together, the fields 124 and 126 generally
describe a contiguous buifer segment.

Referring to FIG. 3, a block diagram 1llustrating a chain
SG element 130 implemented 1n accordance with a preferred
embodiment of the present invention 1s shown. The chain
clement 130 generally identifies a physically contiguous
portion of memory that may contain additional information
associated with a particular request. The chain element 130
may be used as part of an SGL to identify the next memory
secoment that continues the current SGL. An SGL may
contain more than one chain element 130. When used as part
of an SGL, the chain element 130 1s generally physically
contiguous to the last non-chain element within each chain
segment.

The chain element 130 may have a field 132, a ficld 134,
a field 136, and a ficld 138. The ficld 132 may be 1mple-
mented as a FLAGS field. The field 134 may be 1mple-
mented as a next chain offset field. The field 136 may be
implemented as a length field. The field 138 may be 1mple-
mented as an address field.

The field 132 may contain a number of bits that may
used as flags. In one example, the number of bits may be
cight. An example of a number of the flags that may be
implemented in the field 132 may be summarized in the

following TABLE 2:

be

TABLE 2
Bit Flag Description
7,6 Reserved generally set to a logical LOW, or “0.”
5,4 ElementType 11 - Chain element type
3 LocalAddress 0 - System address.
1 - Local address.
2 Direction 0 - Buffer to be filled by the transaction.
1 - Buffer contains data.
1 AddressSize 0 - 32 bit addressing in this element.
1 - 64 bit addressing in this element.
0 Reserved generally set to a logical LOW, or “0.”

The field 134 generally contains an offset of the next chain
clement located 1n the segment identified by the current

US 6,310,448 Bl

S

chain element. The offset may be expressed, 1n one example,
as a number of 32-bit words. When the field 134 1s zero, no
chain element generally exists within the next segment. The
field 136 generally contains the number of bits 1n the next
SGL segment.

The field 138 generally contains the physical address of
the first byte of the next SGL segment. The address 1is
generally aligned on a 4 byte boundary (e.g., the lowest two
address bits set to 00b). The size of the address field is
generally based on the AddressSize bit in the field 132.
When 32-bit addressing 1s selected, the address field 1s
ogenerally 32 bits wide. When 64-bit addressing 1s selected,
the address field 1s generally 64 bits wide with the first 32
bits being the low order 32 bits of the address.

Chained lists are generally used when a complete SGL for

an 10 will not {it 1nto a single message frame. To continue
the list, the host driver generally uses other memory loca-
tions and continues building the SGL 1n the next memory
location. The chain memory generally does not have to be
physically contiguous with the message frame memory. The
SGL may have more than one chain or link. Each chain
buffer may be similar 1n size to the message frame. When the
host driver chains or links multiple memory locations
together, the host driver may use the chain element to point
to the next memory location 1n the chain. The first chain
element 1s generally located at the offset (e.g., a number of
32-bit words) from the start of the message frame described
in the chain offset field of the message header. The simple
clement preceding the chain element generally has the
LastElement (LE) bit set in the FLAGS field. When the LE
bit 1s set, the LE bit generally indicates that the simple
clement 1s the last simple element of the current chain
segment.

When multiple chain segments are used, the Next Chain
Offset field 1n the chain element may contain the location of
the next chain element in the chain buffer described by the
current chain element. The last chain element i the
sequence generally has the Next Chain Offset field set to
zero. Setting the Next Chain Offset field to zero generally
indicates that the chain element 1s the last chain in the
sequence. The last simple element 1n the entire sequence of
chains and buffers generally has the EndOfList (EOL) bit set
in the FLAGS field indicating that the element is the last
simple element in the entire SGL. The last stmple element
may also have the LE and EOB bits set indicating that the

clement 1s the last simple element in the current segment and
the last of the current builer.

In one example, the maximum size chain buifer an 10
controller handles 1s generally the message frame size. The
maximum number of chain buffers may be 1dentified, in one
example, by a Max Chain Depth field of an IOCFacts
message. The host driver generally honors the values and
generally does not exceed the maximums.

Referring to FIG. 4, a block diagram 1llustrating a trans-
action context SG element 140 1implemented in accordance
with a preferred embodiment of the present mvention 1s
shown. The transaction context element generally correlates
the transaction context with the elements that follow it. The
fransaction context element may be used for local arca
network (LAN) buffer management. However, the transac-
fion context element may also be used elsewhere. In general,
the use of transaction context elements may be based on a
grven message definition.

The transaction context element 140 may have a field 142,

a field 144, a field 146, a field 148, a filed 150, and a field
152. The field 142 may be implemented as a FLAGS field.

10

15

20

25

30

35

40

45

50

55

60

65

6

The field 144 may be implemented as a details length field.
The field 146 may be implemented as a context size field.
The field 148 may be implemented as a reserved field. The
field 150 may be implemented as a transaction context field.
The field 152 may be implemented as a transaction details

field.

The field 142 may contain a number of bits that may
used as flags. In one example, the number of bits may be
cight. An example of a number of flags that may be
implemented 1 the field 132 may be summarized in the

following TABLE 3:

be

TABLE 3
Bit Flag Description
7 LastElement 0 - Not the last element of the current
segment.
1 - Last non-chain element of the current
segment
6 Reserved generally set to a logical LOW, or “0.”
5,4 ElementType 00 - Transaction context element type
3::0 Reserved generally set to a logical LOW, or “0.”

The field 144 generally contains the length of the field 152
in bytes. The length 1n the field 144 1s generally divisible by
4. The field 146 generally contains the size of the field 150
in bytes. The field 146 generally has a value of 0, 4, §, 12,

or 16. The field 150 generally contains a host generated
value that generally remains with an associated buifer. The
value 1s generally returned to the host with the associated
buffer. The field 152 generally contains protocol specific
information.

In one example, the transaction context element 140 may
describe 1mage placement and size when uploading or
downloading a firmware or BIOS image (segment). When
the transaction context element 1s used to describe 1mage
placement and size, the field 150 may have a value of zero
and the field 152 may contain a value representing an 1mage
oifset and a value representing an 1mage size.

In another example, the transaction context element 140
may describe (1) a buffer context (e.g., using the field 150)
and destination address (¢.g., using the field 152) for packets
that are sent in a message or (ii) a bucket context (e.g., using
only the field 150) for packets that are received in a message.

Referring to FIG. 5, a memory diagram 200 illustrating an
example 96 byte SCSI I/O message with a chained SGL 1s
shown. The message header chain offset field may have, 1n
onc example, a value of 16h. The value 16h may indicate
that (1) the message has a chained SGL and (ii) the chain
element 1s at offset 16h double words (32-bit words) from
the start of the message frame (e.g., the block 202). The next
chain offset field of the first chain element may have a value
of 1Eh. The value 1Eh may indicate that the chain buifer

pointed to by the first chain element contains a chain element
at 1Eh double words from the start of the first chain buffer

(e.g., the block 204).

The simple element preceding a chain element may have
the Last_Element (LE) bit set indicating that the simple
clement 1s the last simple element of the current chain
segment (e.g., the block 206). The last chain element in the
sequence generally has a next chain offset field of zero. The
value zero 1n the next chain offset field may indicate that the
chain element is the last chain element in the sequence (e.g.,
the block 208). The last simple element of the entire list
ogenerally has the LE, the EOB, and the EOL bauts set. Setting
the LE, the EOB, and the EOL bits may indicate that the
simple element 1s the last stmple element of the entire SGL

(e.g., the block 210).

US 6,310,448 Bl

7

The present invention may improve existing chaining
methods by creating a chain offset field in the message
header. When the host or requester creates a message that
does not fit into a single message frame, the message may be
continued by writing the rest of the information into another
frame and chaining or linking the frames together. The host
will generally 1nsert a chain SG element 1n the first message
frame that describes the physical address of the linked or
next frame. The host then fills in the chain offset field of the
message header with the number of 32-bit words to where
the chain SG element starts 1in the message frame.

The present invention may greatly simplify checks for
chains for dedicated hardware components and embedded
firmware by giving both a simple check to make in the
message frame header (e.g., the chain offset field). When the
chain offset field 1s zero, there 1s generally no chain. When
the chain offset field 1s non-zero, the value 1n the chain offset
field 1s generally the offset 1n 32-bit words from the start of
the message to the chain element.

While the invention has been particularly shown and
described with reference to the preferred embodiments
thereot, 1t will be understood by those skilled in the art that
various changes 1n form and details may be made without

departing from the spirit and scope of the invention.
What 1s claimed 1s:

1. A message-based I/O architecture comprising:

a list describing physical addresses of one or more seg-
ments of a message; and

a message header configured to (i) indicate whether the
list comprises a single segment or a plurality of seg-
ments and (11) provide information for linking the list
when the list comprises the plurality of segments.

2. The message-based I/0 architecture according to claim

1, wherein the list comprises a plurality of segments.

3. The message-based I/0 architecture according to claim
1, wherein the list comprises a scatter gather list.

4. The message-based 1/0 architecture according to claim
1, wherein the message header comprises a chain offset field.

5. The message-based 1/0 architecture according to claim
4, wherein the chain offset field comprises a memory pointer.

6. The message-based I/O architecture according to claim
4, wherein the chain offset field comprises (i) a null value
when said list comprises the single segment and (i1) a value
representing a location of a chain element, when said list
comprises the plurality of segments.

7. The message-based I/O architecture according to claim
6, wherein said location 1s within a message frame contain-
ing said message header.

8. The message-based 1/0 architecture according to claim
7, wherein said value representing the location of the chain
clement represents a number of double words from the
beginning of said message frame to the chain element.

9. The message-based I/0 architecture according to claim
1, wherein said message-based I/O comprises one or more
SCSI I/O messages.

10. The message-based I/O architecture according to
claim 1, wherein said message header comprises a prede-
termined number of bytes at a beginning of a message frame.

11. The message-based I/O architecture according to
claim 1, wherein said list comprises one or more elements
selected from the group consisting of a simple element, a
chain element, and a transaction context element.

12. The message-based I/O architecture according to
claim 11, wherein the simple element 1s configured to
identify a single bufler segment 1n a contiguous physical
memory.

13. The message-based I/O architecture according to
claim 11, wherein the chain element 1s configured to identily
a location 1n a physical memory of a next segment of the list.

10

15

20

25

30

35

40

45

50

55

60

65

3

14. The message-based 1/0O architecture according to
claim 1, wherein said message comprises a plurality of
message frames.

15. The message-based I/O architecture according to
claim 13, wherein:

saild chain element 1s further configured to 1indicate
whether (1) the next segment is a last segment of the list
or (i1) the next segment contains another chain element.
16. The message-based 1/O architecture according to
claim 11, wherein the transaction context element 1s con-
figured to assign a transaction context to one or more simple
clements.
17. A message-based 1/O architecture comprising:

means for describing physical addresses of one or more
segments of a message comprising one Oor more mes-
sage frames;

means for indicating whether said message comprises one
segment or a plurality of segments; and

means for linking said plurality of segments, when said
message comprises said plurality of segments.
18. A method for chaining a scatter gather list for a
message-based I/O that does not fit in a single message
frame comprising the steps of:

(A) configuring a message header of the scatter gather list
for the message-based I/O to indicate whether the
scatter gather list comprises one segment or a plurality
ol secgments, wherein each segment comprises a sepa-
rate message frame of said message-based 1/0; and

(B) providing chaining information for chaining the
segments, when the scatter gather list comprises the
plurality of segments.

19. The method according to claim 18, wherein the step

(A) comprises the sub-step of:

cgenerating said scatter gather list.
20. The method according to claim 18, wherein the step
(A) comprises the sub-steps of:

setting a field of said message header to a null value when
the scatter gather list 1s 1n a single segment; and

setting the field of the message header to a value repre-

senting a location of said chaining information, when

the scatter gather list 1s 1n said plurality of segments.

21. The method according to claim 18, wherein the step
(B) comprises the sub-step of:

inserting a chain element 1n one or more of the plurality
ol segments.
22. The method according to claim 21, wherein the step
(B) further comprises the sub-steps of:

setting a field of the chain element to a value representing,
a location of a chain element 1n a next segment when
the next segment 1s not the last segment of the scatter
gather list; and

setting the field of the chain element to a null value when
the next segment 1s the last segment of the scatter
gather list.

23. The method according to claim 22, wherein the value
representing the location of the chain element 1n the next
secoment comprises an offset expressed as a number of
double words from a beginning of the message frame
containing the next segment of the scatter rather list.

24. The method according to claim 18, further comprising
the step of:

™

detecting a chained message by examining a chain offset
field of said message header.

	Front Page
	Drawings
	Specification
	Claims

