US006799213B1
a2 United States Patent (10) Patent No.: US 6,799,213 B1
Zhao et al. 45) Date of Patent: Sep. 23, 2004
(54) SYSTEM AND METHOD FOR PERFORMING 5,974,572 A * 10/1999 Weinberg et al. 714/47
INTERACTIVE SERVER LLOAD TESTING 6,230,196 B1 * 5/2001 Guenthner et al. 709/223
THROUGH USE OF ONE OR MORE 6,360,332 B1 * 3/2002 Weinberg et al. 714/4
VIRTUAL USERS BEING CONFIGURED AS A 6,449,739 B1 * 9/2002 Landanccccouen.... 714/47
SERVER CLIENT CAPABLE OF 6,477,483 B1 * 11/2002 Scarlat et al. 702/186
TRANSMITTING ONE OR MORE SERVER 6,549,882 Bl * 4/2003 Chenetal. 703/21
TEST ACTIONS 6,549,944 B1 * 4/2003 Weinberg et al. 709/224
6,578,188 B1 * 6/2003 Pang et al. 716/19
(75) Inventors: Yunxiang Zhao, Flower Mound, TX 6,587,969 B1 * 7/2003 Weinberg et al. 714/46
(US); Adnan Ghaffar, Richardson, TX
(US); Randy I. Stone, Richardson, TX OTHER PUBLICATTIONS

(US)
Website of Mercury Interactive, LoadRunner—The Indus-

(73) Assignee: Sprint Communications Company, try—Standard Load Testing Tool, 2001.
L.P., Overland Park, KS (US)

3 . :
(*) Notice: Subject to any disclaimer, the term of this cited by examiner

patent 1s extended or adjusted under 35

US.C. 154(b) by 744 days. Primary Fxaminer—Rupal Dharia

(21) Appl. No.: 09/651,918 Assistant Examiner—Quang Nguyen
. No.: :

57 ABSTRACT
(22) Filed: Aug. 31, 2000 (57)
(51) Int. CL7 .o, GO6F 15/173; GOGF 11/00 flw(liiem S‘?f‘f’ef load testiﬂg_lsyst_em Iilrovidesfa software ::Lnd
(52) US.CL oo, 709/224; 714/47 ardware 1nirastructure Tacilitating the use of an engine that

generates a plurality of virtual clients or virtual users. These
virtual users are provided with scenarios representing an
online user session with the server under test by the action

(58) Field of Search 714/4, 4647
703/21; 707/203; 709/224; 702/186

(56) References Cited of a message building agent that populates the scenario with
test data.
U.S. PATENT DOCUMENTS
4,853,843 A * 8/1989 Ecklund 7077203 19 Claims, 5 Drawing Sheets
100

TN

" \-102

SERVER
UNDER TEST
—~_ 104
TELECOMMUNICATIONS

VIRTUAL
USER A

VIRTUAL
USER B

VIRTUAL
USER D

VIRTUAL
USER E

VIRTUAL
USERC

120
: sENeRc | 8

(DEEE;SJ |;g\ VIRTUAL USER

)/ GENERATOR/ENGINE o

12271 \ESSAGE —
BUILDER
STORAGE
"

L —_ - —_ — _ —_— —_— e e e _ e _ _— = e e e e e e e e e e e e mma ama

U.S. Patent Sep. 28, 2004 Sheet 1 of 5 US 6,799,213 Bl

FIG. 1
100
N
102
SERVER
UNDER TEST
L ~_ 104
TELECOMMUNICATIONS
126
110 114
~
VIRTUAL VIRTUAL
USER C USER D 116

1207 ——118

/\’ : GENERIC
DE]S.FGSI\:IF 0 VIRTUAL USER
GENERATOR/ENGINE

——

122" <
MESSAGE NATA

SUILDER | STORAGE
\

124

U.S. Patent

Sep. 28, 2004 Sheet 2 of 5

US 6,799,213 Bl

FIG. 2
200 j‘
202
ACTION B
r204 (206 r208
MESSAGE B MESSAGE B" MESSAGE B"
Y
r21 0 _[
RECORD B’ HECOF{D B’ RECORD B”

(216

FIELD B

__l |

218 220
L€ . .

FIELD B” FIELD B™

U.S. Patent

Sep. 28, 2004 Sheet 3 of 5

FIG. 3

FIRST VU QUERIES

DATABASE 302

WRITE RULE AND

DATA TABLE RECORDS
FOR ALL

304

STARTUP ALL
VU's AND ASSIGN - ~-306

SCENARIOS

CONTINUE DOWN

HIERARCHY TO CREATE 308
COLLECTION OF LISTS

COMMENCE TESTING
FROM COLLECTION
OF LISTS

310

US 6,799,213 Bl

300

U.S. Patent

%STA RT
402

~

Sep. 28, 2004

J

v 404
NO VIRTUAL ™ _YE

Y

412

)

READ RU

LES

AND DATA

FROM

SEQUENTIAL
FILES

+

S

Sheet 4 of

S

US 6,799,213 Bl

USER 1
?
408

L

406
f—

400
124
n)
/ RULES AND
\DATATABLES /

(END)
420

430
7

READ THE "RULES' 410
/) AND "DATA" TABLES A EBLDEASTA
RULES AND AND OUTPUT TO
DATA STORE G‘ | SEQUENTIAL FILES "\ SEQUENTIAL
- AND DATA STORE FILES
7T
418 Y 414
YES READTHE [/ ACTION (L\‘H G
B NEXT ACTION |~ \ ELEMENT
\
NO
422
L 424
READ THE
o ONEXT | MESSAGE
ELEMENT OF ELEMENT
THE MESSAGE \
426 TRANSMIT THE
YES _|MESSAGE BUFFER
TO THE TARGET
SERVER
NO —
: Lazs
429
READ THE S
NEXT |, YES “THIS ELEMENT
ELEMENT OF A RECORD
THE RECORD
A
READ THE / N
435 /1 FIELD VALUES CELD 434
AND APPEND [« VALUES
TO THE MESSAGE \ \
BUFFER
T

YES

CURRENTLY

PROCESSING

A RECORD
?

| NO

FIG. 4

U.S. Patent Sep. 28, 2004 Sheet 5 of 5 US 6,799,213 Bl

READ THE FIELD / / 406
CSTART SPECIFICATIONS; FIELD |_ FIELD >
> | LENGTH. FILED TYPE, SPECIFICATIONS
\ FIELD VALUE/SOURCE [™_ 505 \ - 504
502 ¢

008 T - ~510
FIELD TYPE YES | APPEND THE FIELD VALUE
CONSTANT TO THE MESSAGE BUFFER
?
. | ,
FIELD
514 >167 ! — | DATA <ﬁ
READ THE FIELD VALUE =18
FIELD TYPE \\YES | FROM THE FIELD DATA STORE
DATA'STORE THEN APPEND ITTOTHE | g
? MESSAGE BUFFER
— REPLY [|
¢ (FIELD | I
— VALUE
020 READ THE REPLY FIELD VALUE —7)
FIELD TYPE FROM A PREVIOUSLY 224 |
REPLY RECEIVED REPLY BUFFER ¢ >
THEN APPEND THE VALUE |,
TO THE MESSAGE BUFFER
512
526

FIELD TYPE
COUNTER

o 528 L4
YES_| APPEND THE FIELD VALUE o END
TO THE MESSAGE BUFFER

A
534 /
5321 — » INFOCOUNTER
| \

STORE THE FIELD VALUE FOR
USE WITH THE NEXT FIELD

530

FIELD TYPE
INFOCOUNTER
?

YES

VIRTUAL
[USER UNIQUE
536 VALUE
CIELD TYPE READ THE FIELD VALUE T
VIRTUAL USER =5 UNIQUE TO THE CURRENT 540
UNIQUE VIRTUAL USER AND APPEND '
; IT TO THE MESSAGE BUFFER | 5138

NO

I's 544

542

GENERATE A NUMERIC VALUE IN THE
SPECIFIED RANGE AND APPEND THE
CHARACTER REPRESENTATION OF g
THAT VALUE TO THE MESSAGE BUFFER

FIELD TYPE

UNIQUE IN

RANGE
?

NG GENERATE THE FIELD VALUE USING
_| BY CALLING THE FUNCTION DEFINED

IN THE FIELD SOURCE THEN APPEND
FIG. 5 THE VALUE TO THE MESSAGE BUFFER | \-54¢

US 6,799,213 Bl

1

SYSTEM AND METHOD FOR PERFORMING
INTERACTIVE SERVER LOAD TESTING
THROUGH USE OF ONE OR MORE
VIRTUAL USERS BEING CONFIGURED AS A
SERVER CLIENT CAPABLE OF
TRANSMITTING ONE OR MORE SERVER
TEST ACTIONS

RELATED APPLICATIONS
Not applicable

FEDERALLY SPONSORED RESEARCH OR
DEVELOPMENT

Not applicable

MICROFICHE APPENDIX
Not applicable

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present mvention pertains to the field of data com-
munications and, more specifically, the data communica-
tions used 1n testing client/server architecture. Virtual users
are created to test server responses under conditions that
simulate an actual load under use.

2. Description of the Prior Art

Telecommunications and software companies are con-
stantly developing new client/server system applications,
¢.g., those for server-based local arca networks (LAN),
Internet and intranet use. These new applications are often
tested prior to commercial implementation because the user
perception of how well the server/client interaction works 1s
directly related to the success or failure of the system. A
major factor 1n the design of these systems 1s the capability
of the server to provide responses 1n adequate time to
prevent user frustration. For example, Web browser tech-
nology for use on the Internet permits a user to click on
hyperlinked text, in order to jump from one Web site to the
next. Some studies show that more than one-third of these
attempts to jump between sites fail because either the server
1s unavailable or the transfer takes too much time. The user
has opportunities to go to other sites, and many will not wait
much longer than thirty to sixty seconds. Thus, it 1s 1mpor-
tant to ascertain server response rates, as well as to test the
functionality of the server application under load.

High volume servers for use in the field of electronic
commerce and the like are correspondingly expensive due to
the need for increased capacity. The available communica-
tions bandwidth may be shared among all clients, but there
inevitably comes with success of the system a need for an
upgrade to provide better telecommunications and server
capacity. The server owner may wish to design for criteria
that best correspond to the owner’s business needs, €.g., an
average use or a peak use. While it may be possible to
provide for the anticipated needs and estimate the associated
costs based upon rules of thumb, no certainty exists as to the
adequacy of the planned 1implementation until such time as

the server 1s actually put to the test under conditions of
actual or simulated load.

One way to put the server under test 1s to permit actual
users to access the server 1n a laboratory that 1s equipped
with computers and communications devices. This type of
testing process 1s costly and only lends 1tself well to systems

10

15

20

25

30

35

40

45

50

55

60

65

2

that are intended to handle small volumes of communica-
fions. A sufficient number of users must be physically
present to connect to the server for test purposes. For
example, 1n addition to the required warchouse or office
space, two hundred users are provided with hardware, and
the machines are all individually configured for purposes of
cach test. A test script or test scripts are written for each user
to step through while interacting with the server. A test
director or conductor 1s required to synchronize the testing.

Due to the limitations and difficulties of laboratory
testing, conventional software and hardware tools have been
developed for purposes of server stress and performance
testing. These tools can provide repetitive responses 1n a
manner that simulates a client interacting with the system,

but there are tremendous problems 1n forcing one of these
tools to behave as simultaneous multiple clients that each
provide correspondingly different responses at different
points of 1nteraction with the server. A leading one of these
performance testing tools is Loadrunner®, which is commer-
cially available from Mercury Interactive located 1n
Sunnyvale, Calif. This software has advanced features that
facilitate the generation of a new virtual user through a new
virtual user utility; however, manual or other intervention 1s
required to record a new virtual user whenever adding or
deleting fields from client images. This need makes 1t nearly
impossible to perform large volume interactive server test-
ing because the testing script falls out of synchronization
with the virtual client image due to the need to record a new
virtual user each time a field 1s added or deleted from the

client 1mage.

! Loadrunner is a trademark of Mercury Interactive located in Sunnyvale,
Calif.

It remains a problem i the art to provide server load
testing while simulating multiple applications and/or mul-
tiple clients running on one server.

SUMMARY OF THE INVENTION

The present invention overcomes the problems outlined
above and advances the art by providing an enhanced virtual
load testing system that facilitates server load testing while
simulating multiple applications and/or multiple clients run-
ning on One SErver.

The virtual load testing system includes a virtual user
generator that 1s configured to generate one or more virtual
users. A message builder 1s operably configured to store and
retrieve test data for use by the virtual users. The message
builder operates 1n combination with the virtual user gen-
erator to populate respective virtual users that are generated
by the virtual user generator with corresponding actions.
Each action includes one or more sequential messages that
operate 1n combination to provide a server transaction
scenario for communications involving the virtual users.
The virtual user generator 1s configured to access the mes-
sages 1n performing interactive server load testing opera-
tions where each virtual user 1s configured as a server client
that 1s capable of delivering responses corresponding to at
least one of the actions.

In preferred embodiments, the virtual user generator
includes a program interface to a commercially available
server load testing package, such as Loadrunner. Input
devices are used to provide the system with test design
information that 1s configured 1n correspondence with a
predetermined server application. The information may be
stored and recalled for later use to perform automated testing
of the predetermined server application, and the testing may
be performed across a variety of telecommunications
protocols, such as HI'TP and other Internet transfer proto-
cols.

US 6,799,213 Bl

3

The stored message data 1s preferably accessed by a
database having a data structure that includes linked action
tables, message tables, record tables, and field tables that, in
combination, contain rules for creating server transaction
scenar10s for each of the virtual users. This data structure
more preferably has a hierarchical data structure including,
in descending order, the action tables, the message tables,
the record tables, and the field tables that provide rules for
constructing messages. A second group of data 1s used for
populating messages as directed by the rules.

The system 1s operated according to a method including
the steps of generating one or more virtual users, retrieving
stored test data for use by the virtual users, populating
respective virtual users with actions dertved from the stored
test data, wherein each action includes one or more sequen-
tial messages operating in combination as a server transac-
tion scenario for communications involving the wvirtual
users, and performing interactive server load testing opera-
tions with each virtual user configured as a server client
capable of delivering responses corresponding to at least one
of the actions.

Software that embodies machine instructions for accom-
plishing the method 1s provided as a computer readable
form. The machine instructions are operable for use 1n server
load testing operations. Accordingly, the machine instruc-
tions mclude means for generating one or more virtual users,
means for retrieving stored test data for use by the virtual
users, means for populating respective virtual users with
actions derived from the stored test data, wherein each
action mncludes one or more sequential messages operating
in combination as a server transaction scenario for commu-
nications involving the virtual users, and means for perform-
ing 1nteractive server load testing operations with each
virtual user configured as a server client capable of deliv-
ering responses corresponding to at least one of the actions.
Computer readable forms include printed indicia that can be
read by optical character recognition; magnetic data storage
media including hard disks, floppy disks, and magnetic tape,
optical storage media, RAM, ROM, and any other form of
storing data for machine use.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a schematic block diagram showing functional
components of a server load testing system 100 according to
the present invention;

FIG. 2 1s a hierarchical data structure of various tables that
are used 1n a databasing application for elements of FIG. 1;

FIG. 3 1s a process diagram demonstrating the operation
of the system shown 1n FIG. 1 from startup through to the
beginning of load testing operations,;

FIG. 4 1s a process diagram demonstrating the operations
of a message building agent for use in the FIG. 1 system; and

FIG. 5 1s a process diagram demonstrating additional
aspects of the operations of a message building agent for use
in the FIG. 1 system.

DETAILED DESCRIPTION OF THE
INVENTION

System Architecture And Operational Overview
FIG. 1 1s a schematic block diagram representing func-
fional components of a server load testing system 100
according to the present invention. These functional com-
ponents combine software and hardware to simulate a user
load for purposes of testing a target server, 1.€., server under
test 102, which 1s connected to a telecommunications system
104. While FIG. 1 shows the components of system 100 as

10

15

20

25

30

35

40

45

50

55

60

65

4

separate units, 1n practice equivalent functional units may be
combined, disassembled, interchanged or distributed, with
regard to other system components, and this all occurs
within the scope of the originally intended machine func-
fion.

The server under test 102 may be any server that is
intended for use on any network, and this network 1is
preferably the Internet. Therefore, the telecommunications
system 104 1s preferably the Internet together with any
devices, such as modems or dedicated access lines, that are
needed to connect the server under test 102 with the tele-
communications system 104. Alternatively, the telecommu-
nications system 104 may be a conventional LAN or
intranet, as well as any combination of hardware and soft-
ware that 1s usetul in mimicking or synthesizing a virtual
telecommunications system. The server under test 1s con-
figured for operations according to the needs of a plurality
of virtual clients or virtual users 106, 108, 110, 112, and 114,
which in combination form a virtual user array 116 contain-
ing any number of virtual users or virtual clients.

The virtual users or virtual clients 106—114 may be of any
type or function. For example, the virtual user array 116 may
comprise servers connecting to a server under test 102 where
the server under test 102 1s a higher capacity server or
switching device. Alternatively, the virtual users 106—114
may be retail or wholesale customers where the server under
test 102 hosts an electronic business or information site. The
virtual users 106—114 arec preferably simulated user work-
stations. The server under test 102 may host a plurality of
such sites or perform multiple functions such that the virtual
users 106—114 are clients of different application programs
which are hosted by server under test 102, and the operation
of all of these programs may be tested stmultaneously on the
server under test 102.

A generic virtual user engine 118 1s the core of the server
load testing system 100. An example of a generic virtual user
engine 118 1s the Loadrunner application, as previously
described, coupled with custom software to accomplish I/0
for the package together with improved functionality as
described below.

The function of the generic virtual user engine 118 1is to
produce the virtual user array 116 according to test design
specifications. The generic virtual user engine 118 may
create and decommission multiple users 106—114 during the
course of any test. The test design specifications are input by
test design 1/0 devices 120, which may include such devices
as data entry keyboards, optical scanners, optical storage and
retrieval devices, magnetic storage and retrieval devices, and
voice recognition devices. The generic virtual user engine
118 operates on these test design specifications to call for
reports from a message builder 122 which, in turn, retrieves
information or data that 1s stored 1n a data storage device
124. The message builder 122 1s typically a database pro-
oram and, while the database program can be a hierarchical
databasing application, a relational database, lookup table or
any other form of storing information may be used for
purposes of the invention. Oracle” has been used to build a
working model of the message builder 122.

* Qracle is a trademark of Oracle Corporation located in Redwood Shores,
Calif.

The generic virtual user engine 118 uses the reports that
are generated by the message builder 122 to each provide
responses to the server under test through one or more of the
virtual users 106—114. The generic virtual user engine 118 1s
preferably capable of varying the number, frequency and
information transier rate of these reports, as well as the
number of virtual users in the virtual user array 116 over
time according to the test design specifications.

US 6,799,213 Bl

S

The elements of FIG. 1, including the virtual user array
116, generic virtual user engine 118, test design I/0O devices
120, message builder 122, and data storage devices 124, are
normally combined into a single test server 126, but may
also be found 1n a distributed architecture across any group
of networked devices.

A load test may be specified as an executable script 1n
Unix with the result that an entire load test may be per-
formed using a single executable file or script. The script 1s
run by specifying the name of the executable script, a load
parameter, and the distribution of scenarios over the number
of virtual users that take part in the test. This information
may be supplied 1n the form of a matrix. Messages are built
using the data that 1s supplied according to the matrix, and
a command line provides the data to one or more predeter-
mined virtual users.

Data Structure

FIG. 2 shows a preferred hierarchical data structure that
1s used to create a database for data storage on the data
storage device 124 for subsequent access by the message
builder 122. The database consists of two logical groups of
data storage tables including a rules table group and a data
table group. The rules table group contains blueprints for
building messages. The data table group contains data for
populating the fields of the message.

FIG. 2 depicts a rules table group 200 by way of non-
limiting example. There are four types of rule tables in the
rules table group 200. The rule tables include an action table

202; message tables 204, 206, and 208; record tables 210,
212, and 214; and field tables 216, 218, and 220; which are
preferably connected with a hierarchical data structure.
There may be any number of tables at any level of the
hierarchy. As shown 1n FIG. 2, the hierarchy i1s expanded
under a single action 202 to illustrate the hierarchical data
structure for a single action table.

The action table 202 1s at the top of the hierarchy. Each
action corresponds to a message that the generic virtual user
118 has queried or called upon the message builder 122 to
build. The combined action table 202 defines a groups of
messages that combine 1n sequence to make a scenario. A
database record exists 1n the action table 202 for each
message of a scenar1o. The columns of each action table with
a description of each include:

ACITON TABLE COLUMN DEFINITIONS

Column # Column Name Type Size Description

1 Action Name String 20 The scenario name

2 SeqNum [nt 3 Number used 1n ordering
actions

3 Message Name String 10 The name of the message

4 Message [O String 1 *S’ for send or ‘R’ for
rECeIVe

5 Test Name String 20 Usually the associated

SR number

Entries in the message tables 204—208 describe the format
of the message corresponding to the action. The columns of
cach message table with a description of each include:

5

10

15

20

25

30

35

40

45

50

55

60

65

MESSAGE TABLE COLUMN DESCRIPTIONS

Column # Type Size Size Description
1 Message Name String 20 The name of the message
2 SeqNum [nt 3 Used to order the records
of a message
3 Element Type String 2 ‘RR’ for reply record,
‘R” for record, ‘F’ for field
4 Flement Name String 30 Name of the record or field
5 Test Name String 20 Usually the associated

SR number

In the table above, RR indicates that the source of this
item 1S an entire record from a previously received response
message. In this case, the Element Name column would
contaln <message>,<occurrence>,<record>, where <mes-
sage> 15 the name of the response message, <occurrence:
indicates which of the responses are associated with this
name, and <record> 1s the name of the record within this
response message.

Each entry in the message tables 204-208 has further
entries 1n at least one of the record tables 210-214 that
provide additional details about the message format. Each
record table defines groups of records and fields that make
up a record. A database record exists 1n each record table for
cach grouping of fields or single field of a record. The
columns of each record table with a description of each
include:

RECORD TABLE COLUMN DESCRIPTION

Column # Column Name Type Size Description
1 Record Name String 30 The name of the record
2 SeqNum Int 3 Used to order the records of
a message
3 Element Type String 1 “‘RR’ for reply record,
‘R” for record, ‘F’ for field
4 FElement Name String 30 Name of the field or record
5 Test Name String 20 Usually the associated

SR number

The field tables 220—224 each contain a description of one
individual field of a corresponding message. Thus, each
message that 1s generated by the message builder 122
corresponds to an action based upon a query that 1s delivered
to the message builder 122 from the generic virtual user
engine 118. Each ultimate message can be described as a
serics or sequence of field elements. The columns of each
field table with a description of each include:

FIELD TABLE COLUMN DESCRIPTION

Column # Column Name Type Size Description

1 Field Name String 30 The name of the field

2 Field Length Int 7 Length of field in bytes

3 Data Source String 20 The type of data. Valid

Type entries include “Counter”,

“InfoCounter”, “Constant”,
“DataStore”,
“Virtual UserUnique”,
“Generate”, “Reply”, and
“Binary File”.

4 Data Element String 100 The source of the data

US 6,799,213 Bl

7

-continued

FIELD TABLE COLUMN DESCRIPTION

Column # Column Name Type Size Description
Source used to populate the field
5 Test Name String 20 Usually the associated SR

number

With regard to column 3 1n the field table, “Counter”
means that the field contains an integer that specifies the
number of times to repeat the field or record that 1s associ-
ated with the field table. The Data Element Source element
then contains the integer 1n string format or will be blank, 1n

which case the mteger 1s located 1n the field or record that
1s associated with the field table. This counter 1s included 1n

the outgoing message.
“InfoCounter” means that this field contains an integer

that specifies the number of times to repeat the field or
record that 1s associated with the field table. The Data

Element Source element then contains the mteger 1n string
format or will be blank, in which case the integer 1s located
1n the field or record that 1s associated with the field table.
This counter 1s not 1ncluded 1n the outgoing message.

“Constant” means that the Data Element Source contains
constant data for this field.

“DataStore” means that the data for this field in found 1n
a data table. The name of the data table 1s 1in the format

<message>| _ <record>| _record. . .]] where <message> is
the name of the message that contains this field and,

optionally, 1f the field 1s part of a record, <record> 1s the
name of the record that contains this field. There can be

multiple levels of records down to the field level.

“VirtualUserUnique” means that this field data 1s unique
for a corresponding virtual user. The Data Element Source
clement then contains the data table name for the table that
contains the source for this data. A corresponding virtual
user ID (VU ID) 1s used to index this table for the unique
value.

“Generate” means that the data for this field 1s generated

at run time by a speciiic function. The Data Element Source
clement then contains the function name for the field.

“Generate” fields include date and time fields that must
contain the run time and run date.

“Reply” means that the data for this field 1s located 1n a
previously received response message. The Data Element
Source element then contains the information that is neces-
sary to locate the data, and this information is preferably in
the format <message>,<occurrence>,<lield>, where <mes-
sage> 15 the name of the reply message, <occurrence:>
indicates which of this particular reply message to go to, and
<field> 1s the name of the field to extract from the reply.

“Binary File” means that the data for this field 1s binary
and 1s located 1n a file. The Data Element Source element
then contains the path for the file.

The second group of data storage tables includes data
tables, which contain data corresponding to the field tables
216220, as required. The message builder 122 retrieves
these data tables along with the rules tables. The field tables
216220 typically contain a data source type, €.g., a
DataStore, VirtualUserUnique, or Counter, and the message
builder 122 retrieves the actual data corresponding to this
data type and writes this data to a flat file to provide a
completed message for delivery to the generic virtual user
engine. The advantage to this type of system 1s that the entire
database 1s significantly smaller where the rules tables do
not have to contain multiple repetitions of the field data that
1s stored 1n the rules tables.

10

15

20

25

30

35

40

45

50

55

60

65

3

Loading Virtual Users

FIG. 3 depicts a preferred process 300 that is used to load
the virtual user array 116 (see also FIG. 1). The process 300
1s preferred because 1t avoids having the generic virtual user
engine 118 query the message builder 122 to provide sce-
narios for each of the virtual users 106—114 based upon
individual queries for each virtual user. The generic virtual
user engine 118 acts as a first virtual user and queries the
message builder 122 in step 302 to obtain comprehensive
scenarios for each of the virtual users that will be involved
in testing the server under test 102. This query results 1n the
production of messages that, together, comprise action sce-
narios as described above in the data structure heading. In
step 304, the generic virtual user engine 118 writes these
scenarios as a combination of rule and data tables for all
virtual users.

The generic virtual user engine 118 activates all of the
virtual users 1n the virtual user array 116 and assigns each
virtual user a scenario based upon the results of step 304, all
in step 306. In step 308, the generic virtual user engine 118
continues down the hierarchy of the data structure to create
a collection of lists where each list 1s a flat file that contains
the complete messages of a scenario including the combi-
nation of rule table data populated with table values. At this
point, with the scenarios assigned to corresponding virtual
users, and the scenarios being completely formed as a
collection of lists, server load testing 1s ready to commence
in step 310. All virtual users are able to read their assigned
scenar1os 1nto memory from flat files.

Protocols

The operation of server load testing system 100 may vary
according to the specific telecommunications protocols that
are employed. These well known protocols typically include
HTTP and other Internet transfer protocols. A nonlimiting
working example 1s provided below to demonstrate a spe-
cific implementation of the server operation using preferred
methodology.

HTTP

Hypertext Transmission Protocol i1s used with Internet or
Web-based applications, 1.€., a protocol for use between a
Web browser and a Web server. HI'TP 1s used as a Web-
based server message protocol. This protocol uses TCP/IP
and socket HT'TP dictating new connections for each client/
server transaction. The virtual user reads the IP and port that
are used 1n making this connection from the data storage
devices 124 using the message builder 122. The virtual user
client establishes a socket connection with the web server,
sends a request, polls for a response, receives a response,
then breaks the connection.

Timers in Each Virtual User According to Protocol

The generic virtual user engine 118 1s capable of record-
ing elapsed times to perform functions or to respond as
directed by each virtual user. These elapsed time measure-
ments are critical to determining the performance of the
server under test 102 while 1t 1s running under a load, 1.e.,
with multiple virtual users of the virtual user array 116 being
active on the server under test 102. Response times for the
respective virtual users are recorded independently of one
another. The recordation of time differs according to the
protocol that 1s being employed. The HTTP protocol 1s used
as a nonlimiting example.

HTTP Timing

The provision of a new connection being established for
cach transaction 1n the HTTP protocol necessitates use of the
“Connect” timer and the <message> timer. The virtual user
tells the generic virtual user engine to start the “Connect”
time, establishes a connection with the server under test 102,

US 6,799,213 Bl

9

and 1nstructs the generic virtual user engine to stop the
connect timer once the message 1s received. The virtual user
tells the generic virtual user engine 118 to start the <mes-
sage> timer, sends the request message to the server under
test 102, and begins polling for a corresponding response
message until bytes are received that are terminated by a
double new line character sequence or a time out occurs. If
the virtual user does receive a double new line terminated
message, then the message 1s pared for the length 1n bytes for
the remainder of the response. The virtual user again polls
for the remainder of the response until the expected length
1s received or until a timeout occurs.
System Operation to Construct Messages and Action Sce-
narios

FIG. 4 1s a process diagram showing the operation of the
server load testing system 100 according to process 400 for
the creation of messages. Process 400 begins 1n step 402
when the process 1s started pursuant to a test request by
personnel who are performing server load test operations. In
step 404, the generic virtual user engine 118 determines the
1 user ID number (VUID). If VUID=1, then the generic

virtual

virtual user engine 118 causes the message builder 122 to
read the rules tables and the data tables from data storage
device 124, and the extracted data 1s written to a sequential
file during step 406 to provide a rules and data store 410
from which other virtual users can read.

Access of the sequential files 1n step 412, whether step
412 1s achieved following steps 406 or 404, 1s followed by
a reading of the first action of the sequential files 1n step 414
to provide an action element 416. Step 418 performs a query
whether the end of the sequential file defining the scenario
has been reached. If yes, then the process terminates 1n step
420. If no, the message builder reads the next element of the
message table 1n step 422 to obtain a new message element.
Step 426 queries whether the end of file has been reached for
the message elements. If yes, the message builder 122 in step
428 transmits the completed message through the generic
virtual user engine 118 to a predetermined virtual user in the
virtual user array 116 and ultimately to the server under test
102. Subsequent to step 428, the message builder 122 1s free
to repeat steps 414 to 426 as before. If the query result 1n step
426 1s no, a subsequent query 1s made 1n step 428 to
determine whether the message element 1s a record from a
record table as defined above. If yes, then step 430 entails
reading the next element of the record from the record table.
If no, then step 432 entails reading the field values and
appending them to the message buifer to obtain field values
434. Step 436 queries whether the message builder 122 1s
currently processing a record or a field value. If a record 1s
being processed, step 436 1s followed by step 430 for a
repetition of steps 428—436. If no record 1s being processed,
then step 436 1s followed by step 422 for a repetition of steps
422 to 436.

Completion of the process 400 1n step 420 provides a
plurality of scenarios 1n the form of sequential flat files of
action elements for the generation of messages to the server
under test 102.

FIG. § 1s a process diagram of a process 500 showing
operation of the message builder 122 1n building scenarios
from the sequential files that are provided according to
process step 406. Process step 406 begins 1n step 502 at the
prompting of personnel who are actively engaged 1n server
load testing operations. The message builder 122 reads field
specifications 504 1n step 506 where the field specifications
include field length, field type, field value and field source.

Step 508 queries whether the field data type 1s a constant.

If yes, the field value 1s appended to the message buffer in

10

15

20

25

30

35

40

45

50

55

60

65

10

step 510 and step 406 terminates mstep 512. If no, step 514
queries whether the field type 1s a data store.

Step 514 queries whether the field type 1s a data store. If
yes, 1n step 516 the field data value 518 1s read from the
sequential file and appended to the message buifer. If the
query result 1in step 514 1s no, then step 520 queries whether
the field data type 1s a reply. It yes, step 522 reads the reply
field value 524 from a previously received reply butfer and
appends the value to the message buller pI‘lOI‘ to termination
of step 406 1n step 512. If no, step 526 queries whether the
field data type 1s a counter. If yes, step 528 appends the field
value to the message bulfer and step 406 terminates 1n step
512.

Step 530 queries whether the field data type 1s an Info-
counter. If yes, step 532 stores the field value as an Info-
counter 534 for use with the next field and step 406
terminates in step 512. If no, step 538 queries whether the
filed data type 1s a virtual user unique.

Where the query result 1n step 536 1s yes, step 538 reads
a field value 540 that 1s unique to the current virtual user and
appends this value to the message buifer. In this instance,
step 512 terminates 1n step 512. Where the query result 1s no,
step 544 queries whether the field data type 1s one that is
unique 1n the range of data. If yes, step 544 generates a
numeric value 1n the specified range, €.g., as by using a
random number generator, and appends the character rep-
resentation of that value to the message bufier. Step 406 then
terminates in step 512. Where the query result from step 542
1s no, the message builder 122 generates a field value 1n step
546 by calling a function that 1s defined 1n the field source,
and appends this value to the message bufler. Step 406 then
terminates in step 512.

Those skilled 1n the art will understand that the preferred
embodiments described above may be subjected to apparent
modifications without departing from the true scope and
spirit of the ivention. The inventors, accordingly, hereby
state their intention to rely upon the Doctrine of Equivalents,
in order to protect their full rights in the mmvention.

We claim:

1. A server load test system for use 1n testing server
operations under a simulated actual load, comprising;:

a virtual user generator configured to generate one or
more virtual users;

a storage system configured to store a rules table and a
data table;

a message builder in communication with the virtual user
generator and the storage system, with the message
builder being configured to retrieve a server test action
for a virtual user of the one or more virtual users from
a test design specification, retrieve a rule set for the
server test action from the rules table, form one or more
server test messages for the server test action according

to the rule set, retrieve test message data components

from the data table according to the rule set, and msert

the test message data components 1nto the one or more
server test messages according to the rule set in order
to form a complete server test message set for the server
test action and for the virtual user.

2. The system of claim 1, with the storage system com-
prising a database, with the database including a data
structure comprising linked action tables, message tables,
record tables, and field tables that, 1n combination, contain
rules for creating server transaction scenarios for each of
said virtual users.

3. The system of claim 1, wherein the rule set and the test
message data components are shared between virtual users
of the one or more virtual users.

US 6,799,213 Bl

11

4. The system of claim 1, further comprising the message
builder iteratively processing the test design specification in
order to generate all actions for the one or more virtual users.

5. The system of claim 1, further comprising performing,
interactive server load testing operations with each virtual
user of the one or more virtual users being configured as a
server client capable of transmitting one or more server test
actions.

6. The system of claim 1, further comprising performing
interactive server load testing operations with each virtual
user of the one or more virtual users being configured as a
server client capable of transmitting one or more server test
actions, wherein performing the automated server load test-
ing operations 1ncludes testing a server application across a
variety of telecommunications protocols.

7. The system of claim 1, further comprising:

interfacing with a commercially available server load
testing package, with the server load testing package
including the virtual user generator; and

performing interactive server load testing operations with
cach virtual user of the one or more virtual users being
coniligured as a server client capable of transmitting one
Or more server test actions.
8. The system of claim 1, with retrieving the server test
action, retrieving the rule set, and retrieving the test message
data components comprising;

reading the server test action from the test design speci-
fication; and

recalling the rule set and the test message data compo-

nents from a database.

9. The system of claim 1, wherein user mnformation for
cach virtual user of the one or more virtual users 1s stored as
individual test message data components and wherein a new
virtual user 1s added by adding a new virtual user informa-
tion.

10. The system of claam 9, with the user information
comprising a virtual user address.

11. A method of performing server load testing through
use of virtual users, said method comprising:

generating one or more virtual users;

retrieving a server test action for a virtual user of the one
or more virtual users from a test design specification;

retrieving a rule set for the server test action;

forming one or more server test messages for the server
test action according to the rule set;

retrieving test message data components according to the
rule set; and

5

10

15

20

25

30

35

40

45

12

inserting the test message data components 1nto the one or
more server test messages according to the rule set 1n
order to form a complete server test message set for the
server test action and for the virtual user.

12. The method of claim 11, wherein the rule set and the
test message data components are shared between virtual
users of the one or more virtual users.

13. The method of claim 11, further comprising iteratively
processing the test design specification 1n order to generate
all actions for the one or more virtual users.

14. The method of claim 11, further comprising perform-
ing 1nteractive server load testing operations with each
virtual user of the one or more virtual users being configured
as a server client capable of transmitting one or more server
test actions.

15. The method of claim 11, further comprising perform-
ing 1nteractive server load testing operations with each
virtual user of the one or more virtual users being configured
as a server client capable of transmitting one or more server
test actions, wherein performing the automated server load
testing operations 1ncludes testing a server application
across a variety of telecommunications protocols.

16. The method of claim 11, further comprising:

interfacing with a commercially available server load
testing package, with the server load testing package
including the virtual user generator; and

performing interactive server load testing operations with
cach virtual user of the one or more virtual users being,
coniligured as a server client capable of transmitting one
or more server test actions.
17. The method of claim 11, with retrieving the server test
action, retrieving the rule set, and retrieving the test message
data components comprising;

reading the server test action from the test design speci-
fication; and

recalling the rule set and the test message data compo-

nents from a database.

18. The method of claim 11, wherein user information for
cach virtual user of the one or more virtual users 1s stored as
individual test message data components and wherein a new
virtual user 1s added by adding a new virtual user informa-
fion.

19. The method of claim 18, with the user information
comprising a virtual user address.

	Front Page
	Drawings
	Specification
	Claims

