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matrix 1s obtained 1n iterative computation, and non-zero
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PROCESSING APPARATUS FOR
PERFORMING PRECONDITIONING
PROCLESS THROUGH MULTILEVEL BLOCK
INCOMPLETE FACTORIZATION

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present 1nvention relates to an 1teration method used
to solve simultaneous linear equations, and more specifically
to a processing apparatus for performing a preconditioning
process 1n the iteration method.

2. Description of the Related Art

In analyzing a physical phenomenon, 1t 1s often necessary
to solve simultaneous linear equations containing a large
matrix as a coefficient matrix as follows.

Ax=h (1)

where A 1ndicates a coeflicient matrix of nxn, x indicates
an n-dimensional wvariable vector, and b 1ndicates an
n-dimensional constant vector. It 1s not rare that the value of
n is approximately 10°.

The above described large simultaneous linear equations
are used 1n various scientific and engineering computation
for weather forecasting, designing an atomic furnace, ana-
lyzing a semiconductor circuit, analyzing a fluid 1n
acronautics, analyzing a structure, etc. Therefore, 1t 1s one of
the 1important objects 1n the scientific and engineering com-
putation to efficiently and quickly solve large simultaneous
linear equations.

One of the methods for solving an equation (1) using a
computer 1s a direct method based on the Gaussian elimi-
nation method 1n which A 1s LU-factorized. However, when
A 1s a large sparse matrix, there can be only a few non-zero
clements 1n each row, and 1t 1s wasteful 1n computation cost
and storage area. Therefore, in such cases, an iteration
method 1s often used to obtain an approximate solution by
repeatedly obtaining simple matrix-vector products.

A preconditioning process 1s used as a method for accel-
erating the convergence of the iteration method on a sparse
matrix. In this process, the equation (1) i1s transformed as
follows using an appropriate preconditioner matrix M.

M1Ax=M"1b (2)
By applying the iteration method to the equation (2)
above, an approximate solution of the equation (1) can be
obtained. At this time, M corresponds to the block incom-
plete factorization (BIF) of A, and M~ indicates an inverse
matrix of M. Thus, an algebraic multilevel 1teration method
1s known as a method of performing such a preconditioning
process through the block incomplete factorization of A.

However, the preconditioning process in the above men-
tioned conventional algebraic multilevel iteration method
has the following problems.

Normally, the preconditioning process 1n the algebraic
multilevel iteration method can be applied to a problem 1n
which a coefficient matrix A 1s an M-matrix, and has the
function of accelerating the convergence. That A 1s an
M-matrix refers to that A=(a;) 1s a regular matrix, and
satisfies the following two conditions.

(1) a;=0 (1f)) (non-diagonal elements of A are 0 or
negative)

(2) A~'=0 (all elements of inverse matrix A™" of A are not
negative)

However, when A 1s not an M-matrix, the preconditioning,

process 1n the algebraic multilevel 1teration method does not

effectively work, and the computation does not converge.
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2
SUMMARY OF THE INVENTION

An object of the present 1invention i1s to provide a pro-
cessing apparatus for performing a preconditioning process
capable of accelerating the convergence of computation in
the 1teration method used on simultaneous linear equations
in which a coefficient matrix 1s not an M-matrix.

The processing apparatus according to the present mven-
fion comprises a coefficient storage unit, a determination
unit, a set storage unit, an 1nverse matrix unit, a coetficient
matrix unit, a factorization unit, and a computation unit and
performs a preconditioning process for an iteration method
used to solve simultaneous linear equations through per-
forming multilevel block incomplete factorization.

I

The coeflicient storage unit stores a coeflicient matrix at
a certain level 1n the block incomplete factorization. The
determination unit determines a set of variable numbers of
variables to be removed so that a block matrix comprising
elements, which have the variable numbers of the variables
to be removed as row numbers and column numbers, of the
coellicient matrix stored 1n the coellicient storage unit can be
diagonal dominant.

The set storage unit stores information about the deter-
mined set of variable numbers. The 1nverse matrix unit
obtains an approximate mverse matrix of the block matrix
according to the mmformation stored in the set storage unit.

The coetficient matrix unit obtains a coeflicient matrix at
a coarse level from a block matrix comprising elements,
which have variable numbers of remaining variables as row
numbers and column numbers, of the coeflicient matrix
stored 1n the coefficient storage unit.

The factorization unit stores the coeflicient matrix at the
coarse level 1n the coefficient storage unit to perform sub-
sequent block incomplete factorization. The computation
unit computes a matrix-vector product in the iteration
method using the approximate mnverse matrix.

BRIEF DESCRIPTIONS OF THE DRAWINGS

FIG. 1 shows the principle of the processing apparatus
according to the present 1nvention;

FIG. 2 shows the multilevel block incomplete factoriza-
tion;
FIG. 3 is a flowchart (1) of the preconditioning process;

FIG. 4 is a flowchart (2) of the preconditioning process;

FIG. 5 shows an Ellpack storage method,;

FIG. 6 shows the configuration of the multi-processor
system,

FIG. 7 shows the division of an array;

FIG. 8 shows band widths;

FIG. 9 shows storage areas;

FIG. 10 shows the configuration of the mnformation pro-
cessing device; and

FIG. 11 shows storage media.

DESCRIPTIONS OF THE PREFERRED
EMBODIMENTS

The embodiments of the present invention are described
below 1n detail by referring to the attached drawings.

FIG. 1 shows the principle of the processing apparatus
according to the present invention. The processing apparatus
shown 1n FIG. 1 includes a coefficient storage unit 1, a
determination unit 2, a set storage unit 3, an inverse matrix
unit 4, a coeflicient matrix unit 5, a factorization unit 6, and
a computation unit 7. The apparatus performs a precondi-
tioning process for the iteration method used to solve
simultancous linear equations through multilevel block
incomplete factorization.
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The coeflicient storage unit 1 stores a coeflicient matrix at
a certain level of block incomplete factorization. The deter-
mination unit 2 determines a set of variable numbers of
variables to be removed so that a block matrix comprising,
elements, which have the variable numbers of the variables
to be removed as row numbers and column numbers, of the
coellicient matrix stored 1n the coefficient storage unit 1 can
be diagonal dominant. The set storage unit 3 stores the
information about the determined set of variable numbers.

™

The 1inverse matrix unit 4 obtains an approximate 1nverse
matrix of the block matrix according to the information
stored 1n the set storage unit 3. The coeflicient matrix unit 5
obtains a coeflicient matrix at a coarse level from a block
matrix comprising elements, which have the variable num-
bers of remaining variables as row numbers and column
numbers, of the coefficient matrix stored 1n the coefficient
storage unit 1. Then, the factorization unit 6 stores the
coellicient matrix at the coarse level 1n the coeflicient
storage unit 1 to perform subsequent block incomplete
factorization.

The computation unit 7 computes a matrix-vector product
in the iteration method using the obtained approximate
Inverse matrix.

In the above mentioned processing apparatus, a coelfi-
cient matrix factorized at a certain level of block incomplete
factorization 1s stored 1n the coeflicient storage unit 1. The
determination unit 2 refers to the information about the
coeflicient matrix, determines a set of variable numbers of
variables to be removed from a process target so that a block
matrix comprising coeflicients of the variables to be
removed can be diagonal dominant, and stores the informa-
fion about the set 1n the set storage unit 3.

Then, the 1nverse matrix unit 4 obtains an approximation
of an 1nverse matrix of the block matrix comprising the
coellicients of the variables to be removed. The coeflicient
matrix unit 5 computes a coeflicient matrix at the next level
from a block matrix comprising the coefficients of variables
remaining as a process target. Then, the factorization unit 6
stores the obtained coeilicient matrix as a coellicient matrix
to be factorized in the coeflicient storage unit 1, thereby
recursively performing the block mncomplete factorization at
the next level.

The computation unit 7 performs a preconditioning pro-
cess for the iteration method by recursively computing a
matrix-vector product required 1n the 1teration method using
the approximate inverse matrix at each level obtained by the
recursive block incomplete factorization.

In the case of a diagonal dominant matrix, as described
later, an 1nverse matrix can be obtained by performing an
iterative computation with given approximate precision.
Therefore, any sparse matrix can be factorized with appro-
priate approximate precision by determining a set of variable
numbers of variables to be removed so that the block matrix
comprising the coeflicients of the variables to be removed
can be diagonal dominant. In the above mentioned block
incomplete factorization, a preconditioning process for
accelerating the convergence of the iteration method can be
performed on a coeflicient matrix which 1s not an M-matrix.

For example, the coeflicient storage unit 1 and the set
storage unit 3 shown 1n FIG. 1 correspond to shared memory
14 shown i FIG. 6 or memory 32 shown in FIG. 10
described later. The determination unit 2, the 1nverse matrix
unit 4, the coefhicient matrix unit 5, the factorization unit 6,
and the computation unit 7 shown 1 FIG. 1 correspond to

a processor 11 shown 1n FIG. 6 or a central processing unit
(CPU) 31 shown in FIG. 10.

The set of the variable numbers of the variables to be
removed corresponds to a set F described later, and the block
matrix comprising elements which have the variable num-
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4

bers as row numbers and column numbers corresponds to a
matrix AFF in the equation (3) described later. The approxi-
mate inverse matrix corresponds to M,.,~" in the equation
(4) or F,... shown in FIG. 4 described later. The block matrix
comprising elements which have the variable numbers of the
remaining variables as the row numbers and the column
numbers corresponds to the matrix A in the equation (3).
The coellicient matrix at the coarse level corresponds to the
matrix A shown in FIG. 4 or M. 1n the equation (4).

Normally, in the iteration method 1n which a precondi-
tioning process 1s performed, it 1s necessary to repeatedly
compute a matrix-vector product M~'q of M~ in the equa-
tion (2) and the n-dimensional vector q. The processing
apparatus according to the present invention performs mul-
tilevel block incomplete factorization on a coeflicient matrix
of simultaneous linear equations, and computes M™"q using
a result obtained at each level in the preconditioning process
by the algebraic multilevel iteration method.

First, a set of variable numbers appropriately selected
from a set {1, . . . , n} of the variable numbers of
simultaneous linear equations 1s defined as C, and the
complementary set of C 1s defined as F. Then, an nxn matrix
A can be transtormed into the following form.

(3)

_[AFF AFC}

Acr Acc

A set C corresponds to a set of variable numbers of
remaining variables, and a set F corresponds to a set of
variable numbers of variables to be removed. The row
number and the column number of an element of the block
matrix A, are represented by an element of the set C. The
numbers of the rows and the columns of A, match the
number of the elements of the set C. Similarly, the row
number and the column number of an element of the block
matrix A, are represented by an element of the set E, and
the numbers of the rows and the columns of A,,. match the
number of the elements of the set F.

Assuming that the approximate mnverse matrix of Az 1S
M, ", and A :=A_..-A_ M, A, _, A can be approxi-
mated by, for example, B.=A--R_.. Here, R 1s a matrix
containing non-zero elements to be removed by the approxi-
mation. Assuming that the approximation of A - 1s expressed
by M_, the block incomplete factorization M of A 1s repre-
sented as follows.

Mpr O ] I MztApc | (4)

M:[
Acr T][O0O M,

Then, the block incomplete factorization of M- 1s recur-
sively repeated from a coarse level to a coarser level to
obtain the block incomplete factorization as indicated by the
equation (4) at each level. In addition, p:=M~'q=BIF(0, q)
can be recursively computed using the block matrix in the
equation (4). Assuming that the first level is 0, and the
coarsest level 1s L, the computation algorithm of the matrix-
vector product 1s represented as follows.

BIF(k, q)
if (k=1)
solve Ap = q
else
(9r> dc) < 9

Jeo <= (e — ACFMFF_qu
pc < BIF(k + 1, q¢)
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-continued

Pr = MFF_l(qF - ArcPo)

P < (Pr Pc)
endif

return p

where a degree of the approximation of I=M_"'A_ (I
indicates a unit matrix) can be adjusted using the values of
=M. Ay, ‘M ¢ Re|, and [I-M.7'B|

The processing alj‘)paratus approximately obtains an
inverse matrix M., required at each level with given
precision 1n the process of stepwise performing the block
incomplete factorization. Using the inverse matrix, a matrix

A required 1n the factorization at the next level (at a coarse
level) is obtained, and the sparsity of A, is determined with

the approximate precision taken mto account. The elements
of the set F are determined such that the number of elements
of the matrix A, can be the smallest possible, that 1s, the
number of elements of the matrix A, can be the largest
possible, at each level of the block incomplete factorization.

Therefore, 1n the multilevel block incomplete
factorization, the determination of the set F, the computation
of M,..~ ", and the reduction of non-zero elements of M. can
be reeursively repeated as shown 1n FIG. 2. In the equation
(3), if A, is a diagonal matrix, the inverse matrix A, " can
be easily obtained. If the set F can be determined such that
A, can be diagonal dominant with this condition loosened
a little, M.~ " can be obtained in iteration computation with
any approximate precision. Diagonal dominant A ... refers to
that the elements of A satisty the following condition with
A defined as a predetermined constant.

Z la; ;| = Ala ;|

jFieF

(3)

If the set F 1s the largest possible, then A~ 1s small, and
A 1s also small. Therefore, the factorization of the matrix
can be prompted. With the above mentioned block 1ncom-
plete factorization, even a matrix which i1s not an M-matrix
can be factorized with appropriate approximate precision,
and the preconditioning process of accelerating the conver-
gence of the iteration method can be performed.

FIGS. 3 and 4 are flowcharts of the preconditioning
process containing the multilevel block incomplete factor-
1zation. At each level of the recursive algorithm, the set F 1s
determined by performing the process shown 1n FIG. 3, and
the variable numbers forming A, at a coarse level can be
selected.

First, the processing apparatus rearranges each row vector
of the matrix A to be factorized such that a diagonal element
comes first to extract a diagonal dominant A, . (step S11
shown in FIG. 3). However, at the second and subsequent
level, the A, obtained in the factorization at the previous
level 1s used as a matrix A.

The coetlicient matrix A of simultaneous linear equations
1s stored 1n the memory of the processing apparatus 1n an
Ellpack storage method. In the Ellpack storage method, the
non-zero elements of a row vector are stored after being
compressed leftward, and the column number of a column
having a non-zero element 1s stored 1n a corresponding
clement 1n an integer type array. At this time, a portion
which cannot be compressed 1s filled with zeros, and the
corresponding elements in the integer type array store the
row number 1nstead of a column number. Thus, the require-
ments of memory can be reduced by compressing and
storing a sparse matrix.

FIG. 5 shows an example of the above mentioned Ellpack
storage method. In FIG. 5, the information about the coel-
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6

ficient matrix A 1s stored after being divided 1nto a real type
two-dimensional array AE and an integer type two-
dimensional array ICOL. The array AE stores row vectors of
the A compressed 1n the Ellpack storage method, and the
array ICOL stores column numbers of non-zero elements of
the A. The elements of the array ICOL corresponding to the
zero elements of the array AE store the row numbers of the
clements.

The processing apparatus rearranges the elements of each
row vector of a matrix stored in the Ellpack storage method,
stores the diagonal element of A as the first element, and
stores other elements from the largest value with an absolute
value and the distance from a diagonal element taken into
account. Correspondingly, the elements of ICOL are also
rearranged.

Assuming that (1, j) element of ICOL is k; ;, the elements
of the original coefficient matrix A can be represented by
a; ;- At this time, the elements of a row vector can be
rearranged under the following condition.

=a; 4| and [k, ;, 1~ Sk, -

1+Y)|ﬂi,k£,j+1|€:: ﬂf,k.f,j| or {(1_Y)|ﬂf,kf,j+1

_ ikijf
i}

where v 1s a predetermined constant. For example, y=0.15.
The elements having equal absolute values are positioned

from left to right 1n order from the element having a longest
distance from a diagonal element.

Then, the processing apparatus generates a set V of the
nodes of a graph G comprising non-zero elements of A (step
S12). At this time, a set excluding the node corresponding to
the element not diagonal dominant from a set of all nodes 1s
defined as V to maintain the A, as diagonal dominant, and
a set of removed nodes 1s an 1nitial value of the direct
neighbor set N.

First, assume that there 1s a graph having a subscript 1 of
the element of A as a node (unknown value). Among pairs
of nodes (i, j), a pair of (1, J) corresponding to non-zero a,;
or a;; are extracted, and these nodes are linked by an edge.
Therefore an edge (1 7) corresponds to a non-zero element
of A. Then to 1denfily the node belonging to the graph G, a
flag 1s set fer a one-dimensional array.

Then, an element disturbing the diagonal dominant 1s
extracted from A, and the 1nitial value of the direct neighbor
set N 1s determined. At this time, the following determina-
tion 1s performed on each of all rearranged row vectors. The
determination 1s performed rightward in order from the
second element 1n the row vector, and 1s repeated until all
clements are processed.

s =0
N=¢
doj=k, 2, -1
if (s + |ag | > Mayg) then
N=NU {kipj}
else
S =18+ |a1 k1_'||
endif
enddo

Then, the set V 1s generated by removing the nodes
contained 1n the direct neighbor set N from the set of all
nodes.

The processing apparatus extracts the maximal indepen-
dent set used as a set F from the set V in the processes in
steps S13 through S17. In this example, the subsets
(independent sets) of V, any two subscripts extracted from
which do not correspond to the above mentioned edge (i, j),
are selected from among subsets I of V. Then, among the
independent sets, a set having the largest number of ele-
ments 1s selected as the maximal independent set. The
maximal independent set can be obtained by the following
algorithm.
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ISET(G): procedure of extracting an independent set from
the graph G

SEG(graph(G), V): a set of edges of a subset of the graph G,
two nodes of each edge belonging to V

N(I): one of the nodes of the edge of the graph G not
belonging to the independent set I when another node

belongs to the independent set I (direct neighbor set)
E: a set of edges of the graph G
F: the maximal independent set (initial value is ¢)

while ((V=¢) and (E=¢)) do
[:=ISET(G)

F:=FUI

V:=V-(IUN(I))
G:=SEG(graph(G), V)
enddo

F:=FUV

The graph G 1s represented by a two-dimensional array
G(m, 2) with m defined as the total number of edges. When
the nodes 1 and j belong to the graph G for a non-zero
clement a; of the matrix A, the node numbers 1 and j are
respectivefy stored in the array elements G(k, 1) and G(k, 2)
(k=1, . .., m).

In the process of the ISET(G), for example, an indepen-
dent set 1s generated using random values. In this case, a
random value in the range of (0, 1] is associated with each
node number, two random values corresponding to the array
elements G(k, 1) and G(k, 2) are compared with each other,
and a node having a smaller number 1s incorporated into the
independent set, and the other node 1s excluded from the
independent set.

To associate each node with a random wvalue, a one-
dimensional array stores random values. In addition, another
one-dimensional array (maximal independent flag array)
storing a flag indicating whether or not a node belongs to the
maximal independent set 1s prepared, and the value ‘on’ is
stored as the 1nitial value of the flag corresponding to each
node. When two random values are compared with each
other, the flag of the node corresponding to a larger value 1s
changed into the value ‘off’. Thus, a set of the nodes having
‘on’ flags 1s extracted as an independent set.

The above mentioned algorithm 1s explained below by
referring to the process steps shown in FIG. 3. First, the
processing apparatus generates a graph G from a set V, and
a random value 1s assigned to each node (step S13). Then,
the values of the random values of two nodes are compared
with each other, the node corresponding to a larger value 1s
removed, and the set of remaining nodes 1s defined as an
independent set I (step S14).

Then, the sets V, I, and F are updated (step S15). In this
example, the independent set I and the direct neighbor set
N(I) are removed from the set V to generate a new set V.
Then, N(I) is added to a sum set N of direct neighbor sets,
and the independent set I 1s added to the maximal indepen-
dent set. The direct neighbor set N can also be obtained by
removing the elements of the maximal independent set F
from all nodes of the graph.

Then, 1t 1s determined whether or not the update of sets 1s
completed (step S16). In this example, it is determined that
the update 1s completed when the independent set I becomes
null or the V or E (remaining nodes or edges) becomes
cempty.

When the update 1s not completed, the processes in and
after step S13 are repeated. When the update 1s completed,
the set V 1s added to the maximal independent set F, and the
final maximal independent set F 1s determined (step S17). At
this time, the nodes having an ‘on’ flag in the maximal
independent flag array indicate the variable numbers of the
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3

set F. Additionally, a one-dimensional array (direct neighbor
flag array) storing a flag indicating that a node has been
removed from the graph since 1t belongs to the direct
neighbor set N 1s prepared, and the flag of the corresponding
node 1s set ‘on’.

Then, the processing apparatus generates a conversion
table of the variable numbers of the obtained maximal
independent set (step S18). In this example, the maximal
independent flag array 1s referred to for identifying the
variable numbers belonging to the maximal independent set
from the nodes of the graph, and the serial number of each
of the nodes belonging to the final maximal independent set
1s reassigned. Then, the number 1s set for the flag of the
maximal independent flag array. Thus, using the maximal
independent flag array, a conversion table 1s generated for
conversion from the original variable number set into new
variable numbers of the maximal independent set.

Then, a conversion table of variable numbers of a direct
neighbor set is generated (step S19). In this case, as in the
case of the maximal independent set, the direct neighbor flag
array 1s referred to, and a serial number of each of the nodes
belonging to the direct neighbor set 1s reassigned to an
clement whose flag 1s set ‘on’. Thus, using the direct
neighbor flag array, a conversion table 1s generated for
conversion from the original variable number set to new
variable numbers of the direct neighbor set.

Then, using the obtained conversion table, A, 1s sepa-
rated from A, (step S20 shown 1in FIG. 4). At this time,
relating to the elements of the row vector of A, the new
variable numbers of the conversion table are referred to,
only the nodes belonging to the maximal independent set are
extracted, and the elements corresponding to these nodes of
the row vector are left-justified and stored in the array AE.
Correspondingly, the array ICOL 1s rewritten. Then, both
row vectors of AE and ICOL are allotted to A, and A,
thereby separating A, from A~

Then, the approximate inverse matrix Fo. of Az 1s
obtained in the iteration method (step S21). Since the A, 1s
diagonal dominant, the diagonal matrix D, comprising its
diagonal elements exists. Therefore, when M, ,. " is
obtained in the iteration method using the inverse matrix
D,, " of D,, as an initial solution, the computation con-
verges. At this time, [[-M,.,.7"A ] is iteratively computed,
M,.,." is obtained with expected approximate precision, and
an obtained M,.,.~" is defined as F,... Practically, assuming
that M, , '=D,.,. ", the following computation is recur-
sively performed.

Mpp p_1=M FF, ;:,-—1_1"‘(“r ~Mgp p—1_1AFF)D o

(6)

pp=|I-M FF.p "Apg] (7)

Then, using T, as a predetermined constant, the approxi-
mation up to the point where pp<t, 1s satisfied 1s adopted.
A matrix product between sparse matrices stored in the
Ellpack format appears in the equation (6), and the compu-
tation of 1t 1s performed 1n the following procedure.

Normally, in the matrix operation in the form of A=A+
a.BxC, t=aBxC 1s first computed using a temporary area in
the memory, and then A=A+t 1s computed. In the computa-
tion of t=0.BxC, the largest number of non-zero elements in
cach row vector of B and C stored 1n the Ellpack format is
set to nrb and nrc respectively, and an area i which the
value of the second dimension 1s temporarily nrbxnrc 1s
reserved. Then, the column vector of C 1s multiplied by each
clement of B. When oa=1, the procedure can be shown as
follows.
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(1) The array tmp of t is computed as shown below.
i1=1

do 1=1, nrc

do k=1, nrb

do =1, n

tmp(j, 11)=b(j, k)*c(bicol(j, k), 1)

tmpicol(j, 11)=cicol(bicol(j, k), 1)

enddo

11=11+1

enddo

enddo

(2) The elements of the row vector of tmp are sorted in the
order of the numbers of the column vectors to which they
belong.

(3) The elements of the row vector of A are similarly sorted.

(4) A=A+tmp 1s computed. In this example, the following
process is performed for each row vector. First, tmpicol(i,
k) matching ICOL(1, j) of A(i, j) 1s searched for while
increasing the value of k. If a matching element can be
detected, then tmp(i, k) 1s added to A(y, j). If ICOL(, j)
matching tmpicol(i, k) cannot be detected, then tmp(i, k)
and tmpicol(1, k) are added to the i-th rows of A and ICOL

as new elements.

Then, A--F~~ used mn the computation 1n the precondi-
tioning process is computed (step S22), and A, is separated
from A, (step S23). At this time, as in the process 1n step
S20, new variable numbers of the conversion table are
referred to relating to the elements of the row vector of A,
only the nodes belonging to the direct neighbor set are
extracted, and the array ICOL 1s rewritten. Then, the row
vector 1s allotted to A~ and A

Then, A=A —A zFrzAr- 1s computed (step S24). In
this example, as 1 the computation of the matrix product 1n
step S21, A-zFz-Ax~ 1s stored 1n tmp, and 1s subtracted
from A_.. At this time, while the absolute value of each
clement of A, 1s being determined, an element having a
value smaller than a given value 1s dropped, and an approxi-
mate of A 1s obtained by M_-=A_--R ., thereby maintaining
the sparsity of A,.. Then, M, 1s used as a result of the
computation of A.

At this time, for example, 1t 1s determined whether or not
the condition of (absolute value of an element of A, )<tx
(sum of absolute values of elements of a row vector to which
the element belongs) is satisfied using T as a predetermined
constant, and the element satisfying the condition 1is
dropped. Practically, the condition for determination of RC
is given by [M 'R |, <t. For the nxn matrix B=(b, ), [B|; is
defined by the following equation.

L (3)

The unknown matrix M, 1s approximated by the follow-
ing diagonal matrix.

. ()
mi ;= (Sj’jﬂigﬂ(ﬂjpj)z |'ﬂi,!|
=1

In the equation (9) above, sign(x) equals 1 when x=0, and
—1 when x<0. In this approximation, when the element a; ; of
A satisfies the following equation, the element 1s dropped.

(10)

|"~"I.:',j| <TXM; ;
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Actually, a sum of the absolute values of the elements of
the row vector of A 1s obtained, and the condition of the
equation (10) is determined in order from left to right for
cach element 1n the row. If the condition 1s satisfied, the
clement 1s removed and the next element 1s left-justified and
stored.

Then, 1t 1s determined whether or not the obtamned A
corresponds to the coarsest level (final level) of the factor-
ization (step S25). If it does not correspond to the final level,
the obtained A 1s used as A, and the processes 1n and after
step S11 shown 1n FIG. 3 are repeated. If the final level has

been reached, the factorization of the matrix 1s completed,
and the computation of the preconditioning process 1s per-
formed using the result (step S26), thereby terminating the
process. In the computation of the preconditioning process,
a matrix-vector product M~'q is obtained using the block
incomplete factorization at each level as described above.

Next, the configuration 1n which the above mentioned
preconditioning process 1s performed 1n parallel 1s described
below by referring to FIGS. 6 through 9.

FIG. 6 shows the configuration of a symmetric multi-
processor (SMP) system (parallel computer) The multi-
processor system shown 1n FIG. 6 comprises a plurality of
processors 11, an input device 12, an output device 13, and
the shared memory 14. They are connected through a system
bus 15. The mput device 12 1s used 1n 1nputting an 1nstruc-
fion and information from a user. The output device 13 is
used 1 outputting an 1nquiry and a process result to a user.

The processors 11 correspond to the CPUs (central pro-
cessing units) with cache, and are coupled each other
through the shared memory 14. In this case, the application
program 1n the parallel process 1s described in OpenMP
which 1s a parallel extended language for the SMP using a
process unit referred to as a thread.

In the OpenMP, the attributes SHARED and PRIVATE
can be assigned to a variable. A variable having the
SHARED attribute can be referred to and written into
commonly by threads. Furthermore, in the OpenMP, the
parallel process can be controlled while determining the
number of each thread using the BARRIER synchronization.

In this system, the node numbers to be processed can be
divided by the number of processors. Then, as shown 1n FIG.
7, 1n the matrix A stored in the array AE and ICOL 1n the
Ellpack format, the computation of the elements relating to
the numbers assigned to each processor 1s performed by
cach thread. In this example, the threads T1, T2, T3, and T4
generated 1n different processors divide the matrix A.

The portion of A, A, Apr, and A taken charge of
by each of the threads 1s stored in a shared area consecutive
for each thread as a work area. At this time, as shown 1n FIG.
8, the band width (upper band width and lower band width)
of the portion 1n which non-zero elements exist in a matrix
1s obtained, and the band width of the portion taken charge
of by each thread 1s determined.

In addition, the storage area of the array storing random
values assigned to each node 1n step S13 shown 1n FIG. 3,
the maximal independent flag array, the direct neighbor flag
array, the variable number conversion tables, etc. are set as
shown in FIG. 9. In FIG. 9, an excess area (overlap area) 21
of the lower band width 1s provided on the left of a storage
arca 22 of a portion taken charge of by each thread, and an
overlap area 23 of the upper band width 1s provided on the
right.

In the processes 1n steps S13 through S17, the algorithm
for determining the maximal independent set 1s parallelized
in the following method. In this example, ‘on” and ‘off’ of
the flag are respectively represented by integers of 1 and O,
and they are set using a built-in function MIN. The 1nitial
value of the maximal independent flag array can be ‘on’ for
the nodes other than the nodes of the direct neighbor set, and

»

the node removed as a direct neighbor set 1s set ‘off”.
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Each thread generates random values, and stores them in
an area (taken charge of by each thread) other than the
overlap area of a node forming part of the graph. Then, the
random values are copied to an overlap area from the arca
of another thread taking charge of the portion. Thus, the
random values of the nodes used by each thread are locally
held 1n consecutive areas.

Then, each thread processes the pairs of nodes of all edges
representing the graph taken charge of by each thread. The
node to be processed exists 1n the range of the node numbers
of the upper band width and the lower band width added to

the node numbers of the portion taken charge of by each
thread. Then two random values corresponding to a pair of
nodes are compared with each other, and the flag of the node
having a larger value 1s set ‘off” 1n the maximal independent
flag array.

When setting 1s completed for each thread, each thread
copies flag information from other threads taking charge of
the nodes of the overlap area, and stores the information 1n
the overlap area of the maximal independent flag array. At
this time, matching 1s made among the threads usmg the
function MIN and the area set ‘off” by other threads 1s set

‘off”.

Then, each thread scans the edges of the graph again and
sets of_ in a flag of a node of an edge 1n the direct neighbor
flag array when the other node belongs to the maximal
independent set. Additionally, each thread sets values of the
overlap arca of the direct neighbor flag array 1in a similar
manner to the maximal immdependent flag array such that
matching can be made among the threads.

Then, each thread scans the graph again, and maintains
only the edge not belonging to the maximal independent set
and the direct neighbor set as an edge forming part of the
oraph. At this time, only the edges forming the graph are
stored, the number of elements of the maximal independent
set 1S counted, and 1t 1s checked whether or not the number
1s zero. Further, the numbers of nodes and edges are counted,
and 1t 1s checked whether or not the numbers are zero. If at
least one of the number of elements of the maximal inde-
pendent set and the numbers of nodes and edges 1s not zero,
the processes 1 and after the process of generating random
values are repeated for a new graph.

When the number of elements of the maximal indepen-
dent set or the number of edges becomes zero, each thread
completes the repeated processes, and sets ‘on’ in the flag of
the node forming an edge in the direct neighbor flag array.
Then, matching 1s made for the storage areas among threads.

Then, 1 step S18, the application counts the number of
nodes belonging to the maximal independent set among the
nodes (excluding the overlap area) taken charge of by each
thread. Then, the count values of respective threads are
stored in the one-dimensional array (shared area) of the size
of the total number of the threads. According to this
information, serial numbers are assigned to the nodes of the
maximal independent set of each thread. At this time,
positive integer numbers are assigned 1n order from 1 as the
serial numbers.

Then, each thread writes a serial number corresponding to
the node 1nstead of ‘on” of the maximal independent flag
array, and generates a conversion table of variable numbers.
In the conversion table, the variable numbers corresponding
to positive 1ntegers correspond to the nodes belonging to the
maximal mdependent set, and the variable numbers corre-
sponding to 0 correspond to the nodes belonging to the direct
neighbor set. Then, a part of the conversion table 1s copied
from other threads corresponding to the overlap areas. In
step S19, a conversion table of variable numbers of the
direct neighbor set 1s similarly generated.

Then, 1n step S20 shown 1n FIG. 4, each thread reserves
a work area 1n parallel, and separates A,.,. from A_.,. accord-
ing to the conversion table of the maximal independent set.
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In this case, only the elements a; ; of A whose subscript |
belongs to the maximal independent set are stored as left-
justified 1n AE, and the stored values of ICOL are rewritten
into new variable numbers of the nodes.

Then, the largest value Nr of the numbers of non-zero

clements of row vectors 1s obtained, and the storage areas of
A, and A, (AE and ICOL) are reserved in the work area

of each thread based on the Nr and the numbers of the
clements of the maximal independent set and the direct
neighbor set taken charge of by each thread. Then, the row
vectors of AE and ICOL of A are assigned to the storage

arcas of A, and A_.. Similarly, in step S23, A, 1S
separated from A, using the conversion table of the direct
neighbor set.

In steps S21 and S24, the computation of sparse matrix
products 1s performed in parallel. Each thread holds the
corresponding portions of the matrices to be processed as
shown 1n FIGS. 7 and 8.

In the above mentioned computation of tmp, the 1nner-
most do loop process 1s performed only on the portion
assigned to each thread. Furthermore, relating to the neces-
sary column vector of C, a work area having overlap arcas
of an upper band width and a lower band width is prepared,
the portion held by each thread and the portions held by
other threads are copied to the work arca, and then the
computing processes are performed in parallel by the
threads.

In the parallel computation of p=M~'q in step S26, the
application prepares a storage arca for the portion taken
charge of by each thread and overlap areas of the upper and
lower band widths for each of the vector g and q., and g~
and g, are separated from the vector q using a conversion
table. Each thread computes a matrix-vector product in
parallel using the matrix portion assigned to the thread. At
this time, an overlap area 1s used to refer to a process result
of another thread.

The processing apparatus according to the present
embodiment can be configured not only using a parallel
computer, but also using any information processing device
(computer) as shown in FIG. 10. The information processing
device shown in FIG. 10 comprises a CPU (central process-
ing unit) 31, a memory 32, an input device 33, an output
device 34, an external storage device 35, a medium drive
device 36, and a network connection device 37. They are
interconnected through a bus 38.

The memory 32 comprises, for example, ROM (read only
memory), RAM (random access memory), etc. and stores a
program and data used in processes. The CPU 31 performs
necessary processes by executing a program using the
memory 32. The programs of the above mentioned 1teration
method for simultaneous linear equations and the precon-
ditioning process are stored 1n a specific program code
secgment 1n the memory 32 as a set of instructions.

The mput device 33 1s, for example, a keyboard, a
pointing device, a touch panel, etc., and 1s used 1n 1mputting
an 1nstruction and information from a user. The output
device 34 1s, for example, a display, a printer, a speaker, etc.,
and 1s used 1n outputting an inquiry and a process result to
a user.

The external storage device 35 1s, for example, a magnetic
disk device, an optical disk device, a magneto-optical disk
device, a tape recorder device, etc. The information pro-
cessing device stores the above mentioned program and data
in the external storage device 35, loads them to the memory
32 as necessary, and use them.

The medium drive device 36 drives a portable storage
medium 39, and accesses the stored contents. The portable
storage medium 39 can be any computer-readable storage
medium such as a memory card, a floppy disk, CD-ROM
(compact disk read only memory), an optical disk, a
magneto-optical disk, etc. A user stores the above mentioned
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program and data in the portable storage medium 39, loads
them to the memory 32 as necessary, and uses them.

The network connection device 37 1s connected to any
communications network such as a LAN (local area
network), etc., and converts data for use in communications.
In addition, the information processing device receives the
above mentioned program and data from other devices such
as a server, etc. through the network connection device 37,
loads them to the memory 32 as necessary, and uses them.

FIG. 11 shows computer-readable storage media capable
of providing a program and data for the information pro-
cessing device shown in FIG. 10. The program and data
stored 1n the portable storage medium 39 or in a database 41
of a server 40 are loaded to the memory 32. Then, the CPU
31 executes the program using the data, and performs a
necessary process. At this time, the server 40 generates a
propagation signal for propagating the program and the data,
and transmits the signal to the information processing device
through any transmission medium 1n the network.

According to the present invention, a preconditioning
process can be performed with computation convergence
accelerated 1 an 1teration method for simultaneous linear
equations 1in which a coefficient matrix 1s not an M-matrix.
Therefore, a problem which cannot converge in a conven-
tional preconditioning process can be efficiently solved.

What 1s claimed 1s:

1. A processing apparatus which performs a precondition-
ing process for an iteration method used to solve simulta-

neous linear equations through performing multilevel block
incomplete factorization, comprising:

™

a coellicient storage unit storing a coefficient matrix at a
certain level 1n the block incomplete factorization;

a determination unit determining a set of variable num-
bers of variables to be removed so that a block matrix
comprising elements, which have the variable numbers
of the variables to be removed as row numbers and
column numbers, of the coefficient matrix stored 1n said
coellicient storage unit can be diagonal dominant;

a set storage unit storing information about the deter-
mined set of variable numbers;

an 1nverse matrix unit obtaining an approximate 1nverse
matrix of the block matrix according to the information
stored 1n said set storage unit;

™

a coellicient matrix unit obtaining a coeflicient matrix at
a coarse level from a block matrix comprising
clements, which have variable numbers of remaining
variables as row numbers and column numbers, of the
coellicient matrix stored 1n said coeflicient storage unit;

a factorization unit storing the coefficient matrix at the
coarse level 1n said coefficient storage unit to perform
subsequent block 1ncomplete factorization; and

a computation unit computing a matrix-vector product in
the iteration method using the approximate inverse
matrix.

2. The apparatus according to claim 1, wherein

said determination unit determines the set of the variable
numbers by setting an 1nitial value of a direct neighbor
set which 1s a subset of a set of superscripts of the
clements of the coelficient matrix stored in said coet-
ficient storage unit, and obtaining a maximal indepen-
dent set of superscripts using the initial value of the
direct neighbor set and a random value.

3. The apparatus according to claim 1, wherein

said 1nverse matrix unit obtains the approximate inverse
matrix in 1terative computation with given approximate
precision.
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4. The apparatus according to claim 1, wherein

said coefficient matrix unit reduces non-zero elements 1n
the coefficient matrix at the coarse level, and maintains
sparsity of the coeflicient matrix at the coarse level.
5. A parallel computer which has a plurality of processors
and performs a preconditioning process for an 1iteration
method used to solve simultaneous linear equations through
multilevel block incomplete factorization, comprising;:

a coellicient storage unit dividing and storing a coetficient
matrix at a certain level 1n the block imncomplete fac-
torization so that the plurality of processors can per-
form a parallel process on the coefficient matrix;

a determination unit determining in parallel a set of
variable numbers of variables to be removed so that a
block matrix comprising elements, which have the
variable numbers of the variables to be removed as row
numbers and column numbers, of the coefficient matrix
stored 1n said coellicient storage unit can be diagonal
dominant;

a set storage unit dividing and storing information about
the determined set of the variable numbers so that the

plurality of processors can perform a parallel process
on the mmformation about the set of the variable num-

bers;

an 1nverse matrix unit obtaining in parallel an approxi-
mate 1mverse matrix of the block matrix according to
the mnformation stored 1n said set storage unit;

a coellicient matrix unit obtaining in parallel a coetficient
matrix at a coarse level from a block matrix comprising
clements, which have variable numbers of remaining
variables as row numbers and column numbers, of the
coellicient matrix stored 1n said coeflicient storage unit;

a factorization unit dividing and storing the coetficient
matrix at the coarse level 1n said coeflicient storage unit
to perform subsequent block incomplete factorization;
and

a computation unit computing in parallel a matrix-vector
product 1n the iteration method using the approximate
Inverse matrix.

6. A computer-readable storage medium storing a pro-
oram used to direct a computer to perform a preconditioning
process for an 1teration method used to solve simultaneous
linear equations through multilevel block incomplete
factorization, said preconditioning process comprising:

storing a coellicient matrix at a certain level in the block
incomplete factorization;

determining a set of variable numbers of variables to be

removed so that a block matrix comprising elements,
which have the variable numbers of the variables to be

removed as row numbers and column numbers, of the
stored coellicient matrix can be diagonal dominant;

storing information about the determined set of the vari-
able numbers;

obtaining an approximate inverse matrix of the block
matrix according to the stored information;

™

obtaining a coeflicient matrix at a coarse level from a
block matrix comprising elements, which have variable
numbers of remaining variables as row numbers and
column numbers, of the stored coefhicient matrix;

storing the coeflicient matrix at the coarse level to perform
subsequent block incomplete factorization; and

computing a matrix-vector product in the 1teration method
using the approximate mverse matrix.

7. A propagation signal for propagating a program to a

computer which performs a preconditioning process for an



US 6,799,194 B2

15

iteration method used to solve simultaneous linear equations
through multilevel block incomplete factorization, said pro-
oram directing the computer to perform:

storing a coeflicient matrix at a certain level 1n the block
incomplete factorization;

determining a set of variable numbers of variables to be
removed so that a block matrix comprising elements,
which have the variable numbers of the variables to be
removed as row numbers and column numbers, of the
stored coeflicient matrix can be diagonal dominant;

storing 1nformation about the determined set of the vari-
able numbers;

obtaining an approximate inverse matrix of the block
matrix according to the stored information;

obtaining a coeilicient matrix at a coarse level from a
block matrix comprising elements, which have variable
numbers of remaining variables as row numbers and
column numbers, of the stored coefficient matrix;

storing the coellicient matrix at the coarse level to perform
subsequent block 1ncomplete factorization; and

computing a matrix-vector product in the iteration method

using the approximate inverse matrix.

8. A processing apparatus which performs a precondition-
ing process for an iteration method used to solve simulta-
neous linear equations through performing multilevel block
incomplete factorization, comprising:

coellicient storage means for storing a coeflicient matrix
at a certain level 1n the block incomplete factorization;
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determination means for determining a set of variable
numbers of variables to be removed so that a block
matrix comprising elements, which have the variable
numbers of the variables to be removed as row numbers
and column numbers, of the coefhicient matrix stored 1n
said coellicient storage means can be diagonal domi-
nant;

set storage means for storing information about the deter-
mined set of variable numbers;

inverse matrix means for obtaining an approximate
inverse matrix of the block matrix according to the
information stored 1n said set storage means;

coellicient matrix means for obtaining a coefficient matrix
at a coarse level from a block matrix comprising
clements, which have variable numbers of remaining,
variables as row numbers and column numbers, of the
coellicient matrix stored 1n said coeflicient storage
means;

factorization means for storing the coefficient matrix at
the coarse level 1n said coeflicient storage means to
perform subsequent block incomplete factorization;
and

computation means for computing a matrix-vector prod-
uct 1n the 1teration method using the approximate
Inverse maftrix.
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