US006810399B2
a2 United States Patent (10) Patent No.: US 6,810,399 B2
Fragapane et al. 45) Date of Patent: Oct. 26, 2004
(54) PROPERTY EXTENSIONS 5,410,688 A * 4/1995 Williams et al. 707/10
5,551,020 A * §/1996 Flax etal. 707/101
(75) Inventors: Paolo Fragapane, Bristol (GB); 5,590,318 A * 12/1996 Zbikowski et al. 707/202
Stephen David Cave, Gloucester (GB); 5,613,134 A 3/1997 Tucus et al.o.ovvene.on. 395/788
Robert Lloyd Lavender, Nr Wedmore 5724575 A * 3/1998 Hoover et al. ...cvv......... 707/10
(GB); James Adam Steadman, 5.860,132 A * 1/1999 Carter et al. 707/200
Bradlow Ledbury (GB); Andrew 5,095,983 A * 11/1999 Manoccceeevveens 707/204
Osborn, Bristol (GB) 6,249,794 B1 * 6/2001 Raman 707/500
’ 6,292,626 Bl * 9/2001 Inoetal.cocevvennn.n... 707/200
(73) Assignee: Oracle International Corporation, 6,345,270 B1 * 2/2002 Tanakacocoeov.. 707/200
Redwood Shores. CA (US) 6,418,441 B1 * 7/2002 Call ..coooernirivririnnnnnn..n. 707/10
’ 6,421,767 B1 * 7/2002 Milillo et al. 707/204
(-) Notice: Subject to any disclaimer, the term of this 6,507,856 B * 1/2003 Chen et al. 707/10
6,665,659 Bl * 12/2003 Logancccccovevennnenenn. 707/3

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 158 days.

(21) Appl. No.: 09/730,724
(22) Filed: Dec. 7, 2000

(65) Prior Publication Data
US 2002/0046211 Al Apr. 18, 2002

(30) Foreign Application Priority Data
Aug. 30, 2000 (GB) eoeeeeeeeee e, 0021309
(51) Int. CL7 .. GO6F 17/30
(52) US.CL ... 707/10; 707/3; 707/104.1,
709/201
(58) Field of Search 707/10, 514, 101,

707/202, 200, 204, 500, 1, 2, 3, 104.1,
513, 5; 709/201

(56) References Cited
U.S. PATENT DOCUMENTS

4,751,674 A * 6/1988 Aoyagietal. 707/514

A

.

X1 3

7 8 29
2

FOREIGN PATENT DOCUMENTS

GB 2 328 537 A
GB 2 330 221 A

3/1997
9/1997

* cited by examiner

Primary Fxaminer—Charles Rones

Assistant FExaminer—Hassan Mahmoudi
(74) Attorney, Agent, or Firm—Swidler Berlin Shereff

Friedman, LLP
(57) ABSTRACT

The present invention relates to a repository which stores
properties of database objects. The repository includes a first
store for storing a number of predetermined properties, and
a second store for storing additional properties. A processor
1s provided for determining or modifying the properties
stored 1n the first and second stores.

9 Claims, 3 Drawing Sheets

KME3

U.S. Patent Oct. 26, 2004 Sheet 1 of 3 US 6,810,399 B2

99 B2
U.S. Patent Oct. 26, 2004 Sheet 2 of 3 US 6,810,3

(_9

\

\\

U.S. Patent Oct. 26, 2004 Sheet 3 of 3 US 6,810,399 B2

728 22

Fg_S .

US 6,310,399 B2

1
PROPERTY EXTENSIONS

CROSS-REFERENCE TO RELATED
APPLICATTONS

Not Applicable

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable

INCORPORAITON BY REFERENCE OF
MATERIAL SUBMITTED ON A COMPACT
DISC

Not Applicable

BACKGROUND OF THE INVENTION

(1) Field of the Invention

The present invention relates to a repository which stores
properties of database objects and 1n particular to a metadata
repository for a relational database.

(2) Description of Related Art

Relational databases generally comprise of two main
portions, namely an informational database which stores
data in the form of objects, and a metadata repository which
stores mformation concerning the properties of the objects.

Thus, for example, in Oracle’s Discoverer database, the

metadata defining the properties of objects stored within the
database are contained within the EUL (End User Layer) of
the database.

This system allows the data stored in the informational
database to be updated, whilst the properties of the data can
be maintained separately in the repository.

Typically, the properties of the database objects are stored
in the metadata repository in the form of object tables. In
general, each object table defines the properties of a respec-
five type of object contained within the database, with each
row 1n the table defining the properties for a specific object.

Thus for example, “Folder” objects contained within the
database would have a corresponding “Folder” table within
the metadata repository. The folder table defines the prop-
erties of all of the “Folder” objects, with the properties of
cach object being set out on a respective row of the table. A
typical example of such an object table 1s shown 1n FIG. 1
and will be described 1n more detail below.

The structure of both the informational database and the
metadata repository, are determined by the database design-
ers. The tables used 1n the metadata repository have a fixed
structure which allows a limited number of properties to be
defined, as envisaged by the database designers.

Typically, relational databases are provided centrally for a
number of different clients. In this case, the properties of the
objects are 1nitially set by the database operators.

However, 1t 1s common for different clients using the
database to want to add in additional properties for certain
database objects. Currently, this can only be achieved by
having each respective user define their own property infor-
mation 1n an alternative data store, separate from the reposi-
tory.

In this case, the additional property information, which
for example could be stored on the user’s own personal
computer, must then be referenced back to the respective
object 1n the repository.

10

15

20

25

30

35

40

45

50

55

60

65

2

However, there are a number of disadvantages to this
technique. Firstly, there 1s no longer a single source of truth
for the properties of the database objects. This means, that
should the properties of the object need to be referred to,
then 1t 1s necessary to check both the repository and the
separate data store to ensure all the property data 1s
retrieved.

Secondly, there 1s no 1ntegrity between the separate data
sources. Accordingly, if the element 1s removed from the
original repository there 1s no effect on the additional
information provided in the secondary data store.

Thirdly, transferring or duplicating the repository requires
having separate processes for moving the additional prop-
erty mmformation. Thus, 1f the additional property informa-
tion 1s to be provided to an alternative user, 1t must be copied
from the original user’s processing system and onto the
additional user’s processing system.

As an alternative, repositories can utilise a fixed set of
attributes for client extensions. This allows clients to define
a Iimited number of properties for each object. However,
because of the use of the fixed table structures within the
repository, this has the disadvantage that there 1s a limit to
the number of extended attributes and there 1s a limit to the
size of any individual extended attributes, thereby limiting
the properties that can be defined.

BRIEF SUMMARY OF THE INVENTION

In accordance with the present invention, we provide a
repository which stores properties of database objects, the
repository including;

a. a first store for storing a number of predetermined

properties;

b. a second store for storing additional properties; and,

c. a processor coupled to the first and second stores for
determining or modifying the properties stored in the
first and second stores for at least one of the database
objects.

Accordingly, the present invention provides a repository
which stores properties of database objects. The repository
includes a first store for storing predetermined properties
and a second store for storing additional properties. With
both the first and second stores being provided within the
repository, a processor can be used for accessing or modi-
fying the properties within both stores simultaneously. This
ensures that a single source of truth 1s provided for all the
properties of the database objects, with integrity being
maintained between the properties stored in the first and
second store. Furthermore, by providing both first and
second stores centrally within the repository, this overcomes
the need for additional information to be located at a user’s
remote location, thereby ensuring that the property infor-
mation 1s available to all users of the database.

Typically the first store comprises a fixed table structure,
the predetermined properties of each object being stored 1n
the respective portion of the fixed table structure. The
properties of each object are generally stored 1n a respective
row of the fixed table structure, with each property being
stored 1n a respective column. In this case, each table
ogenerally relates to a different type of object with the
properties of each object of the given type being stored in a
respective row. However, alternative table structures may be
provided. Thus, for example each table could include details
of multiple types of object, or details of separate objects
individually. Alternatively, the elements could be arranged
in columns with the properties arranged in the rows of the
table.

US 6,310,399 B2

3

Typically, the second store comprises a segmented table
structure, the additional properties of each object being
stored 1n one or more respective portions of the segmented
table structure. By using a segmented table structure, this
allows a number of rows to be assigned to a given object (or
element). This ensures that any number of properties can be
stored for a given object thereby vastly increasing the
versatility of the repository system.

Typically the additional properties of each object are
provided as an XML file. This provides a simple way of
allowing a user, or an operator of the database system, to
define additional properties for objects within the database.
The nature of XML files means that there 1s no limit to the
number of additional properties that can be defined. Alter-
native techniques could however be used, such as the use of
a simple text file or another SGML file format. However, the
use of an XML file 1s particularly advantageous as it allows
the elements, and attributes of the XML schema to be used
to define the properties of the data.

Typically the XML file 1s divided into one or more
segments which each segment being stored in a respective
row ol the segmented table structure. This allows the seg-
mented table to store a limited number of characters 1n each
row whilst still accommodating the entirety of the XML file,
thereby ensuring that all the properties of the respective
object are stored. However, the table may be modified to
include an additional number of columns, for example with
different portions of the XML file being stored in different
columns.

The processor 1s usually adapted to extract the additional
properties from the second data store by extracting and
recombining the segments of the XML file. Once the XML
file has been recombined, this allows the processor to
determine the properties of the object contained within the
database. However, any suitable system, such as extracting
portions of text from the table may also be used.

Typically the properties are stored as name-value pairs. In
this case, the name of the name-value pair represents the
particular property under consideration, whilst the value
represents the particular value of the property. However, the
properties may be stored 1n any appropriate format depend-
ing on the type of property being defined.

Typically the repository 1s adapted to be coupled to at
least one end station. In this case, the processor 1s usually
adapted to provide the properties of at least one database
object 1n response to a request from the end station. This
allows remote users who are accessing the database from a
remote location to obtain details of the properties of the
objects from the repository, with the processor ensuring that
the user obtains properties from both the first and second
store 1n response to a single request.

It will be realised from this that the processing operations
required to generate a query and then obtain a result can be
split between the processor at the end station and the
processor at the repository. In particular, the processor at the
end station can generate the query, causing the repository
processor to retrieve the results. Alternatively, the query
could also be generated by the repository processor in
response to mput commands.

The repository 1s usually adapted to couple to at least one
end station via a communications network. This allows
remote users to access the database, for example, by the
Internet.

The present invention also provides a relational database
system for providing information regarding the database
objects. The system typically includes a database for storing
the database objects, the database being coupled to a reposi-
tory according to the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

4

In this case, the relational database system usually further
comprises a number of end stations coupled to the database
and the repository via a communications network. In this
case, the database and the repository are responsive to
request from the end stations to provide information regard-

ing the database objects. Alternatively however the database
can be a stand alone database.

BRIEF DESCRIPTION OF THE DRAWINGS

Examples of the present mnvention will now be described
with reference to the accompanying drawings, in which:

FIG. 1 1s a schematic diagram of a repository table using
a fixed table structure;

FIG. 2 1s a schematic diagram of a database system
according to the present 1invention; and,

FIG. 3 1s a schematic diagram of a repository table using
a secgmented table structure according to the present inven-
tion.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 1s a schematic diagram of a repository table 1
which uses a fixed table structure (hereinafter referred to as
a fixed table 1) to store database object properties in accor-
dance with the prior art.

In this example, the fixed table 1 includes a number of
rows 2,3.4.5 and a number of columns 6,7,8,9. The table
provides information concerning the properties of a specific
type of object. In this example, each object (also known as
an element) 1s assigned a respective row 2,3,4,5 in the table,
with each property of the respective object being set out 1n
the columns 6,7,8,9. At least one of the properties 1s an
object ID which 1s used by the processor for uniquely
identifying the respective object. In this example, the object
ID X1, X2, X3, X4 of four example objects 1s located 1n
column 6 of the respective row 2, 3, 4, § as shown. The
remaining properties are then defined in columns 7, 8, 9.

Thus for example, the type of object may be departments
within an organization. In this case, each of the properties of
the departments, such as names N, staffing details S, and
budgets B are defined 1n a respective one of the columns 7,
8 and 9 as shown, with each department within the organi-
sations being set out on a respective row 2, 3, 4, 5.

Thus, 1n this example, with the structure of the table being
fixed, this allows only a fixed number of properties to be
defined for a given number of database objects.

Details of these properties can be obtained on request by

accessing the relevant rows 2, 3, 4, 5 of the table using the
respective object IDs X1, X2, X3, X4.

A relational database system which can be adapted to
operate according to the present invention 1s shown 1n FIG.
2. As shown, the database system typically includes a
database centre 10 coupled to a number of end stations 11
via a communications network, such as the Internet 12. The
database centre 10 will generally 1nclude at least an infor-
mational database and a relational database as represented at
10A and 10B respectively. However, 1n some circumstances,
all the data can be stored 1n a single database 10.

In use, a user of one of the end stations 11 1s able to
transfer requests for mmformation from the respective end
station 11 via the Internet 12 to the database centre 10. The
database centre 10 will then operate to retrieve the infor-
mation from the database 10A and return the information via
the communications network 12 to the user at the end station

11.

US 6,310,399 B2

S

Typically, as will be appreciated by a person skilled in the
art, 1t will be necessary for the user of the end station 11 to
register with the database center, usually by entering pass-
word codes or the like.

In order to process the query submitted by the end station
11, the database centre 10 includes a processor (not shown).
In use the processor receives the user’s request and gener-
ates an appropriate query, typically in SQL (Structured
Query Language) format, which causes the database 10A to
return the desired mformation, as will be appreciated by a
person skilled 1n the art.

In the system according to the present invention, the
repository 10B 1s adapted to include both a fixed table 1, as
shown for example 1n FIG. 1 and a segmented table 20, an
example of which 1s shown 1n FIG. 3, and which will now

be described.

The segmented table 20 shown in FIG. 3, includes a
number of rows 21,22.23.24.25,26 and a number of columns

27,28,29.

As 1n the fixed table structure, one of the columns 27
contains the object ID of the object whose properties are
being defined. Column 28 includes a sequence ID, the
relevance of which will be explained 1n more detail below.
Column 29 1s designated as a general properties column into
which properties can be entered and must be capable of
storing a character string of variable length (typically a
maximum of 250 characters).

As far as the rows 21,22,23,24,25 of the segmented table
are concerned, instead of using only a single row to define
the properties for each object, the segmented table structure
uses a number of rows 21,22,23 to define the properties of
a given object.

In this example, the properties which are to be included in
the segmented table are inmitially defined as an XML file
(hereinafter referred to as an XML property file), an example
of which 1s shown below.

XML Property File

<?7xml version=*1.0" encoding="ISO-8859-177>
<EULElement Id="“106084" Type=“"DCEASMPolicy”>

<InternalProperties>

<Property>
<Key>ASMAnalyzePercentage</Key>
<Value>100</Value>

</Property>

<Property>
<Key>ASMAnalyzeRefreshDays<Key>
<Value>30</Value>

</Property>

<Property>
<Key>ASMApplyExclusions</Key>
<Value>true</Value>

</Property>

<Property>
<Key>ASMApplyFolders</Key>
<Value>true</Value>

</Property>

<Property>
<Key>ASMApplyUsersRoles</Key>
<Value>true</Value>

</Property>

<Property>
<Key>ASMQueryMinElapsedTime</Key>
<Value>0</Value>

</Property>

<Property>

5

10

15

20

25

30

35

40

45

50

55

60

65

6

<Key>ASMQueryMinExecution</Key>
<Value>0</Value>
</Property>
</Internal Properties>
<External Properties>

</ExternalProperties>
</EULElement>

The versatility of XML files means that any properties can
be defined. Furthermore the properties can be sub-divided,
for example into different types of properties, allowing
different properties to be handled differently. This depends
on how the metamodel of the database 1s constructed.

Thus, for example, the metamodel of database could
allow each metadata object to have a set of internal
properties, which are not exposed to clients of the database
and a set of external properties which are exposed to clients
of the database. The XML property file shown above shows
two children nodes of the main element node, one of each for
internal/external properties.

Any number of property definitions can be included
within either the internal properties, which are typically set
by the database operator, or within the external properties
which are typically set by a user of the database. The above
fragment shows a number of internal property definitions.
The property definitions are in the form of name-value pairs,
with the name representing the property and the value
representing the value of the property. Thus, for example,
the property ASM analyze percentage has a value of 100.
The generic format of XML files allows any number of
properties to be defined.

In use, the XML property file 1s written into the column
29 to define the properties of a respective object. As set out
above, the column 29 of the segmented table 20 can only
contain a limited number of characters 1n each row.
Accordingly, if the XML property file has more characters
than can be stored 1n any one row, then the XML property
file must be divided into a number of separate portions
before 1t can be stored. In this case, the portions are each
stored 1n a separate row of the table so that the properties of
cach object are defined in one or more rows of the seg-
mented table 20. Thus, for example, 1f the XML property file
described above were to be stored 1n the segmented table 20,
it may be that the file needs to be divided 1nto three portions
XML1, XMIL2, XML3 before the portions are small enough
to be stored in the column 29. In this example, three rows
21,22.23 would therefore be assigned to the relevant object,
with a separate portion XML1, XML2, XML3J3 of the XML
property file being stored in each column 29 of each row
21,22 23.

Accordingly, once an XML property file has been sub-
mitted to the database 10, the processor operates to split the
XML property file into a number of segments which do not
exceed the character length of the column 29. The portions
XML1, XML2, XMLJ3 of the XML property file are then
written 1nto column 29 of the appropriate rows 21,22.23. At
the same time, a sequence ID S1, S2, S3 1s assigned to each
portion XML1, XML2, XML3 of the XML property file
respectively to indicate the order 1n which the portions of the
file need to be recombined to reform the original file. This
sequence ID S1, S2, S3 1s written 1nto column 28.
Accordingly, the object ID 1s written 1into column 27 with the
sequence ID of the particular XML property file portion
being entered into column 28.

To highlight this, the object of this example 1s given the
object ID X1, as shown 1n FIG. 3. Accordingly, the object 1D
X1 1s entered 1in rows 21,22 and 23 of the segmented table

US 6,310,399 B2

7

in the column 27. The sequence IDs S1, S2, S3 are then
entered 1n the column 28 referring to the portions XML,
XML2, XML3 of the XML file which 1s entered 1n column
29.

When the database requires access to any of the properties
of the particular object, the object ID 1s used by the
processor to access the properties. In this case, the processor
accesses both the fixed table 1 and the segmented table 20
to determine the properties of the object. Thus for example
in the case of object X1, the processor would access the row

2 of fixed table 1 and rows 21, 22, 23 of the segmented table
20.

Properties are extracted from the fixed table 1n the normal
manner. However, 1n contrast to this, properties from the
secgmented table are obtained by indexing the relevant rows
21, 22, 23 and then reforming the XML {ile by recombining
the segments 1n accordance with the sequence ID set out in
column 28.

It 1s important to note that while the present invention has
been described 1n the context of a fully functioning data
processing system, those of ordinary skill in the art waill
appreciate that the processes of the present invention are
capable of being distributed 1n the form of a computer
readable medium of mstructions and a variety of forms and
that the present invention applies equally regardless of the
particular type of signal bearing media actually used to carry
out the distribution. Examples of computer readable media
include recordable-type media such as floppy disc, a hard
disk drive, RAM, and CD-ROM’s, as well as transmission-
type media, such as digital and analog communications
links.

What 1s claimed 1s:

1. A repository which stores objects, the repository includ-
Ing:

a. a first store for properties of a database storing a number
of predetermined properties;

b. a second store for storing additional properties, the first
store and the second store being provided within the
repository, wherein the second store comprises a seg-
mented table structure, the additional properties of each
object being stored 1n one or more respective portions
of the segmented table structure, wherein the additional
properties of each object are provided as an XML file,
whereln the XML file 1s divided into one or more

5

10

15

20

25

30

35

40

3

segments, each segment being stored 1n a respective
row of the segmented table structure, wherein the entire
XML {ile 1s stored in the segmented table structure, and
wherein each segment has an associated sequence

identifier mndicating a sequence of the segments 1n the
XML file and,

c. a processor coupled to the first and second stores for
determining or modifying the properties stored 1n the
first and second stores for at least one of the database
objects.

2. A repository according to claim 1, wherein the proces-
sor 1s adapted to extract the additional properties from the
second data store by extracting and recombining the seg-
ments of the XML file 1n accordance with the sequence
identifiers associated with the segments.

3. A repository according to claim 2, wherein the first
store comprises a fixed table structure, the predetermined
properties of each object being stored 1n a respective portion
of the fixed table structure.

4. A repository according to claim 3, wherein the prop-
erties of each object are stored 1n a respective row of the
fixed table structure, each property being stored 1n a respec-
tive column.

5. A repository according to claim 1, wherein the prop-
erties are stored as name-value pairs.

6. A repository according to claim 1, the repository being
adapted to couple to at least one end station, the processor
being adapted to provide the properties of at least one
database object 1n response to a request from the end station.

7. A repository according to claim 6, wherein the reposi-
tory 1s adapted to couple to at least one end station via a
communications network.

8. A relational database system for providing information
regarding database objects comprising a database for storing
the database objects, the database being coupled to a reposi-
tory according to claim 1.

9. A relational database system according to claim 8, the
system further comprising a number of end stations coupled
to the database and the repository via a communications
network, the database and repository being responsive to
requests from the end stations to provide information regard-
ing the database objects.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 6,810,399 B2 Page 1 of 1
DATED . October 26, 2004
INVENTOR(S) : Paolo Fragapane et al.

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Title page,
Item [75], Inventor, change "Bradlow Ledbury" to -- Bath --

Signed and Sealed this

Twenty-tirst Day of June, 2005

JON W. DUDAS
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

