(12) United States Patent

Walsh

et al.

US00681042981

US 6,810,429 B1
*Oct. 26, 2004

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)
(22)

(51)
(52)
(58)

(56)

ENTERPRISE INTEGRATION SYSTEM

Inventors: Thomas C. Walsh, Cambridge, MA
(US); Michael J. Young, Boxborough,
MA (US); Joseph J. DiCelie, Boylston,
MA (US); David W. H. Wong,
Boxborough, MA (US); Alan W.
Esenther, Ashland, MA (US)

Assignee: Mitsubishi Electric Research
Laboratories, Inc., Cambridge, MA
(US)

Notice: Subject to any disclaimer, the term of this
patent 15 extended or adjusted under 35
U.S.C. 154(b) by 0 days.
This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 09/497,610

Filed: Feb. 3, 2000

Int. CL.7 ... GO06F 15/16; GO6F 9/00

US.CL o, 709/246; 719/328

Field of Search

5,848,426
5,870,605
5,940,075
5,996,012
6,012,008
6,016,501
6,065,039
6,178,461
6,192,370
6,226,666
6,233.601
6,253,239
6,334,146
6,336,124

70972406, 218,

709/219; 707/3; 715/501.1; 719/328

References Cited
U.S. PATENT DOCUMENTS

12/1998
2/1999
3/1999

11/1999

* 172000
1/2000
5/2000
1/2001
2/2001
5/2001
5/2001
6/2001

12/2001
1/2002

CORE S N S

FERIIRIRE P

Wang et al.

Bracho et al.

Mutschler, III et al.

Jarriel

Bayeh et al. 709/246
Martin et al.

Paciorekcovvvvinnnnnnen. 709/202
Chan et al. 7097247
Primschccooe......l. 707/103 R
Chang et al. 709/202
Walsh .oovvevieniinnan... 709/202
Shklar et al. 709/217
Parasnis et al. 709/217
Alam et al. 715/523

(List continued on next page.)

124

N e

1237
121 {
%

/
Web
Browset

HTML

HTTP

FOREIGN PATENT DOCUMENTS

EP 1 030 254 3/2000
EP 1122652 Al * 82001 GO6L/17/30
WO WO 99/23584 5/1999

OTHER PUBLICATTONS

Vermeulen, C. et al., “Software agents using XML {for

Telecom service modelling: a practical experience”, Pro-

ceedings of SGML/XML Europe “98, pp. 253-262, May
1998.*

(List continued on next page.)

Primary Examiner—IJason D. Cardone
(74) Attorney, Agent, or Firm—Dirk Brinkman; Andrew J.
Curtin

(57) ABSTRACT

An enterprise 1ntegration system 1s coupled to a number of
legacy data sources. The data sources each use different data

formats and different access methods. The integration sys-
tem includes a back-end interface configured to convert
input data source information to mput XML documents and
to convert output XML document to output data source

information. A front-end interface converts the output XML
documents to output HIML forms and the input HIML

forms to the XML documents. A middle tier includes a rules
engine and a rules database. Design tools are used to define
the conversion and the XML documents. A network couples
the back-end interface, the front-end interface, the middle
tier, the design tools, and the data sources. Mobile agents are
configured to communicate the XML documents over the
network and to process the XML documents according to the
rules.

21 Claims, 10 Drawing Sheets-

Kﬁﬂ
111
XML | Service
<::>. Bridge Data
BF le>{RAC JDBC "~ |Seurce
g\116
113~ 112 114 Caching
FParamelers
| - *
XML
Doc 113 @ 115
XML 1112
Sarvice
Bridge Data
hase
BF l«>{RAC
111

US 6,810,429 B1
Page 2

U.S. PATENT DOCUMENTS

6,345,259 B1 * 2/2002 Sandovalcccoeenn.. 705/7
6,356,905 B1 * 3/2002 Gershman et al. 707/10
6,397,232 B1 * 5/2002 Cheng-Hung et al. 715/523
6,401,132 B1 * 6/2002 Bellwood et al. 709/246
6,424,979 B1 * 7/2002 Livingston et al. 715/511
6,446,110 B1 * 9/2002 Lection et al. 709/203
6,480,860 B1 * 11/2002 Monday 707/102
6,513,059 B1 * 1/2003 Gupta et al. 7097202
6,519,653 B1 * 2/2003 Glasscocoeevvevnenennnnn. 719/317
6,585,778 B1 * 7/2003 Hind et al. 715/513
6,678,715 B1 * 1/2004 Andococevvvvvevennnnn.. 718/105
2003/0037181 Al * 2/2003 Freed ...oovvvvvvnininnnnnn.. 709/328
2003/0120639 Al * 6/2003 Potok et al.n.n.n.n... 707/3

OTHER PUBLICAITONS

Samaras, G. et al., “Mobile agent platforms for Web data-
bases: a qualitative and quantitative assesment”, IEEE Sym-
posium on Agent Systems and Applications, pp. 50-64, Oct.
1999.*

Walsh, T. et al., “Security and reliability 1n Concordia”,
IEEE Conference on System Sciences, vol. 7, pp. 44-53,
Jan. 1998.*

Microsoft Corporation, “MS Biz Talk Server: Whitepaper”,
www.microsoft.com/technet/treeview/default.asp?url/tech-
net/prodtechnol/biztalk/biztalk2000/evaluate/bizorch.asp,
May 1999.%*

Ouahid, H. et al., “Converting Web pages into well-formed
XML documents”, IEEE Conference on Communications,
vol. 1, pp. 676—680, Jun. 1999 *

Peng Fu B. Eng, “A security architecture for mobile agent
system”, master of science thesis, www.citeseer.nj.nec.com/

586334 .html, published by University of British Columbia,
Oct. 2001.%

“Microsoft Announces Finalized BizTalk Framework”;

Microsoft PressPass, Dec. 6, 1999; <www.microsoft.com/
PressPass/press/1999/Bixtalkl. Opr.asp>.

Ludo Van Vooren, “XML and Legacy Data Conversion:
Introducing Consumable Documents”; SGML Europe 97.
Conterence Proceedings.

* cited by examiner

e
== —
2 14V d0Oldd
-t elL’
< BOIE
oy
el
\O
7p
-
Gl
- 18AI8S
— 0¢€ 14! JdoM
—
o
w sdojdeT
=
p
017
-
= dn-lel@
@\
<
@\
> uoijeolddy
- Aoebo]
aseqgeleq
g 9|oel
O}
LIBISAS
asldisiug
Aoeba

U.S. Patent

US 6,810,429 B1

Sheet 2 of 10

Oct. 26, 2004

U.S. Patent

a.ld

74l C@_mmﬁ_ cvl

L

aseq
eleq
> -
{
SLi1ayoen dllH
D 4_>_.NE sE 0
sla)aweled 4!
buiyoen vel cOl
m:_.w

sonog | , 2ddrl
Ele(d

LLL

L1
00}

ctl

e
=
Q
A ¢ Ol
v
L
&
= 071
A" ov L 14!
—
M
o
3 Gl el X4 <
o »
S 195(] eleq SEIEELS
< ubiseQ
o\
>
S S S]y S

L7 1

9Z1~{ ISX bt “ OVH d.Ld

141 24

U.S. Patent

U.S. Patent Oct. 26, 2004 Sheet 4 of 10 US 6,810,429 Bl

Data
Source
111

113 114
E -

300
FIG. 3

103

US 6,810,429 B1

=
o (S)uoljosuuo) SjusWwalels
3 aseqele(108
7 D3aIEYS
i G I
eled 10S
-
=
~ > auibug
> m SS900Y
S ogar

Ocyv 001

U.S. Patent

buiddey
Bleq
10S
TIAX

0)47

A9 =

01317

ayoen
JuawinNooQ

abplLg 82IAI8QSSa02Y Ble(]

Ol

U.S. Patent Oct. 26, 2004 Sheet 6 of 10 US 6,810,429 Bl

501 502 502

104

public interface DataAccessdService

/it'k
*

Get a document from a data source

* @param id The id of the document. The id should
at least contain the document class and unigue

* document id. The id may also contain information |
o specific to the back end data source such as further |
* processing instructions or identification information.

* @return A DOM Document object containing the XML data

public Document get (String id); ~_ 510

/**
*

Update an existing document in the data source

* @param id the id of the document. The id should

* at least contain the document class nad unigue

¥ document id. The id may also contain information

* specific to the back end data source such as turther

* processing instructions or indentification information.

* @param doc The new document to commit to the data source.
*/

public void put (String id, Document update); ~_, 520

f:t‘i:
* Add a new document to the data source.
* @param id A partial id for the document. The id should

| * contain the document class. A unique document id
* will be generated for the document and returned by the
iy method. The id may also contain information
* specific to the back end data source such as further
*/
public String add (String id, Document doc); ~_, 530

f‘k*
* Delete a document.

* @param id The id of the document. The id should
410 ~J ¥ at least contain the document class nad unique
y document id. The id may also contain information |
specific to the back end data source such as further
processing instructions or identifications information.

FIG. 5 !

public void delete (String id); ™~ 240

9 Dl

US 6,810,429 B1

LLL dnoib siobeuew @ pIaep :1asn " €09
si1abeuew,
10 Gisanbeg>
= 100d A
S UO1}OBUUON
m siesn @ ool .1asn " 209
0¢Z9
4 sses dnoib E 4
= ele ,S4esn, abplig 92I1AI18S
<& 10}
M 1004 SJosn @ Wo) :1asn « ' L09
= UuoI108uUU0N

&iSontog>
9
oLl Sjuaby

\

1O}

U.S. Patent

U.S. Patent Oct. 26, 2004

Get Request by
710 Agent

Determine ldentity
720 of Caller

_ 700
230 ldentify Document
Type

Receive Group:

740 Specific Cache for
Document Type

Is Requested
Document in

Cache?

750

795

Return Cached
Document

Locate SQL-XML
Mapping for
Document Type

760

Sheet 8 of 10

FIG. 7

US 6,810,429 B1

Construct Select

Statement 770
Retrieve Database
Connection
Associated with 773
Agent's Group
Execute Statement /780

Walk Result Set 785

Extract Fields 790
Build XML 794

Document

Add Document to
Group Specific
Cache

796

Return Document

/98

U.S. Patent Oct. 26, 2004 Sheet 9 of 10 US 6,810,429 Bl

oy At Execute Statement
by Agent Execute Statement
Determine ldentity Did Update™~_No
of Caller Succeed
- Yes
ldentify Document I |
Type Add Document to

Group Specific
Cache

Locate Update
Mapping for
Document Type

Construct update
Statement

Retrieve Database
Connection

800

Associated with
Agent's Group

FIG. 8

US 6,810,429 B1

Sheet 10 of 10

Oct. 26, 2004

U.S. Patent

6 Old

66 £66

AL oyoeds

01J108dS
22/N0S Ble(] %

labeuei 1SEUEN
90IN0S dep
Bleq JU2winaod

| O} | | Ol |

de JUswnoao(

821N0S Ble(]

006 LEL
92IN0S
Bleq
266 166> 06
OULIS f
uoneanuayiny |- | YORIBUUOD _ sjusjuodwon
aoinog ejeq | | F24N0S EiEQ | Juspuada(

0.6 096
Auew o} | Auew o} |
o|qel |00d

Buiddey UO0BUUOD opling

Auap aoinos eleq | | HeHNR0A| | juswnoog
| O] | | O] |

(Juswinoop Jo adA)
Jad |) Alojoe4 Juswinoo(
L O} L AuBW O] |

100[qO 204N0S ele(] 2l1j10edg dnouw)

Auew 0] |

(aweN dnoln) Aq paxapu|) Alojor4 824n0S eleq

L O} | | 01 __
obpiiq 921AI18S SS800Y

o_,_,m

80IN0S Bleq

Juspuadapu]
921N0g ele(]

016

06

0c6

Ol

106

US 6,310,429 Bl

1
ENTERPRISE INTEGRATION SYSTEM

FIELD OF THE INVENTION

This invention relates generally to computerized

applications, databases, and interface, and more particularly
to mtegrating applications, databases, and interfaces having
different formats, contexts, and designs.

BACKGROUND OF THE INVENTION

Computer and computer-related technology have enabled
the use of computers 1n numerous enterprise functions.
Almost every facet of a modern enterprise 1s supported by
computer systems 1n some manner. Computerization 1s a
necessity to allow an enterprise to remain functional and
competitive 1n a constantly changing environment.

Computer systems are used to automate processes, to
manage large quantities of information, and to provide fast
and flexible communications. Many enterprises, {from sole
proprictorships, small stores, professional offices and
partnerships, to large corporations have computerized their
functions to some extent. Computers are pervasive, not only
in business environment, but also 1n non-profit
organizations, governments, and educational institutions.

Computerized enterprise functions can include billing,
order-taking, scheduling, inventory control, record keeping,
and the like. Such computerization can be accomplished by
using computer systems that run software packages. There
are many application software packages available to handle
a wide range of enterprise functions, including those dis-
cussed above.

One such package 1s the SAP R/2™ System available
from SAP America, Inc., 625 North Governor Printz Blvd.,
Essington, Pa. 19029. The SAP R/2 System 1s a software
package designed to run on IBM or compatible mainframes
in a CICS (Customer Interface Control System) or IMS
(Information Management System) environment. For
example, SAP may use CICS to interface with user
terminals, printers, databases, or external communication

facilities such as IBM’s Virtual Telecommunications Access
Method (VTAM).

SAP 1s a modularized, table driven application software
package that executes transactions to perform specified
enterprise functions. These functions may include order
processing, inventory control, and invoice validation; finan-
cial accounting, planning, and related managerial control;
production planning and control; and project accounting,
planning, and control. The modules that perform these
functions are all fully mtegrated with one another.

Another enterprise area that has been computerized 1s
manufacturing. Numerous manufacturing functions are now
controlled by computer systems. Such functions can include
real-time process control of discrete component manufac-
turing (such as in the automobile industry), and process
manufacturing (such as chemical manufacturing through the
use of real-time process control systems). Directives com-
municated from the computer systems to the manufacturing
operations are commonly known as work orders. Work
orders can include production orders, shipping orders,
receiving orders, and the like.

However, the computerization of different functions
within a single enterprise has usually followed separate
evolutionary paths. This results 1n 1ncompatibility between
the different systems. For example, transactions from a
system for one function may have a context and a format that

™

10

15

20

25

30

35

40

45

50

55

60

65

2

are totally mcompatible with the context and format of
another function. Furthermore, as enterprises grow through
mergers and acquisitions, the likelihood of inheriting incom-
patible systems increases. Consequently, the legacy systems
cannot provide all the information necessary for effective
top level management and control.

As an additional complexity, enterprise systems need user
interfaces for front-end operations. For example, in the
healthcare industry, administrative staff and health care
providers need reliable access to patient records. If the
healthcare enterprise has evolved by a series of mergers, the
possibility of a reception desk populated with half a dozen
different terminals, each accessing a different patient data-
base and a different accounting system 1s a certainty, and

service and profitability suffers.

Generic computerized solutions that offer an efficient,
automated way to integrate an enterprise’s various comput-
erized systems are difficult to implement. Another conven-
tional solution 1s to implement a custom, computerized
interface between the various systems. However, these cus-
tom solutions are usually tailored to a specific enterprise
environment. As a result, the tailored solutions are not
portable 1nto other situations without major modifications.
Additionally, these solutions are costly to maintain over time
because of inherent difficulties in accommodating change.

Conventional solutions that meet all of the needs for
collecting, retrieving, and reporting data 1n a complex enter-
prise do not exist. For example, the DASS™ system, avail-
able from a SAP AG, of Waldorf, Germany, 1s intended to
automate manufacturing functions. DASS receives informa-
fion from SAP R/2 package described above. However,
DASS does not appear to provide a generic solution to
connect a computerized business system to a computerized
manufacturing system.

FIG. 1a shows an example legacy enterprise system 10.
The legacy system includes as subsystems a SAP system 11,
an Oracle™ database 12, one or more legacy applications
13, Lotus Notes™ 14, a Web server 15, and user interfaces
20. The system 10 might also permit access to some func-
tions by a mobile computer (laptop) 30 via a dial-up com-
munications link 40.

More than likely, the legacy system 10 will exhibit one or
more of the following problems. All sub-systems cannot
communicate with every other sub-system because each
sub-system has 1ts own application programming interfaces
(APIs). Real-time data interchange among all of the sub-
systems may be impossible or extremely difficult because
cach sub-system stores and views data 1n a different way and
uses different communication protocols. Modified enterprise
functions or adding automation for new functions 1s expen-
sive. Each sub-system 1s developed with its own peculiar
programming language. Users cannot always access all the
data all of the time, particularly when the user 1s mobile. It
1s difficult to provide top level management with an abstrac-
tion of all system i1nformation.

What 1s needed 1s a system that can integrate various
computer systems in an enterprise. The system needs to be
able to convey transactional data between any number of
databases regardless of their format, context, and access
methodology. User interfaces to the databases need to be
uniform. In addition, as enterprise functions change, new
procedures and transactions must be accommodated 1n a
minimal amount of time without having to redesign and
reimplement any of the functional systems. The 1deal enter-
prise Integration system should be capable of adapting to
any number of computerized functions 1n a modern complex
enterprise.

US 6,310,429 Bl

3
SUMMARY OF THE INVENTION

The present 1nvention 1s directed to a system and method
for 1mntegrating computer systems found 1n many types of
enterprises.

An enterprise 1ntegration system 1s coupled to a number
of legacy data sources. The data sources each use different
data formats and different access methods. The integration
system 1ncludes a back-end interface configured for con-
verting 1nput data source mformation to mput XML docu-
ments and for converting output XML documents to output
data source mformation.

A front-end 1nterface converts the output XML documents
to output HIML forms and the input HIML forms to the
XML documents. A middle tier includes a rules engine and
a rules database. Design tools are used to define the con-
version and the XML documents.

A network couples the back-end interface, the front-end
interface, the middle tier, the design tools, and the data
sources. Mobile agents are configured to communicate the
XML documents over the network and to process the XML
documents according to the rules.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a 1s a block diagram of a legacy enterprise system;

FIG. 1b 1s a block diagram of an integrated enterprise
system according to the invention;

FIG. 2 1s a block diagram of design tools used by the
system of FIG. 1b;

FIG. 3 1s a block diagram of XML data accesses according,
to the invention;

FIG. 4 1s a block diagram of a back-end interface of the
system of FIG. 1b;

FIG. § 1s a diagrammatic of a public interface of the
back-end interface of FIG. 4;

FIG. 6 1s a block diagram of pooled connections;
FIG. 7 1s a flow diagram of a get request;

FIG. 8 1s a flow diagram of an update request; and

FIG. 9 1s a block diagram of an object of service bridge
objects.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Introduction

Our 1invention provides a robust and scalable environment
for imtegrating legacy enterprise computer systems. The
invention integrates databases, transactions, and user inter-
faces having different formats, contexts, and designs, such as
the sub-systems shown 1n FIG. 1la. We also provide for
automated rules based processing.

At the core of our integration system, we utilize XML as
a universal data encoding and interchange format. XML
(Extensible Markup Language) 1s a flexible way for us to
create common Information formats and share both the
format and the data on the Internet, the World Wide Web
(WWW), intranets, and private local area network. XML,
developed by the World Wide Web Consortium (W3C), is
“extensible” because, unlike Hyperlext Markup Language
(HTML), the markup symbols of XML are unlimited and
self-defining. XML 1s actually a simpler and easier-to-use
subset of the Standard Generalized Markup Language
(SGML), the standard for how to create a document struc-
ture. XML enables us to create customized “tags”™ that
provide functionality not available with HTML. For
example, XML supports links that point to multiple

10

15

20

25

30

35

40

45

50

55

60

65

4

documents, as opposed to HIML links, which can reference
just one destination each. These basic interfaces allow our
integration system to view, modify and interact with linked
legacy applications or legacy data sources.

System Architecture

As shown 1 FIG. 1b, our enterprise integration system
100 includes the following main components: a back-end
interface 110, a front-end interface 120, a middle tier 130,
and design tools 140. The components are connected by a
network and mobile agents 101 carrying XML documents
102. The mobile agents 101 are described 1n greater detail 1n
U.S. patent application Ser. No. 08/965,716, filed by Walsh
on Nov. 7, 1997, incorporated herein in 1ts entirety by
reference. As a feature, the agents can travel according to
itineraries, and agents can “meet” with each other at meeting
points to interchange information.

With our back-end interface 110, we enable read/write/
modify access to existing (legacy) applications and data
sources 111. The back-end interface maps (or translates) data
from legacy formats into the XML format used by our
enterprise mtegration system 100.

The front-end interface 120 enable us to present informa-
tion to users 103 using standard presentation methodologies.
The front-end interface also allows the user to modily
information and to generate transactions to initiate enterprise
processes or workiflow. The front-end interface can be modi-
fied to meet changing requirements of the enterprise.

The middle tier 130 uses our mobile agents 101 to provide
an 1nfrastructure for highly flexible, robust and scaleable
distributed applications. The middle tier combines server
technology with a customizable business rules engine and an
application framework. The middle tier also provides for the
deployment of disconnected applications for mobile users.
That 1s, the middle tier allows the mobile user to perform
tasks while disconnected from the system 100.

The design tools 140 support the definition of XML
document formats. The design tools also allow us to define
mappings of the XML document formats and the legacy data
formats, and to provide for the automated generation of
forms for user presentation via the front-end mterface. These
components are now described 1n greater detail.

Back-End Interface

The back-end interface 110 1s composed of one or more
service bridges 112. The service bridges provide highly
ciicient access to various legacy systems. Hereinafter, we
will frequently call the legacy systems “data sources” 111.
We do not care how the legacy systems are programmed, or
how their applications are structured. That 1s, the back-end
interface of our integration system provides a generic and
uniform access interface to the highly diverse legacy sys-
tems without requiring special knowledge of internal, legacy
interfaces of the linked systems.

Semantically, we model the back-end interface as an
XML document publishing and management system. We sce
the data source as “publishing or “serving” XML documents
containing enterprise 1nformation. The back-end allows
users to add, update, delete, browse, and search for docu-
ments 1n the data source. We chose this semantic model of
interaction because it provides a generic interface through
which many disparate legacy systems can be accessed.

A particular data source 111 can manage multiple types of
documents, such as customer accounts, purchase orders,
work 1tems, work lists, and the like. Any document 1n any
data source can be uniquely identified and retrieved by a
document identification (id) 104. In our implementation, and
keeping within the spirit of XML, we use a document
identification 104 that 1s conceptually similar to a Web page

US 6,310,429 Bl

S

Universal Resource Locator (URL), although different in
detail. As shown, the service bridges include a bridge
framework (BF) 113 and a data source-specific runtime
access component (RAC) 114. The service bridge is
described 1n greater detail below with reference to FIGS.
4-9.

Bridge Framework

The bridge framework 113 provides generic high level
access services for the back-end interface. The framework 1s
relatively independent from the specifics of the linked
legacy systems and 1s implemented with reusable code. The
bridge framework performs user authentication, and 1denti-
fies the user making a request of the data source. The bridge
framework also 1dentifies agents 101 making requests, and
provides a means to map a generic user 1dentity to specific
“logon” information required by any of the legacy data
sources, €.2., a username and a password. The bridge
framework operates securely such that any sensitive data-
source logon information, such as a clear-text password, 1s
encrypted.

Connection Pooling and Document Management

The framework also manages objects involved 1n estab-
lishing and maintaining a connection to the data source, and
provides for connection sharing and pooling. Connection
pooling and sharing 1s used when the establishment of a
connection or session with the data source 1s too expensive
to perform on a per user basis. The connection pooling and
sharing mechanism 1s based on “user groups.” All members
of a user group access a particular data source via a shared
connection pool. The connections 1n this pool are established
within the user context of a “pseudo-user account.”

A pseudo-user account 1s a special data source account
that represents a group of users instead of an individual user.
Thus, 1f we have two user names, “john(@accounting” and
“1im(@accounting,” the two accounting users both access the
data source within the context of the accounting pseudo user
account. Connection pooling may not be necessary for all
back-end data sources, but certainly 1s required for relational
database access.

Document Caching

The bridge framework also provides a tunable caching
facility to 1ncrease system performance. As stated above, a
primary function of the back-end interface 1s to access
legacy data and convert that data into the XML format. The
bridge framework maintains XML documents in a cache 115
so that a subsequent request to retrieve the same data can
bypass any data access or conversion work overhead by
accessing the cached XML document.

The caching 1n our system is tunable. For a given type of
document, a system administrator can specily caching
parameters 116 such as whether caching should be enabled,
a maximum lifetime before cache entries become stale, a
maximum cache size, whether the cache 115 should be a
persisted disk and re-used at next server startup. For docu-
ment types that contain highly volatile data, caching can be
disabled or cache entries can be set to expire quickly. For
documents containing data that changes rarely, the caching
parameters can be set aggressively to retain the documents
in the cache.

Runtime Access Component

The runtime access component (RAC) 114 1s specific for
a particular data source 111. The RAC uses application
programming interfaces (APIs) and structures of the legacy
data source to access the data and to map the data into the
XML format. The exact semantics of how the data are
mapped to the XML format vary. For example, the mapping
can be for widely used legacy databases, such as, JDBC,

10

15

20

25

30

35

40

45

50

55

60

65

6

JDBT, SAP, or SQL. An example JDBC 1implementation 1s
described below with reference to FIG. 4. The RAC supports
the following database access operations.

Query

The “query” operation retrieves a document from the data
source. The caller supplies the 1d 104 of the document to
fetch. The bridge service returns the specified information in
the form of a XML document according to one of the
standard programming models supported by W3C, for
example, a DOM document object or a SAX document.
DOM (Document Object Model), is a programming inter-
face specification that specifies a tree which applications
may then explore or modify. SAX 1s an event-based tool,
more or less ‘reading’ the document to the application using
a set of named methods to indicate document parts. SAX 1s
typically used where eificiency and low overhead are
paramount, while the DOM 1s used in cases where applica-
tions need random access to a stable tree of elements. The
interface allows us to generate and modify XML documents
as full-fledged objects. Such documents are able to have
their contents and data “hidden” within the object, helping
us to ensure control over who can manipulate the document.
Document objects can carry object-oriented procedures
called methods.

In the case of a relational database, the query operation
maps to a SQL SELECT statement with a WHERE clause
specifymng which record or records from the database are
contain in the document.

Update

The “update” operation modifies existing data in the
legacy data source. The caller supplies the 1d of the docu-
ment and a XML document containing only the fields to be
modified. In the case of the relational database, the update
operation maps to a SQL UPDATE statement.

Delete

The “delete” operation removes a document from the data
source. The caller supplies the 1d of the document to delete.
In the case of the relational database, the delete operation
maps to a SQL DELETE statement.

Add

The “add” operation 1nserts a new document into the data
source. The caller supplies the document in the form of a
DOM Document object. The bridge service returns the 1d of
the newly added document. In the case of a relational
database, the add operation maps to a SQL INSERT INTO
statement.

Browse

The browse operation, also known as “buffering,”
browses all of the documents 1n the data source of a certain
type. The caller supplies the type of document to browse.
The bridge service returns a browse object similar to a JDBC
result set. The browse object allows the caller to traverse the
results 1in either direction, jumping to the first or last
document, and to re-initiate the browse operation. In the
case of a relational database, the browse operation maps to
a SQL SELECT statement that returns multiple records.
Scarch

The search operation browses the data source for all
documents of a certain type that meet a predefined search
criteria. The search criteria can be a list of fields and values
which the caller wants to match against records in the
database. For example, the caller might request all customer
records that contain a “state” field matching the string
“MA.” The caller supplies the type of document to browse
as well as a document containing the fields to be matched.
The bridge service returns a browse object as above. In the
case of a relational database, the search operation maps to a

US 6,310,429 Bl

7
SOL SELECT statement in which the WHERE clause
contains the LIKE operator.

Front-End Interface

The front-end interface 120 1s responsible for user pre-
sentation and interaction. The front-end interface uses
“forms” to allow users to view and modily mformation. As
an advantage, the front-end interface provides a “thin” user
interface, with simple interactivity that can easily be cus-
tomized as the environment in the enterprise changes. The
front-end forms use HTML 121, HTTP 122, Javascript, Java
servlets 123, Java applets, and plug-ins as necessary. Being
Web based, the user 103 can use any standard browser 124
to interact with the system from anywhere there 1s an
Internet access point.

HTTP Communications

The HTTP 1s used as the communication mechanism
between agents and users. The user 103 browses and modi-
fies information, and initiates processes via the web browser
124. User requests are routed to agents 101 via HTTP and
through the Java servlet. The servlet 123 1 turn communi-
cates with a front-end service bridge 125 that serves as an
interface for the agents 101.

The servlet/service bridge combination 123/124 supports
the establishment of user sessions that are the channel for
two-way communication between the user and the agents.
Within the context of a session, the user can send HTTP
GET or POST requests to the agents, and the agents process
such requests, and send back an HTTP response. Sessions
allow the user to wait for an agent to arrive and allow an
agent to wait for a user to connect.

HTML Form Style Sheets

We accomplish the display of mmformation to users with
HTML, web pages, and web forms. As stated above, the
information that agents retrieve from data sources 1s 1n the
form of the XML documents 102. To format the XML
documents into a form suitable for users, the front-end
servlet 123 converts the XML document to a HTML page
using a style sheet 126, e.g. XSL, JSP or some other data
replacement technique as described below. The result of this
conversion 1s the HIML page containing the information in
a user-friendly format. By applying the style sheet, the
servlet recognizes and replaces certain data from the XML
document and converts the data to HITML form.

For example, a particular XML document 102 imcludes
the following information:

<customer:>:
<firstname=John</firstname>
<lastname>Smith</lastname>
</customers

The HTML style sheet 126 for this document 1s as
follows:

<html>
<hl>‘customer.firstname’</h1>
<h2>‘customer.lastname’</h2>
</html>

10

15

20

25

30

35

40

45

50

55

60

65

3

After applying the style sheet to the XML document, the
resultant HI'ML form 121 would appear as:

<html>
<hl>John</hl>

<h2>Smith</h2>
</html>

The style sheet supports accessing all of the elements and
attributes 1n the XML documents, and iteration over groups
of repeating elements.

For example, an XML document contains:

<customer type=""preferred”>
<firstname>John</firstname>
<lastname>Smith</lastname>
</customer>

The “type” attribute of the customer 1s accessed by using,
a syntax such as the following;

‘customer.attr|type |’

which yields the value “preferred.” Given a document
containing repeating groups as follows:

<customers>
<customer type=""preferred”>
<lastname>Smith</lastname> </customer>
<customer type=“standard”>
<lastname>Jones</lastname>
</customer>

The “lastname” element of the second customer 1s
accessed using a syntax such a ‘customer|1].lastname’
which yields the value “Jones.” To iterate over all of the

customers and access their “type” attributes, an expression
such as:

‘iterate(i=customers.customer) {

i.attr| type]

can be used to produce first the string “preferred,” and then
“standard.”
Validation

The front-end interface also supports the validation of
user entered mformation. Field validation information sup-
plies some immediate feedback and interactivity to the user.
Field validation also increases application efficiency by
detecting common errors within the web browser process
before any other network traffic 1s incurred or application
logic 1s executed. Client side validation can be broken down
into two related levels.
Field-Level

Field-level validation performs simple checks on user
entered data to validate that the information 1s of the correct
format or data type. For example, field-level validation can
validate that a user enters numeric values 1n a particular
field, or uses a proper date format. We implement field-level
validations with Javascript. A library of common validations
1s supplied as a script file on a web server. The library has
a “.1s” file extension. This script file can be included into

US 6,310,429 Bl

9

HTML forms as desired using the <script> HTML tag.
Validation 1s enabled for a field by indicating the name of an
appropriate validation routine, e.g. “onChange,” within an
event handler of the field. The event handler 1s triggered
when an INPUT field changes. Setting up validation for a
field requires HTML coding as follows:

<input type=“text” name=“birthdate” onChange="validateDate-
(birthdate)”>

The validation library provides routines for common data
types such as dates, times, currency, etc. The validation
library can also provide a pattern matching ability allowing
user mnput to be matched against arbitrary patterns, €.g., a
pattern $##.## to match a monetary amount.

Cross-Field Validation

Cross-field validation allows for more complex valida-
tions. In this type of validation, the contents of one field
depends on the contents of another field. For example,
cross-field validation can detect a situation where a tele-
phone number must be entered. Such validation usually
requires a more detailled knowledge of the requirements of
the application.

Middle Tier

The middle tier 130 provides the “glue” that links the
back-end and the front-end interfaces. The middle tier
utilizes the mobile agents 101 to communicate with the
interfaces. The middle tier also provides support for discon-
nected applications and users. In addition, the middle tier
customizes the system 100 to the needs of specific enterprise
functions without actually having to reprogram the legacy
systems.

The middle tier supports the automation of complex
workilow and complex validations of data that may require
access to multiple data sources. As a feature, the middle tier
uses a rules engine (RE) 131 operating on rules stored in a
database 132. The rules are defined 1n a rules language, and
can be retrieved by the agents 101 as needed.

In a typical scenario, the user launches an agent 105 due
to interaction with the browser 124. The agent carries an
XML document, €.g., a purchase order 106, to the rules
database 132. The agent retrieves the appropriate rule for
processing the order, such as a purchase order worktlow. The
agent then interprets the rule to appropriately route the
document to the locations in the network specified by the
rule. The rule can include a travel itinerary, as well as
instructions on how to interact with the data sources.

As an advantage, the operation of our system 1s always
current. As rules change so does the operation of the system.
The agents always execute according the current state of the
rules database.

Design Tools

As shown 1n FIG. 2, the primary purpose of the design
tools 140 1s to generate 141 XML document type definitions
(DTD) 142, to specify 143 data mappings, 1.c., RACs 114,
to encode 144 rules 132, and to design 1435 user interfaces
126.

Document Type Definitions

The step 141 1dentifies the different types of document
information (DTD) 142 that needs to be shared by the
various data sources 111 of the back-end 110 and the
browser 124 of the front-end 120. This information 1s
specifled 1n the D'TDs. For example, to share purchase order
information between systems, the type of information
needed 1n a purchase order needs to be 1dentified, then that
information needs to be encoded 1n a corresponding DTD. In
one embodiment, the design tools use the service bridge to
extract schemas from the data sources.

10

15

20

25

30

35

40

45

50

55

60

65

10

Data Mapping,

After a data source independent data format has been
ogenerated, the mappings between the XML format and
legacy formats for a particular database needs to be specified
as shown m FIG. 3. A query operation to a relational
databases 111 involves extracting the schema of the database
by generating a SQL runtime access component (RAC) 114
which makes the JDBC calls to the database, converting the
resulting data into the XML format, and handing the XML
document 113 to an agent 101. The access components can

be implemented as Java code. The agent delivers the XML
to the front-end 120 for conversion to the HTML form 121

using the style sheet 126 so that the data can be viewed by
the user 103 using a standard browser 124.

Conversely, the update operation converts the HITML
form to the corresponding XML document. The XML docu-
ment 1s converted to a legacy format and the RAC modifies
the data source using its schema. For other legacy data
sources that are not speciiied by a schema or some other
metadata, the mapping may need to be done by means that
access the APIs directly.

Rule Encoding

After the data format definition 1s generated, and the RAC
has been specified to access the appropriate data source, the
next step 1s to encode what agents are going to do with the
information. In a simple data replication system, an agent
may retrieve modified records from a master database, travel
to the location of a backup database, and then update the
backup database with a copy of the modified record. This
process ivolves the encoding of a specific rule.
Designing the User Interface

As shown 1n FIG. 2, generating the user interface requires
three steps: manipulating document type definitions (DTD)
145, importing DTD 146, and generating DTD from data-
base schema 147.

Authoring DTD

The design tools 140 allow the system designer to define,

design, and manipulate XML and HTML DTDs. ADTD 142

defines the name of the following document elements: the
contents model of each element, how often and 1n which
order elements can appear, if start or end tags can be omitted,
the possible presence of attributes and their default values,
and the names of the enfities.

Because the DTDs represent many different types of
documents 1n the system, this step essentially defines the
data types of the enterprise’s computerized applications. As
an advantage, the resulting DTDs do not directly tie the
system to any specilic legacy data source, nor do the
definitions preclude the integration of other legacy systems
in the future.

DTD Import

The tools also allow one to import already existing D'TD
definitions. Such functionality can be used in environments
where DTDs have already been defined for standard docu-
ment types. These DTDs may have been defined by stan-
dards bodies or a designer of the legacy system.

DTD generation from Database Schema

This part of the tools automatically generate D'TDs from
existing database schema.
XMLO—-=SQL Mapping Definition

Given the existence of the DTDs, the system 100 provides
tools that map between legacy back-end data formats and
XML document formats. In the case of relational database
access, these mappings link tables, columns, and fields from
the legacy database to elements and attributes of the XML
documents as defined by the DTDs. This also allows the
definition of several distinct mappings, each of which
involves accessing slightly different information in the data
Source.

US 6,310,429 Bl

11

Data Mappings
Query Mapping

A query mapping enables an agent to retrieve mnformation
from a legacy data source. In the case of a relational
database, this mapping specifies the contents of the SELECT
statement, including any information relevant for a table
join. A query mapping for a purchase order may involve
accessing a purchase order table, a customer table, and a
product catalog table.

Update Mapping

An update mapping allows an agent to modily informa-
tion 1n the data source. This ivolves specitying the contents
of an UPD ATE statement. An update mapping for a purchase

order involves updating the purchase order table, but not
modifying the customer table or the product catalog table.

Delete Mapping

A delete mapping allows an agent to delete information 1n
the data source. This involves specilying the contents of a
DELETE statement. A delete mapping for a purchase order
involves deleting a record or records from the purchase
order table, but not modifying the customer table or the
product catalog table.

Add/Create Mapping,

An add/create mapping allows an agent to add informa-
tion to the data source. This involves speciiying the contents
of an INSERT statement. An insert mapping for a purchase
order 1nvolves adding a record or records to the purchase
order table, but not modifying the customer table or the
product catalog table.

Schema Extraction and Caching

In order to allow for mapping between a legacy database
schema and XML DTD formats, the mapping design tool
extracts the schema from legacy databases. Because schema
extraction 1s an expensive and time consuming task, the
tools allow one to save extracted schemas on a disk for
subsequent use.

Form Generation

The tools will also allow one to automatically generate a
form from a DTD. Such a form may require minor modi-
fications to enhance the physical appearance of the form. For
example, color or font size of text can be adjusted to enhance
usability.

Embedding Binary Data in XML Documents

Some enterprise applications may need to retrieve arbi-
trary binary data from the data source 111. For example, a
legacy database contains employee information. Included
with that information 1s a picture of the employee 1n standard
JPEG format. The employee information 1s stored as a single
table named “employees,” which has a schema as Table 1,
where the field <image> represents the picture:

TABLE 1
ID Name HireDate Photo
1 John Smith 1/1/96 <image>

The XML document that retrieves the above table appears
as follows:

<employee>
<[D>1<1</ID>
<name>john Smith</name:>

5

10

15

20

25

30

35

40

45

50

55

60

65

12

-continued

<hiredata>1996-29</hiredate>
</employee>

XML, by 1itself, does not naturally lend 1itself to the
inclusion of binary data. To deliver this information for
display 1in a web page, the service bridge 112 could encode

the SQL record 1n an XML document as follows:

<employee>

<[D>1<1</1D>

<name>John Smith</name>
<hiredata>1996-29</hiredate>

<Photo href=*http://server/directory/john.jpeg” />
<femployee>

However, there are a number of problems with this type
of approach. First, 1t 1s the responsibility of the user to 1ssue
the proper additional commands to retrieve the linked docu-
ment before 1t can be displayed, e.g., the user must click on
the URL of the picture. Second, the DTD for the XML
document must specily the URL. For most legacy databases,
it 1s unlikely that the records storing the binary data are
accessible via an HT'TP URL. Furthermore, the binary data
1s transported through the system by a follow on transport,
such as HITP. For reliability, security, consistence, and
other reasons we prefer to carry all data, including binary
data with the agents.

To allow the servlet 123 to generate an agent that can
access the binary data, we define a new type of URL. The
new URL incorporates the location of the binary data, as
well as a unique “name” that can be used to retrieve the
binary data. The URL contains the hostname of the data
source, a service name, an action name that can be used to
perform the retrieval of the binary data, and a document
identification referring to the binary data. This still results 1n
a fairly complex URL.

Using multiple requests to retrieve the binary data 1s
inconsistent with our agent model. Agents try to use the
network effectively by batching data into fairly large seli-
contained packets. This 1s very different than the hypertext
model used on the web 1n which a single page display can
lead to multiple network requests.

Compound Documents

In an alternative solution, we define a compound docu-
ment. In a compound document, the binary data 1s embedded
in the same document as the textual XML data. This
approach 1s consistent with our agent driven system that
attempts to transport data as larger batches. Compound
documents can be built 1n two ways.

Embed Binary Data into XML Text Element

The binary data 1s embedded directly into an XML text
clement. This can be done as long as the binary data is
encoded 1n such a way that the data only contain XML
characters. Such an encoding could be based on the Base64
encoding. With Base64, special characters, such as “<” and
“> are replaced with equivalent entities (i.e., < and
>). We also can use a character data (CDATA) section to
work around the problem of illegal characters within the
Base64-encoded data. We may want to prefix the embedded
binary data with standard mime headers that specify content
type, encoding, and name. Such a format for the photo

clement appears as follows:

US 6,310,429 Bl

13

<Photo>
Content-Type: 1image/jpeg
Content-Encoding: base64

Content-Name: john.jpeg
91/4AAQSKZI......gEASABIAAD/

</Photo>

It should be noted that this alternative increases the size
of the binary data by 33% as well as increasing the overhead
to encode and decode the data.

This alternative requires that a SQL RAC extracts the
binary data and encodes the data into Base64,and then adds
the encoded data to the XML document with the proper
mime headers.

Compound Document Encoded as Mime Document

Another alternative, embeds both the XML document and
the binary data into separate parts of a multipart mime
document. Each part of the overall document has a Content-
ID which 1s referenced from a standard XML link, in part,
such a format appears as follows:

Content-Type: multipart/related; boundary*g--XXXXX”
- XXXXX

Content-Type: text/xml

Content-ID: doc

<Photo href=*cid:photo”/>
- XXXXX
Content-Type: 1mage/jpeg
Content-Encoding: base64
Content-Name: john.jpeg
Content-ID: photo
91/4AAQSKZ]... gEASABIAAD/
-——- XX XX----

With this alternative, the binary data may not need to be

encoded. However, this requires that agents also retrieve
MIME documents via the RAC.

JDBC Service Bridge

FIG. 4 shows details of a preferred embodiment of a
service bridge 400 of the back-end interface 110 for access-
ing a data source. In this embodiment, JDBC 1s used to
access a SQL type of database. The bridge 400 includes a
public interface 410, JDBC run-time access component
(RAC) 420, XML-SQL data mapping 430, and a document
cache 440 as its main components.
Public Interface

As stated above, the public interface 410 provides the
means by which agents access the data sources 111. The
public interface allows data retrieval, modification, and
addition. As an advantage, the public interface 410 makes no
assumptions about how data in the legacy database 111 1s
sourced or maintained. Instead, we make the public interface
resemble the GET/PUT model of HTTP.
JDBC Run-Time Access Component

The JDBC access component 420 1s responsible for
establishing and managing JDBC connections, building and
executing SQL statements, and traversing result sets. This
component works entirely within the context of JDBC and
SQL.
XML-SQL Data Mapping

The XML-SQL data mapping 430 uses the mapping
information generated by the design tools 140 to map data
between XML and SQL.
Document Cache

The document cache 440 operates entirely with XML
documents. XML documents that have been retrieved from

10

15

20

25

30

35

40

45

50

55

60

65

14

the data source can be cached for fast future retrieval. The
caching services are configurable so that maximum cache
sizes and cache i1tem expiration times can be specified.
Caching can be disabled for certain classes of documents
which contain highly volatile information.

FIG. 5§ shows the public interface 410 1n greater detail.
The interface supports four basic types of accesses, namely
oget 510, put 520, add 530, and delete 540.

At the heart of the interface 1s the document 1d 104. The
document 1d 1s a string which uniquely 1dentifies every
document instance within the data source. The document 1d
can be thought of as corresponding to the URL of a World
Wide Web document, or to the primary key of a record 1n a
database. Although the 1d has a different format than a URL,
it does serve as a document locator.

In order to interact with information in the legacy data
source, an agent needs to provide the 1d for the document
containing the information. The 1d contains multiple sec-
tions of information and follows the following pattern.

The first character of the 1d string specifies a separator
character (S) 501 that is used to separate the different
sections that make up the document 1d, €.g., a colon (:). This
character 1s used 1n conjunction with a Java StringTokenizer
to parse the document 1d. The subsequent information 1n the
id includes name=value pairs (N, V) 502. One pairs 502
specifles a document type, €.g., “:type=cust__list:”

In most common cases, the 1d 104 also contains a key
specifying the exact document instance 1n order to uniquely
identify an individual document 1n a data source. For
example, 1n a document containing customer 1nformation,
this key contains a data source specific customer number or
a customer 1d. Within the service bridge, this key 1s mapped
to a WHERE clause of a SQL statement. For example, an
agent can request customer information for a particular
customer by specilying an 1d string as follows:

“:type=customer:key=SMITH:”.

This request results mn a SQL query to the database that
appears as follows:

SELECT * FROM Customers WHERE Customers. ID=SMITH

The exact semantics of how they key 1s mapped into the
resultant SQL statement 1s specified by the design tools 140.
The key portion of the 1d can be composed of multiple
pieces of information separated by, for example, commas.
Such a key 1s used in cases 1n which the WHERE clause of
the corresponding SQL query needs multiple pieces of
information to be specified by the agent. An example of this
1s a document containing a list of customers, where the
customers names are within a certain alphabetic range, for
example, “all customers whose last names begin with the
letters A or B. Such a document has an 1d as follows:

“:itype=cust__list__by_name:key=A,Bzzzz:”

In this case, the request would map into a SQL statement
resembling the following;:

SELECT * FROM Customers
WHERE Customers.LastName BETWEEN A, Bzzzz

Implementation Details of the Service Bridge
Database Access
User Authentication
The service bridge 1s responsible for performing any
authentication necessary in order to establish a database

US 6,310,429 Bl

15

connection. This may involve supplying a database speciiic
username and password or other login information. When a
database access (get, put, add, delete) 1s made by an agent,
the bridge examines the agent’s runtime context to deter-
mine the user i1dentity associated with the agent.

After the agent’s 1dentity has been ascertained, the service
bridge maps the 1dentity into simultaneous database-specific
user 1dentification using a mapping table generated by the
design tools. For example, the mapping maps the user
identity “steve(@accounting” i1nto an Oracle username
“steve.”

In order to establish a connection to a database on behalf
of a user, the service bridge retrieves both the username and
clear-text password for the corresponding database user
account. In such cases, the clear-text password 1s stored 1n
the 1dentity-mapping table. For security reasons, the table 1s
encrypted on disk using a public/private key pair.
Connection Management

To enhance performance and scalability, the service
bridge supports database connection pools. This means that
multiple users share a common pool of JDBC connections.
Establishing a database connection can be a slow and
relatively expensive.operation. The use of shared connection
pools decreases this expense.

The basis for this connection sharing are “users groups.”
When an agent attempts an operation which requires a
connection to a database, the service bridge performs that
operation using a connection established 1n the context of a
special “pseudo-user” account. The pseudo-user 1s a data-
base system account that represents not an individual user,
but instead a particular group of users. A pool of such
pseudo-user connections 1s available for use by all of the
agents of the group. The service bridge generates and
maintains a connection pool for each distinct group of users
who access the bridge.

FIG. 6 shows agents 101 for three users tom, joe and
david 601-603 accessing the data source 111. Two of the
users, tom(@users and joe(@users, are members of a users
ogroup. The third user, david@managers, 1s a member of a
“managers” group. When these agents attempt to access the
database, the two members of the users group share a
connection pool 610 that was established with the.creden-
tials of the “users” pseudo-user. The third agent will com-
municate with the database using a separate connection pool
620 cstablished with the credentials of the “managers”
pseudo-user.

A connection pool for a particular group 1s generated
when a member of the group makes the first access request.
Connections within the pool are constructed as needed. The
service bridge does not pre-allocate connections. After a
configurable, and perhaps long period of inactivity, the
connection pool 1s closed to free database resources. If a
connection pool for a particular group has been closed due
to 1mactivity, then any subsequent request by a member of
that group results in the generation of a new pool. When a
request 1s completed, the connection allocated for that
request 1s returned to the pool. A maximum number of
connections 1n a pool can be specified. If no connections are
available when a request 1s made, then the request 1s blocked
until a connection becomes available.

Statement Construction and Execution

The actual generation and execution of SQL statements 1s
performed by a separate “modeler” object. The modeler
object 1s generated by the design tools 140. For each type of
document used 1n the system, there 1s a distinct modeler
object. Each modeler knows how to construct exactly one
type of document. During the design process, one specifies

10

15

20

25

30

35

40

45

50

55

60

65

16

what information 1s to be retrieved from the database, and
how to map the information into an XML document. The
design tools serialize and save the modeler objects 1n a “.ser”
file. At runtime, the service bridge loads and de-serializes
the modeler objects from the “.ser” file. The resultant
modeler objects are able to perform all of the data access and
mapping functions required to retrieve information from the
data sources. As stated above, SQL to XML data mapping 1s
performed by the modeler object designed for a particular
document type.

Data Caching

To improve the performance of document retrieval, the
data service caches database information as converted XML
documents. When a {first request 1s made to retrieve a
document, the service performs the SQL access and SQL to
XML data mapping as described above. The resultant XML
document 1s added to the cache of documents 440 main-
tained by the service bridge. Any subsequent request to
retrieve the document will be satisfied by retrieving the
document from the cache, bypassing the need for an addi-
tional expensive database access and mapping.

When an update or addition 1s made to a data source, the
cache 1s updated to reflect the new information. The update
to the cache 1s made only after the SQL statement perform-
ing the update of the end database has been completed
successiully. This prevents the cache from storing informa-
tion that has not been committed to the database due to
errors or to security restrictions.

The XML document cache 1s configurable to specily a
maximum size of the cache, the maximum amount of time
a single document can be retained 1n the cache before it
becomes stale, and whether the cache should be persisted to
disk, 1n which case the cache can be re-used after a server
restart. One can also customize how different classes of
documents are cached. If a document represents highly
volatile mnformation, then caching can be disabled for that
class of document. If a document class is completely (or
virtually) static, then documents of that class can be cached
for a very long time.

Execution Flow

The following section describes the execution How for
basic database access requests. FIG. 7 shows the steps 700
of a “get” or retrieval access 1n greater detail. After the
request 15 received from the agent 710, the caller and
document identity are determined 720, 730. The group
specific cache 1s 1dentified 740, and the cache 1s checked
750. If the cache stores the document, return the document
in step 755. Otherwise, locate the XML-SQL mapping 760,
construct the select SQL select statement 770, retrieve the
connection 775, and execute the statement in step 780. Next,
the result set 1s “walked” 78S, fields are extracted 790 to
build the XML document 794, the document 1s cached 796
and returned to the agent 1n step 798. FIG. 8 shows the steps
800 for the addition (add) and modification (put) similar to
the get steps. The delete request simply deletes data from the
database as shown at 540 1n FIG. 5.

Run-time Object Hierarchy

FIG. 9 shows the run-time hierarchy 900 of objects of the
service bridge 110. The objects can be classified as data
source independent 901, and data source dependent 902. The
data source independent object 901 includes data source
factory object 910 mndexed by group name, group speciiic
data source objects 920, document factory objects 930 (one
per document), document cache objects 940, document
builder objects 950, connection pool objects 960, mapping
table objects 970, document manager objects 980, and the
data source manager objects 990. The data source dependent

US 6,310,429 Bl

17

object 902 include source connection 991, string authenti-
cation 992, document map 993, and specific driver objects
994.

Although the i1nvention has been described by way of
examples of preferred embodiments, 1t 1s to be understood
that various other adaptations and modifications may be
made within the spirit and scope of the invention. Therefore,
it 1s the object of the appended claims to cover all such
variations and modifications as come within the true spirit
and scope of the mvention.

We claim:

1. An enterprise integration system, comprising:

a back-end interface, coupled to a plurality of data
sources, configured to convert input data source 1nfor-
mation to mnput XML documents and to convert output
XML documents to output data source information,
wherein the plurality of data sources use different data
formats and different access methods;

a front-end 1nterface including means for converting the
mnput XML documents to input HITML forms and for
converting output HIML forms to the output XML
documents;

a middle tier including a rules engine and a rules database;

design tools for defining the conversion and the XML
documents;

a network coupling the back-end interface, the front-end
interface, the middle tier, the design tools, and the data
SOUICES;

a plurality of mobile agents configured to communicate
the XML documents over the network and to process
the XML documents according to the rules.

2. The system of claim 1 wherein each XML document 1s

identified by a document identification.

3. The system of claim 2 wherein the document 1dentifi-
cation 1s a character string.

4. The system of claim 3 wherein the character string
includes a plurality of sections, and a {first character of the
string 1s a section separator.

5. The system of claim 4 wherein one of the sections
stores a document type.

6. The system of claim 3 wherein one of the sections
stores a key to an instance of the XML document in one of
the data sources.

7. The system of claim 1 wherem the back-end interface
further comprises:

a public interface;
a document cache; and
a run-time access component.

10

15

20

25

30

35

40

45

138

8. The system of claim 7 wheremn the run-time access
component generates access requests for the plurality of data
SOUrces.

9. The system of claim 8 wherein the access requests
include query, update, delete, add, browse, and search.

10. The system of claim 7 wherein the public interface
forwards the mput XML document to the plurality of the
mobile agents for distribution, and the public interface
receives the output XML documents for storing in the
plurality of data sources.

11. The system of claim 7 wherein the document cache
includes caching parameters.

12. The system of claim 7 wherein the caching parameters
include a maximum lifetime for each cache entries, a maxi-

mum cache size, and a persistency indicator.

13. The system of claim 1 wherein the XML documents
include binary data.

14. The system of claim 13 wherein the binary data 1s
embedded as a compound document.

15. The system of claim 14 wherein the compound
document embeds the binary data as an encoding 1 a
character set.

16. The system of claim 14 wherein the compound
document embeds the binary as a MIME document.

17. The system of claim 13 wherein the binary data 1s
referenced by a Universal Resource Locator.

18. The system of claim 1 wherein the input documents
are presented to a browser.

19. The system of claim 1 wherein the back-end interface
performs user authentication.

20. The system of claim 1 wherein the back-end interface
supports database connection pools.

21. A method for mtegrating a plurality of data sources,
comprising;:

converting mput data source mformation to mput XML

documents and converting output XML documents to
output data source information, wherein the plurality of
data sources use different data formats and different
access methods;

converting the input XML documents to mput HITML

forms and converting output HI'ML forms to the output
XML documents;

providing a rules engine and a rules database;
defining the converting and the XML documents;

communicating the XML documents over a network
using mobile agents; and

processing the XML documents by the mobile agents
according to the rules database.

	Front Page
	Drawings
	Specification
	Claims

