US006804759B2
a2 United States Patent (10) Patent No.: US 6,804,759 B2
Luick 45) Date of Patent: Oct. 12, 2004

(54) METHOD AND APPARATUS FOR (56) References Cited

DETECTING PIPELINE ADDRESS

CONFLICT USING COMPARE OF BYTE U.S. PATENT DOCUMENTS

ADDRESSES 5,293595 A * 3/1994 Caldarale et al. 711/210

5854914 A * 12/1998 Bodas et al. 712/216

(75) Inventor: David Arnold Luick, Rochester, MN 5,987,593 A * 11/1999 Senter et al. 712/206
(US) 6,463,514 B1 10/2002 Ray et al.

% .
(73) Assignee: International Business Machines cited by examiner

Corporation, Armonk, NY (US) Primary Examiner—Donald Sparks

Assistant Examiner—Bao Q. Truong

(*) Notice: Subject to any disclaimer, the term of this (74) Attorney, Agent, or Firm—Roy W. Truelson
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 240 days. (57) ABSTRACT
_ In a computer processor, a low-order portion of a virtual
(21) Appl. No.: 10/098,777 address for a pipelined operation 1s compared directly with
(22) Filed: Mar. 14, 2002 the corresponding low-order portions of addresses of opera-
: S tions below 1t 1 the pipeline to detect an address conflict,
(65) trior Publication Data without first translating the address. Preferably, 1f a match 1s
US 2003/0177326 Al Sep. 18, 2003 found, 1t 1s assumed that an address conflict exists, and the
pipeline 1s stalled one or more cycles to maintain data
(51) Tt L7 oo GOGF 12/00 integrity in the event of an actual address conflict.
Preferably, the CPU has caches which are addressed using
(52) US.CLcoovei, 711/169; 711/150; 711/151; real addresses, and a translation lookaside buffer (TLB) for

711/167; 711/210; 709/102; 709/107; 712/206; determining the high-order portion of a real address. The
712/215; 712/216; 712/219; 712/246 comparison of low-order address portions provides conilict

detection before the TLB can translate a real address of an

(58) Field of Search 709/102, 107; instruction.
711/150, 151, 167, 169, 210; 712/206,
215, 216, 219, 246 25 Claims, 8 Drawing Sheets

101

/

Al . EXECUTION 2l
INSTRUCTON 33 s

207 |[203 - *
BRANCH INSTR
UNIT DECODE
PIPE2 | |PIPES
‘ e 215 |
]
204 |

INSTR REGS/ REGS
BUFFERS ‘]

I
217 L 218

L1 DIR i< TLB L1 DIR

| L1 I-CACHE | L1 D-CACHE |
21]
MEMORY MGMT
2| | 23] | 224]
L2 DIR 2 1/F | MEMORY
- - | UF

U.S. Patent Oct. 12, 2004 Sheet 1 of 8 US 6,804,759 B2

101 106
[-CACHE
CPU
107
D-CACHE

MAIN MEMORY

Bus Interface 105

110
111 112 114

115 115
Storage Storage Comm Wrk/Stn Wrk/Stn
I0P [0P [0P 0P [0OP

Comm W/S W/S
-

Prontr

DASD

/S

- 8

-
e

x.

FIG. |A

U.S. Patent Oct. 12, 2004 Sheet 2 of 8 US 6,804,759 B2

109 /100

- 1088
L2
= 108C MAIN MEMORY

12

CPU ~ "[“é"‘

Bus Interface 105

110

111 112 114

113 115
Storage Storage Comm Wrk/Stn Wrk/Stn
[0P [OP [I0P 10P [0OP

Comm W/S W/S
DASD DASD -
/ Prntr

L

== -
“~
72 2z

=,
“~—,
0

FIG. 1B

U.S. Patent Oct. 12, 2004 Sheet 3 of 8 US 6,804,759 B2

‘;91
201
— EXECUTION 211
INSTRUCTION
202 |[203
BRANCH INSIR
UNIT DECODE
215

204

INSTR REGS/
BUFFERS

REGS

218
L1 DIR

L1 D-CACHE

217 216
L1 DIR T1LB
L1 I-CACHE
MEMORY MGMT

222 223 224
L2 DIR 2 1/E MEMORY
[/F

221

FIG. 2

US 6,804,759 B2

Sheet 4 of 8

Oct. 12, 2004

U.S. Patent

1022 »

10S 29 *JPPY 91Ag

'Ippy 91Ag

¢0¢

¢0¢

¢ Old

JlaqunN abed [eay

G0¢

uoTle[Sued |
SS9.1pPY

Jaquny abed [eNIJIA

(0%

U.S. Patent Oct. 12, 2004 Sheet 5 of 8 US 6,804,759 B2

216
VIRTUAL
ADDR ;?
402
= .. ll 103 @
D (D
S te VA0 | RMO | CRAL [TH 73
e
Lol
)
COMPARE COMPARE .
I 405 O
(J

I 406

S P E— | —

US 6,804,759 B2

Sheet 6 of 8

U9[S V1YQ TOYLINOD Y3IHLO ON 91Ad : ON abed [B3Y | 10c
90t
40123138
WOY
MO Ty, »

Oct. 12, 2004

[915

U.S. Patent

U.S. Patent Oct. 12, 2004 Sheet 7 of 8 US 6,804,759 B2

602 603 604
Virtual Page No. Byte Addr CNTRL }601
-
=
I—-
.
REal/VITT Page o, yoos
- 606 607 l 608
L
-
> o117\ LOMPAREAS < [op. conrLICT| 610
DETECT
LOGIC
612
N
—
Lid
D
<I
I—.—
¢

U.S. Patent Oct. 12, 2004 Sheet 8 of 8 US 6,804,759 B2

DECODE IR%ERUCTION 701
GENERATE VIRT. ADDR.

/02

704
COMPARE TO COMPARE TO TRANSLATE
BYTE ADDRESSES OP TYPES VIRT.
IN PIPE IN PIPE ADDR

10
REAL
ADDR

/705
NO
' Yes

CONFLICT 706

RESOLUTION

(STALL)
L e - - -
' | CONTINUE ,—707
v | IN PIPE

(OTHER ACTION) Lo e

CONTINUE /08
IN PIPE

FIG. 7

US 6,304,759 B2

1

METHOD AND APPARATUS FOR
DETECTING PIPELINE ADDRESS
CONFLICT USING COMPARE OF BYTE
ADDRESSES

CROSS-REFERENCE TO RELATED
APPLICATION

Ser. No. 10/098,002 to David A. Luick, entitled “Method
and Apparatus for Detecting Pipeline Address Conflict
Using Parallel Compares of Multiple Real Addresses™.

FIELD OF THE INVENTION

The present invention relates generally to digital data
processing, and more particularly to pipelined operations in
a processing unit of a data processing system.

BACKGROUND OF THE INVENTION

A modern computer system typically comprises a central
processing unit (CPU) and supporting hardware necessary to
store, retrieve and transfer information, such as communi-
cations busses and memory. It also includes hardware nec-
essary to communicate with the outside world, such as
iput/output controllers or storage controllers, and devices
attached thereto such as keyboards, monitors, tape drives,
disk drives, communication lines coupled to a network, etc.
The CPU 1s the heart of the system. It executes the mstruc-
tions which comprise a computer program and directs the
operation of the other system components.

From the standpoint of the computer’s hardware, most
systems operate 1n fundamentally the same manner. Proces-
sors are capable of performing a limited set of very simple
operations, such as arithmetic, logical comparisons, and
movement of data from one location to another. But each
operation 1s performed very quickly. Programs which direct
a computer to perform massive numbers of these simple
operations give the 1illusion that the computer 1s doing
something sophisticated. What 1s perceived by the user as a
new or improved capability of a computer system 1s made
possible by performing essentially the same set of very
simple operations, but doing it much faster. Therefore con-
finuing 1mprovements to computer systems require that
these systems be made ever faster.

The overall speed of a computer system (also called the
“throughput”) may be crudely measured as the number of
operations performed per unit of time. Conceptually, the
simplest of all possible improvements to system speed 1s to
increase the clock speeds of the various components, and
particularly the clock speed of the processor. E.g., if every-
thing runs twice as fast but otherwise works 1n exactly the
same manner, the system will perform a given task in half
the time. Early computer processors, which were con-
structed from many discrete components, were susceptible
to significant speed 1improvements by shrinking component
size, reducing component number, and eventually, packag-
ing the entire processor as an integrated circuit on a single
chip. The reduced size made 1t possible to increase the clock
speed of the processor, and accordingly increase system
speed.

Despite the enormous improvement 1n speed obtained
from integrated circuitry, the demand for ever faster com-
puter systems has continued. Hardware designers have been
able to obtain still further improvements 1n speed by greater
integration (i.e., increasing the number of circuits packed
onto a single chip), by further reducing the size of the
circuits, and by various other techniques. However, design-

10

15

20

25

30

35

40

45

50

55

60

65

2

ers can see that physical size reductions can not continue
indefinitely, and there are limits to their ability to continue
to 1ncrease clock speeds of processors. Attention has there-
fore been directed to other approaches for further improve-
ments 1 overall speed of the computer system.

Without changing the clock speed, it 1s possible to
improve system throughput by using multiple copies of
certain components, and 1n particular, by using multiple
CPUs. The modest cost of individual processors packaged
on integrated circuit chips has made this practical. While
there are certainly potential benefits to using multiple
processors, additional architectural issues are introduced.
Without delving deeply into these, it can still be observed
that there are many reasons to improve the speed of the
individual CPU, whether or not a system uses multiple CPUs
or a single CPU. If the CPU clock speed 1s given, 1t 1s
possible to further increase the speed of the individual CPU,
1.e., the number of operations executed per second, by
increasing the average number of operations executed per
clock cycle.

Most modern processors employ some form of pipelining,
to increase the average number of operations executed per
clock cycle, as well as one or more levels of cache memory
to provide high-speed access to a subset of data 1n main
memory. Pipelined instruction execution allows subsequent
instructions to begin execution before previously issued
instructions have finished. Ideally, a new 1nstruction begins
with each clock cycle, and subsequently moves through a
pipeline stage with each cycle. Even though an instruction
may take multiple cycles or pipeline stages to complete, 1f
the pipeline 1s always full, the processor executes one
instruction every cycle.

Of course, the pipeline being always full 1s simply an
ideal towards which designers strive, knowing that it 1s
impossible to always keep the pipeline full. For various
reasons, the pipeline will sometimes stall. For example, the
instruction stream may take an unexpected branch to an
instruction which 1s not 1n the cache, or may load data from
a data location which is not in the immediate (lowest level)
cache. In these cases, the processor can not begin a new
instruction, and must typically wait until the necessary
mstruction or data 1s fetched mto the cache, either from
another higher level cache, or from main memory.

There are other causes of pipeline stall. Among them are
address conflicts between pipeline operations, particularly,
between load and store operations. If a store operation stores
data to an address X, and a load operation subsequently
loads data from address X, care must be taken that the store
operation completes before the load operation begins, or
incorrect data may be loaded. In order to prevent erroneous
operation, a processor using pipelined instruction execution
typically compares the address of a target operand of certain
operations with similar addresses of operations 1n the pipe-
line. If a conilict 1s detected, the subsequent operation must
be delayed or restarted.

Some system designs, of which UNIX-based systems are
an example, employ a form of virtual addressing which has
the possibility of address aliasing. I.e., addresses derived
from the instructions and generated by the processor, which
are often referred to as “virtual addresses” or “effective
addresses”, are mapped to addresses in the physical main
memory ol the system, generally referred to as “real
addresses” or “physical addresses™, where it 1s possible that
multiple virtual addresses map to the same real address.
Because multiple virtual addresses may map to the same real
address, the cache 1s typically accessed with a real address

US 6,304,759 B2

3

and only the real address may reliably be used to determine
whether there 1s an address conflict 1n pipeline operations.

Typically, 1n order to obtain a real address of data for a
data reference operation (e.g., a load or store operation), a
portion of the virtual address 1s used to access a table called
a translation lookaside buffer (TLB). The TLB is typically
N-way set associative, providing N possible real address
entries corresponding to the virtual address. A TLB lookup
requires that the N entries be retrieved from the TLB, that
cach entry be compared to the virtual address, and that the
real address corresponding to the matched entry be selected.
These operations may require multiple clock cycles.

Where an address conflict exists between pipeline
operations, 1t 1s desirable to detect the conflict as soon as
possible. The longer it takes to detect such a contlict, the
oreater 1s the potential performance 1impact. Not only 1s the
conilicting mstruction potentially compromised, but mstruc-
fions occurring after the conflicting instruction may be
compromised as well. Late detection of an address conilict
requires that all potential data integrity exposures be recti-
fied before proceeding. Since an address conflict can not be
detected until the virtual addresses are translated to real
addresses, the time required to perform the TLB lookup
directly delays the detection of an address contlict.

As processors grow more capable and more complex, the
problem of address conflicts between pipeline operations
will be magnified. Some newer processor designs employ
so-called “Wide Issue Superscalar” or “Very Long Instruc-
tion Word” (VLIW) architectures, in which multiple opera-
tions are concurrently executed, and multiple loads and
stores can be 1ssued concurrently. Other processor designs
also grow 1n complexity, as the lengths of pipelines increase,
multiple pipelines may exist, multiple levels of cache may
be supported, etc.

All of this growing complexity increases the number of
active pipeline stages at any instant in time, which has two
consequences. On the one hand, there 1s an increased
likelihood of an address conflict, while at the same time,
there 1s a greater potential performance impact of restarting
the pipelines when an address contlict exists. Thus, address
conilicts may become a significant performance bottleneck
as pipeline complexity increases in current and future pro-
cessor designs. Although this trend 1s not necessarily well
understood, there exists a need now and 1n the future for
improved techniques for dealing with pipeline address con-
flicts.

SUMMARY OF THE INVENTION

A low-order portion of a virtual address (“byte address™)
for a pipelined operation 1s compared directly with the
corresponding low-order portions of addresses of one or
more other operations in the pipeline mechanism to detect an
address conilict, without translating the address through an
address translation mechanism. If no match of byte
addresses 1s detected, then there 1s no address conflict and
pipeline operations proceed normally.

In the preferred embodiment, if a match 1s found between
byte addresses, 1t 1s assumed that an address conilict does
exist, and no further verification of an actual address conflict
1s performed. In this case, the corresponding operations are
treated as 1f an actual address conflict exists, even though the
higher-order portions of the addresses may not match.
Specifically, if the operations are of a type which require
some minimum time interval between them or require that
one operation complete before the later operation can begin
(e.g., a store operation, followed by a load operation), the

10

15

20

25

30

35

40

45

50

55

60

65

4

later operation (and any beginning after it in the pipeline) are
stalled a sufficient time to prevent any data integrity expo-
sure. This may be accomplished by stalling a pre-determined
number of cycles, by stalling unftil the earlier conilicting
operation completes, or other means. It 1s alternatively
possible to restart the pipeline.

In the preferred embodiment, the CPU has one or more
caches, which are addressed using real addresses. An N-way
translation lookaside buffer (TLB) in the CPU is used to
determine the high-order portion of a real address from the
high-order portion of a virtual address. Pipeline stages
contain the corresponding real addresses of the operations
once the real addresses have been determined. The low-
order portion of a new pipeline operation 1s compared with
the low-order address portions of potentially conflicting
operations ahead of it 1n the pipeline, without first translating

the virtual address of the new pipeline operation through the
TLB.

A pipeline address conilict detection mechanism 1n accor-
dance with the preferred embodiment of the present inven-
fion has several advantages. Pipeline address conilicts are
detected at an earlier stage, and as a result, the performance
impact of an 1ndividual conflict 1s reduced. Generally, as a
result of early detection, data integrity can be preserved by
simply stalling the later instruction in the pipeline, rather
than restarting the pipeline after the instruction has pro-
ceeded well down the pipe. Even though a certain number of
“false positives” will be detected, the reduced performance
cost of each detected address contlict will typically more
than offset the false positives. Stalling a portion of the
pipeline 1s generally simpler and generally requires less
hardware than that required for restarting the pipeline after
some progress has already been made. Finally, the hardware
required to make the address comparisons for purposes of
detecting an address conflict 1s reduced, because only a
subset of the enftire address need be compared.

The details of the present invention, both as to its structure
and operation, can best be understood 1n reference to the
accompanying drawings, in which like reference numerals
refer to like parts, and 1n which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A 1s a high-level block diagram of the major
hardware components of a single-CPU computer system for
utilizing a pipeline address conflict mechanism, according to
the preferred embodiment of the present invention.

FIG. 1B 1s a high-level block diagram of the major
hardware components of a multiple-CPU computer system
for utilizing a pipeline address contlict mechanism, accord-
ing to the preferred embodiment of the present invention.

FIG. 2 1s a high-level block diagram of the major com-
ponents of a CPU of a computer system according to the
preferred embodiment.

FIG. 3 1s a logical illustration of address translation,
according to the preferred embodiment.

FIG. 4 shows the structure of a translation lookaside
buffer (TLB) and its associated logic, according to the
preferred embodiment.

FIG. 5 1s a high-level diagram of a set of pipeline control
registers for various pipeline stages, according to the pre-
ferred embodiment.

FIG. 6 1s a diagram of detection logic for early detection
of pipeline address conilicts at multiple pipeline stages,
according to the preferred embodiment.

FIG. 7 1s a flow diagram 1illustrating 1n a generalized
manner the pipelined execution of an mstruction, according
to the preferred embodiment.

US 6,304,759 B2

S

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Referring to the Drawing, wherein like numbers denote
like parts throughout the several views, FIG. 1A 1s a high-
level representation of the major hardware components of a

single-CPU computer system 100 for utilizing a pipeline
address conflict detection and resolution mechanism,
according to the preferred embodiment of the present inven-
tion. CPU 101 processes instructions and data from main
memory 102. CPU 101 temporarily holds instructions and
data 1n a cache structure for more rapid access. In the
embodiment of FIG. 1A, the cache structure 1s shown as
separate internal level one instruction cache 106 (L1

[-cache) and level one data cache 107 (L1 D-cache), and
level two cache 108 (L2 cache) closely coupled to CPU 101.
However, 1t should be understood that the cache structure
may be different; that the number of levels and division of
function 1n the cache may vary; and that a system might in
fact have no cache at all. L1 I-cache 106 stores instructions
for execution by CPU 101. L1 D-cache stores data (other
than instructions) to be processed by CPU 101. L2 cache can
be used to hold both instructions and data. Memory bus 109
provides a data communication path for transferring data
among CPU 101, main memory 102 and I/O bus interface
105, which 1s further coupled to system I/O bus 110 for
transferring data to and from various 1/O units. I/O process-
ing units (IOPs) 111-115 attach to system I/O bus 110 and
support communication with a variety of storage and other
[/O devices, such as direct access storage devices (DASD),
tape drives, workstations, printers and remote communica-
tions lines for communicating with remote devices or with
other computer systems.

It should be understood that FIG. 1A 1s intended to depict
the representative major components of system 100 at a high
level, that individual components may have greater com-
plexity than represented FIG. 1A, and that the number and
types of such components may vary. In particular, system
100 may contain multiple CPUs. Such a multiple CPU
system 1s depicted at a high level in FIG. 1B. FIG. 1B shows
a system having four CPUs 101A, 101B, 101C, 101D, each
CPU having respective L1 I-cache 106A, 106B, 106C,
106D, and respective L1 D-cache 107A, 107B, 107C, 107D.
A separate L2 cache 108A, 108B, 108C, 108D for instruc-
tions and data 1s associated with each CPU. As used herein,
CPU and caches are referenced by generic reference num-
bers as CPU 101, L1 I-cache 106, .1 D-cache 107 and 1.2
cache 108, 1t being understood that such devices could be
contained either in a single CPU system as shown in FIG. 1A
or a multiple CPU system as shown in FIG. 1B.

In FIGS. 1A and 1B, memory bus 109 1s shown at a high
level as providing a communications path among CPUs,
main memory and I/O. It should be understood that this 1s a
high-level representation only, and that in fact memory bus
109 may comprise multiple different buses or communica-
tion paths, which may be arranged i1n a hierarchy.
Additionally, main memory 102 may be divided into por-
tions associated with particular CPUs or sets of CPUs and
particular buses, as 1n any of various so-called non-uniform
memory access (NUMA) computer system architectures.

While various system components have been described
and shown at a high level, 1t should be understood that a
typical computer system contains many other components
not shown, which are not essential to an understanding of the
present nvention. In the preferred embodiment, computer
system 100 supports a UNIX-based operating system,
although 1t may support other operating systems either 1n
addition to UNIX or instead of UNIX.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 2 1s a high-level diagram of the major components
of CPU 101 according to the preferred embodiment, show-
ing CPU 101 1n greater detail than 1s depicted 1n FIGS. 1A
and 1B. In this embodiment, the components shown 1n FIG.
2 are packaged 1n a single semiconductor chip. CPU 101
includes 1nstruction unit portion 201, execution unit portion
211, and memory management portion 221. In general,
instruction unit 201 obtains instructions from L1 I-cache

106, decodes instructions to determine operations to
perform, and resolves branch conditions to control program
flow. Execution unmit 211 performs arithmetic and logical
operations on data 1n registers, and loads or stores data.
Memory management unit 221 provides data to the L1
caches and interfaces with memory external to the CPU (i.e.,
in the [.2 cache or main memory) where instructions or data
must be fetched or stored.

Instruction unit 201 comprises branch unit 202, instruc-
tion decode/dispatch unit 203, and instruction registers and
buifers 204. Instructions from L1 I-cache 106 are loaded 1nto
buffers 204 prior to execution. Depending on the CPU
design, there may be multiple buffers (e.g., one for a
sequential series of instructions, and others for branch-to
locations), each of which may contain multiple instructions.
Decode/dispatch unit 203 receives the current instruction to
be executed from one of the buffers, and decodes the
instruction to determine the operation(s) to be performed or
branch conditions. Branch unit 202 controls the program
flow by evaluating branch conditions, and refills buifers
from L1 I-cache.

Execution unit 211 preferably comprises multiple pipe-
lines 212-214 and a bank of registers 215. Registers 215
store data for 1input to, output from, and control of operations
performed by execution unit 211, and may include general
purpose Integer registers, tloating point registers, and vari-
ous special purpose registers. Pipelines 212-214 are used to
perform various operations which require multiple clock
cycles to complete. In the preferred embodiment, at least one
of pipelines 212-214 1s a load/store pipeline used for
transferring data between registers 215 on the one hand and
some form of memory (cache or main memory) on the other.
Additional pipelines may be used for various arithmetic and
logic operations, including floating point operations, or for
other operations. While three pipelines are illustrated by way
of example 1n the simplified block diagram of FIG. 2, the
actual number of pipelines may vary considerably depend-
ing on processor design, and there could be multiple load/
store pipelines.

.1 I-cache 106 and LL1 D-cache 107 are separate instruc-
fion and data caches providing data to instruction and
execution umts. Typically, data 1s taken from or stored to
these units, and if the data 1s unavailable in the L1 cache, 1t
1s loaded into the L1 cache from L2 cache 108 or main
memory 102, and then transferred from L1 cache to the
corresponding unit. Depending on the processor design, it
may be possible to by-pass L1 cache and load data from L2
cache to an execution or 1nstruction register. L1 I-cache 106
contains a directory 217 of its contents, and L1 D-cache 107
likewise contains a directory 218 of its contents.

Memory management unit 221 includes 1.2 cache direc-
tory 222, L2 cache interface 223, and memory bus interface
224. 1.2 cache directory 222 1s a directory of the contents of
L2 cache 108. L2 cache interface 223 handles the transfer of
data directly to and from L2 cache 108. Memory bus
interface 224 handles the transfer of data across memory bus
109, which may be to main memory or to I/O units via bus
interface 105. Memory management unit 221 routes data
accesses to the various umits. E.g., when the load/store

US 6,304,759 B2

7

pipeline processes a load command, requiring data to be
loaded to a register, memory management unit 221 will fetch
data from the L2 cache 108 or main memory 102 as
necessary.

Translation lookaside buffer (TLB) 216 1s used to trans-
late a virtual address generated by execution of a load/store
instruction to a physical address at which data 1s stored 1n

main memory 102 or cache, as explained more fully herein.
A single TLB 1s shown 1n FIG. 2. However, depending on
the processor design, there could be multiple TLBs. For
example, there could be separate TLBs for the L1 I-cache
and for the L1 D-cache. There could further be a separate
TLB for the L2 cache.

While various CPU components have been described and
shown at a high level, it should be understood that the CPU
of the preferred embodiment contains many other compo-
nents not shown, which are not essential to an understanding
of the present invention. For example, various additional
special purpose registers will be required 1n a typical design.
Furthermore, 1t will be understood that the CPU of FIG. 2 1s
simply one example of a CPU architecture, and that many
variations could exist 1n the number, type and arrangement
of components within CPU 101, that components not shown
may exist in addition to those depicted, and that not all
components depicted might be present 1n a CPU design. For
example, the number and configuration of buifers and caches
may vary; the number and function of execution unit pipe-
lines may vary; registers may be configured in different
arrays and sets; dedicated floating point hardware may or
may not be present; etc. Additionally, CPU 101 may have
further capability to perform parallel operations, as 1n any of
various so-called “Wide Issue Superscalar” or “Very Long
Instruction Word” (VLIW) architectures, in which case the
number of pipelines may be quite large, and there will
typically be multiple load/store pipelines.

Computer system 100 of the preferred embodiment uti-
lizes at least two forms of addressing, as illustrated logically
in FIG. 3. A “virtual address” 301 refers to the address
generated 1n 1nternal processor operations from instructions
and data by instruction unit 201 1n conjunction with execu-
tion unit 211, whether known as a “virtual address”, “el

, “elfec-
tive address”, or by some other name. l.e., sequential
instruction addresses and branch-to addresses for executable
instructions are addresses 1n the virtual address space.
Similarly, addresses for data access operations, such as data
loads and stores, derived either directly from instructions,
indirectly from register values, or by computation using
some combination of data contained in instructions and
registers, are addresses 1n the virtual address space. The
virtual address space 1s the address space from the point of
view of the executable code. A virtual address may be
produced 1n any of various ways known 1n the art, ¢.g., as a
concatenation of some high-order address bits 1n a special-
purpose register (which changes infrequently, e.g., when
execution of a new task 1s initiated) and lower order address
bits from an 1nstruction; as a computed offset from an
address 1n a general purpose register; as an offset from the
currently executing instruction; etc. A virtual address com-
prises K+L bits, including a K-bit virtual page number 302
and an L-bit byte address (also known as a byte index or byte
number) 303. In the preferred embodiment, K is 52 and L is
12, making a 64-bit virtual address. By convention herein,
these bits are numbered O to 63 (0 being the highest order
bit). A “real address” 304 refers to a physical location in
memory 102 where the data is stored, whether known as a
“real address”, “physical address™, or some other name. A

real address comprises M+L bits, mncluding an M-bit real

10

15

20

25

30

35

40

45

50

55

60

65

3

page number 305 and an L-bit byte address 303, which 1s the
same as the L-bit byte address portion of the virtual address.
In the preferred embodiment, M 1s 36, making a 48-bit real
address. By convention, real address bits are numbered 16 to
63 herein (16 being the highest order bit). It should be
understood that the values of K, L and M may vary, although
typically K>M.

FIG. 3 1llustrates a simplified form of address translation
in which two levels of address exist, one corresponding to
processor-generated virtual addresses and the other corre-
sponding to real addresses in memory. It will be understood
that many computer systems support additional levels of
addresses, which for clarity of 1llustration are not shown 1n
FIG. 3. For example, unique addresses may exist in a large,
global address space which 1s shared by all users and
processes 1n a computer system, and these addresses may
correspond to addresses in a second (usually smaller)
address space of processor-generated addresses, which may
in turn correspond to addresses in a third (still smaller)
address space of the physical memory of the system.

As 1s well known, the size of a virtual address space 1s
typically much larger than physical memory, and data is
typically paged in from storage devices (such as rotating
magnetic disk drives) as needed, and paged out to storage
when no longer needed. Hence, the correspondence between
virtual addresses and real addresses constantly changes.
Computer system 100 contains address translation mecha-
nisms for translating virtual addresses generated by CPU
101 to real addresses corresponding to locations 1n memory
102 and caches 106—108. Such address translation mecha-
nisms typically include a page table and associated logic
(not shown), which maps virtual page numbers 302 to real
page numbers 305. The page table being quite large, it 1s
generally contained 1n main memory or some other storage
external to CPU 101. Additionally, computer system 100
may support an alternative virtual-equals-real addressing
mode, 1n which virtual addresses generated by CPU 101 are
the same as real addresses (the highest order bits of virtual
address being zero); this addressing mode is generally
reserved for certain special operating system instructions
and data structures, and not used for ordinary user applica-
fions and data.

The caches 106—108 contain selected parts of data in main
memory 102. Each cache contains a directory of its contents,
enabling CPU logic to determine whether desired data is
contamned in the cache. In the preferred embodiment, the
cache directory contains real addresses of the data stored 1n
the cache, and real addresses are used to access the directory.
While it 1s possible (and some computer systems do) orga-
nize a cache directory using virtual addresses, the need to
maintain cache coherency where multiple caches exist, and
the use of aliasing 1n some operating systems, favor the use
of real addresses. This means that the CPU must determine
a real address of data when accessing the cache. Because the
page table 1s external to CPU 101, a rapid address translation
mechanism 1s provided on-board CPU 101 in the form of
TLB 216. Although all caches are addressed with real
addresses 1n the preferred embodiment, it 1s alternatively
possible to organize some or all of the caches so that they are
addressed with virtual addresses.

FIG. 4 shows the structure of TLB 216 and associated
logic, according to the preferred embodiment. TLB 216 1s
essentially a cache containing selected parts of the page
table, enabling CPU 101 to translate addresses of data 1n its
L1 or L2 caches without going to the external page table. As
shown 1n FIG. 4, TLB 216 comprises an N-way associative
table 401, where N 1s typically greater than 1. A line of the

US 6,304,759 B2

9

table 1s accessed by decoding some combination of virtual
address bits 1n select logic 402. Each line 403 contains N
address entries, along with other data used for table main-
tenance. Each address entry contains a virtual page number
and 1its corresponding real page number. The TLB of FIG. 4
is a 2-way associative TLB (N=2), it being understood that
the associativity may vary, and that the associativity could
be one (N=1). The virtual page numbers are designated VAQ
and VAl, and the corresponding real page numbers are
designated RA0 and RA1l. Table maintenance data (TM)
may 1nclude, e.g., a most recently used bit or bits for
determining which entry 1s to be deleted from the TLLB when
a new entry must be brought 1n from the main page table;

valid bits; etc.

In operation, a virtual address to be translated 1s 1nput to
select logic 402, which uses a hash function such as a subset
of the address bits to select a single line of table 401, this
operation typically requiring a single CPU clock cycle. VA0
from the selected line 1s input to comparator 404, while VA1l
from the selected line 1s stmultaneously input to comparator
405. If either virtual page number VAO or VAL 1s 1dentical
to the virtual address to be translated, the output line of the
corresponding comparator 1s activated, causing selector 406
to select the corresponding real page number for output. If
neither VAOQ nor VAl 1s 1dentical to the virtual address to be
translated, additional NOR gate 407 generates an appropri-
ate signal to idicate a TLB miss, and cause CPU to take
appropriate action to translate the address from elsewhere
(c.g., the main page table). The operations performed by
comparators 404, 405 and seclector 406 typically require one
additional CPU clock cycle, making a total of two CPU
clock cycles to translate a virtual address to a real address

(assuming the address is contained in the TLB), or to
determine that the address 1s not in the TLB.

As described above, CPU 101 preferably contains mul-
tiple pipelines 212-214, at least one of which 1nvolves
operations requiring access to memory locations. Loads and
stores are typical memory operations, but there could be
other such memory operations. As one example of another
such memory operation, although by no means the only such
possible example, some systems support direct copying of
data 1n one memory location to another. As further explained
above, memory locations are addressed with real, rather than
virtual, addresses.

Where multiple pipeline operations access memory
locations, there exists the possibility that two or more
pending operations will access the same memory location in
a manner that could cause errors. Such an occurrence 1s
referred to as a pipeline address conflict. A simple example
of such a pipeline address conflict, although not necessarily
the only such example, 1s a load following a store to the
same memory address. If the store has not yet completed
before the load begins, there 1s some possibility that the load
operation will load old (and therefore erroneous) data. It will
be observed that not all memory access operations which
access the same memory locations will conflict. For
example, 1f two load instructions access the same memory
location, these 1nstructions do not conflict with each other.
Theretfore, 1n determining whether an actual contlict exists,
the system may also have logic which compares operation
types or other data.

In order to detect a pipeline address contlict, and for other
control purposes, the real addresses of pending memory
access operations 1n the pipeline are stored in pipeline
control registers, and shifted into succeeding pipeline stages
with each CPU clock cycle. FIG. 5 1s a high-level diagram
of a set of pipeline control registers for various pipeline

10

15

20

25

30

35

40

45

50

55

60

65

10

stages. In addition to real addresses, various other control
data may be stored 1n the pipeline control registers, such as
a type of operation being performed, a destination or source
register for data, etc. Some of this information may not be
available immediately, and may be added as 1t 1s generated.
Because 1t takes several cycles to decode an instruction,
generate a virtual address and translate it to a real address,
no real address 1s available for some early pipeline stages.
As shown 1 FIG. §, real addresses are held in registers
501-504 corresponding to pipeline stages n and greater, 1.€.,
stages after the real address has been generated. The real
address 1s derived by concatenating the real page number
output from selector 406 with the byte number (low-order L

bits) from the virtual address.

In a conventional CPU, a real address of a memory access
mnstruction 1s compared with the real addresses of potentially
conilicting memory address instructions ahead of it 1n the
pipeline, but this operation 1s not be performed until the real
address 1s generated, 1.€., stage n or greater. Once a real
address of an instruction I 1s output by selector 406 of TLB
216, 1t can then be compared to the real addresses any
potentially conflicting memory address instructions ahead of
instruction I 1n the pipeline. The real addresses of memory
address instructions ahead of instruction I will have been
decoded 1n previous CPU cycles, and are therefore already
available and in the pipeline control registers.

In accordance with the preferred embodiment, the low-
order L bits of the virtual address (which are the same as the
low-order L bits of the real address) of an instruction I are
compared to the low-order L bits of the real address of each
potentially conflicting memory address nstruction ahead of
instruction I 1n the pipeline to determine the existence of a
possible pipeline address contlict

FIG. 6 1s a diagram of detection logic which uses the
low-order L bits of addresses for early detection of pipeline
address conflicts at multiple pipeline stages, according to the
preferred embodiment. The flow of operations using this
detection logic and other elements of CPU 101 1s shown 1n
FIG. 7. At some relatively early pipeline stage designated
stage j (1.., a stage earlier than stage n of FIG. §, and which
could be the first stage in the pipeline), the instruction is
decoded, a virtual address 1t references 1s generated and
available in pipeline register 601 (represented as step 701 in
FIG. 7). This instruction (at stage j) will be herein designated
mnstruction I, for clarity. Register 601 contains an address
portion having a virtual page number portion 602 and an
L-bit byte address portion 603 referenced by 1instruction I,.
Additionally, at least some control information relative to
instruction I, 1s available 1n control information portion 604
of pipeline register 601, although this control information
could be incomplete at this early stage. Control information
portion 604 preferably includes at least enough information
concerning the type of operation specified by instruction I,
to permit a determination whether a pipeline address conflict
could exist with other operations at the same address 1n the
pipeline. This control information could i1nclude, e.g., an op
code for the operation to be performed by mstruction I,, or
could be 1nformation derived from the op code such as a
single bit or set of bits which are used to indicate conilicts.
For example, 1in a simple implementation, control informa-
fion 604 could include a single bit to indicate whether
instruction I, 1s a load-type 1nstruction, this single bit being
cither one of the bits of the op code, or being derived from
the op code using some logic function. Additionally, the bit
or bits of control information used to determine address
conilicts might be dertved from some combination of the op
code and other information. For example, if some form of

US 6,304,759 B2

11

memory partitioning 1s used for different threads 1n a multi-
threaded processor, a thread i1dentifier may be significant.

A pipeline register 605 for stage j+1 contains an address
portion having a page number portion 606 and an L-bit byte
address portion 607, and a control information portion 608,
for an 1nstruction at stage j+1, herein designated 1nstruction
I, ,.Since stage j+1 1s later 1n the pipeline than stage j, the
virtual address referenced by instruction I, _, might already
be decoded to a real address using TLB 216 by the time
instruction I, , reaches stage j+1. Accordingly, page number
portion 606 might contain the real page number referenced
by mstruction I, _, and derived from the virtual page num-
ber; however, 1t might be that more than one cycle 1s
required to derive the real page number, and that page
number portion 606 at stage j+1 contains a virtual page
number. In either case, the byte address contained 1n portion
607 1s the same. Control information portion 608 includes at
least some information concerning the type of operation
specified by i1nstruction I, ;, to permit a determination
whether a pipeline address conflict could exist with other
operations 1n the pipeline, and 1n this specific example, with
instruction I,. This mmformation may be an op code for
instruction I, ,, or may be information derived from the op
code or an op code 1n combination with other information;

it could amount a single bat.

One or more bits from control information portion 604 for
stage 1 and one or more bits from control information portion
608 for stage j+1 are input to conilict detection logic 610.
Conflict detection logic 610 analyzes the bit patterns to
determine whether the specified operations conflict. I.e.,
logic 610 determines whether, assuming that instructions I,
and I, , reference the same or overlapping addresses, the
nature of the specified operations would contlict and poten-
tially corrupt data. The output of logic 610 is a single logic
line in which one level (a logic ‘1’ in the illustrated
embodiment) indicates a conflict, while the other level
indicates no conflict. The operation of conflict detection

logic 610 1s 1llustrated in FIG. 7 as step 703.

The complexity of contlict detection logic 610 may vary
with the processor design. In a simple embodiment 1n which
a single bit 1n control information 604 indicates a load-type
instruction, and a single bit in control information 608
indicates a store-type instruction, logic 604 may be nothing
more than an AND gate. However, conilict detection logic
will typically be more complex. For example, a potential
conflict may also exist where a load-type operation 1is
followed by a store-type operation; some systems may
support operations which are both read and write 1n nature,
such as a copy operation.

Comparator 611 compares the byte address of instruction
I, from register portion 603 with the byte address of imstruc-
tion I,_, from register portion 607. If the byte addresses are
the same, comparator 611 outputs an appropriate logic signal
(a logic ‘1’ in the illustrated embodiment); if any bit of the
addresses does not compare, a logic ‘0° 1s output. The
operation of comparator 611 1s 1llustrated 1n FIG. 7 as step

702.

AND gate 612 combines the outputs of conflict detection
logic 610 and comparator 611 to provide a pipeline address
conilict signal. I.e., a pipeline address conflict signal will be
ogenerated whenever both the byte addresses of the two
instructions are the same, and the operations are of a

conilicting type. The contlict signal 1s illustrated 1in FIG. 7 as
the “Y” branch from step 703.

Another level of complexity 1n conflict detection logic
610 and comparator 611 may be a range of addresses to be

10

15

20

25

30

35

40

45

50

55

60

65

12

compared. Typically, loads and stores operate on multiple
bytes of data 1 a single 1nstruction and reference addresses
on a multi-byte boundary, the number of bytes correspond-
ing to some architectural characteristic, such as the width of
the memory bus. For example, 1n the typical system, most
loads and stores may operate on four bytes of data, and
therefore address data on a 4-byte boundary, the two lowest
order address bits being 0. However, some operations may
operate on a different number of bytes. Logic 610 may
therefore optionally determine the number of address bits to
be compared by comparator 611. The number of address bits
to be compared should correspond to the operation having
the largest address range. E.g., where a 4-byte operation has
a potential conflict with a 1-byte operation, the two lowest
order address bits should not be compared, because a
conilict would exist even 1f the two lowest order address bits
of the 1-byte operation are non-zero. The dashed arrow 1n
FIG. 6 running between logic 610 and comparator 611
indicates one or more control lines which may control the
number of address bits to be compared.

Pipeline stage register 6035, contlict detect logic 610,
comparator 611, and AND gate 612 may be repeated for one
or more stages following stage j+1 1n the pipeline. FIG. 6
illustrates repefition for stage 1+2, it being understood that
this logic may be repeated for more than the two stages
shown 1n FIG. 6. Each such stage compares 1ts byte address
and control information with that of mstruction I,. Thus, as
of the pipeline stage in which the virtual address of a new
instruction 1s first available, 1.e., stage 1 of FIG. 6, the byte
address referenced by the instruction 1s compared with the
byte addresses of the instructions at later stages of the
pipeline. The number of pipeline stages containing detection
logic may depend on various system architectural details. It
1s possible to compare instruction I, with all 1nstructions at
later pipeline stages, 1.e., to replicate conflict detection
hardware for each stage after stage j. However, for most
processor designs, this will not be necessary. Typically, it
will only be necessary to ensure a minimum gap between
instruction I, and any conflicting instruction, this gap being
less than the number of subsequent stages 1n the pipeline.
For example, if a time interval of k cycles 1s suflicient to
ensure that two instructions do not conflict, 1t 1s only
necessary to compare instructions from stage j+1 to stage
j+k-1, and the comparison hardware at stages j+k and
oreater 1s unnecessary. For a typical processor design, k may
be 3, and could be as low as 2 (in which case conflict
detection hardware exists only at stage j+1).

It will be observed that comparing the low-order L bits
(which are the same for virtual or real addresses) of instruc-
tion I, with the corresponding bits of every potentially
conilicting instruction at a later stage in the pipeline will
detect any pipeline address conflict. However, since fewer
than all address bits are compared, it 1s possible that this
technique will yield a “false positive™, 1.e., that all L bits will
match those of some address 1n the pipeline, yet no address
conilict 1n fact exists because the higher order real address
bits are not the same.

Generally, it may be assumed that the low-order L bits of
address will have a more or less random distribution, and
therefore the frequency of “false positives™ 1s related to L
and to the size of an individual memory bus operation. For
example, for L=12 bits, and assuming all memory reference
operations are a size of 4 bytes (i.e., all relevant operations
occur on a 4-byte boundary), the odds of a random address
match of any two addresses are 1:(2'°+4)=~0.1%. This rate
will accordingly vary with different values of L or operation
size. The performance 1impact of such a rate of false positives

US 6,304,759 B2

13

depends 1n turn on the average number of conflicting opera-
tions 1n the pipeline and the consequence of a false positive.
For a typical pipeline, there may be approximately 6—8
stages 1n the pipeline below instruction I,, but as described
herein, an address comparison may be made for fewer than
all of these stages, the pipeline will not always be full, and
not all of the mstructions will be conflicting instructions
(c.g., the instructions may be two loads, which do not
conflict). It is believed that, on the average, there will be less
than 1 potentially conflicting instruction below each new
load instruction I, 1 the pipeline, and therefore less than
0.1% of the time that a load instruction occurs, the address
comparison made herein will yield a false positive. For most
processor designs, 1t 1s believed that the occurrence of an
actual address conflict will occur with greater frequency.

The action to be taken by the CPU upon detection of a
pipeline address conflict by comparing low-order bits
(referred to generally as conflict resolution action, and
illustrated if FIG. 7 as step 706) may vary with the processor
design. According to the processor design of the preferred
embodiment, selective stages of the pipeline are stalled a
pre-determined number of cycles 1in order to introduce a
sufficient gap between instruction I, and the potentially
conilicting instruction, this pre-determined number depend-
ing on the stage of the potentially conflicting instruction.
I.e.,1f a gap of k cycles 1s required between mnstruction I, and
a conflicting instruction, and a potentially conflicting
instruction 1s detected at pipeline stage 1+1, then the mstruc-
tions at pipeline stages j and earlier are stalled (k-1) cycles,
while the mstructions at stages j+1 and later continue to
advance in the pipeline during the next (k—1) cycles. After
(k-1) cycles, a gap of k cycles will exist between instruction
I, and the potentially conflicting instruction. At this point, all
mnstruction are allowed to advance 1n the pipeline.

It should be emphasized that the action described above 1s
taken whether an actual address conflict exists, or whether a
“false positive” has been detected. Specifically, even where
no actual address conflict exists because the real page
number portions of the two addresses are not 1dentical, the
detection of a match 1n the byte addresses 1s treated 1n every
respect as 1f an actual address conilict had occurred, and no
further effort 1s made to determine whether 1n fact a contlict
exists. However, the performance cost of the action 1s only
(k-1) cycles. For most processor designs, k will be rather low
(e.g.,3), and since 11s always at least 1, the average number
of cycles lost upon detection of a potential address conilict,
whether actual or not, 1s perhaps 1 or 2 cycles.

The chief benefit of comparing byte addresses (before
translating the virtual address of instruction I, to 1ts real
address) is that it permits an earlier determination of an
address conflict. Where the address conflict 1s detected
carlier, 1t 1s generally possible to simply stall the portion of
the pipeline at stage j (and earlier stages if they exist) for a
small number of cycles, while allowing other stages to
continue. The cost, as explained above, 1s generally 1 or 2
cycles. If, on the other hand, an address confilict 1s detected
at a later stage, 1t may be necessary to reload values 1nto the
pipeline and restart it; the performance cost of such an
operation will typically be on the order of the pipeline
length, €.g., 6 to 8 cycles. Thus, even though some percent-
age of the detected address conflicts using the present
invention will 1in fact be false positives, the lower perfor-
mance cost ol stalling the pipeline as a result of early
detection can be expected to more than make up for the
cifect of the false positives.

Several variations of address conflict resolution action are
possible. It 1s alternatively possible to stall the instructions

10

15

20

25

30

35

40

45

50

55

60

65

14

at stages 1 and earlier for an architecturally determined fixed
number of cycles 1n all cases, this number being the mini-
mum number guaranteed to always produce a sufficient gap,
i.e. (k=1). It would alternatively be possible to stall the
instructions at stages j and earlier until the conilicting
operation has completed or the conilicting operation has
reached some progress milestone other than completion,
after which address conflict 1s not an 1ssue. For some
processor designs, this number of cycles could be variable,
and could be determined by a logic signal when the event
occurs. Alternatively, it would be possible to simply stall the
instructions at stages j and earlier for a single cycle, and to
then repeat the address comparison; the process of stalling a
single cycle and repeating the address comparison would
repeat until a conflict 1s no longer detected.

Preferably, many actions take place simultaneously or
concurrently mm CPU 101, and 1n particular, once a virtual
address for an instruction has been generated, the available
address translation mechanisms (i.e., translation lookaside
buffer 216 or any other mechanism) are invoked to translate
the virtual address to a real address (step 704). Translation
of the virtual address to real address preferably takes place
concurrently with the comparisons of byte addresses in the
pipeline and operation types. This process 1s illustrated in
FIG. 7 as the concurrent branch to steps 702, 703 and 704.
Because the logic which detects conflict 1s relatively simple,
it 1s expected that the existence of a pipeline address conilict
will be determined before completion of the translation of
virtual address to real address. Where no conflict 1s detected,
the operations proceed normally 1n the pipeline, without any
delay associated with checking for address contlict. This 1s
represented 1n FIG. 7 as steps 707 and 708, showing that
some additional steps may be performed by the pipeline
before completion of the translation (step 707), while others
are performed after completion of the translation (step 708).

As described herein, it has been assumed for clarity of
illustration that a single pipeline exists having a single
instruction at each stage. However, 1t will be understood that
multiple pipelines may exist performing operations in
parallel, or a single complex pipeline may contain multiple
instructions 1n parallel at each stage, or other variations of
the pipeline construct may exist. A single, simple pipeline,
a collection of individual pipelines, or a complex pipeline
having multiple operations at each stage are all variations of
the same basic design feature and are generically referred to
herein as pipeline mechanisms, and that where appropriate,
the informal designation “pipeline” includes all such forms
of pipeline mechanism. Where multiple pipelines exist or
multiple operations exist at a single pipeline stage, 1t may be
necessary, depending on the architecture, to compare the
byte address referenced by an instruction I, with byte
addresses from multiple other instructions i1n the same or
different pipelines at each stage, including stage j.

While the invention has been described 1n connection
with what 1s currently considered the most practical and
preferred embodiments, 1t 1s to be understood that the
mvention 1s not limited to the disclosed embodiments, but on
the conftrary, 1s mntended to cover various modifications and
equivalent arrangements included within the spirit and scope
of the appended claims.

What 1s claimed 1s:

1. A computer system, comprising:

a memory addressable using real addresses, each said real
address having M+L bits, including an M-bit high-
order address portion and an L-bit low order address
portion;

address generation logic which generates virtual
addresses for computer processing operations, each

US 6,304,759 B2

15

said virtual address having K+L baits, including a K-bit
high-order address portion and an L-bit low-order

address portion;

an address translation mechanism which translates virtual
addresses to real addresses, said address translation
mechanism translating a source virtual address to a
target real address by translating the K-bit high-order
portion of said source virtual address to the M-bit
high-order portion of said target real address and con-
catenating said M-bit high-order portion of said target
real address with the L-bit low-order portion of said
source virtual address, the L-bit low-order portion of
said target real address being 1dentical to the L-bit low
order portion of said source virtual address;

a pipeline mechanism; and

a pipeline address conflict mechanism which detects an
address conflict between a first operation 1n said pipe-
line mechanism and a second operation in said pipeline
mechanism, said pine line address contlict mechanism
comparing at least part of the L-bit low-order portion of
a virtual address of said first operation 1n said pipeline
mechanism with a corresponding part of the L-bit
low-order portion of an address of a second operation
in said pipeline mechanism, and taking an address
conilict resolution action if the at least part of the L-bat
low-order portion of a virtual address of said {first
operation in said pipeline mechanism 1s 1dentical to the
corresponding part of the L-bit low-order portion of the
address of said second operation 1 said pipeline
mechanism;

wherein said address contlict resolution action comprises
stalling a portion of the pipeline mechanism including
said first operation for a pre-determined number of
cycles.

2. The computer system of claim 1, wherein said pipeline
address contlict mechanism compares all of the L-bit low-
order portion of said virtual address of said first operation in
said pipeline mechanism with all of the L-bit low-order
portion of said address of said second operation in said
pipeline mechanism, and taking an address contlict resolu-
tion action 1if all of the L-bit low-order portion of said virtual
address of said first operation 1n said pipeline mechanism 1s
identical to all of the L-bit low-order portion of the address
of said second operation in said pipeline mechanism.

3. The computer system of claim 1, wheremn said pre-
determined number of cycles 1s determined according to the
formula (k-1), where k 1s a minimum required cycle gap
between said first operation and said second operation, and
1 1s an existing cycle gap between said first operation and
said second operation.

4. The computer system of claim 1, further comprising at
least one cache, said at least one cache being addressable
using said real addresses.

5. The computer system of claim 1, wherein said pipeline
address conflict mechanism further includes operation con-
flict logic which compares data concerning a type of opera-
tion performed by said first operation with data concerning
a type of operation performed by said second operation to
determine whether said first operation and said second
operation conflict.

6. The computer system of claim 1, wherein said address
franslation mechanism comprises a translation lookaside
buffer, said translation lookaside bufler storing a plurality of
address portion pairs, each address portion pair including a
portion of a virtual address and a corresponding portion of
a real address.

10

15

20

25

30

35

40

45

50

55

60

65

16

7. A computer system, comprising;:

a memory addressable using real addresses, each said real
address having M+L bits, including an M-bit high-
order address portion and an L-bit low order address
portion;

address generation logic which generates virtual
addresses for computer processing operations, e€ach
said virtual address having K+L baits, including a K-bat

high-order address portion and an L-bit low-order
address portion;

an address translation mechanism which translates virtual
addresses to real addresses, said address translation
mechanism translating a source virtual address to a
target real address by translating the K-bit high-order
portion of said source virtual address to the M-bit
high-order portion of said target real address and con-
catenating said M-bit high-order portion of said target
real address with the L-bit low-order portion of said
source virtual address, the L-bit low-order portion of
said target real address being 1dentical to the L-bit low
order portion of said source virtual address;

a pipeline mechanism; and

a pipeline address conilict mechanism which detects an
address conflict between a first operation 1n said pipe-
line mechanism and a second operation 1n said pipeline
mechanism, said pipeline address conflict mechanism
comparing at least part of the L-bit low-order portion of
a virtual address of said first operation in said pipeline
mechanism with a corresponding part of the L-bit
low-order portion of an address of a second operation
in said pipeline mechanism, and taking an address
conilict resolution action if the at least part of the L-bit
low-order portion of a virtual address of said first
operation in said pipeline mechanism 1s 1dentical to the
corresponding part of the L-bit low-order portion of the
address of said second operation i said pipeline
mechanism;

wherein said address translation mechanism comprises a
translation lookaside buffer, said translation lookaside
buflfer storing a plurality of address portion pairs, each
address portion pair including a portion of a virtual
address and a corresponding portion of a real address;

wherein said translation lookaside buifer 1s N-way

assoclative, where N>1.

8. The computer system of claim 7, wherein said address
conilict resolution action comprises stalling a portion of the
pipeline mechanism including said first operation until said
second operation reaches a pre-determined progress mile-
stone.

9. The computer system of claim 7, wherein said pipeline
address conflict mechanism comprises a plurality of sets
address conflict detection logic, each set detecting an
address conflict between said first operation in said pipeline
mechanism and a respective operation 1n said pipeline
mechanism other than said first operation, each said set
comparing said at least part of the L-bit low-order portion of
said virtual address of said first operation 1n said pipeline
mechanism with a corresponding part of the L-bit low-order
portion of an address of the respective operation 1 said
pipeline mechanism other than said first operation, and
causing an address conilict resolution action 1f the at least
part of the L-bit low-order portion of a virtual address of said
first operation in said pipeline mechanism 1s identical to the
corresponding part of the L-bit low-order portion of the
address of the respective operation 1n said pipeline mecha-
nism other than said first operation.

US 6,304,759 B2

17

10. The computer system of claim 7, wherein said pipeline
address conflict mechanism compares all of the L-bit low-
order portion of said virtual address of said first operation in
said pipeline mechanism with all of the L-bit low-order
portion of said address of said second operation in said
pipeline mechanism, and taking an address contlict resolu-
tion action 1f all of the L-bit low-order portion of said virtual
address of said first operation 1n said pipeline mechanism 1s
identical to all of the L-bit low-order portion of the address
of said second operation in said pipeline mechanism.

11. The computer system of claim 7, wherein said address
conilict resolution action comprises stalling a portion of the
pipeline mechanism including said first operation for a
pre-determined number of cycles.

12. The computer system of claim 7, wherein said pipeline
address conflict mechanism further includes operation con-
flict logic which compares data concerning a type of opera-
tion performed by said first operation with data concerning
a type of operation performed by said second operation to
determine whether said first operation and said second
operation conflict.

13. A processing unit for a computer system, said pro-
cessing unit for use 1n a computer system having a memory
addressable using real addresses, each said real address
having M+L bits, including an M-bit high-order address
portion and an L-bit low order address portion, and at least
one address translation mechanism for translating virtual
addresses having K+L bits to real addresses, said address
translation mechanism translating a source virtual address to
a target real address by translating the K-bit high-order
portion of said source virtual address to the M-bit high-order
portion of said target real address and concatenating said
M-bit high-order portion of said target real address with the
L-bit low-order portion of said source virtual address, the
L-bit low-order portion of said target real address being
identical to the L-bit low order portion of said source virtual
address, said processing unit comprising:

address generation logic which generates virtual

addresses for computer processing operations, each
said virtual address having K+L baits, including a K-bit
high-order address portion and an L-bit low-order
address portion;

a pipeline mechanism; and

a pipeline address conflict mechanism which detects an
address conflict between a first operation 1n said pipe-
line mechanism and a second operation in said pipeline
mechanism, said pipeline address conflict mechanism
comparing at least part of the L-bit low-order portion of
a virtual address of said first operation 1n said pipeline
mechanism with a corresponding part of the L-bit
low-order portion of an address of a second operation
in said pipeline mechanism, and taking an address
conilict resolution action if the at least part of the L-bat
low-order portion of a virtual address of said {first
operation in said pipeline mechanism 1s 1dentical to the
corresponding part of the L-bit low-order portion of the
address of said second operation 1 said pipeline
mechanism;

wherein said address contlict resolution action comprises
stalling a portion of the pipeline mechanism including
said first operation for a pre-determined number of
cycles.

14. The processing unit for a computer system of claim
13, wherein said pipeline address conflict mechanism com-
pares all of the L-bit low-order portion of said virtual
address of said first operation 1n said pipeline mechanism
with all of the L-bit low-order portion of said address of said

10

15

20

25

30

35

40

45

50

55

60

65

138

second operation 1n said pipeline mechanism, and taking an
address contlict resolution action if all of the L-bit low-order
portion of said virtual address of said first operation 1n said
pipeline mechanism 1s 1dentical to all of the L-bit low-order
portion of the address of said second operation i1n said
pipeline mechanism.

15. The processing unit for a computer system of claim
13, wherein said pre-determined number of cycles 1s deter-
mined according to the formula (k-1), where k is a minimum
required cycle gap between said {first operation and said
second operation, and 11s an existing cycle gap between said
first operation and said second operation.

16. The processing unit for a computer system of claim
13, wherein said pipeline address conflict mechanism further
includes operation contlict logic which compares data con-
cerning a type of operation performed by said first operation
with data concerning a type of operation performed by said
second operation to determine whether said first operation
and said second operation contlict.

17. The processing unit for a computer system of claim
13, wherein said address translation mechanism comprises a
translation lookaside buffer, said translation lookaside buffer
storing a plurality of address portion pairs, each address
portion pair including a portion of a virtual address and a
corresponding portion of a real address.

18. A processing unit for a computer system said process-
ing unit for use 1n a computer system having a memory
addressable using real addresses, each said real address
having M+L bits, including an M-bit high-order address
portion and an L-bit low order address portion, and at least
onc address translation mechanism for translating virtual
addresses having K+L bits to real addresses, said address
translation mechanism translating a source virtual address to
a target real address by translating the K-bit high-order
portion of said source virtual address to the M-bit high-order
portion of said target real address and concatenating said
M-bit high-order portion of said target real address with the
L-bit low-order portion of said source virtual address, the
L-bit low-order portion of said target real address being
identical to the L-bit low order portion of said source virtual
address, said processing unit comprising:

address generation logic which generates virtual

addresses for computer processing operations, e€ach
said virtual address having K+L bits, including a K-bat
high-order address portion and an L-bit low-order
address portion;

a pipeline mechanism; and

a pipeline address conflict mechanism which detects an
address conflict between a first operation 1n said pipe-
line mechanism and a second operation 1n said pipeline
mechanism, said pipeline address conflict mechanism
comparing at least part of the L-bit low-order portion of
a virtual address of said first operation 1n said pipeline
mechanism with a corresponding part of the L-bat
low-order portion of an address of a second operation
in said pipeline mechanism, and taking an address
conilict resolution action if the at least part of the L-bat
low-order portion of a virtual address of said first
operation 1n said pipeline mechanism 1s 1dentical to the
corresponding part of the L-bit low-order portion of the
address of said second operation 1n said pipeline
mechanism;

wherein said address translation mechanism comprises a
translation lookaside buffer, said translation lookaside
buflfer storing a plurality of address portion pairs, each
address portion pair including a portion of a virtual
address and a corresponding portion of a real address;

US 6,304,759 B2

19

wherein said translation lookaside buffer 1s N-way

assoclative, where N>1.

19. The processing unit for a computer system of claim
18, wherein said address contilict resolution action comprises
stalling a portion of the pipeline mechanism including said
first operation until said second operation reaches a pre-
determined progress milestone.

20. The processing unit for a computer system of claim
18, further comprising at least one cache, said at least one
cache being addressable using said real addresses.

21. The processing unit for a computer system of claim
18, wherein said pipeline address conflict mechanism com-
prises a plurality of sets address conflict detection logic,
cach set detecting an address conflict between said first
operation 1n said pipeline mechanism and a respective
operation 1n said pipeline mechanism other than said first
operation, each said set comparing said at least part of the
L-bit low-order portion of said virtual address of said first
operation 1n said pipeline mechanism with a corresponding
part of the L-bit low-order portion of an address of the
respective operation in said pipeline mechanism other than
said first operation, and causing an address contlict resolu-
tion action if the at least part of the L-bit low-order portion
of a virtual address of said first operation in said pipeline
mechanism 1s 1dentical to the corresponding part of the L-bit
low-order portion of the address of the respective operation
in said pipeline mechanism other than said first operation.

10

15

20

25

20

22. The processing unit for a computer system of claim
18, wherein said processing unit 1s embodied 1n a single
integrated circuit chip.

23. The processing unit for a computer system of claim
18, wherein said pipeline address conflict mechanism com-
pares all of the L-bit low-order portion of said virtual
address of said first operation 1n said pipeline mechanism
with all of the L-bit low-order portion of said address of said
second operation 1n said pipeline mechanism, and taking an
address conflict resolution action 1if all of the L-bit low-order
portion of said virtual address of said first operation 1n said
pipeline mechanism 1s 1dentical to all of the L-bit low-order
portion of the address of said second operation in said
pipeline mechanism.

24. The processing unit for a computer system of claim
18, wherein said address conilict resolution action comprises
stalling a portion of the pipeline mechanism including said
first operation for a pre-determined number of cycles.

25. The processing unit for a computer system of claim
18, wherein said pipeline conflict mechanism further
includes operation contlict logic which compares data con-
cerning a type of operation performed by said first operation
with data concerning a type of operation performed by said
second operation to determine whether said first operation
and said second operation conflict.

	Front Page
	Drawings
	Specification
	Claims

