US006801988B2
a2 United States Patent (10) Patent No.: US 6,801,988 B2
Nagayasu 45) Date of Patent: Oct. 5, 2004

(54) DATA BUFFER FOR BLOCK UNIT DATA (56) References Cited

TRANSFER TO SDRAM

(75) Inventor: Masaru Nagayasu, Osaka (JP)

(73) Assignee: Matsushita Electric Industrial Co.,
Ltd., Osaka (JP)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 286 days.

(21) Appl. No.: 10/193,277
(22) Filed: Jul. 12, 2002

(65) Prior Publication Data
US 2003/0014601 Al Jan. 16, 2003

(30) Foreign Application Priority Data
Jul. 12, 2001 (JP) e e 2001-211710
(51) Int. CL7 .o, GO6F 12/00
(52) US.CL .., 711/154; 711/171; 710/34;
710/52; 710/56; 345/543; 345/547, 345/565;
345/567
(58) Field of Search 711/154, 170,

711/171; 710/33, 34, 52, 56, 60; 345/543,
544, 545, 5477, 565, 567

U.S. PATENT DOCUMENTS

5,928,339 A 7/1999 Nishikawa 710/26
6,111,592 A 8/2000 Yagl ..ccoevvvvvvnnennennnnnnnn. 345/537

Primary Fxaminer—Kevin Verbrugge
Assistant Examiner—Jasmine Song

(74) Attorney, Agent, or Firm—McDermott Will & Emery
LLP

(57) ABSTRACT

An 1nitial address register holds a transfer destination
address as an initial address. Data 1s written into an input
data register to which a unique address 1s allocated. The

written data 1s put together mto a data block having a
predetermined transfer destination data size. This enhances

the efficiency of data transfer from a software program for
processing data 1n several byte units to a memory and a
coprocessor optimized for data transfer in block units of

several tens of bytes, and thus improves system perfor-
mance.

7 Claims, 6 Drawing Sheets

1~ CPU
T cap—~ kcawr] 1 —
CINH~ S CDATA =V : >
et Eaiiiintintieh Ani 7225 I : 32 "‘“""CAW '"'“""CAR
| ADDRESS | :
i pEcoper |11 Y =
| ; DW 1 INPUT i
| '\ l__\-_— Y |
: RST~ INTTIAL DATA 1
' [AW REGISTER|
19 | > ADDRESS l A
3 \ REGISTER ““1[1)3 A)
| l V N
: —_AlL vV vV _BAW BL(R— 1AD : X X
: SEQUENCE :
: CONTROLLER cBAU ADDRESS ™14 | pp |
' | ADR~], ADIA], i COUNTER i CACHE MEMORY
. ¢ — BA |
| TACCUMULATED _ :
| | DATA SIZE < 19 !
REGLSTER g B BDUJ/ 1{}6 \L Vi 1/5 J(/)UT gUT N i\
| S BLOCK SIZE BLOCA . |MRD
. T RECTSTRR ADDRESS DATA , -
- ADS REGISTER | | REGISTER | . MWR
AN Ml e e e I '128 ! __MDATA
C \l; < .-r*’ V& < MADD
5 DATA BUFFER| _ | i < v 5 MDS
s ! Ll L
BDWR . MEMORY CONTROLLER

VI

3~ SDRAM

o\
-
3 WYAS S
S\
1 —
—
= _ JATI0NINOD AJOWHN G AMag
- - | S
- SAN — - - _mmn_%m VIVa G
AdVI —
VYA~ S PR U R S B 5.,
_ w\é . [JUISTOM | | WLISTOM | | yoyoroqy 9T SV
m ARG SSTIAAY "
L inding 014 d718 WO 1 ([
- R i 7 S GAISTOM | |
3 | - ¢l 91 | Ndd AZ1S Vivd | ||
" " v _ QELYTIONA00V | ||
m AJOWAN {HOVO _ m NIINNOD LAV | mmﬁ_ _“
7 | (9 — JATIONINOD "
" I e 1vd HONANDES _
” | Mo01d wa7 m
N e N~ 0 1 Sﬁlﬂm% - “
< " 3y "
= - | LS Ssiaay 61
" R S I S (T RRT | “
o | | vIva ~1SY "
= L 4300040 m
| . SSTYAAY | m
qV0 ﬁ
> HNIO
l 2w |
NdD ~ 1

U.S. Patent
|
|
|

US 6,801,988 B2

Sheet 2 of 6

Oct. 5, 2004

U.S. Patent

ON

91A0-9T 1® YV

;, Arepunoq

7+VvVd=vd
0=5dV

M\

1

() 9ZIs }o0[g
pOUIWLIDIaP

BIBD Y20[Y

T

G1IS
VIS

oS

T T

| 9T+vd=vd -
0=SdV 91=5d
C S81AQ 9T) S |
_ AR ST 9ZIS ¥00[{

_ (91) 9ZI1s }o0lg |

PaUIULISISD p=sd |

B}Ep ¥00[d S91AQ ¥
— BT >4l s1 97 3001g

s Arepunoq
9149-9T1 ¥ JAV]

\
ozl_1 9S

91=54 b #>
N _M%Mm«i/%
| pSav=sayv 4) Sav) o o01q |
T oo

| owpdn | N
fmw é ON N

0=SaV
uoneziferyu] [0S

¢ Vld

US 6,801,988 B2
|
=
-
am

Sheet 3 of 6

Oct. 5, 2004

s

is

U.S. Patent

US 6,301,988 B2

Sheet 4 of 6

Oct. 5, 2004

U.S. Patent

W (X3H) 0001

1

oy g chem el EEL ek EER Bol EEN ENY By AN Smp SIn SmD S GG S S S S . —

(XdH

Y000T

i |

LG3~_ 963~ GG1~. L~FS1 €81~ -gg3 163

US 6,801,988 B2

ks et . S s mn s wie Wk o M W W S o - —-—T-

(XdH) 8001

G "
ot _
=
\f)
+—
b
b
e
77
4
O ll
= |
N !
v L“
+ | “ MY 1
c e -
m AMD
;
t

—

(XdH) 8001

N

1y

U.S. Patent

o\

-

% _

= uty<— 9917 R A T A e

Zz - m m [\ o . m amag
O | m L L L

2 m 59149 8) | SUR

ke . A - T -

Sheet 6 of 6

Oct. 5, 2004

-3 -Fen -b-—=--F-1---

- N._. :
o

U.S. Patent

US 6,301,988 B2

1

DATA BUFFER FOR BLOCK UNIT DATA
TRANSFKFER TO SDRAM

BACKGROUND OF THE INVENTION

The present invention relates to a data bufier providing a
means for enhancing the efficiency of data transfer to a
memory and a coprocessor optimized for block-unit data
fransfer.

With recent enhancement in performance of microproces-
sors and the like, 1t has become necessary to provide a
memory interface with high data transfer capability. There
are two ways for improving the data transfer capability of a
memory; increasing the bit width for data transfer and
increasing the data transfer rate.

With size scale-down 1n semiconductor fabrication
process, the memory capacity has increased. To improve the
data transfer capability without increasing the holding
memory amount, 1t 1s necessary to shorten the transfer cycle
time while rather decreasing, not increasing, the bit width
for the data transfer.

Under the circumstances described above, there have
been developed memories such as SDRAMs and RDRAMSs
having a high-speed synchronous transfer capability exceed-
ing 100 MHz and memory interfaces corresponding to such
memories. These memories realize high-speed data transfer
by accessing data with a large bit width mside the device,
buffering data 1n data block units, and outputting data at
continuous several to several tens of clocks. These memories
therefore have a feature of being high in data transfer
capability (throughput) but large in the time required from
address mput until access of first data of relevant block data
(latency). This indicates that if such a memory intended for
high-speed synchronous transfer frequently performs access
of data having a size smaller than the block handled by the
memory, the memory transter capability decreases, and this
will rather degrade the system performance.

To solve the above problem, the following measure 1s
taken. Interfaces for SDRAMs and RDRAMSs have a buffer
memory appropriate to the block size of the corresponding
memory. Using the bufler memory, continuous data accesses
are put together 1nto one when the addresses for the current
data access and the next data access are continuous, to
enhance the data transfer capability. However, this measure
1s effective only when the accesses accompanied by prefetch
of instructions and data and the read/write operations by a
DMA controller and the like are respectively continuous
temporally. In general systems, instruction fetch, data access
and DMA access compete with one another. Therefore, the
above measure fails to provide an effect commensurate with
the large-scale and complicate interface.

In view of the above, the problem to be solved by the
present invention 1s to enhance the efficiency of data transfer
in the case, for example, of transferring results of processing
of media data and results of calculation of coordinates of
image data to a coprocessor for graphics in digital TV sets
and portable equipment.

The processing described above requires a large amount
of data and a large scale of computation. Therefore, although
the data transter 1s directed to consecutive addresses when
considered 1n a long time umnit, 1t lacks 1n continuity when
considered 1n a short time unit. Therefore, such data transfer
fails to benefit from the effect of the memory interface
described above having the measure of putting together a
plurality of data accesses 1nto one. Moreover, since write of
the processing results largely delays, read of memory data

10

15

20

25

30

35

40

45

50

55

60

65

2

required for new processing must wait. This further degrades
the system performance.

SUMMARY OF THE INVENTION

An object of the present mnvention 1s providing a data
buffer capable of enhancing the efficiency of data transfer
from an operator such as a CPU to a memory and a
coprocessor optimized for block-unit data transfer and
thereby enhancing system performance.

To solve the problem described above, the present mnven-
tion utilizes the points that the data in question will not be
referred to by the same program after being written, and that
the data 1s written to consecutive addresses but the write of
the data 1s not continuous temporally. In other words,
according to the present invention, there 1s provided a means
for writing data into an 1mnput data register to which a unique
address 1s allocated and putting together the written data into
a data block of a predetermined transfer destination data size
(N bytes; N=16, for example).

To state specifically, the first feature of the invention 1s to
provide a data buffer including: an 1nitial address register for
holding a transfer destination address input via a data bus as
an 1nitial address; an 1nput data register for holding maxi-
mum k pieces (k is an integer equal to or more than 2) of
M-byte data (M is an integer equal to or more than 1) input
via the data bus; an address decoder for decoding an address
on an address bus so that the transfer destination address on
the data bus 1s written 1nto the 1nitial address register if the
address on the address bus i1s an address designating the
initial address register and that the M-byte data on the data
bus 1s written 1nto the mnput data register if the address on the
address bus 1s an address designating the 1nput data register
when a data buffer write signal 1s provided; an accumulated
data size register for holding an accumulated data size
representing the size of a data block of maximum N bytes
(N=kM) accumulated in the mput data register; an output
data register for holding a data block to be transferred; a
block address register for holding a head address of the data
block to be transferred; a block size register for holding the
block size representing the size of the data block to be
transferred; a block address counter for setting the initial
address transferred from the initial address register as an
initial value and holding a block address updated according
to the block size; and a sequence controller for updating the
accumulated data size by M byte(s) every time the M-byte
data on the data bus 1s written 1nto the mput data register,
setting the block size in the block size register at N bytes 1f
the initial address 1s an N-byte boundary address (an address
divisible by N), waiting until the accumulated data size
recaches N bytes, transferring the data block of N bytes
accumulated i1n the mput data register to the output data
register, transferring the block address held by the block
address counter to the block address register, asserting a
block data write request signal so that the data block of N
bytes held by the output data register 1s transferred, resetting,
the accumulated data size at 0, and updating the block
address held by the block address counter by N bytes.

The second feature of the data buifer of the invention 1s
that data transfer of a new block to a destination continuous
from the previous destination is possible by writing data nto
the mput data register without setting a new transfer desti-
nation address 1n the 1nitial address register. This eliminates
the necessity of designating the transfer destination 1is
address every write of data into the data buffer, and thus
enhances the data transfer efficiency.

The third feature of the data buffer of the invention is that
the data buffer may be provided with a means for forcefully

US 6,301,988 B2

3

transferring data to a memory 1n the following manner. That
1s, when data of a size less than the block data size exists 1n
the 1nput data register at the time of setting of a transfer
destination address in the initial address register, the entire
existing data 1s swept out of the input data register as block
data by assertion of the block data write request signal. With
provision of this means, data can be forcefully transferred
under software 1nstruction in the case of transfer of data of
which size 1s not a value obtained by multiplying the block
size by an integer, for example.

The fourth feature of the invention 1s as follows. When a
transier destination address that 1s not at an N-byte boundary
1s designated, the block data write request signal may be
asserted every write 1nto the input data register until a byte
boundary corresponding to the block size 1s reached. With
this configuration, the data buffer can support a memory
controller allowing only data transfer in 4-byte units in
addition to the data transfer 1n 16-byte units and having no
block transfer means in 8-byte units or 12-byte units 1n the
case of N=16, for example.

The fifth feature of the data buffer of the invention 1s that
when a transfer destination address other than an N-byte
boundary address 1s designated, data up to a byte boundary
corresponding to the block size may be put together as block
data and the block data write request signal may be asserted.
With this configuration, the data bufler can support a
memory controller having a block transfer means allowing
data transfers 1n 4-byte units, 8-byte units and 12-byte units
in addition to the data transfer in 16-byte units in the case of
N=16, for example, unlike the fourth feature described
above, and thus optimum memory access 1s provided.

The sixth feature of the data buffer of the 1nvention 1s that
the data buffer can hold two or more blocks of block data,
to provide buifering between the rate of write from the CPU
and the block data transfer rate.

The seventh feature of the data buffer of the invention 1s
that a signal for disabling write into the 1nput data register
may be generated 1f transfer to the memory controller and
the like fails to catch up with the write into the data buffer.
This prevents written data from being lost.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a computer system 1ncor-
porating a data buffer of an embodiment of the present
invention.

FIG. 2 1s a flowchart of an address generation algorithm
used by the data buffer in FIG. 1.

FIG. 3 1s a timing chart showing an example of the
operation of the data buffer in FIG. 1.

FIG. 4 1s a timing chart showing another example of the
operation of the data buffer in FIG. 1.

FIG. § 1s a timing chart showing yet another example of
the operation of the data buffer in FIG. 1.

FIG. 6 1s a timing chart showing an alteration to that of
FIG. §.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

FIG. 1 illustrates an exemplified configuration of a com-
puter system incorporating a data buffer of an embodiment
of the present invention. The 1illustrated computer system
includes a CPU 1, a memory controller 2 and a SDRAM 3.
The computer system further includes, between the CPU 1
and the memory controller 2, a cache memory 4 and a data
bufter 5 of the embodiment of the invention. The data buffer

10

15

20

25

30

35

40

45

50

55

60

65

4

5 1includes an mnput data register 11, an output data register
12, an 1mit1al address register 13, a block address counter 14,
a block address register 15, a block size register 16, an
address decoder 17, an accumulated data size register 18 and
a sequence controller 19.

The data buffer 5 shown in FIG. 1 1s connected to the CPU
1 via a CPU address bus (CADD), a CPU data bus (CDATA)
and a data buffer write signal (CWR). When the CPU 1
asserts CWR, the address decoder 17 decodes an accessed
address, and enables write of an address into the initial
address register 13 or write of data into the mput data
register 11. To state more specifically, when the value of
CADD designates the 1nitial address register 13 at the time
of assertion of CWR, the address decoder 17 asserts an
initial address write signal (IAW). By this assertion, address
data on CDATA 1s transferred to the initial address register
13. When the value of CADD designates the input data
register 11 at the time of assertion of CWR, the address
decoder 17 asserts a data write signal (DW). By this
assertion, data on CDATA 1s transterred to the mput data
register 11. The address decoder 17 also has a function of
asserting a reset signal (RST) to the sequence controller 19

when the address decoder 17 detects an access for initial-
1zation of the data buffer 5 from the CPU 1.

The data buifer S 1s connected to the memory controller

2 via a memory address bus (MADD), a memory data bus
(MDATA), a memory access data size bus (MDS) and a
block data write request signal (BDWR). The cache memory
4 1s also connected to the memory controller 2 via MADD,
MDATA and MDS. The memory controller 2 arbitrates
between an access request from the cache memory 4 by a
memory read signal (MRD) and a memory write signal
(MWR) and an access request from the data buffer 5 by
BDWR, to perform data write into and data read from the
SDRAM 3.

The CPU 1 can read data from the cache memory 4 via
CDATA by asserting a cache read signal (CAR) for an

address designated by CADD. Also, the CPU 1 can execute
operation using the data read from the cache memory 4 and
write the operation results into the data buffer 5. Moreover,

the CPU 1 can write data ito the cache memory 4 via
CDATA by asserting a cache write signal (CAW) for an

address designated by CADD.

Heremnafter, the operation of the data buffer 5 of the
present nvention will be described with reference to FIGS.
2 to 5. For convenience of description, assume that the unit
of write by the CPU 1 1s 4 bytes and the block data size is
16 bytes. That is, CDATA is composed of 4 bytes (32 bits),
and both block data (BD) as the output of the input data
register 11 and MDATA as the output of the output data
register 12 are composed of 16 bytes (128 bits). Assume also
that access 1s made to address A0 for reset of the data buffer
5, to address Al for write 1nto the 1nitial address register 13,
and to address A2 for write 1nto the mput data register 11.

FIG. 2 1llustrates an address generation algorithm used by
the data buffer 5. In step SO, the address decoder 17 decodes
address A0 for mitialization of the data buffer § and asserts
RST. In response to this, the sequence controller 19 asserts
an accumulated data size reset signal (ADR), which is
directed to the accumulated data size register 18, to initialize
the accumulated data size (ADS) representing the size of the
data block accumulated 1n the input data register 11 to zero.
In step S1, whether the current write 1nto the data buffer §
is write of the initial address (IADD) into the initial address
register 13 or write of data into the input data register 11 1s
determined. If it 1s write 1nto the initial address register 13,

US 6,301,988 B2

S

whether or not the value of ADS 1s 0 1s determined 1n step
S2. If the value of ADS 1s other than 0, indicating that there

exists data accumulated, the block size (BS) is updated to the
value of ADS, a block data update signal (BDU) 1s asserted,

and BDWR 1s asserted to allow the accumulated data to be
transferred to the memory controller 2 (step S3). If the value
of ADS 15 0, indicating that there exists no data accumulated,
the process proceeds to step S4. In step S4, the value of ADS
is set at 0 again, and a block address write signal (BAW) is
asserted to allow a block address (BA) in the block address
counter 14 to be set at IADD. In step S5, whether or not
IADD 1s an address at a 16-byte boundary 1s determined. If
IADD 1s not a 16-byte boundary value, BS 1s set at 4 bytes
as the size of data write into the data buffer § (fixed size
determined during design) in step S6. If IADD is a 16-byte
boundary value, BS 1s set at 16 bytes 1n step S7. From steps
S6 and S7, the process returns to step S1.

If the write into the data buffer 5 1s write 1nto the input
data register 11 1n step S1, an accumulated data size incre-
ment signal (ADI) is asserted to update ADS by 4 bytes in
step S8. In step S9, one of two controls as follows 1s selected
according to the value of BS.

If the value of BS indicates 16 bytes, whether or not
16-byte data has been accumulated 1s determined from the
value of ADS 1n step S10. If the value of ADS indicates 16
bytes, BDWR 1s asserted and MDS 1s set to be a signal
indicating a 16-byte value, to allow the accumulated data to
be transferred to the memory controller 2 1n step S11. In step
S12, ADR 1s asserted to reset the value of ADS at 0, and the
value of BA 1s incremented by 16 corresponding to the
number of bytes transferred upon assertion of a block
address update signal (BAU). If the value of ADS does not

indicate 16 bytes in step S10, the process returns to step S1.

If the value of BS indicates 4 bytes 1 step S9, BDWR 1s
asserted and MDS 1s set to be a signal indicating a 4-byte
value, to allow the accumulated data to be transferred to the
memory controller 2 1n step S13. The process then proceeds
to step S14, where ADR 1s asserted to reset the value of ADS
at 0, and the value of BA 1s incremented by 4 corresponding
to the number of bytes transterred upon assertion of BAU.
In step S15, whether or not the value of BA now indicates
an address at a 16-byte boundary due to the increment 1s
determined. If yes, the value of BS 1s set at 16 bytes 1n step
S16 to enable subsequent data transfer in 16-byte units.
Otherwise, the value of BS 1s not changed, and the process
returns to step S1.

Next, an example of the operation of the data buifer 5 wall
be described with reference to a timing chart of FIG. 3. The
address decoder 17 knows from the value of CADD that the
destination of the access by the CPU 1 1s the 1nitial address
register 13 and asserts IAW to allow value 1000
(hexadecimal notation (HEX)) to be written into the initial
address register 13 at time t31, setting IADD at 1000 (HEX).
In response to the assertion of IAW, the sequence controller
19 asserts BAW to allow 1000 (HEX) to be set in the block
address counter 14. Thereafter, the CPU 1 outputs value A2
to CADD and value D2 to CDATA, and asserts CWR. The
address decoder 17 knows from the value of CADD that the
destination of this access by the CPU 1 is the mput data
register 11, and asserts DW to allow the value D2 to be
written 1nto the mput data register 11 at time t32, setting BD
at D2. Subsequently, value D3 1s written at time t33, value
D4 1s written at time t34, and value D35 1s written at time t35.
In this way, 16-byte data 1s held 1n the input data register 11.
The sequence controller 19 asserts ADI every time data 1s
written 1nto the input data register 11, updating the value of
the accumulated data size register 18 to a value obtained by

10

15

20

25

30

35

40

45

50

55

60

65

6

adding 4 bytes every assertion. The sequence controller 19
asserts BDU, which 1s directed to the output data register 12,

the block address register 15 and the block size register 16,
and at time t36, MADD is set at 1000 (HEX), MDATA is set

at 128-bit data [DS, D4, D3, D2], and MDS is set at a signal
indicating 16 bytes. At this time, the sequence controller 19
asserts BDWR requesting the memory controller 2 to write
data. In addition, the sequence controller 19 1ssues an

address update command for updating by 16 bytes by
asserting BAU, to update BA to 1010 (HEX) by adding 16
bytes to address 1000 (HEX) at time t37. In this way, the
CPU 1 can sequentially write four 4-byte values mto the
input data register 11 without setting a new transfer desti-
nation address 1n the initial address register 13, and thereby
transfer 16-byte data composed of the four 4-byte values to

address 1010 (HEX) in the SDRAM 3.

Referring to FIG. 4, another example of the operation of
the data buffer 5 will be described. In this case, write 1nto the
initial address register 13 occurs when data having a size less
than 16 bytes as the block size, such as 4-byte data, 1s left
in the input data register 11. At time t41, 1000 (HEX) is
written 1nto the mitial address register 13 accessed under
address Al. At time t42, data D2 1s written 1nto the input data
register 11 accessed under address A2. At this point of time,
the 4-byte data D2 corresponding to a quarter of 16 bytes as
the block size exists as part of the block data headed by
address 1000 (HEX). In this state, at time t43, a new block
address 1020 (HEX) is written into the initial address
register 13. In response to this write into the initial address
register 13, the sequence controller 19 asserts BDU at time
t43. As a result, at time t44, MADD is set at 1000 (HEX),
MDATA 1s set at D2, and MDS 1s set at a signal indicating
4 bytes. The sequence controller 19 asserts BDWR, request-
ing the memory controller 2 to write the data.

Next, referring to FIG. 5, yet another example of opera-
tion of the data buffer 5 will be described. In this case, 1008
(HEX), which is not at a 16-byte boundary as the block data
size, 1s set 1n the 1nitial address register 13. At time t51, 1008
(HEX) is written into the initial address register 13 accessed
under address Al. At time t52, data D2 1s written 1nto the
mput data register 11 accessed under address A2. At this
time, the sequence controller 19 knows that the value of
[ADD, that is, 1008 (HEX), is not at a 16-byte boundary. The
sequence controller 19 asserts BDU, updates BD to D2, and

1ssues an address update command for updating by 4 bytes
by asserting BAU, to update BA to 100C (HEX) by adding
4 bytes to address 1008 (HEX).

At time t33, by the assertion of BDU, MADD 1s set at
1008 (HEX), MDATA is set at D2, and MDS is set at a signal
indicating 4 bytes. At this time, the sequence controller 19
asserts BDWR to request the memory controller 2 to write
data. At time t54, data D3 1s written into the mput data
register 11. In response to this, the sequence controller 19
asserts BDU, updates BD to D3, and i1ssues an address

update command for updating by 4 bytes by asserting BAU,
to update the block address counter 14 to 1010 (HEX) by

adding 4 bytes to address 100C (HEX). At time t55, by the
assertion of BDU, MADD is set at 100C (HEX), MDATA is
set at D3, and MDS 1s set at a signal indicating 4 bytes. At
this time, the sequence controller 19 asserts BDWR to
request the memory controller 2 to write data. At subsequent
fimes t56 and t57, also, data 1s written 1nto the mput data
register 11. At these times, however, since the value of BA
1s at a 16-byte boundary, the sequence controller 19 does not
assert BDU but permits data D4 and DS to be accumulated
in the input data register 11. Thereafter, once 16-byte block
data 1s prepared, the sequence controller 19 requests the

US 6,301,988 B2

7

memory controller 2 to write the block data according to the
operation described above.

FIG. 6 illustrates an alteration to the timing chart of FIG.
5. In the case shown 1n FIG. §, the memory controller 2
permits block transfer in 4-byte units only 1n addition to the
block transfer in 16-byte units. If block transfers in 4-byte
units, 8-byte units and 12-byte units are permitted m addi-
fion to the block transfer in 16-byte units, the data buifer 5

can be configured to support these transfers. In FIG. 6, as in
FIG. 5, assume that 1008 (HEX), which is not at a 16-byte

boundary as the block data size, 1s set in the 1nitial address
register 13.

Referring to FIG. 6, at time t61, 1008 (HEX) is written

into the initial address register 13 accessed under address
Al. At time t62, data D2 1s written 1nto the input data register

11 accessed under address A2. BD 1s then updated to D2. At
fime t63, data D3 1s written 1nto the input data register 11.

BD 1s then updated to D3, D2, and the sequence controller
19 asserts BDU. At time t64, MADD is set at 1008 (HEX),

MDATA 1s set at D3, D2, and MDS 1s set at a signal
indicating 8 bytes. At this time, the sequence controller 19
asserts BDWR to request the memory controller 2 to write
data. At subsequent times t65 and t66, also, data 1s written
into the 1input data register 11. At these times, however, since
the value of BA 1s at a 16-byte boundary, the sequence
controller 19 does not assert BDU but permits data D4, D5
to be accumulated 1n the mput data register 11. Thereafter,
once 16-byte block data 1s prepared, the sequence controller
19 requests the memory controller 2 to write the block data
according to the operation described above.

Examples of the operation of the data buffer 5 were
described with reference to FIGS. 3 to 6. The access to the
data buffer 5 by the CPU 1 is not necessarily continuous
temporally. For example, an access to the cache memory 4
by the CPU 1 may be inserted between time t31 and time t32
in FI1G. 3. The data butfer 5 shown in FIG. 1 can discriminate
access requests to 1tself from those to others at any time by
the function of the address decoder 17.

As shown 1n FIG. 1, when the sequence controller 19
knows from ADS that the input data register 11 already holds
data of the maximum size allowed for the input data register
11, the sequence controller 19 generates a data write disable
signal (CINH) to disable write of data into the input data
register 11 by the CPU 1. This prevents data from being lost.

The output data register 12 may adopt a FIFO structure to
enable holding of two or more blocks of block data. With
this adoption, the block address register 15 and the block
size register 16 may also adopt a FIFO structure. Note that
if each of a plurality of process steps executed by the CPU
1 requires a memory resource, the data buffer 5 shown 1n
FIG. 1 may be provided for each of the process steps.

While the present invention has been described in a
preferred embodiment, 1t will be apparent to those skilled in
the art that the disclosed imvention may be modified in
numerous ways and may assume many embodiments other
than that specifically set out and described above.
Accordingly, 1t 1s intended by the appended claims to cover
all modifications of the mvention which fall within the true
spirit and scope of the invention.

What 1s claimed 1s:

1. A data buffer for block-unit data transfer, comprising:

an 1nitial address register for holding a transfer destination
address mput via a data bus as an initial address;

an input data register for holding maximum k pieces (k is
an integer equal to or more than 2) of M-byte data (M
is an integer equal to or more than 1) input via the data
bus;

10

15

20

25

30

35

40

45

50

55

60

65

3

an address decoder for decoding an address on an address
bus so that the transfer destination address on the data
bus 1s written into the initial address register if the
address on the address bus 1s an address designating the
initial address register and that the M-byte data on the
data bus 1s written 1nto the input data register 1f the
address on the address bus 1s an address designating the
input data register when a data buffer write signal 1s
provided;

an accumulated data size register for holding an accumu-
lated data size representing the size of a data block of
maximum N bytes (N=kM) accumulated in the input
data register;

an output data register for holding a data block to be
transferred;

a block address register for holding a head address of the
data block to be transferred;

a block size register for holding the block size represent-
ing the size of the data block to be transferred;

a block address counter for setting the initial address
transferred from the initial address register as an 1nitial
value and holding a block address updated according to
the block size; and

a sequence controller for updating the accumulated data
size by M byte(s) every time the M-byte data on the
data bus 1s written 1nto the input data register, setting,
the block size 1n the block size register at N bytes 1f the
initial address is an N-byte boundary address (an
address divisible by N), waiting until the accumulated
data size reaches N bytes, transferring the data block of
N bytes accumulated 1n the input data register to the
output data register, transferring the block address held
by the block address counter to the block address
register, asserting a block data write request signal so
that the data block of N bytes held by the output data
register 1s transferred, resetting the accumulated data
size at 0, and updating the block address held by the
block address counter by N bytes.

2. The data buffer of claim 1, wherem the sequence
controller further has a function of continuing processing for
transfer of next k pieces of M-byte data using the updated
block address without write of a new transfer destination
address 1nto the initial address register.

3. The data buffer of claim 1, wherein the sequence
controller further has a function of updating the block size
in the block size register to the value of the accumulated data
size 1f the accumulated data size 1s not O at the time when the
transier destination address on the data bus 1s written 1nto the
initial address register, transferring the data block accumu-
lated 1n the 1nput data register to the output data register,
transferring the block address held by the block address
counter to the block address register, asserting the block data
write request signal so that the data block held by the output
data register 1s transferred, and resetting the accumulated
data size to O.

4. The data buifer of claim 1, wherein the sequence
controller further has a function of setting the block size 1n
the block size register at M byte(s) if the 1nitial address is not
an N-byte boundary address (an address divisible by N),
transterring the M-byte data block accumulated 1n the 1nput
data register to the output data register every time the
M-byte data on the data bus 1s written 1nto the mput data
register, transferring the block address held by the block
address counter to the block address register, asserting the
block data write request signal so that the M-byte data block
held by the output data register 1s transferred, updating the

US 6,301,988 B2

9

block address held by the block address counter by M
byte(s), resetting the accumulated data size at 0, and then
changing the block size 1n the block size register to N bytes
once the block address becomes an N-byte boundary
address.

5. The data buffer of claim 1, wherein the sequence
controller further has a function of setting the block size in
the block size register only after the sum of the block address
held by the block address counter and the accumulated data
size becomes an N-byte boundary address (an address
divisible by N) if the initial address is not an N-byte
boundary address, transferring the data block accumulated
in the mput data register to the output data register, trans-
ferring the block address held by the block address counter
to the block address register, asserting the block data write

10

10

request signal so that the data block held by the output data
register 1s transferred, resetting the accumulated data size at
0, and updating the block address held by the block address
counter by the value of the accumulated data size.

6. The data buffer of claim 1, wheremn the output data
register has a capacity large enough to hold a plurality of
data blocks simultaneously.

7. The data buffer of claim 1, wheremn the sequence

controller further has a function of generating a data write
disable signal so that write into the mput data register is
disabled 1f the accumulated data size indicates the maximum
N bytes.

	Front Page
	Drawings
	Specification
	Claims

