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Ditferent dynamic range control values are applied to the
2-channel and m-channel outputs without repeating the
inverse transform or the windowing of the audio samples.
First, m-channel dynamic range control values are applied to
audio samples in the frequency domain (“frequency
samples” or “frequency coefficients”). The frequency
samples are then inverse transformed to generate audio
samples in the time domain (“time samples”) and windowed
to generate windowed time samples. The windowed time
samples are saved and the 2-channel dynamic range control
values are applied to the windowed time samples. 2-channel
dynamic range control values include 2-channel scale fac-
tors that, when multiplied with groups of the windowed time
samples, at least partially remove the effects of windowing
and the m-ch dynamic range control values applied 1n the
frequency domain and readjust the dynamic range for
2-channel output. Thus, a set of windowed time samples
under m-channel dynamic range control values and a set of
windowed time samples under 2-channel dynamic range
control values are generated without repeating the 1nverse

transform or the windowing, which are computational and/
Or memory intensive.
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METHOD FOR INDEPENDENT DYNAMIC
RANGE CONTROL

CROSS-REFERENCE TO SOURCE CODE
APPENDIX

Appendix A, which 1s part of the present disclosure,
contains assembly code for a digital signal processor for
implementing one embodiment of this invention as
described more completely below.

A portion of the present disclosure of this patent docu-
ment contains material that 1s subject to copyright protec-
tion. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as 1t appears 1n the Patent and Trademark Office
patent files or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND

Active Coding-3, also known as “AC-3” or “Dolby
Digital,” 1s a digital audio standard described 1 “Digital
Audio Compression (AC-3)” by the United States Advanced
Television Systems Committee, which 1s hereby incorpo-
rated by reference 1n its entirety.

A prior art AC-3 bitstream 1s 1llustrated in FIG. 1A, which
1s reproduced from FIG. 5.1 of “Digital Audio Compression
(AC-3)” referenced above. The AC-3 bitstream is made up
of a sequence of synchronization frames. Each synchroni-
zation frame contains 6 coded audio blocks (“AB”), each of
which represents 256 new audio samples. A synchronization
information (“SI”’) header at the beginning of each frame
contains information needed to acquire and maintain syn-
chronization. A bitstream information (“BSI”) header fol-
lows the SI header, and contains parameters describing the
coded audio service. An auxiliary data (“AUX”) field may
follow the coded audio blocks. At the end of each frame 1s
an error check field that includes a cyclical redundancy
check (“CRC”) word for error detection. An optional CRC

word 1s also located 1n the SI header.

AC-3 provides a dynamic range control system that
allows program providers, such as movie studios, to control
the dynamic range of their audio programs. Dynamic range
refers to the range of the relative sound levels in an audio
program. For example, dialogues are usually used as a
reference where loud sounds are certain decibels above the
dialogue sound level while soft sounds are certain decibels
below the dialogue sound level.

Program providers can encode dynamic range gain words
(“dynrng™) (e.g., 8 bits) in the audio blocks to alter the gain
of the audio blocks. The dynrng values typically indicate
decibel (“dB”) gain reduction during the loudest signal
passages, and dB gain increases during the quite passages.
AC-3 provides that AC-3 decoders shall implement the
compression characteristics indicated by the dytrng values
encoded 1n the audio blocks. AC-3 further provides that
AC-3 decoders may optionally allow listener control over
the use of the dynrng values so that the listener may select
full dynamic range reproduction by i1gnoring the dynrng
values or partial dynamic range reproduction by using some
fraction of the dynrng values.

Program providers can also encode compression gain
words (“compr”) (e.g., 8 bits) in the BI header to alter the
gain of the audio frames. The compr values provide larger
dynamic range reductions (also known as “heavy
compression”) than the dynrng values. The compr values
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2

have twice the control range as the dynrng values (48 dB
vs. 24 dB) with half the resolution (0.5 dB v. 0.25 dB).

AC-3 decoders may provide both 2-channel and
m-channel outputs (m>0; e.g., m=6). In some applications,
consumers may desire independent dynamic range control
for the 2-channel and the m-channel outputs. To provide
independent dynamic range control for the 2-channel and the
m-channel outputs, AC-3 decoders can (1) execute the
decoding algorithm with one set of dynamic range gain
words (or compression gain words) for the 2-channel output,
and (2) execute the decoding algorithm again with another
set of dynamic range gain words (or compression gain
words) for the m-channel output. This method is inefficient

because actions that are computational and/or memory
intensive are repeated. Thus, what 1s needed 1s a method that
provides independent dynamic range control for 2-channel
and m-channel outputs while minimizing the repetition of
computational and/or memory intensive actions.

SUMMARY

In accordance with one aspect of the 1nvention, indepen-
dent dynamic range control are provided for 2-channel and
m-channel outputs without repeating computational and/or
memory 1ntensive actions including the inverse transform
and the windowing of audio samples.

In one embodiment, m-channel dynamic range control 1s
conventionally applied to the m-channel audio samples in
the frequency domain to form m-channel frequency
samples. The m-channel frequency samples are inverse
transformed to generate audio samples in the time domain
(“m-channel time samples”) and windowed to generate
windowed time samples (i.e., the m-channel output).

2-channel dynamic range control 1s applied to the
m-channel audio samples in the time domain after window-
ing instead of the m-channel audio samples in the frequency
domain prior to the inverse transform, thereby avoiding
repeating the inverse transform and the windowing of the
m-channel audio samples. To do this, the m-channel output
1s divided into groups and each group 1s multiplied with a
corresponding 2-channel dynamic range scale factor. The
2-channel dynamic range scale factors at least partially
remove the effects of the m-channel dynamic range control
applied 1n the frequency domain and the windowing in the
time domain, and readjust the dynamic range of the
m-channel output for 2-channel output. These audio samples
are then downmixed to form the 2-channel output.

In another embodiment, the 2-channel and m-channel
outputs are generated without repeating the inverse trans-
form. The m-channel dynamic range control 1s convention-
ally applied to the m-channel frequency samples. The
m-channel frequency samples are inverse transformed to
generate the m-channel time samples.

The m-channel time samples are duplicated to two sets. In
the first set, the m-channel time samples are conventionally
windowed to generate windowed time samples (i.e., the
m-channel output). In the second set, a 2-channel dynamic
range final scale 1s multiplied with the m-channel time
samples. The 2-channel final scale at least partially removes
the effects of the m-channel dynamic range control applied
in the frequency domain and readjusts dynamic range of the
m-channel time samples for 2-channel output. The second
set 15 then windowed to generate windowed time samples
and downmixed to form the 2-channel output.
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3
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A 1illustrates a prior art AC-3 bitstream.

FIG. 1B 1llustrates, in a flow chart, a method for decoding,
AC-3 bitstreams.

FIG. 1C 1illustrates, in a flow chart, a method for 1nde-
pendently controlling the dynamic range of the 2-channel

output and the m-channel output.
FIG. 2 1llustrates, 1n a block diagram, a host device.

FIG. 3 illustrates, 1n a block diagram, an audio decoder of
FIG. 2.

FIG. 4A 1llustrates, 1n a block diagram, a datapath device
of FIG. 3.

FIG. 4B 1llustrates, in a block diagram, a host register of
FIG. 3.

FIGS. 4C and 4D 1illustrate, in block diagrams, embodi-
ments of a data memory of FIG. 4A.

FIGS. 5A and 5B 1illustrate, in flow charts, a method for

independently controlling the dynamic range of the
2-channel output and the m-channel output 1n accordance
with one aspect of the present mvention.

FIGS. 6A and 6B 1llustrate, 1n low charts, another method
for independently controlling the dynamic range control of
the 2-channel output and the m-channel output in accor-
dance with another aspect of the present mvention.

DETAILED DESCRIPTION

FIG. 1B 1illustrates an AC-3 decoding method 10, which
1s reproduced from FIG. 6.1 of “Digital Audio Compression
(AC-3)” referenced above. In action 100, the input bitstream
1s received. Action 100 1s followed by action 102. In action
102, the bitstream 1s synchronized and checked for errors.
Action 102 1s followed by action 104. In action 104,
bitstream information (“BSI”), main information, and side
information are unpacked. The side information includes
exponent strategies, bit allocation parameters, dither flags,
coupling parameters, rematrixing flags, dynamic range
words (e.g., dynrng and compr), and block switch flags. The
main information includes the packed (encoded) exponents
and mantissas. Action 104 1s followed by action 106.

In action 106, the exponents for audio samples are
unpacked and decoded. Please note that the audio samples
are encoded 1n the AC-3 bitstream as frequency samples
(also known as “frequency coefficients”) represented in
floating point format (composing of exponents and
mantissas). Please further note that exponent strategies, the
number of exponents, and the actual packed exponents are
employed to decode the exponents in action 106. Action 106
1s followed by action 108. In action 108, the decoded
exponents and bit allocation parameters are used to deter-
mine a set of bit allocation pointers (“baps”), one for each
coded mantissa. The baps indicate the quantizer used for the
mantissa and how many bits in the bitstream were used for
cach mantissa. Action 108 1s followed by action 110.

In action 110, the mantissas are unpacked, ungrouped,
dequanitzed, and/or dithered. The mantissas are unpacked
by peeling off groups of bits as indicated by the baps.
Grouped mantissas must be ungrouped. Individual coded
mantissa values are converted mto a dequantized value.
Mantissas that are indicated as having zero bits are repro-
duced as either zero or by a random dither value (under the
control of the dither flag). Action 110 is followed by action
112. In action 112, the channels that are coupled must be
decoupled according to the coupling parameters. Action 112
1s followed by action 114. In action 114, rematrixing 1is
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4

employed in response to the rematrixing flag. Action 114 1s
followed by action 116.

In action 116, the magnitudes of the exponents and the
mantissas are altered according to the dynamic range words.
Dynamic range words include dynrng and compr. Action

116 1s followed by action 118. In action 118, blocks of

frequency samples are inverse transformed into blocks of
fime samples. Inverse transform 1s conducted 1n one of two
modes: a 512-sample transform and 256-sample transform.
A block switch flag specifies which of these two formats 1s
to be employed on the incoming block. Action 118 is
followed by action 120.

In action 120, individual blocks of time samples are
windowed and adjacent blocks of time samples are over-
lapped and added together to reconstruct the final continues

fime output PCM audio signal. Action 120 1s followed by
action 122. In some applications, two sets of outputs are
provided. One set of output has output channels equal to the
input channels while another set of output has downmixed
output channels less than the input channels. In action 122,
the transmitted channels are downmixed to the output chan-
nels if the former 1s greater than the latter. Action 122 1s
followed by action 124. In action 124, the actual PCM
values are provided to an output buifer. Action 124 1s
followed by action 126. In action 126, the actual PCM
values are output. Implementations of method 10, com-
monly known to one skilled in the art as Dolby Reference
Code, may be licensed from Dolby Laboratories, Inc. of San
Francisco, Calif.

FIG. 1C 1llustrates a method 20 that provides 2-channel
and m-channel outputs (m>0; e.g., m=6) with independent

dynamic range control. Method 20 employs the previously

described actions 100, 102, 104, 106, 108, 110, 112, and 114
of FIG. 1B. Action 114 1s followed by action 200.

In action 200, parameters used only to adjust the dynamic
range of the 2-channel output (“2-ch parameters™) are
loaded. The 2-ch parameters include parameter 2-channel
scale high (“2-ch dynscalehigh™) (e.g., 8 bits), parameter
2-channel scale low (“2-ch dynscalelow™) (e.g., 8 bits), and
parameter 2-channel downmix active (“2-ch dnmix__
active”) (e.g., 1 bit). Other parameters used to adjust the
dynamic range of both the 2-channel output and the
m-channel output (“common parameters”) are also loaded.
The common parameters include the dynamic range gain
word (“dynrng”) (e.g., 8 bits) for the current block, the
compression gain word exist bit (“compre”) (e.g., 1 bit) for
the current frame, the compression gain word (“compr’)
(e.g., 8 bits) for the current frame, the operational mode (also
known as “compression mode”) (e.g., 2 bits), and the
mantissas (e.g., 24 bits) and exponents (e.g., 6 bits) of the
frequency samples of the current block.

Parameters 2-ch dynscalehigh and 2-ch dynscalelow are
used to scale parameter dynrng to produce partial dynamic
range reproduction. Parameter 2-ch dnmix__active 1s deter-
mined according to the Dolby® downmix algorithm applied
in action 220 (described later) to downmix the input chan-
nels to 2 output channels. Parameter dnmix__active signal 1s
active (e.g., “1”) if the sum of the downmix coefficients used
to downmix the input channels to 2 output channels is
greater than one.

Parameter operational mode indicates the Dolby® stan-
dard operating mode used to implement, among others, the
dynamic range control. Standard operating modes include

“RF Mode,” “Line Mode,” “Custom__a,” and “Custom__d.”
Action 200 1s followed by action 202.

In action 202, a final scale (represented by a mantissa and
an exponent) 1s determined from parameters operational
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mode, dynrng, compre compr, dynscalelow, dynscalehigh,
and dnmix__active. Final scale 1s the dynamic range control
value that will be multiplied with the decoded audio samples
(frequency samples represented by mantissas and
exponents) to adjust their dynamic range. The final audio
samples are computed using the following equation:

Audio Sample=Final Scale*Decoded Audio Sample. Eqn. 1

Depending on the operational mode, different functions are
used to determine the final scale. Table 1 illustrates how final
scale 1s determined in pseudo code based on C language
syntax.

TABLE 1

Custom_a and
Custom__ d

Line
Mode

RF
Mode

Dynrng > 0 dB —
final scale = dynrng *

Compre && compr —
final scale = compr +

dyrirng > 0 dB —
final scale = dynrng *

11 dB dynscalelow dynscalelow

Compre && dyrrmg =0 dB & & Dynrng = 0 dB —
lcompr — final dnmix__active — final scale = dynrng *
scale = dynrng + final scale = dynrng dynscalehigh

11 dB

lcompre && dynmg =0 dB && Dnmix__active — final

ldnmix__active — final
scale = dynrng *

dynscalehigh

dnmix__active — final
scale = dynrng -

11 dB

lcompre &&

ldnmix__ active —
final scale = dynrng

scale = dynrng —
11 dB

For example, in line mode, if (1) parameter dynrng is less
than or equal to O dB and (2) parameter dnmix__active signal
is not active (e.g., “07), then the final scale is equal to the
product of parameters dynrng and dynscalehigh.

In the first pass through action 202, the 2-channel final
scale for the current audio block 1s determined from the 2-ch
parameters and the common parameters. In the first pass
through action 202, 2-ch dynscalehigh is used for dynscale-
high of Table 1, 2-dynscalelow 1s used for dynscalelow of
Table 1, and 2-ch dnmix_active 1s used for dnmix_ active of
Table 1. In a second pass through action 202 (described
later), the m-channel final scale is determined from param-
cters used only for adjusting the dynamic range of the
m-channel output (“m-ch parameters”) and the common
parameters. Action 202 1s followed by action 204.

In action 204, the final scale 1s modified and converted to
components of mantissa and exponents. Final scale must be
modified and converted from its dB format to a format that
can be multiplied with the frequency samples 1n floating-
point format to adjust the frequency samples by the dB value
represented by the final scale. Action 204 1s followed by
action 206.

In action 206, the final scale 1s multiplied with the
frequency samples of the current audio block to adjust the
dynamic range of the block. Multiplication of two floating-
point values consists of adding their exponents and multi-
plying their mantissas. Thus, the exponent of the final scale
1s added to the exponent of each frequency sample of the
current audio block and the mantissa of the final scale 1s
multiplied to the mantissa of each frequency sample of the
current audio block. Each sum exponent and each product
mantissa become the new exponent and the new mantissa for
cach corresponding frequency sample 1n the current audio
block. Action 206 1s followed by action 208.

In action 208, the binary point of each new mantissa 1s
right shifted by the value of the its new exponent and
rounded to a lower number of bits. Action 208 1s followed
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by action 210. In action 210, the frequency samples (now
consisting of the shifted mantissas) of the current audio
block are inverse transformed (by, e.g., inverse modified
discrete cosine transform) into an audio block of time
samples. Action 210 1s followed by action 212. In action
212, the current audio block of time samples 1s windowed
and overlapped/added (collectively referred as “windowing”
or “window”) with the preceding audio block of time
samples to reconstruct the PCM audio signals (also called
“windowed time samples™). Action 212 is followed by
action 214.

In action 214, the PCM audio signals generated 1n action
212 are stored. Action 214 1s followed by action 216. In
action 216, a determination 1s made as to whether m-channel
dynamic range control has been applied to generate the
m-channel output. If so, action 216 1s followed by actions
220. Otherwise, action 216 1s followed by action 218.

In action 218, parameters used only to adjust the dynamic
range of the m-channel output (“m-ch parameters”) are
loaded. These parameters include parameter m-channel
scale high (“m-ch dynscalehigh™) (e.g., 8 bits), parameter
m-channel scale low (“m-ch dynscalelow™) (e.g., 8 bits), and
parameter m-channel downmix active (“m-ch dnmix__
active”) (e.g., 1 bit). The previously loaded common param-
eters remain unchanged and therefore are not loaded again.
Action 218 1s followed by the previously described actions
202, 204, 206, 208, 210, 212, 214, and 216. In the second
pass through action 202, the m-channel final scale 1s deter-
mined from the m-ch parameters and the common param-
cters. In the second pass through action 202, m-ch dynscale-
high 1s used for dynscalehigh of Table 1, m-dynscalelow 1s
used for dynscalelow of Table 1, and m-ch dnmix__ active 1s
used for dnmix_ active of Table 1. Subsequently, actions
204, 206, 208, 210, 212, 214 generate and store the win-
dowed time samples generated with the m-channel final
scale.

In action 220, the PCM audio signals generated with the
2-ch final scale are downmixed from the input channels to 2
output channels. Action 220 1s followed by action 222. In
action 222, the PCM audio signals for 2-channel output
(samples generated with 2-ch final scale) are provided to a
PCM output buffer for 2-channel output while the PCM
audio signals for m-channel output (samples generated with
m-ch final scale) are provided to a PCM output buffer for
m-channel output. Action 222 1s followed by action 224. In
action 224, the 2-channel and m-channel PCM audio signals
arc output.

As described above, to provide 2-channel and m-channel
outputs (m>0; e.g., m=6) with independent dynamic range
control, many actions are repeated. Among the actions
repeated are the inverse transform of action 210 and win-
dowing of action 212, which are processor and/or memory
intensive. Thus, a more efficient method to provide inde-
pendent dynamic range control for 2-channel and m-channel
outputs can be achieved if the repetition of actions 210 and
212 are avoided or replaced with alternative actions that are
less processor and/or memory intensive.

In accordance with one aspect of the present invention, a
method 40 (FIG. SA) provides independent dynamic range
control for 2-channel and m-channel output (m=>0). Method
40 includes the previously described actions 100, 102, 104,
106, 108, 110, 112, and 114 (FIG. 1B). Action 114 is
followed by action 250. In action 250, an audio decoder 304
(FIG. 2) applies dynamic range control for m-channel output
(m>0) to frequency samples to generate m-channel fre-
quency samples. Action 250 1s followed by action 252. In
action 252, audio decoder 304 inverse transforms the
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m-channel frequency samples to generate m-channel time
samples (audio samples in the time domain). Action 252 is
followed by action 254. In action 254, audio decoder 304
windows the time samples to generate m-channel windowed
time samples (also called “m-ch PCM audio samples”).
Action 254 1s followed by action 256.

In action 256, audio decoder 304 applies dynamic range
control for 2-channel output to m-channel windowed time
samples to form 2-channel windowed time samples. Audio
decoder 304 uses stepping functions to generate 2-channel
scale factors that, when multiplied with groups of the
m-channel windowed time samples, remove at least partially
the effects of windowing and the m-channel dynamic range
control applied 1n the frequency domain, and readjust the
dynamic range of the windowed time samples for 2-channel
output. Thus, a first set of windowed time samples under
m-channel dynamic range control and a second set of
windowed time samples under 2-channel dynamic range
control are advantageously generated without repeating the
inverse transform and the windowing as in method 20 (FIG.
1C). Action 256 is followed by action 260.

In action 260, audio decoder 304 downmixes the
2-channel windowed time samples to form 2-channel PCM
audio samples for 2-channel output. Action 260 1s followed
by action 262. In action 262, audio decoder 304 stores the
PCM audio samples 1n builers. Action 262 is followed by
action 264. In action 264, audio decoder 304 outputs the
2-channel and m-channel PCM audio samples.

In one implementation, a host device 30 (FIG. 2) includes
a host processor 300, an AC-3 source 302, an audio decoder
304, a digital to analog converter (“DAC”) 312, and a
Sony/Philips digital interface format converter (“SPDIEF”)
314. Host device 30 1s, for example, a conventional DVD
player or a computer. AC-3 source 302 1s, for example, a
conventional DVD drive or a hard disk drive. AC-3 source
302 supplies AC-3 bitstreams to decoder 304. Decoder 304
generates digital audio samples from the AC-3 bitstreams 1n
accordance to commands from host processor 300. Host
processor 300 receives commands from a user through a
remote 306. Host processor 300 sends commands to decoder
304 by writing to a host register 326 (FIG. 3). Host register
326 1ncludes, for example, smaller host registers.

Decoder 304 passes a 2-channel output 308 and a
m-channel output 310 to DAC 312 and/or SPDIF converter
314. DAC 312 passes analog audio samples (either
2-channel, m-channel, or both) to, for example, a stereo
system 316 that accepts analog audio signal. SPDIF 314
passes formatted digital audio samples (either 2-channel,
m-channel, or both) to, for example, a stereo system 318 that
accepts SPDIF digital audio signal.

Decoder 304 includes a parser 320 (FIG. 3) that receives
the AC-3 bitstream (action 100 from FIG. 1A) from AC-3
source 302. Parser 320 synchronizes the AC-3 bitstream and
checks the AC-3 bitstream for errors (action 102). Parser 320
also parses out the BSI, the main information, and the side
information (action 104). Parser 320 passes the BSI, the
main information, and the side information to a datapath 322
(FIG. 3).

Datapath 322 decodes the exponents and the mantissas of
the frequency samples (actions 106, 108, 110, 112, and 114
of FIG. 1A). Datapath 322 applies dynamic range control to
the frequency samples (action 116). Datapath 322 inverse
transforms the frequency samples to time samples and
window the time samples (actions 118 and 120). Datapath
322 passes the windowed time samples to a postprocessor
324 (FIG. 3). Datapath 322 receives commands from host

processor 300 1n host register 326.
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Postprocessor 324 stores the windowed time samples
received from datapath 322 1n buffer 346 for m-channel
output. Postprocessor 324 also downmixes the windowed
time samples received from datapath 322 from m channels
of mnput to 2 channels of output (action 122). Postprocessor
324 stores the downmixed windowed time samples (action
124) in buffer 344 and windowed time samples in buffer 346.
Buflers 344 and 346 eventually outputs the windowed time
samples and the downmixed windowed time samples to

DAC 312 or SPDIF 314 (action 126).

Datapath 322 includes an input interface 328 (FIG. 4A)
that receives data from parser 320 and host register 326.
Input interface 328 writes these data to data memory 330
(FIG. 4A). A digital signal processor (“DSP”) 332 executes
a program 334 stored 1n program memory 336. Program 334
includes instructions that independently apply m-channel
and 2-channel dynamic range control. When executing pro-
oram 334, DSP 332 writes mtermediate results and output
data to data memory 330. Addresses of data in data memory
330 and host register 326 are mapped to a memory map unit
338. An output interface 340 writes output data to postpro-
cessor 324.

In one implementation, action 250 (FIG. SA) includes

actions 400, 402, 403, 404, 406, 408, 410, 412, 414, 416,
418, 420, 422, 424, 426, 428, and 430 (FIG. 5B). In action
400, 1nput interface 328 loads parameters used only to adjust
the dynamic range of the 2-channel output (“2-ch
parameters”) from host register 326 (FIG. 4B) to their
respective locations in working memory 342 (FIG. 4C) of
memory 330A. The 2-ch parameters include the 2-channel
scale high value (“2-ch dynscalehigh™) (e.g., 8 bits), the
2-channel scale low value (“2-ch dynscalelow”) (e.g., 8
bits), and the 2-channel downmix active signal (“2-ch
dnmix_active™) (e.g., 1 bit) from postprocessor 324. Input
interface 328 loads parameter 2-ch dynscalehigh from host
register 326 as parameter dynscalehigh in working memory
342, 2-channel dynscalelow host register 326 as dyn-
scalelow 1 working memory 342, and 2-ch dnmix_ active
host register 326 as dnmix__active in working memory 342.

Parameters 2-ch dynscalehigh and 2-ch dynscalelow are
used to scale the dynamic range gain word (“dynrng”) to
produce partial dynamic range reproduction. In one
variation, a user specifies the values of parameters 2-ch
dynscalehigh and 2-ch dynscalelow to host processor 300
through remote 306, and host processor 300 writes their
respective values 1n host register 326. In another variation,
host processor 300 sets default values of parameters 2-ch
dynscalehigh and 2-ch dynscalelow 1n host register 326, and
the user 1nstructs host processor 300 to adjusts the values of
parameters 2-ch dynscalehigh and 2-ch dynscalelow through
remote 306.

Parameter 2-ch dnmix__active 1s generated by the Dolby®
downmix algorithm applied. Parameter dnmix_ active 1is
active (e.g., “1”) if the sum of the downmix coefficients used
to downmix the input channels to the output channels is
orcater than one. In one variation, postprocessor 324 gen-
crates parameter 2-ch dnmix_ active according to the
Dolby® downmix algorithm postprocessor 324 applies to
downmix windowed time samples. Postprocessor 324 writes
parameter 2-ch dnmix_ active to host register 326 (FIG. 4B).

Input mterface 328 also loads other parameters used to
adjust the dynamic range of both the 2-channel output and
the m-channel output (“common parameters”) in memory
330A (FIG. 4C) and maps their addresses to memory map
unit 338 (FIG. 4A). The common parameters include the
dynrng (e.g., 8 bits) for the current block, the compression
gain word exist bit (“compre™) (e.g., 1 bit) for the current
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frame, the compression gain word (“compr”) (e.g., 8 bits )
for the current frame, the operational mode (also known as
“compression mode”) (e.g., 2 bits), and the decoded man-
fissas and exponents of the current block of frequency
samples (256 frequency samples total).

Operational modes are standard operating modes defined
by Dolby Laboratories, Inc. to simplify the implementation
of dynamic range control and other features. Operational
modes include “RF Mode,” “Line Mode,” “Custom__a,” and
“Custom__d.” In one variation, host processor 300 sects the
default operational mode 1 host register 326. In this
variation, the user instructs host processor 300 to change the
operational mode through remote 306. Exemplary code for
action 400 1s shown 1n the Appendix from line 2 of p. 25 to
line 33 of p. 25. Action 400 1s followed by action 402.

In action 402, DSP 332 determines the 2-ch final scale
value according to the values of dynscalehigh, dynscalelow,
dnmix__active saved 1n working memory 342, the values of
common parameters saved in memory 330A (FIG. 4C), and
the conditions illustrated 1n the previously described Table 1.
Exemplary code for action 402 i1s shown 1n the Appendix
from line 19 of p. 29 to line 32 of p. 31. Action 402 1s
followed by action 403. In action 403, DSP 332 modifies and
converts the 2-ch final scale to components of mantissa and
exponents. DSP 332 must modily and convert 2-ch final
scale from 1ts dB format to a format that can be multiplied
with the frequency samples 1n floating-point format to adjust
the dynamic range of the frequency samples. Action 403 is
followed by action 404.

In action 404, DSP 332 saves the 2-ch final scale of the
current block in memory 330A (FIG. 4C) and maps its
address in memory map unit 338 (FIG. 4A). As FIG. 4C
shows, memory 330A also contains the 2-ch final scale from
the previous block (described later). Exemplary codes for
action 403 and 404 are shown 1n the Appendix from line 34
of p. 31 to line 5 of p. 32. Action 404 1s followed by action
406.

In action 406, DSP 332 “steps” the 2-ch final scale of the
current block with the 2-ch final scale of the previous block
to form n number of scale factors (n>0). DSP 332 first shifts
the binary point of the mantissas of the 2-ch final scales of
the current block and the previous block by the value of their
respective exponents. DSP 332 then determines the scale
factors according to the following equations:

2-ch scale factor;=2ch_ finalscale_ preblk+(2ch_ finalscale_ cur-
blk-2ch__finalscale preblk)*1/n

2-ch scale factor,=2ch_ finalscale preblk+(2ch_ finalscale cur-
blk-2ch__finalscale preblk)*2/n

2-ch scale factor(, ,y=2ch_finalscale preblk+(Zch_ finalscale
curblk—-2ch__finalscale_ preblk)*(n—1)/n

2-ch scale factor,=2ch__finalscale_ preblk+(2ch_ finalscale_ cur-
blk-2ch__finalscale_ preblk)*n/n Eqgn. 2

Parameter 2ch_ finalscale_ preblk 1s the 2-ch final scale of
the previous block and parameter 2ch_ finalscale curblk 1s
the 2-ch final scale of the current block. In one example, n

1s eight are there are eight 2-ch scale factors. Please note that
2-ch final scale of the previous block was saved by DSP 332

in memory 330A (FIG. 4C) when DSP 332 processed the
previous block. If the current block is the first block of the
first frame being decoded, there 1s no 2-ch final scale from
the previous block and DSP 332 sets value of the 2-ch final
scale from the previous block as 1. Action 406 1s followed
by action 408.

In action 408, DSP 332 saves the 2-ch scale factors 1n
memory 330A (FIG. 4C) and maps their addresses to
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memory map unit 338 (FIG. 4A). In one variation, DSP 332
converts the 2-ch scale factors to mantissa and exponent
format and saves the mantissas and exponents of the 2-ch
scale factors 1in memory 330A. Exemplary codes for action
406 and 408 are shown in the Appendix from line 7 of p. 32
to line 43 of p. 32. Action 408 1s followed by action 410.

In action 410, mput interface 328 loads parameters used
only to adjust the dynamic range of the m-channel output
(“m-ch parameters™) from host register 326 to their respec-
tive locations in working memory 342 (thereby replacing the
2-ch parameters). These parameters include a m-channel
scale high value (“m-ch dynscalehigh™) (e.g., 8 bits), a
m-channel scale low value (“m-ch dynscalelow™) (e.g., 8
bits), and a m-channel downmix signal (“m-ch dnmix__
active™) (e.g., 1 bit). Exemplary code for action 410 is shown
in the Appendix from line 35 of p. 25 to line 58 of p. 25.
Action 410 1s followed by action 412.

In action 412, DSP 332 determines the m-ch final scale
value according to the values of dynscalehigh, dynscalelow,
dnmix__active saved 1n working memory 342, the values of
common parameters saved in memory 330A (FIG. 4C), and
the conditions illustrated in the previously described Table 1.
Action 412 1s similar to action 402. Exemplary code for
action 412 1s shown 1n the Appendix from line 19 of p. 29
to line 32 of p. 31. Action 412 1s followed by action 414. In
action 414, DSP 332 modifies and converts the m-ch final
scale to components of mantissa and exponents. Action 414
1s similar to action 404. Action 414 1s followed by action
416. In action 416, DSP 332 saves the m-ch final scale of the
current block in memory 330A (FIG. 4C) and maps the
address to memory map unit 338 (FIG. 4A). Exemplary
codes for action 414 and 416 are shown in the Appendix
from line 34 of p. 31 to line 5 of p. 32. Action 416 1is
followed by action 418.

In action 418, DSP 332 “steps” the m-ch final scale of the
current block with the m-ch final scale of the previous block
to form n number of scale factors. DSP 332 first shifts the
binary point of the mantissas of the m-ch final scales of the
current block and the previous block by the value of their
respective exponents. DSP 332 then determines the scale
factors according to the following equations:

m-ch scale factor,=m__ch_ finalscale preblk+{m__ch_ finalscale__

curblk-m__ch_ finalscale_ preblk)*1/n

m-ch scale factor,=m_ ch_ finalscale_ preblk+{m__ch_ finalscale
curblk—-m__ch__finalscale_ preblk)*2/n

m-ch scale factor, ;y=m_ ch_ finalscale  preblk+(m__ch_ fi-
nalscale curblk—-m__ch_ finalscale_ preblk)*(n—1)/n

m-ch scale factor,=m__ch_ finalscale_ preblk+{m__ch__ finalscale _
curblk—m__ch_ finalscale_ preblk)*n/n Eqn. 3

Parameter m__ch_ finalscale_ preblk 1s the m-ch final scale
of the previously block and parameter m_ ch_ finalscale_
curblk 1s the m-ch final scale of the current block. Please
note that m-ch final scale of the previous block was saved by
DSP 332 in memory 330A (FIG. 4C) when DSP 332
processed the previous block. If the current block 1s the first
block of the first frame being decoded, there 1s no m-ch final
scale from the previous block and DSP 332 sets the value of
the m-ch final scale from the previous block as 1. Action 418
1s similar to action 406. Exemplary code for action 418 is
shown 1n the Appendix from lines 7 to 43 of p. 32. Action
418 1s followed by action 420.

In action 420, DSP 332 truncates the m-ch scale factors.
DSP 332, for example, truncates the m-ch scale factors from
48 bits to 24 bits. Action 420 1s followed by action 422. In
action 422, DSP 332 inverts the values of the m-ch scale
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factors. In one variation, DSP 332 uses a lookup table 348
(FIG. 4C) stored in memory 330A (FIG. 4C) to determine

the inverted values of the m-ch scale factors. Alternatively,

DSP 332 calculates the inverted value of the m-ch scale
factors. Action 422 1s followed by action 424.

In action 424, DSP 332 multiplies each inverted m-ch
scale factor with the corresponding 2-ch scale factors. DSP
332 first converts the inverted m-ch scale factors to mantissa
and exponent format. DSP 332 then adds the exponents of
the corresponding 1nverted m-ch scale factor and 2-ch scale
factor and multiplies the mantissas of the corresponding
inverted m-ch scale factor and 2-ch scale factor. The sum
exponent and product mantissa form a new exponent and a
mantissa for the 2-ch scale factor. For example, exponent of
m-ch scale factor, 1s added to exponent of 2-ch scale factor,
to form the new exponent of 2-ch scale factor,, and mantissa
of m-ch scale factor, 1s multiplied to mantissa of 2-ch scale
factor, to form the new mantissa of 2-ch scale factor,.

Action 424 1s followed by action 426.

In action 426, DSP 332 saves the new 2-ch scale factors
in memory 330A (FIG. 4C) and maps their address to

memory map unit 338 (FIG. 4A). In one variation, DSP 332
saves the new 2-ch scale factors over the old 2-ch scale

factors. Exemplary codes for action 422, 424, and 426 arc

shown 1n the Appendix from line 45 of p. 32 to line 39 of p.
35. Action 426 1s followed by action 428. In action 428, DSP

332 multiplies the m-ch final scale of the current block with
the frequency samples of the current block to form fre-

quency samples for m-channel output (“m-ch frequency
samples™). Action 428 is similar to action 206 (FIG. 1C).

Action 428 1s followed by action 430. In action 430, DSP
332 right shifts the binary point of each mantissa the m-ch
frequency samples by the value of i1ts exponent. In one
variation, DSP 332 also rounds the shifted frequency
samples to a smaller bit size. For example, DSP 332 rounds
the shifted frequency samples from 48 bits to 24 bits.
Exemplary codes for action 428 and 430 are shown 1n the
Appendix from line 27 of p. 27 to line 17 of p. 29. Action
430 1s followed by action 252.

In one 1implementation, action 256 includes actions 436
and 438. In action 436, DSP 332 saves the m-ch windowed
time samples generated in memory 330A (FIG. 4C) and
maps their addresses to memory map unit 338. In action 436,
output 1nterface 340 passes the m-ch windowed time
samples and the 2-ch scale factors to postprocessor 324.

Action 436 1s followed by action 438.

In one variation, postprocessor 324 1s similar to datapath
322. In this variation, postprocessor 324 has an input inter-
face 628 that receives the m-ch windowed time samples
from datapath 322 and saves the m-ch windowed time
samples to a data memory 630. Postprocessor 324 also has
a DSP 632 that executes the instructions described above
and below according to a program 634 saved 1n a program
memory 636. Postprocessor 324 further has a memory map
unit 638 containing the addresses of the data 1n data memory
630 and an output interface 640 that outputs results to PCM
buffers 344 and 346 (to be described). FIG. 4A may be

modified according to Table 2 to 1illustrate postprocessor

324,
TABLE 2
Reference Modification
330 630
332 632
334 634
336 636
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TABLE 2-continued

Reference Modification
338 638
340 640

In action 438, DSP 632 of postprocessor 324 multiplies
the m-ch windowed time samples with the 2-ch scale factors
stored 1n action 426 to form 2-ch windowed time samples.
The 2-ch scale factors at least partially removes the effects
of windowing and replaces the m-channel dynamic range
control with 2-channel dynamic range control. Thus, method
40 does not repecat computational intensive actions of
iverse transtorm and windowing like method 20.

In one variation, where there are eight 2-ch scale factors
(n=8), output interface 340 of datapath 322 passes
m-channel windowed time samples 1n groups of 32 samples
to mput interface 628 of postprocessor 324. DSP 632 of
postprocessor 324 multiplies the first group (the first 32
samples) with the 2-ch scale factor,, the second group (the
next 32 samples) with the 2-ch scale factor,, and so forth
until 256 samples (a block of audio samples) are multiplied.
Action 438 1s followed by action 260.

In action 260, DSP 632 of postprocessor 324 convention-
ally downmixes the 2-ch windowed time samples to 2-ch
PCM audio samples for 2-channel output. If the sum of the
downmix coeflicients used to downmix the 2-ch windowed
fime samples 1s greater than 1, DSP 632 of postprocessor
324 writes an active signal 2ch__dnmix__active (e.g., “1”) in
host register 326.

If DSP 632 does not downmixes the m-channel windowed

time samples, DSP 632 of postprocessor 324 writes an
inactive signal m_ ch_dnmix_active (e.g., “0”) in host
register 326. However, 1f the m-ch windowed time samples
arc downmixed, DSP 632 writes an active Slgnal mach__
dnmix__active 1f the sum of the downmix coeflicients used
to downmix the m-ch time samples 1s greater than 1. Action
260 is similar to action 220 (FIG. 1C). Action 260 1is
followed by action 262.

In action 262, output interface 640 of postprocessor 324
passes the 2-ch and the m-ch PCM audio samples to respec-
tive output buifers 344 and 346. Action 262 1s followed by
action 264. In action 264, output buifers 344 and 346 output
the 2-ch and m-ch PCM audio samples to DAC 312 and/or
SPDIF 314.

Method 40 generates 2-channel and m-channel outputs
without repeating the inverse transform or the windowing.
However, additional actions are added to step the 2-channel
and the m-channel final scales to form the 2-channel and the
m-channel scale factors, to mvert the m-channel scale
factors, to multiply the inverted m-channel scale factors with
the 2-channel scale factors to form new 2-channel scale
factors, and to multiply the new 2-channel scale factors with
m-channel windowed time samples to form 2-channel win-
dowed time samples. However, the added computational
and/or memory costs of these actions still provide a saving,
over the computational and/or memory costs of repeating the
inverse transtorm and the windowing.

In accordance with another aspect of the present
invention, a method 50 (FIG. 6A) provides independent
dynamic range control for 2-channel and m-channel output.
Method 350 includes the previously described actions 100,
102, 104, 106,108,110, 112, and 114 (FIG. 1B). Action 114
1s followed by action 251. In action 251, an audio decoder
304 (FIG. 2) applies dynamic range control for m-channel
output to frequency samples to generate m-channel fre-
quency samples. Action 250 1s followed by action 252. In
action 252, audio decoder 304 inverse transforms the
m-channel frequency samples to generate m-channel time
samples. Action 252 1s followed by action 238.
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In action 258, audio decoder 304 applies 2-channel
dynamic range control on the m-channel time samples
during windowing to form 2-channel windowed time
samples. Audio decoder 304 uses a 2-channel final scale
that, when multiplied with time samples during windowing,
remove at least partially the m-channel dynamic range
control applied 1n the frequency domain, and readjust the
dynamic range of the time samples for 2-channel output.
Thus, a first set of windowed time samples under m-channel
dynamic range control and a second set of windowed time
samples under 2-channel dynamic range control are advan-

tageously generated without repeating the inverse transform
as in method 20 (FIG. 1C). Action 256 is followed by action
260).

In action 260, audio decoder 304 downmixes the
2-channel windowed time samples to form 2-channel PCM
audio samples for 2-channel output. Action 260 1s followed
by action 262. In action 262, audio decoder 304 stores the
PCM audio samples 1n builers. Action 262 is followed by
action 264. In action 264, audio decoder 304 outputs the
2-channel and m-channel PCM audio samples.

In one implementation, action 251 (FIG. 6A) includes

actions 500, 502, 504, 506, 508, 510, 512, 514, 516, 518,
520, 522, and 524 (FIG. 6B). In action 500, input interface
328 loads the 2-ch parameters to working memory 342 (FIG.
4D) in memory 330B. Input interface 328 also loads the
common parameters to memory 330B and maps the
addresses to memory map unit 338 (FIG. 4A). Action 500 is
similar to action 400. Action 500 1s followed by action 502.
In action 502, DSP 332 determines the 2-ch final scale.
Action 502 1s similar to action 402. Action 502 1s followed
by action 504. In action 504, DSP 332 modifies and converts
the 2-ch final scale to a mantissa and an exponent. Action
504 1s similar to action 404. Action 504 1s followed by action
506. In action 506, DSP 332 saves the 2-ch final scale 1n
memory 330B and maps the addresses to memory map unit
338. Action 506 1s followed by action 508.

In action 508, input mterface 328 loads the m-ch param-
eters to working memory 342 (FIG. 4D) of memory 330B
and maps their addresses to memory map unit 338. Action
508 1s similar to action 410. Action 508 1s followed by action
510. In action 510, DSP 332 determines the m-ch final scale.
Action 510 1s similar to action 412. Action 510 1s followed
by action 512. In action 512, DSP 332 modifies and converts
the m-ch final scale to a mantissa and an exponent. Action
512 1s similar to action 414. Action 512 1s followed by action
514. In action 514, DSP 332 stores the m-ch final scale 1n
memory 330B and maps the address to memory map unit
338. Action 514 i1s similar to action 416. Action 514 1s
followed by action 516. In action 516, DSP 332 inverts the
m-ch final scale. In one variation, DSP 332 uses a lookup
table 350 (FIG. 4D) stored in memory 330B to determine the
inverted values of the m-ch scale factors. Alternatively, DSP
332 calculates the inverted value of the m-ch final scale.

Action 516 1s followed by action 518.

In action 518, DSP 332 multiplies the 2-ch final scale with
the 1nverted m-ch final scale to form a new 2-ch final scale.
DSP first converts the inverted m-ch final scale to mantissa
and exponent format. DSP 332 then adds the exponents of
the 2-ch final scale and the inverted m-ch final scale and
multiplies the mantissas of the 2-ch final scale and the
inverted m-ch final scale. The sum exponent and product

mantissa form a new exponent and a new mantissa for the
2-ch final scale. Action 518 i1s followed by action 520. In

action 520, DSP 332 saves the new 2-ch final scale 1n
memory 330B and maps the address to memory map unit
338. In another variation, DSP 332 saves the new 2-ch final
scale over the old 2-ch final scale. Action 520 1s followed by
action 522.

In action 522, DSP 332 multiplies the m-ch final scale

with the frequency samples of the current block to form
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m-channel frequency samples whose dynamic range has
been compressed by the m-ch final scale. Action 522 1s
similar to action 428. Action 522 1s followed by action 524.
In action 524, DSP 332 right shifts the mantissa of each new
frequency sample by the value of i1ts exponent. In one
variation, DSP 332 also rounds the shifted mantissa from 48
bits to 24 bits. Action 524 1s similar to action 430. Action
524 1s followed by action 252.

In action 252, DSP 332 conventionally inverse transforms
(e.g., by inverse modified discrete cosine transform) the
m-ch frequency samples to m-ch time samples. Action 252
1s followed by action 258.

In one implementation, action 258 (FIG. 6A) includes
actions 528, 530, 531, 532, and 534 (FIG. 6B). In action 528,
DSP 332 saves the m-ch time samples 1n memory 330B
(FIG. 4D) and maps the addresses to memory map unit 338
(FIG. 4A). Action 528 is followed by action 530. In action
530, DSP 332 conventionally windows and overlaps/adds
the m-ch time samples of the current block with the m-ch
time samples of the previous block to generate m-ch win-
dowed time samples (also known as “m-ch PCM audio
samples™). Action 530 is similar to action 434. Action 530 is
followed by action 531. In action 531, DSP 332 saves the
m-ch windowed time samples 1n memory 330B and maps
the addresses to memory map unit 338. Action 331 is
followed by action 532.

In action 532, DSP 332 windows and overlaps/adds (1)
the m-ch time samples (stored in action 528) of the current
block multiplied with the 2-ch final scale of the current block
and (2) the m-ch windowed time samples of the previous
block multiplied with the 2-ch final scale of the previous
block as follows.

window__time_sample=(time__sample_preblk*2ch_ final scale
preblk*window__coeffl+time__sample__currblk*2ch_ final__
scale__currblk*window__coeff2)*2 Eqn. 4

Parameter window__time_ sample 1s the 2-ch windowed
time sample. Parameter time_ sample currblk 1s the m-ch
time samples of the current block and parameter 2ch__final
scale_ currblk 1s the 2-ch final scale of the current block.
Parameter time__sample_ preblk i1s the m-ch windowed time
samples from the previously block and parameter 2ch_
final__scale_ preblk is the 2-ch final scale from the previ-
ously block. DSP 332 generated and saved time_ sample_
preblk and 2ch_ final_ scale_ preblk when 1t processed the
previous block. Window_ coefll and window_ coefl2 are
window coellicients are determined by the transform win-
dow sequence of Table 7.33 of “Digital Audio Compression
(AC-3)” referenced above.

In action 532, the multiplication of the 2-ch final scale
with the m-ch time samples at least partially removes the
ciiects of the m-channel dynamic range control and readjusts
the dynamic range of the m-ch time samples for 2-channel
output. Thus, method 40 provides independent 2-channel
and m-channel dynamic range control without repeating the
computational intensive inverse transform like method 20.

In action 534, DSP 332 saves the 2-ch windowed time
samples generated in action 532 in memory 330B (FIG. 4D)
and maps the addresses to memory map unit 338 (FIG. 4A).
In one variation, output interface 340 of datapath 322
transmits the 2-ch and m-ch windowed time samples to input
interface 628 of postprocessor 324. Input interface 628 saves
the 2-ch and m-ch windowed time samples 1n memory 630
and maps the addresses to memory map unit 638. Action 534
1s followed by action 260.

In action 260, DSP 632 of postprocessor 324 convention-
ally downmixes the 2-ch windowed time samples to gener-
ate 2-ch PCM audio samples for 2-channels output. If the
sum of the downmix coefficients used to downmix the 2-ch
windowed time samples 1s greater than 1, DSP 632 of
postprocessor 324 writes an active signal 2ch_ dnmix__
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active (e.g., “1”) in host register 326. If DSP 632 does not
downmixes the m-ch windowed time samples, DSP 632 of
postprocessor 324 writes an 1nactive signal m_ ch_ dnmix__
active (e.g., “0”) 1in host register 326. However, if the m-ch
windowed time samples are downmixed, DSP 632 writes an
active signal m_ ch_ dnmix_ active if the sum of the down-
mix coelficients used to downmix the m-ch time samples 1s
oreater than 1. Action 260 1s followed by action 262.

In action 262, output interface 624 of postprocessor 334
passes the 2-ch and the m-ch PCM audio samples to output
buffers 334 and 346. Action 262 1s followed by action 264.
In action 264, output buffers 344 and 346 output the
2-channel and m-channel PCM audio samples to DAC 312
and SPDIF 314.

Method 50 generates 2-channel and m-channel outputs
without repeating the inverse transform. However, addi-

// start of gain calculation
mov (@channum, x
cmpl X
jmp dual__mono_ chl_ chk, noteq
mov (@compmode, al)
mov mcompmode, a2
and a0, a2, a0
mov a0, @compmod__sav
mov (@compre, a0
mov al), @compre__wkg
mov (@compt, a0
mov a0, @compr__wkg
mov (@dialexp, a0
moval), @dialexp_ wkg
mov (edialmant, a0
mov a0, @dialmant__ wkg

10

// calculate stepped gain value for 2 channel

mov (@dynscalehigh_ 2ch, a0
mov a0, @dynscalehigh

mov (@dynscalelow__2ch, a0
mov a0, @dynscalelow

mov (@drc__2ch__preblkch0, a0
mov a0, @drc__preblk wkg
mov (@dwnmx__ active, a0

asr a0, 1, a0

move a0, @dwnmx__active__wkg
jsub__comptfact_calcu

mov gain_step_ 2ch, p0

mov (@drc__preblk_wkg, a0
mov a0, @drc__2ch_ preblkch(

// calculate stepped gain value for 6 channel

mov (@dynscalehigh_ 6ch, a0
mov a0, @dynscalehigh

mov (@dynscalelow__6ch, a0
mov a0, @dynscalelow

mov (@drc__6ch__preblkch0, a0
mov a0, @drc__preblk_wkg
mov (@dwnmx__ active, a0
mov 0x01, a2

and a2, a0, a0

mov a0, @dwnmx__active_ wkg
jsub__compfact_ calcu

mov gain__step__6ch, p0

mov (@drc__preblk_ wkg, a0

mov a0, @drc__6¢ch__preblkchO
mov 1nv__mant__table_ ptr, p2
mov gain_step__expch0_ b0, p3
mov gain__step__mantchO__b0, p4
mov (drc__buffer_ cnt_ chO, a0

asl a0, 4, a2

mov a2, s2
updateptr p3, s2 || updateptr p4, s2

16

tional actions are added to invert the m-channel final scale,
to multiply the inverted m-channel final scale with the
2-channel final scale to form new 2-channel final scale, and
to window the m-channel time samples multiply with the
new 2-channel final scale to form the 2-channel windowed
time samples. However, the added processor and/or memory
costs of these actions still provide a saving over the proces-
sor and/or memory costs of repeating the 1nverse transform.

Numerous modifications and adaptations of the embodi-
ments described herein will be apparent to the skilled artisan
in view of the disclosure. For example, the method described
above can be implemented 1n software for a general purpose
processor 1nstead of a DSP. While the 2-ch final scale 1s
determined first in these methods, the m-ch final scale may
be determined first. Numerous such changes and modifica-
fions are encompassed by the attached claims.

APPENDIX A

// move channum from memory to reg
// chk channum = 07
// chk 1if dual mono and channel 1

// mov mem__mapped reg358 to reg
// send compmode mask to reg a2
// get compmode from reg358

// sav compmod to local memory

// sav compre to working memory

// sav dialexp to working memory

// sav 2ch dynscalehigh to working reg
// sav 2ch dynscalelow to working reg
// sav 2ch drc for pre-blk to working reg

// bit 1 = 2ch dwnmx__ active, shift to bitO

// sav 2ch dwnmx__active to working reg

// go to comptact calcu sub-routine

// specily start__addr for 8 2ch stepped gain val
// also f1ll in delay slot

// update content of @drc__2ch_ preblk

// sav 6ch dynscalehigh to working reg
// sav 6¢ch dynscalelow to working reg
// sav 6ch drc for pre-blk to working reg
// mask for bit O = 6ch dwnmx__active

// sav 6ch dwnmx__ active to working reg

// go to compfact calcu sub-routine

// specity start__addr for 8 6ch stepped gain val
// also fill in delay slot

// update content of @drc__6ch_ preblk

// set pointer for inv mant table

// set start addr for exp portion of final scale
// set start addr for mant portion of final scale
// select which drc buf (0 to 2) to shore

// final scale exp and mant

// offset = buffer__count * 16

// read from base+oftset
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-continued

APPENDIX A

// update drc buffer counter and reset to O 1if reach 3

inc a0, a0 // advance to next buffer
mov 3, X
cmp X, a0 // buffer__count = 37

xor a0, a0, a0, equal
mov a0, @drc_ buffer cnt_ chO

// done updating drc__buffer__cnt_ ch0

mov gain__step 6ch, p0
jsub__inverse__6ch_ drc
mov gain__step_ 2ch, pl

jmp start__dial__norm
nop

dual mono_ chl chk:

mov 1, a0

cmp a0, X

Jjmp gainrng calcu, noteq
nop

mov @acmod, y

cmpl vy

Jjmp gainrng calcu, noteq
nop

mov (@comprle, al

mov a0, @compre__wkg
mov (@compr2, a0

mov a0, @compr__wkg
mov (@dialexp2, a0

mov a0, @dialexp_ wkg
mov (@dialmant2, a0
mov a0, @dialmant_ wkg

// calculate stepped gain value for 2 channel

mov @dynscalehigh_ 2ch, a0
mov a0, @dynscalehigh

mov @dynscalelow__2ch, a0
mov a0, @dynscalelow

mov (@drc__2ch_ preblkchl, a0
mov a0, @drc__preblk wkg
mov (@dwnmx_ active, a0

asr a0, 1, a0

mov a0, @dwnmx__active_ wkg
jsub__comptact__calcu

mov gain__step__2ch, po

mov (@drc__preblk_ wkg, a0
mov a0, @drc__2ch_ preblkchl

// calculate stepped gain value for 6 channel

mov (@dynscalehigh_ 6¢ch, a0
mov a0, @dynscalehigh

mov (@dynscalelow__6ch, a0
mov a0, @dynscalelow

mov @drc__6¢ch__preblkchl, a0
mov a0, @drc__preblk_wkg
mov (@dwnmx__active, a0
mov 0x01, a2

and a2, a0, a0

mov a0, @dwnmx__active__ wkg
Jsub__compfact__calcu

mov gain__step_ 6ch, p0

mov (@drc__preblk_ wkg, a0

mov a0, @drc__6ch__preblkchl
mov 1nv__mant__table_ ptr, p2
mov gain__step__6ch, p0

mov gain_ step__expchl_ b0, p3
mov gain__step__mantchl_ b0, p4
mov (@drc__buffer cnt_ chl, a0

asl a0, 4, a2

mov aZ, s2
updateptr p3, s2 || updateptr p4, s2

// yes, set to point to buffer O

// set start addr for 6ch stepped gain val

// set pointer for 8 2ch stepped gain val
// of 8 6ch stepped drc

// also fill in delay slot

// chk channum = 17
// no, yjmp to gainrng_ calcu

// yes, go ahead to check

// 1tfacmod = 0

// sav acmod to reg v, fill in
// delay slot

// chk acmod = 07

// 1if no, ymp to gainrng calcu
// sav compr2e to working memory
// sav compr2 to working memory

// sav dialexp2 to working memory

// sav dialmant2 to working memory

// sav 2ch dynscalehigh to working reg
// sav 2ch dynscalelow to working reg
// sav 2ch drc for pre-blk to working reg

// bit 1 = 2ch dwnmx_ active, shift to bitD

// sav 2ch dwnmx__ active to working reg

// go to compflact calcu sub-routine

// specity start__addr for 8 2ch stepped gain val
// also fill in delay slot

// update content of @drc_2ch_ preblk

// sav 6ch dynscalehigh to working reg
// sav 6¢ch dynscalelow to working reg
// sav 6¢ch drc for pre-blk to working reg
// mask for bit 0 = 6ch dwnmx__active

// sav 6ch dwnmx__active to working reg

// go to compfact calcu sub-routine

// specity start__addr for 8 6ch stepped gain val
// also fill in delay slot

// update content of @drc__6¢ch_ preblk

// set pointer for inv mant table

// set start addr for 6ch stepped gain val

// set start addr for exp portion of final scale
// set start addr for mant portion of final scale
// select which drc buf (0 to 2) to store

// final scale exp and mant

// offset = buffer_ count * 16

// read from base+oftset
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-continued
APPENDIX A
// update drc buffer counter and reset to O 1if reach 3
inc a0, a0 // advance to next buffer
mov 3, X
cmp X, a0 // buffer__count = 37

xor a0, a0, a0, equal // yes, set to point to buffer O
mov a0, @drc_ buffer cnt_ chl

// done updating drc__buffer__cnt_chl
Jsub__inverse_ 6ch_ drc

mov gain__step_ 2ch, pl

// set pointer for 8 2ch stepped gain val
// of 8 6¢h stepped drc
// also fill in delay slot
jmp start__dial__norm
nop
gain__calcu__done:
jsub__out_ data
nop
// cmpO al
jmp read__new_cmd_ a // chk nsamps = 07 yes, read new

/f command

denorm__a

basically, multiply sample mant with gainmant,
subtract gainexp from sample exp,

right shift final sample mant by final sample
exp, and save back to memory

pointers:

p3: points to denormalize samples

registers:

al) = sample__cnt

X, y, al, a2, a3: general purpose

sl =1

denorm_ a:

20

mov mant__ ptr, p0

mov exp_ ptr, pl

print “in denorm__a”

mov 1, s1

mov (@rematflg, y

cmpl v

jmp rematrix_ case_ ptr_setl, noteq

mov tc_ ptr, p3
Jjmp denorm__proc

nop

rematrix_ case_ ptr_ setl:

mov (@channum, y
cmpl vy
jmp rematrix__case__ptr__set2, noteq

mov dly_ ptr3, p3

Jjmp denorm__proc
nop

rematrix__case_ ptr_ set2:

mov rmtrx__ ptr, p3

denorm__proc:

mov (@sample__cnt, a0
for a0, end__of denorm__proc__loop

mov (@gainmant, X

mov (pO)+sl, y

mov (@gainexp__ch, al
mov (pl)+sl, a2

mul || sub a2, al, a2
mov 0, al

mov 32, a3

cmp a2, a3

jmp sav__sample_to__mem, ge
mov 24, a3

cmp a2, a3

mp exp_le_ 24 case, le

// assign mant base to p0
// assign exp base to pl

// move rematflg to a reg

// chk rematflg = 07

// set different ptr for rematrix

// case

// 1n normal case, assign tc_ ptr

/f to p3

// jump to denorm process common
// to normal case and rematrix case

// chk channum = 07

// 1n rematrix, assign different

// start value for p3 for

// different channum

// 1n rematrix, when channum = 0,
// assign dly_ ptr3 to p3

// 1n rematrix, when channum = 1,
// assign rmtrx_ ptr to p3

// denorm process, loop sample__cnt
// times

// prepare gainmant

// prepare sample mant

// prepare gainexp_ ch

// prepare sample exp

// do denorm, sav final exp to a2

// maxexp 1s 32

// chk final exp >= 327
// yes, exp »= 32

// 1ill 1n delay slot

// chk final exp > 247

// no, exp <= 24, ymp to
// exp_le 24 case
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sub a2, a3, a3
asr t, a3, al

asr al, 24, al

jmp sav__sample__to__mem
round al, al

exp_le_ 24 case:

case,

mov —24, a3
cmp a2, a3
mp exp__le__neg24 case, It

mov —-32, a3
neg a2, a2

ashf t, a2, al

jmp sav__sample_ to__ mem
round al, al

mem

exp__le_neg?4 case:

cmp a2, a3
jmp sav__sample__to__mem, le

mov —24, a3
sub a2, a3, a3
asl t, a3, al

asl al, 24, al

round al, al

sav__sample_ to__mem:

mov al, (p3)+sl

end__of denorm__proc__loop:

end

nop
mov 256, x
sub x, a0, al

forl al, end_ fill _zero_ loop
mov 0, y

mov v, @sample__cnt

fill__zero__loop:

mov vy, (p3)+sl

jsub__out_ data

nop

jmp read__new__cmd_ a
nop

subroutine: compfact__calcu

[t calculates compfact based on downmix.c of ac3

3.11 version reference code

After computing compfact, it split exp and mant part
to get gainexp and gainmant, mainly based on mants_ d.c

of

1. do exp, mant part spliting for compfact

2. adjust exp, mant 1n case of custom__digital mode
Note: need to negate dialmant when adjust mant part

3. renormalize gainmant, gainexp by catching the leading
zero of gainmant and left shift it by that number. subtract

ac3 3.11 version reference code:

that number from gainexp
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// 1ill 1n delay slot

// when 24 < exp < 32,

// do two step shifting,

// because current shifter

// 1s within —-24~+24

// first step:

// tshift sample mant by exp-24
// second step:

// rshift first step result

// by 24,

// 1ill 1n delay slot

// 1ill 1n delay slot
// chk final exp »= -247
// no, exp < -24, jmp to
// exp__le_neg?4 case
// 1ill 1n delay slot

// for =24 <= exp <= 24

// shift sample mant by exp
// if exp (a2) =0, ashf = asl
/] else, ashtf = asr

// this 1s why we neg a2 first
// betore do shifting

/f round mant before sav to
// also fill in delay slot

// chk final exp > -327
// no, exp <= —-32, jmp to
// sav__sample_ to__mem

// 1ill 1n delay slot

// when -32 <= exp < -24,

// do two step shifting,

// because current shifter

// 1s within —24~+24

// first step:

// 1shift sample mant by exp-24
// second step:

// 1shift first step result

// by 24,

// round mant before sav to mem

// save denormlized sample to (p3)

// get the iteration number that
// want to fill zeros for samples

// initialize @sample__cnt, also
// fill 1n one delat slot

// 1ill zero for samples between
// sample__cnt and 256

22
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4. save gainexp + 1 to @gainexp__ad) for gainrng_ calcu
5. do 1t ONLY at the start of blk

6. for rf case, do saturation

registers:

al: don’t use in this routine, in caller, it 1s nsamps

X, v, a0, a2, a3: general purpose

__compfact__calcu:
mov (@compmod__sav, X
mov comp__rl, y
cmp X, ¥
jmp rf__case, equal
mov comp__lineout, y
cmp X, ¥
jmp custom__case, notq
mov @dynrng  wkg, x
cmpl X
jmp line__out__use__dynscalelow, gt
mov @dwnmx__active__wkg, y
mov 1, a2
cmp vy, a2
jmp donot__use__dynscale, equal
mov (@dynscalehigh, a0
sav it to a0
jmp lout_ chk_ a0

nop
line_ out_use dynscalelow:

mov (@dynscalelow, a0
lout__chk_a0:

mov 255, a2

cmp a0, a2

jmp donot__use_dynscale, equal

nop

cmpl al

jmp lout__disable__dynrng, equal

inc a0, a0

dynscalehigh/dynscalelow it

asl a0, 15, a0
a0

mov mdynscale, a3
and a0, a3, a2

mov a2, y
mul

copy t, a0
jmp start__spliting gain_ exp_ mant
nop

lout__disable__dynrng:
jmp start__spliting gain__ exp_ mant
mov 0, a0

donot__use__dynscale:
jmp start__spliting_ gain_ exp__mant
mov @dynrng  wkg, a0

custom__case:
mov @dynrng__ wkg, x
cmpl X
jmp custom__use__dynscalelow, gt
mov 255, a0
mov (@dynscalehigh, a2
jmp custom__chk a2

nop
custom__use__dynscalelow:
mov (@dynscalelow, a2

// mov compmode to reg X
// chk compmod = RF mode ?

// 1ill 1n delay slot

// mov dynrng wkg to reg X
// line__out case: chk if x > 07
// ves, to line__out__use__dynscalelow

// 1ill 1n delay slot

{/ chk if dwnmx_ active = 17
// yes, use dynrmg  wkg
// no, use dynscalehigh,

// chk dynscalehigh(dynscalelow) =
/111111117

// use dynscalelow, sav it to a0

// chk a0 = 2557
// yes, ymp to donot_use_ dynscale

/f chk a0 =0 ?
/fadd 1 to

// not O and 255, this will generate
// the range from 2/256/ to 255/256
// 1shift a0 by 15, sav to

// two-complement fraction representation
// of dynscalehigh{dynscalelow)

// original dynscalehigh{dynscalelow):
// 0000000000000000A0ATAZA3A4ASA6ATT

// After shifting & anding:
// 0.ADATA2A3A4A5A6A7000000000000000

// mult dynrng with dynscalehigh or
// dynscalelow
// sav scaled dynrng val to a0

// now dynrng 1s O, fill in delay slot

// just use original dynrng value

// 1ill 1n delay slot

// mov dynmg_wkg to reg x
// line__out case: chk if x > 07
// to line__out__use dynscalelow

// no, use dynscalehigh, sav to a2

// chk dynscalehigh(dynscalelow) =
/11111111717

// use dynscalelow, sav it to a0

24
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custom__chk a2:

cmp a2 ,a0

jymp chk__custom__dmx__ active, equal

mov @dynrng__wkg, a0

cmpl a2

jmp chk_custom__dmx_ active, equal

mov 0, a0
inc a2, a2

asl a2, 15 a2
mov mdynscale, a3
and a2, a3, a2

mov a2z, y
mul

copy t, a0

chk custom dmx active:

mov (@dwnmx__active__wkg, x
mov 1, y
cmp X, ¥

jmp start__spliting_ gain__exp__mant, noteq

mov eleven_ db, a3

sub a0, a3, a0

Jmp start__spliting_ gain_ exp__mant
nop

rf case:

mov @compre_wkg, X
cmpl X
jmp chk_rf__dmx_ active, equal

mov @dwnmx__active__wkg, X
mov (@compr_wkg, X

cmpO X

jmp add__11db, noteq

nop

mov @dynrng  wkg, x

add__11db:

slot

mov eleven_ db, a3
add x, a3, a0

jmp start__spliting gain__ exp_ mant
sat a0, a0

chk rf dmx_ active:

mov 1, y

cmp X, Y

jmp donot__use__dynscale, noteq
mov eleven_ db, a3

mov @dynrng__ wkg, x
sub x, a3, a0
sat a0, a0

start__spliting gain_exp_ mant:

mov mgainexp, a2
and a0, a2, a3

asr a3, 20, a3

inc a3, a3
mov a3, ([@galnexp
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// chk a2 = 2557
// yes, to chk__custom__dmx__active

// when a2 = 255, sav dynrng_ wkg
// to al
// chk a2 = 07

// disable dynrng, fill in delay slot

// add 1 to dynscalehigh/dynscalelow 1if
// not O and 255, this will generate

// the range from 2/256/ to 25/256

// 1shift a2 by 15, sav to a2

// two-complement fraction representation
// of dynscalehigh(dynscalelow)

// original dynscalehigh(dynscalelow);
// 0000000000000000A0ATAZA3A4ASA6AT

// After shifting & anding:
// 0.ADATA2A3A4A5A6A7000000000000000

// mult dynrng with dynscalehigh or
// dynscalelow
// sav scaled dynrng val to a0

{/ chk if dwnmx_ active = 17
// no, go to
// start__spliting__gain__exp_ mant

// sub 11db from compfact a0

// mov compre__ wkg to reg X

{/ chk if compre__wkg = 07

// yes, jmp to the routine to

// chk if dwnmx__active = 17

// 1ill 1n delay slot

// mov compr__wkg to reg x

// chk compr__wkg = 07

// 1 no, use compr__wkg for adding 11db

// yes, use dynrmmg wkg for adding 11db

// add 11db with compr__wkg
// (dynrng_ wkg)

// saturation, fill in delay

{/ chk if dwnmx_ active = 17

// no, assign @dynrng wkg to a0
// put eleven__db to a3

// 1ill 1n delay slot

// sub 11db from dynrng wkg,

// satuation

// mov mgainexp to reg a2

// basically mask out the mant part

// betore masking:

// ADATA2A3A4A5A6A70000000000000000
// after masking:

/f ADATA2A300 . . . 00000000

// rshift 20 bits of al, sav to a3

// after shifting:

// AODADADADAD . .. ADATA2A4
// increment a3 by 1

// sav gainexp to memory
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mov mgainmantl, a2 // the procedure to spliting mant 1s
// a little bit different from
// ac3 C reference code (mants__d.c)
// 1n C code, first logic left shift out
// 2 msbs, then and with Ox3fffff]l.
// to get rid of the rest 2 msb
// therefore, exp part 1s gone
// finally, or with 0x400000L (defined
// 1n C reference code, illustrated 1n
// ac3 standard P.79
// since 1n tamarin, there 1s no
// logic left shift, what we do here
// 1s first mask out msbyte,
// then asl 2 bit
// finally or with 0x400000L
and a0, a2, a3 // first step to get mant part
// mask out msbyte of compfact
// betore masking, aOh contains:
// ADATA2A3A4A5A6A70000000000000000
// after making:
// 0000A4A5A6A70000000000000000
asl a3, 2, a3 // shift out 2 bit of a3(compfact)
// after left shift by 2:
// 00A4AS5A6A7000000000000000000

mov mgainmant2, a2

or a3, a2, a0 // get mant part, after “0™
// 01A4A5A6A7000000000000000000
mov a0, @gainmant // sav gainmant to memory

// Tor 022 es] drc control, calculate 8 stepped gain values

mov (@gainexp, a2

mov (@gainmant, a0

ashf a0, a2, a0 // sav curent gain val to a0

asr a0, 8, a0 // tsht a0 by &, since we need
// to sav final value to mem(24bit)
// this shift guarantees no integer
// on ext portion on accumulator

mov (@drc__preblk_ wkg, a2 // mov drc for previous blk to a2
neg a0, al // neg cur__blk drc
mov a0, @drc__preblk wkg // update previous blk drc with

// negated curr blk drc.

// The following stepping proc is:
// curr__glk_ drc + (pre__blk_ drc),
// where pre__blk_ drc has already

// been negated. The reason 1s that

// tor the first block of first frame,

{// we 1nitialize pre_ blk drc to be 1.0
// but since we can not sav fixed

// 1. 0 to mem, we have to sav fixed
// =1.0 to mem.

neg a0, al // recover curr__blk drc for stepping
// start stepping drc values
add a0, a2, a3 // a3 = cur__drc__val — pre__drc_ val
asr a3, 3, a3 // a3 = (cur__drc_ val — pre__drc_ val)/8
neg a2z, a2
mov 1, s1
for 8, end__of gain_ stepping
add a2, a3, a2 // calcu stepped gain val
nop
end__of gain_ stepping:
mov a2, (p0)+sl // sav stepped gain val to internal mem
// post__incr address
ret
nop

subroutine: inverse__6ch_ drc

[t uses 8 stepped 6¢h dre values, and calculates

the corresponding inverse values

1. do exp, mant part spliting for each stepped 6ch gain value
2. get 8 msb mant portion by masking out rest of bits

3. right shift the 8 bit mant by 16 to a generate a index for



table-lookup

4. table look-up to get the corresponding inverse value

29
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5. mult 2ch stepped gain value with corresponding 6ch inverse gain value

6. get exp & mant portion of final scale value

pO: start address for calculated 6ch stepped gain val in final scale
pl: start address for calculated 2ch stepped gain val in final scale

calculation

registers:

al: don’t use in this routine, in caller, it 1s nsamps
X, y, a0, a2, a3: general purpose

_1verse_ 6¢ch_ dre:
mov 1, s1
for 8, end__of inverse_ proc
mov (p0)+s1, a0
asl a0, 8, a0
exp al, a2
ashf a0, a2, a0
mov Oxff0000, a3
and a0, a3, a0
Isr a0, 16, a0

mov (p2+a0), a3
start__1nv__exp_ calcu:

mov 191, y

cmp a0, y

jmp mv__exp_ gt 191, gt

nop
// now 1ndex <= 191
inv__exp__ It 65:

mov 65,y

cmp a0, y

mp mv_exp_ It 33, 1t

mov 1, X

jmp end__inv__exp__calcu

nop
inv__exp_ It 33:

mov 33,y

cmp a0, y

mp mv_exp_ It 17,1t

mov 2, X

jmp end__inv__exp__calcu

nop
inv_exp_ It 17:

mov 17,y

cmp a0, y

mp mv_exp_lt 9, It

mov 3, X

jmp end__1nv__exp_ calcu

nop
inv_exp_lt_9:

mov 9, y

cmp a0, y

jmp mv_exp_ It 5,1t

mov 4, X

jmp end__inv__exp_ calcu

nop
inv_exp_lt_5:

mov 5, y

cmp a0, y

jmp mv_exp_lt 3, It

mov 5, x

jmp end__inv__exp__calcu

nop
inv_exp_lt_ 3:

mov 3, y

cmp a0, y

mp mv_exp_ It 2 It

mov 6, X

jmp end__inv__exp__calcu

nop

p2: pointer to 1inverse mant table
p3: start address for final scale value exp portion
p4: start address for final scale value mant portion

// stepped 6¢ch gain val
// shift back by &

// a2 has exp portion
// set the mask

// now only 8 msb of a0 remained
// a0 1s 1index for table look-up

// Note: p2 points the content of zero

30

// Since a0 normallycan not be 0, (then inv is infinite).

// 1n error case, we still define gain mant to be 0
// a3 has inverse mant val from table-lookup
// X contains 1nv__exp, a0 contains index

// chk index > 1917
// jmp to index > 191 case
// 1ill 1n the delay slot

/f chk index < 657

// ymp to checking index < 33 case

// inv__exp = 1, fill in the delay slot

// chk index < 337
// ymp to checking index < 17 case

// inv__exp = 2, fill in the delay slot

/f chk index < 177

// ymp to checking index < 17 case
// inv__exp = 3, fill in the delay slot

// chk index < 97
// ymp to checking index < 5 case

// inv__exp = 4, fill in the delay slot

/f chk index < 57

// ymp to checking index < 3 case

// inv__exp = 5, fill in the delay slot

// chk index < 37
{// yjmp to checking index < 2 case

// inv__exp = 6, fill in the delay slot
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inv__exp_ It 2:
mov 2, y
cmp a0, y
mp mv_exp_ It 1,1t
mov 7,
jmp end__inv__exp__calcu
nop
inv_exp_lt_1:
mov 1,y
cmp a0, y
jmp mv_exp_lt 0, It
mov 8, X
jmp end__1nv__exp_ calcu
nop
inv_exp_lt_O:
jmp end__inv__exp__calcu
mov 0, X
//now 1ndex > 191
inv__exp_ gt 191:
mov 223,y
cmp a0, y
Jjmp mnv_exp_ gt 223, gt
mov 2, X
jmp end__inv__exp__calcu
nop
inv__exp_ gt 223:
mov 239, y
cmp a0, y
jmp mnv__exp_ gt 239, gt
mov 3, X
jmp end__inv__exp__calcu
nop
inv__exp_ gt 239:
mov 247,y
cmp a0, y
ymp inv__exp_ gt 247, gt
mov 4, X
jmp end__inv__exp__calcu
nop
inv__exp_ gt 247:
mov 251, y
cmp a0, y
jmp mv__exp_ gt 251, gt
mov 5, x
jmp end__inv__exp_ calcu
nop
inv__exp__ gt 251:
mov 253, y
cmp a0, y
mp mmv_exp_ gt 253, gt
mov 6, X
jmp end__1nv__exp_ calcu
nop
jmp end__1nv__exp_ calcu
nop
inv__exp_ gt 253:
mov 254, y
cmp a0, y
jmp mnv__exp__gt 254, gt
mov 7, X
jmp end__1nv__exp_ calcu
nop
inv__exp_ gt 254
mov 8, X
end__inv__exp_ calcu:
add x, a2, a2

mov a3, X

mov (pl)+s1, a0
asl a0, 8, a0
exp al), a3

ashf a0, a3, a0
mov a0, y

mul
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// chk index < 27
{// ymp to checking index < 1 case
// inv__exp = 7, fill in the delay slot

// chk index < 17
// ymp to checking index < 0 case

// inv__exp = &, fill in the delay slot

// inv__exp = 0, fill 1n the delay slot

// chk index > 2237
// ymp to index > 223 case
// inv__exp = 2, fill in the delay slot

// chk index = 2397

// ymp to index > 239 case
// inv__exp = 3, fill in the delay slot

// chk index > 2477
// jmp to index > 247 case
// inv__exp = 4, fill 1n the delay slot

// chk index > 2517
// jmp to index > 251 case
// inv__exp = 5, fill in the delay slot

// chk index > 2537
// imp to index > 253 case
// inv__exp = 6, fill in the delay slot

// chk index > 2547
// ymp to index > 254 case
// inv__exp = 7, fill 1in the delay slot

// iInv__exp — gain__exp, sav to a2
// when use exp command to get
// exp portion 1n tamasim, if

// or1 val > 1, exp 1s negative,

// else, exp 1s positive

// mov stepped 2xh gain val to a0
// shift back by 8

// exp portion of stepped 2ch gain
// mant portion of stepped 2ch gain

32
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sub a2, a3, a2

exp t, a3
ashf t, a3, a0
sub aZ, a3, aZ

mov a2, (p3)+sl

end__of inverse_ proc:

mov a0, (p4)+sl
ret
nop

start dial norm:

mov (@gainexp, a2

mov comp__custom__a, y

mov (@compmod__sav, X

cmp X, ¥

jmp donot__apply__dialnorm, equal
nop

mov (@dialexp_ wkg, y

normalization:

add a2, y, a3
mov a3, (@gainexp
mov @dialmant_ wkg, y

mov (@gainmant, X
cir a2

mul

subr a2, t, a2

mov a2, [@gainmant

donot__apply__dialnorm:

/=+=

*/

mov (@gainmant, a0
mov (@galnexp, X
exp al, a3

asl a0, a3, a0

asl a0, a2, a0

sub x, a3, a2

mov a0, @gainmant
mov a2, (@gainexp
mov 0x400000, x

cmp X, a0

Jjmp get__gainexp__adj__ready, noteq

nop
dec a2, a2

get_ gainexp__adj_ ready:

mov a2, @gainexp__adj

What 1s claimed 1s:

1. A method for controlling the dynamic range of audio
samples, comprising:

C
C

C

multiplying frequency samples with the second dynamic
range final scale to form multiplied frequency samples; 65

inverse transtforming the multiplied frequency samples to

range final scale;

form time samples;

ctermining a first dynamic range final scale;
ctermining a second dynamic range final scale;

ctermining a first set of scale factors from the first
dynamic range final scale and the second dynamic
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// when use exp command to get
// exp portion 1n tamasim, if

// or1 val > 1, exp 1s negative,

// else, exp 1s positive

// so we basically + (-a3) = —a3

// a0 has mant portion of final gain
// a2 has exp portion of final gain
// when use exp command to get
// exp portion in tamasim, if

// or1 val > 1, exp 1s negative,

// else, exp 1s positive

// so we basically + (-a3) = —a3

// sav final exp to memory

// sav final mant to memory

// mov gainexp to reg a2

// mov 1mm comp__custom__a to reg y

// chk if CUSTOM ANALOG mode

// starting dialog

// mov dialexp__ wkg to reg y
// add dialexp__wkg with gainexp
// sav final gainexp to mem

// mov dialmant__wkg to reg y
// mov gainmant to X

// set al =0

// mult gainmant with

// dialmant__ wkg, set a2 to 0
// negate the product, rounding
// the result, sav to a2

// save gainmant to memory

// starting renormalization:

// mov gainmant to reg a0,

// mov gainexp to reg X

// get leading zeros of gainmant
// left shift out leading zeros,

// gainmant gets better precision, sav to a0

// for new version tamasim:
// exp 1nstruction sav the result

// to high portion of reg

modify gainexp

// sav final gainmant to memory
// sav gainexp to memory

// mov 0.5 to reg x

// chk if gainmant = 0.57

// a2 =a2-1

// sav adjusted gainexp to memory, also

55
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windowing the time samples to form windowed samples;

multiplying the windowed samples with the first set of

scale factors to form multiplied windowed samples and

60

thereby at least partially removing effects of the win-

range final scale; and

dowing and the multiplication of the second dynamic

downmixing the multiplied windowed samples from the
channels of input to the channels of output to form

downmixed windowed samples.
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2. The method of claim 1, wherein the determining the
first set of scale factors comprises:

stepping the first dynamic range final scale, wherein the
stepping of the first dynamic range final scale com-
prises determining a second set of dynamic range scale
factors as follows:

2-ch scale factor;=2ch_ finalscale preblk+(2ch_ finalscale cur-
blk-2ch_ finalscale_ preblk)*1/m,

2-ch scale factor,=2ch_ finalscale_ preblk+(2ch__finalscale cur-
blk-2ch_ finalscale_ preblk)*2/n,

2-ch scale factory, ;y=2ch_finalscale preblk+(2ch_ finalscale
curblk—2ch__ finalscale preblk)*(xn—1)/n,

2-ch scale factor,=2ch__finalscale_ preblk+(2ch_ finalscale_ cur-
blk-2ch__finalscale_ preblk)*n/n,

wherein 2ch__finalscale preblk 1s the first dynamic range
final scale of the previous block and parameter 2ch__
finalscale__curblk 1s the first dynamic range final scale
of the current block;

stepping the second dynamic range final scale, wherein
the stepping of the second dynamic range final scale

comprises determining a third set of scale factors as
follows:

m-ch scale factor;=m_ ch_ finalscale_ preblk+{m__ch_finalscale
curblk—-m__ch_ finalscale_ preblk)*1/n;

m-ch scale factor,=m_ ch_ finalscale preblk+{m__ch_ finalscale__

curblk-m_ ch_ finalscale_ preblk)*2/n;,

m-ch scale factor,, ;y=m_ ch_ finalscale preblk+{(m_ch_fi-
nalscale curblk-m_ ch_ finalscale_ preblk)*(n-1)/n;,

m-ch scale factor,=m_ ch_ finalscale_ preblk+{m__ch_finalscale

curblk—-m__ch__finalscale__preblk)*n/n;,

wherein m__ch_ finalscale_ preblk 1s the second dynamic
range final scale of the previous block and m_ ch

finalscale_ curblk 1s the second dynamic range final
scale o f the current block;

inverting the third set of scale factors; and

respectively multiplying the inverted third set of scale
factors with the second set of scale factors to form the

first set of scale factors.
3. The method of claim 2, further comprising setting the
m__ch_ finalscale_ preblk or the 2ch finalscale preblk to 1

if there 1s no m__ch_ finalscale preblk or 2ch_ finalscale

preblk.

4. The method of claim 2, further comprising rounding the
first set of scale factors.

5. The method of claim 2, further comprising truncating,
the third set of scale factors.

6. The method of claim 1, wherein the multiplying the
windowed time samples with the first set of scale factors
COMPrises:

dividing the windowed samples 1nto n groups; and

multiplying each group with the corresponding scale
factor from the first set of scale factors.
7. The method of claim 1, further comprising outputting
the windowed samples.
8. The method of claim 1, further comprising outputting
the downmixed windowed samples.
9. A method for controlling the dynamic range of audio
samples, comprising;:
applying a first dynamic range control to a frequency
sample to form a m-channel frequency sample;
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inverse transforming the m-channel frequency sample to
a m-channel time sample;

windowing the m-channel time sample to a m-channel
windowed sample; and

applying a second dynamic range control to the

m-channel windowed time sample to form a 2-channel
windowed sample.

10. The method of claim 9, further comprising downmix-

ing the 2-channel windowed sample to form a 2-channel

downmixed sample.
11. The method of 10, further comprising outputting the

2-channel downmixed sample.
12. The method of claim 9, wherein the applying the first

dynamic range control comprises:

determining a first dynamic range final scale (m-ch final
scale); and

multiplying the frequency sample with the first dynamic

range final scale.
13. The method of claim 12, wherein the applying the
second dynamic range control comprises:

determining a second dynamic range final scale;

determining a scale factor from the first dynamic range
final scale and the second dynamic range final scale;
and

multiplying the m-channel windowed sample with the
scale factor thereby at least partially removing effects
of the windowing and the multiplication of the first

dynamic range final scale.
14. The method of claim 13, wherein the determining the

scale factor comprises:

stepping the first dynamic range final scale, wherein the
stepping the first dynamic range final scale comprises
determining a first set of scale factors as follows:

m-ch scale factor,=m__ch_ finalscale preblk+{m__ch_ finalscale__

curblk-m_ ch_ finalscale_ preblk)*1/n,

m-ch scale factor,=m_ ch_ finalscale_ preblk+{m__ch_ finalscale

curblk—m__ch_ finalscale_ preblk)*2/n;

m-ch scale factor, ;y=m_ ch_ finalscale_preblk+(m__ch_ fi-

nalscale_curblk-m__ch_ finalscale_ preblk)*(n-1)/n;

m-ch scale factor,=m_ ch_ finalscale preblk+{m__ch_ finalscale__

curblk—-m_ ch_ finalscale_ preblk)*n/n,

wherein m_ ch_ finalscale preblk 1s the first dynamic
range final scale of the previous block and m_ ch__
finalscale__curblk 1s the first dynamic range final scale
of the current block;

inverting the first set of scale factors;

stepping the second dynamic range final scale, wherein
stepping the second dynamic range final scale com-
prises determining a second set of dynamic range scale
factors as follows:

2-ch scale factor;=2ch_ finalscale_ preblk+(2ch__finalscale_ cur-
blk-2ch_ finalscale_ preblk)*1/m,

2-ch scale factor,=2ch__finalscale_ preblk+(2ch__finalscale__cur-
blk-2ch_ finalscale_ preblk)*2/n,

2-ch scale factor(,_;y=2ch__finalscale_ preblk+(2ch__finalscale
curblk-2ch__finalscale_ preblk)*(n—1)/n;

2-ch scale factor,=2ch__finalscale_ preblk+(2ch__finalscale__cur-
blk-2ch_ finalscale_ preblk)*n/n,
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wherein 2ch_ finalscale_ preblk 1s the second dynamic
range final scale of the previous block and 2ch__
finalscale_ curblk 1s the second dynamic range final
scale of the current block;

multiplying the mverted first set of scale factors with the
second set of scale factors to form a third set of scale
factors; and

wherein the third set of scale factors include the scale

factor.

15. The method of claim 14, further comprising setting the
m__ch_ finalscale_ preblk or the 2ch_ finalscale_ preblk to
1 1f there 1s no m_ ch_ finalscale_ preblk or 2ch__
finalscale_ preblk.

16. The method of claim 14, further comprising rounding
the first set of scale factors.

17. The method of claim 14, further comprising truncating
the third set of scale factors.

18. A computer-readable medium carrying a program for
controlling the dynamic range of audio samples comprising:

a first 1nstruction to determine a first dynamic range final
scale;

a second 1nstruction to determine a second dynamic range
final scale;

a third mstruction to determine a first set of scale factors
from the first dynamic range final scale and the second
dynamic range final scale;

a fourth instruction to multiply frequency samples with
the second dynamic range final scale to form multiplied
frequency samples;

a fifth instruction to inverse transform the multiplied
frequency samples to form time samples;

a sixth instruction to window the inverse transformed
frequency samples to form windowed samples;

a seventh 1nstruction to multiply the windowed samples
with the first set of scale factors to form multiplied
windowed samples and thereby at least partially remov-
ing eifects of the windowing and the multiplication of
the second dynamic range final scale; and

an eighth instruction to downmix the multiplied win-
dowed samples from the channels of input to the
channels of output to form downmixed windowed
samples.
19. The medium of claim 18, wherein the third instruction
COMprises:

a ninth instruction to step the first dynamic range final
scale, wherein the stepping of the first dynamic range
final scale comprises determining a second set of scale
factors as follows:

2-ch scale factor;=2ch_ finalscale_ preblk+(2ch_ finalscale_ cur-
blk-2ch__finalscale_ preblk)*1/n,

2-ch scale factor,=2ch_ finalscale preblk+(2ch_ finalscale cur-
blk-2ch_ finalscale_ preblk)*2/n,

2-ch scale factor(, ;y=2ch_ finalscalepreblk+(2ch_finalscale
curblk—2ch__ finalscale preblk)*(s—1)/n,

2-ch scale factor,=2ch_ finalscale preblk+(2ch_ finalscale cur-
blk-2ch__finalscale__preblk)*n/n;

wherein 2ch__finalscale_ preblk 1s the first dynamic range
final scale of the previous block and 2ch_ finalscale
curblk 1s the first dynamic range final scale of the
current block;

a tenth 1nstruction to step the second dynamic range final
scale, wherein the stepping of the second dynamic
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range final scale comprises determining a third set of
scale factors as follows:

m-ch scale factor,=m__ch_ finalscale preblk+{m__ch_ finalscale__

curblk—-m__ch_ finalscale_ preblk)*1/n,

m-ch scale factor,=m_ ch_ finalscale_ preblk+{m__ch_ finalscale
curblk—-m__ch__finalscale__preblk)*2/n;

m-ch scale factor(, ;y=m_ ch_finalscale_ preblk+(m_ch_fi-
nalscale_ curblk-m__ch_ finalscale_ preblk)*{(n-1)/n;

m-ch scale factor,=m_ ch_ finalscale_ preblk+{m__ch_ finalscale

curblk—-m__ch_ finalscale_ preblk)*n/n,

wheremn m__ch_ finalscale_ preblk is the second dynamic
range final scale of the previous block and m_ ch__
finalscale_ curblk 1s the second dynamic range final
scale of the current block;

an eleventh instruction to invert the third set of scale
factors; and

a twellth instruction to multiply the inverted third set of
scale factors with the second set of scale factors to form
the first set of scale factors.

20. The medium of claim 19, further comprising a thir-
teenth 1nstruction to set the m__ch_ finalscale_ preblk or the
2ch_ finalscale_ preblk to 1 1if there 1s no m_ch
finalscale_ preblk or 2ch_ finalscale_ preblk.

21. The medium of claim 19, further comprising a thir-
teenth 1nstruction to round the first set of scale factors.

22. The medium of claim 19, further comprising a four-
teenth 1nstruction to truncate the third set of scale factors.

23. The medium of claim 18, wherein the seventh 1nstruc-
fion comprises:

a ninth instruction to divide the windowed time samples
into n groups; and
a tenth instruction to multiply each group with the cor-
responding scale factor from the first set of scale
factors.
24. The medium of claim 18, further comprising a ninth
instruction to output the windowed samples.
25. The medium of claim 18, further comprising a ninth
instruction to output the downmixed windowed samples.

26. A computer-readable medium carrying a program for
controlling the dynamic range of audio samples comprising:

a first mstruction to apply a first dynamic range control to
a Irequency sample to form a m-channel frequency
sample;

a second 1nstruction to inverse transform the m-channel

frequency sample to a m-channel time sample;

a third mstruction to window the m-channel time sample
to a m-channel windowed sample; and

a fourth instruction to apply a second dynamic range
control to the a m-channel windowed time sample to
form a 2-channel windowed sample.

27. The medium of claim 26, further comprising a fifth
instruction to downmix the 2-channel windowed sample
after the fourth instruction to form a 2-channel downmixed
sample.

28. The medium of 27, further comprising a sixth instruc-
fion to output the 2-channel downmixed sample.

29. The medium of claim 26, wherein the first instruction
COMPrises:

a fifth 1nstruction to determine a first dynamic range final
scale; and

a sixth instruction to multiply the frequency sample with
the first dynamic range final scale.
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30. The medium of claim 29, wherein the fourth instruc-
flon comprises:

a seventh instruction to determine a second dynamic
range final scale;

an eighth 1nstruction to determine a scale factor from the
first dynamic range final scale and the second dynamic
range final scale; and

a ninth 1nstruction to multiply the m-channel windowed
sample with the scale factor thereby at least partially
removing effects of the windowing and the multiplica-
tion of the first dynamic range final scale.

31. The medium of claim 30, wherein the eighth instruc-

tion comprises:

a tenth instruction to step the first dynamic range final
scale, wherein the stepping the first dynamic range final
scale comprises determining a first set of scale factors
as follows:

m-ch scale factor;=m_ ch_ finalscale_ preblk+{m__ch_finalscale
curblk—-m__ch_ finalscale_ preblk)*1/n;

m-ch scale factor,=m_ ch_ finalscale_ preblk+{m__ch_ finalscale

curblk-m_ ch_ finalscale_ preblk)*2/n;

m-ch scale factor,_;y=m_ ch_ finalscale_preblk+(m__ch_ fi-
nalscale_ curblk-m_ ch_ finalscale_ preblk)*(n-1)/n;,

m-ch scale factor,=m_ ch_ finalscale_ preblk+{m__ch_finalscale
curblk—-m__ch_ finalscale_ preblk)*n/n;

wherein m_ ch_ finalscale_ preblk 1s the first dynamic

range final scale of the previous block and m_ ch
finalscale__curblk 1s the first dynamic range final scale
of the current block;

an eleventh i1nstruction to 1nvert the first set of scale
factors;
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a twellth instruction to step the second dynamic range
final scale, wherein stepping the second dynamic range

final scale comprises determining a second set of
dynamic range scale factors as follows:

2-ch scale factor,=2ch__finalscale_ preblk+(2ch__finalscale cur-
blk-2ch__finalscale_ preblk)*1/n;

2-ch scale factor,=2ch_ finalscale preblk+(2ch_ finalscale cur-
blk—-2ch_ finalscale preblk)*2/n,

2-ch scale factor(, ;y=2ch_finalscale_ preblk+(2ch_finalscale
curblk-2ch__finalscale_ preblk)*(n—1)/n;

2-ch scale factor,=2ch_ finalscale_ preblk+(2ch__finalscale cur-
blk-2ch__finalscale_ preblk)*n/n;

wherein 2ch_ finalscale_ preblk 1s the second dynamic
range final scale of the previous block and 2ch__
finalscale_ curblk 1s the second dynamic range final
scale of the current block;

a thirteenth 1nstruction to multiply the inverted first set of
scale factors with the second set of scale factors to form
a third set of scale factors; and

wherein the third set of scale factors include the scale

factor.

32. The medium of claim 31, further comprising a four-
teenth 1nstruction to set the m__ch_ finalscale_ preblk or the
2ch__finalscale_ preblk to 1 1if there 1s no m_ch__
finalscale_ preblk or 2ch_ finalscale_ preblk.

33. The medium of claim 31, further comprising a four-
teenth 1nstruction to round the first set of scale factors.

34. The medium of claim 31, further comprising a four-
teenth 1nstruction to truncate the third set of scale factors.
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