(12) United States Patent

Diamond et al.

US006785369B2

(10) Patent No.:
45) Date of Patent:

US 6,785,369 B2
*Aug. 31, 2004

(54) SYSTEM AND METHOD FOR DATA (56) References Cited
RECORDING AND PLAYBACK
U.S. PATENT DOCUMENTS
(75) Inventors: David A. Diamond, Southbury, CT
(US); David A. Glowny, Milford, CT 3,104.284 A * 9/1963 French et al. 704/203
(US): Trong Nguyen, Bridgeport, CT 3,369,077 A * 2/1968 French et al. 704/207
(US); Phil Min Ni, Danbury, CT (US) 727205 A - 41973 Crossman 60722
John E. Richter, Trumbull, CT (US) CUemTm o Temm e e '
(73) Assignee: Dictaphone Corporation, Stratford, CT (List continued on next page.)
(US)
FOREIGN PATENT DOCUMENTS
(%) Notice: S“tbjeft. 1o o %lsglalmeéi thf ?rmé}f ﬂ;l;’ EP 554626 A2 * 8/1993 H04Q/11/04
paivlll 15 CACNECE O adjusicd tndet EP 4375515 Bl * 1/1998 HO04M/3/00
U.S.C. 154(b) by 303 days. EP 822696 A2 * 2/1998 HO4M/3/36
GbB 230102 *O8/1997 ...l HO4N/1/21
This patent 1s subject to a terminal dis-
laimer.
M Primary Examiner—>cott L. Weaver
| (74) Attorney, Agent, or Firm—Howrey Simon Arnold &
(21) Appl. No.: 09/876,954 White, LLP; Anthony L. Meola
(22) Filed: Jun. 8, 2001 (57) ABSTRACT
(65) trior Publication Data A system and method for playing back data segments stored
US 2002/0035616 Al Mar. 21, 2002 in one or more locations and managed by one or more
o playback servers. In a preferred embodiment the system and
Related U.S. Application Data method receive data describing data segments to be played
o o back; transmit notifications to the playback servers to pre-
(63) (1:;9115111“3“011 of application No. 09/328,295, filed on Jun. 8, pare for playback; and transmit playback requests to the
' playback servers. The system and method are also capable of
(51) Inmt. CL7 o H04M 11/00 playing back the segments in a specified order and such that
(52) US.CL oo, 379/88.22; 379/88.09 gaps between the segments are minimized. Additionally, a
(58) Field of Search 379/67.1, 68, 88.09, graphical display can be provided to display the status of the

379/88.11, 88.22, 93.12, 93.17, 93.23, 111,
112.01, 112.06, 116, 265.03, 265.07, 266.1,
2677, 301; 360/5, 6, 55

segments being played back.

32 Claims, 29 Drawing Sheets

STREAM CONTROL MANAGER:INITIALIZATION SEQUENCE

KEY

£— INPYT/OUTPUT
3 ACTEON

<> DECISON

{ FLOW

PLAYER CBJECT
STREMCONTROL OBJECT

Cmmmmlm mﬂmm)

/lEER[!JEFI‘SFMFEDRIULL
ECIRD B OESRED CRIERA.

CALL RECORD BROVSIR m%_}mz
RESULTIG CAL RECORIK

2010

> ENTRY/EXIT (&) PBKCONTROLWIN OBJECT
(B)
(O

USER EEEFS? DESRED RECORD 2014
o

2018 2026
BEONSER. IVOKES A PRKCONTRCLY

(BIECT: A TLOG CONIANNG THE PLYERY + ORCONTROLINA0 T0 PLAY LIST{STRING CALL RECI, STRAG SEGLST)
ATV CONTRAL ,

"‘ T SENT A THO DELAITED STRICSARST STRAG 5 CALL RECORD B

20{ N SEOOND SIRKG EACH SUBTONEN
10 REPRESENTS IFORMATON ABOUT CRE SEGAENT

mmﬂmmwﬂm OF THE P, CONPLETE CAL RECORD. DNLE: |

COMPRISMG TN RECORD), SECIRELORIER, SEGISTARITIE, SEGIOURKDON, SEGICHANREL

SCRRECIRDER, SECISTARTILE, SECZURATON, SEC2CHAEL
| SORORE, S AT S, |

2034

A ENTRY TO PLAREST FOR ——
FUTLRE PLATBOK
= 2028

2030

FORWRD THE CAL RECORD D) SEGUENT LT PAYER CONNECHSTRIG CA LRECTSTRIG
10 THE G PUAYER MEDULE L SEGLEY)

US 6,785,369 B2

Page 2
U.S. PATENT DOCUMENTS 4907225 A * 3/1990 Gulick et al. 370/463
4939595 A * 7/1990 Yoshimoto et al. 386/100
4,130,739 A * 12/1978 Pattencceeee....... 369/47.36 4975941 A * 12/1990 Morganstein et al. 379/88.23
4,199,820 A * 4/1980 Ohtake et al. 386/126 5,001,703 A * 3/1991 Johnson et al. 370/280
4,260,854 A * 4/1981 Kolodny et al. 379/75 5031146 A * 7/1991 Umina et al. 365/189.01
4,298,954 A * 11/1981 Bigelow et al. 710/53 5,060,068 A * 10/1991 LindStrom 725/32
4,375,083 A * 2/1983 Maxemchuk 704/278 5,065,428 A * 11/1991 Mitchell et al. 713/194
4,435,832 A * 3/1984 Asadaetal. 704/262 5,129,036 A * 7/1992 Dean et al. 704/200
4,442,485 A * 4/1984 Otaetal. ... 710/57 5,130,975 A * 7/1992 AKAta ..eeeeeeeveeeennnn. 370/416
4,542,427 A * 9/1985 Nagal ...cccceevvnvnnnnnen.. 360/72.1 5142527 A * 8/1992 Barbier et al. 370/270
4,549,047 A * 10/1985 Brian et al. 379/88.26 5,179.479 A * 1/1993 ARD ceevveeeeeeeeeeeen 360/72.1
4602331 A * 7/1986 Sheth ..ccceovvovveeeeen... 711/113 5105128 A * 3/1993 KNitl wovvoovoooooo 370/88.24
4,621,357 A * 11/1986 Naiman et al. 370/370 5210,851 A * 5/1993 Kato et al. ceoeuveeeennnene... 360/48
4,631,746 A * 12/1986 Bergeron et al. 704/217 5216,744 A * 6/1993 Alleyne et al. 704/200
4,679,191 A * 7/1987 N?ISOH etal. 370/355 5270877 A * 12/1993 Fukushima et al. 360/48
4,686,587 A * §8/1987 Hippetal. 360/74.2 5,274,738 A * 12/1993 Daly et al.oeeue..n.. 704/200
4688117 A * 81987 Dwyeret al. 360/72.3 5305375 A * 4/1994 Sagara et al. 370/88.27
4,692,819 A * 9/1987 Steele .ooevvvvininvinannnnn.. 360/72.1 5339203 A * 8/1994 Henits et al. ...ouv..e....... 360/39
4,709,390 A * 11/1987 Atal et al. 704/262 5353,168 A * 10/1994 Crick .eeeeeeeeeeeeeeeeeenenen. 360/5
4,785,408 A * 11/1988 Britton et al. 704/270 5,396,371 A * 3/1995 Henits et al. 360/5
4,785,473 A * 11/1988 Pteffer et al. 379/88.24 5,404,455 A * 4/1995 Daly et al. coovvuvveennnnnnnn 710/4
4,799.144 A * 1/1989 Parruck et al. 710/2 5446603 A * 81995 Henits et al.cev......... 360/48
4,799,217 A * 1/1989 Fangc.cocovvniiinnne. 370/458 5,457,782 A * 10/1995 Daly et al. 704/200
4811,131 A * 3/1989 Sander et al. 360/74.4 5533103 A * 7/1996 Peavey et al. v..oov..... 370/69
4 811,376 A * 3/1989 Davis et al. 340/7.28 5,721,827 A * 2/1998 Logan et al. 709/217
4827461 A * 5/1989 Sandercoevevvinininnnnnn. 369/7 5,732,216 A * 3/1998 Logan et al. 709/203
4,829,514 A * 5/1989 Frimmel et al. 370/368 5,819,005 A * 10/1998 Daly et al. 704/200
4,835,630 A * 5/1989 Fl:eer 360/69 5867559 A * 2/1999 Jorgensen et al. 379/67.1
4,841,387 A * 6/1989 Rindfuss 360/72.1 5982857 A * 11/1999 Bradycccccoce..... 379/88.19
4,853,952 A * 8&/1989 Jachmann et al. 379/88.11 6,016,507 A * 1/2000 Carroll et al. 709/217
4,864,620 A * 9/1989 Bialickccccvveennn.. 704/207 6,070241 A * 5/2000 Edwards et al. 713/200
4,873,589 A * 10/1989 Inazawa et al. 360/53 6,223,210 B1 * 4/2001 Hickeyccceevvveenne... 709/203
4,890,325 A * 12/1989 Taniguchi et al. 704/208 6,349.329 Bl * 2/2002 Mackintosh et al. 709/219
4891835 A * 1/1990 Leung et al. 379/88.11
4,803,197 A * 1/1990 Howells et al. 360/8 * cited by examiner

IOVIO0LS _ IE

v VLV30107
NOILVLSHOM

US 6,785,369 B2

o D
GGl ,
_| lllll f _———e—_————_ e ————— — —— — ..II...IJ.]III.I_ _l. llllllll wlulIIII"
| |
|) ‘
| | |
| YOLVYINI) _ _ _ _
A " 04093 / _
S _ 06} V) \ _
= | : SIS dinve |
S J9¥SSIA |
3 | / T04INOD % [~ _ T _
S | JOVNOLS / ONFINGIHIS | 0¢} |
_ 0c)
_ k. _ _ TINA0N _
|) 43050034 | | O VIS |
W | . OIdNY m_um"pw__mm __ " I |
Mw “ Ovl Gyl | | G9l
L Y A . S]
: | -
= | |
< 4
" JONVA¥3ISE0 315 | 304005
- INdNI
| 19N NOISN3LX3 JAS-ANNEL Y 10
" — -
| | _)
| GBl 08l 0Ll .“ Gl 0Ll corL

lIIIIIIlIIIIIIIIiiIIIII

U.S. Patent

Xdd

US 6,785,369 B2

Sheet 2 of 29

Aug. 31, 2004

U.S. Patent

. N Joyndwon yury Jsyndwo)
2914 15 swi-oey

0LC
0¢¢
H sauoyd Juaby

&7 @l
L @—| = ()

001
buipooay
9pIS—UOND}S 0/
081

buipioday

apIS—uni

0G¢

auoyyd Jawolsn)

) 74

US 6,785,369 B2

Sheet 3 of 29

Aug. 31, 2004

U.S. Patent

06t
aN

1}%9

98¢
do

GCE

¢

I}

=
v | ¥8E
o | o8e
088" "
—
0LE"
A
\ /
0Z¢ GIE

GLE

Go¢

SN

SN

09¢ 0

01%

U5

g

g

0G¢
M a1oH

GYe
Julg

Ove
X3

Gee

U.S. Patent Aug. 31, 2004 Sheet 4 of 29 US 6,785,369 B2

480 daVinci SYMPHONY
478 438
-/ 436
476 |_ Dip Nul 460 TIME TagNames

Com
Messagetmitter

MESSAGE
EMITIER
PARAMETERS

MessugeEmlt Messagetmitler 434
Cic
PRIT
AGENT
Messaget mit ler CVENT CAN Clc EXTENSION] | Cte CallState
INFO LIST

474

('!

472 o 456 450
PARAME TERS Cle 440 -
470 Analyzer AgentStolusfile Extensionfile EXT"E\EBION
o e AR |52 NSO Cic CollSote
U \UNBER

418
PERIODIC dr DATA L. 422
o L[|ST 426 428 | ColStote
424
+02 Smar TRUNK Uc Cu\IE vent He
Smdr Ctc DATA MAP DATA
INPUT INPUT

468

466 i Y > poryst | 14
. I
SmdrDotaFile \ TrunkMapfile \ CtcDotofile
410
160 412 406
100

PBX

FIG.4

U.S. Patent

502
508

SCAN THE LIST
OF RECENILY
COMPLETED CALLS

CALCULATE CONFIDENCE
FACTORS CF BY THE FORMULA
CF=SUM[(MQ)i * (WF)]

522

AR ANY
MATCHES
FOUND?

15 MORE
FOUND?

Aug. 31, 2004

RECEIVE NEXT PENDING SMDR
OR REAL-TIME CTI MESSAGE

THAN ONE MAICH

NO

Sheet 5 of 29 US 6,785,369 B2

START
DATA COLLECTION

. ' I

506
YES | UPDATE THE DATA MODEL| 518
OF TELEPHONY ACTIVITY
204 ves | TRANSHIT THE CAL
Jm“ﬁsm“o‘;‘% = RECORD ONWARD T0
A CALL? THE REST-OF THE
510 0T RECORDING SYSTEM

014

NO

519 > 520
YES | REMOVE THE CAL
YES S THE CALL RECORD FROM_ THE
CONCLUDED? ASSOCITED DEWCES
526

ADD THE CALL

516 USE THE MATCH | [USE THE MATCH RECORD TQ THE LIST
FOUND WITH THE OF RECENTLY
HICHEST CF COMPLETED CALLS
@ 528
EXTRACT THE TRUNK c40
CHANNEL INFORMATION
044 UPDATE THE CALL RECORD WITHIN THE TRANSHIT THE CALL RECORD ONWARD
LIST OF RECENTLY COMPLETED CALLS 10 THE REST OF THE RECORDING SYSTEM
DISCARD THE CALL RECORD FROM 548
THE LIST OF RECENTLY COMPLETED CALLS
(O 550
550

F1G.9

DISCARD COMPLETED CALLS
AFTER THEY GET TOO OLD

U.S. Patent Aug. 31, 2004 Sheet 6 of 29 US 6,785,369 B2

680

DISTRIBUTION LAYER
(FILTERS AND SENDS RECORDS TO VARIOUS RECIPIENTS)

670

NORMALIZATION LAYER
(CONVERTS DATA INTO SIMPLIFIED CTI RECORDS)

640 650 660

DIALOGIC OTHER OTHER

_ T AP CUSTOMIZED
1 CEF';:N = LAYERS INTERFACES

620 610

630
il

(Hfl (ifl

11 (11 1 (11
(11111 Ml 1A {16t

AT&T (LUCENT) PBX VENDOR PBX VENDOR
NORTEL
ASPECT
ROLM
ROCKWELL
SIEMENS
INTECOM

F1G.6

US 6,785,369 B2

Sheet 7 of 29

Aug. 31, 2004

U.S. Patent

0lL
VivQ
NOILYHNILINOD
SINIAS
INJIV

43T1041NOD
NALSAS

0¢!

£ Ol

1V3414V3H
TYNOLLYH3dO

SINING
ANOHd3 31

JOLVIINID
(4003
TIVO

061

U.S. Patent

899

"WinMain”
THREAD

Aug. 31, 2004 Sheet 8 of 29

W

830

CRG
l
THREADS
840
MULTIPLE
OUTBOUND |
QUEUES

MAIN
CTl SERVER
THREAD

SINGLE
INBOUND CtiServ.exe
O_L_J_EUE

CONTRIBUTION 830

INTERFACL
THREADS

406

o 0
PROCESSING

THREAD

DIALOGIC
CT-CONNECT
APl LAYER

il

i ==
I o [T
T -

PBX #1 PBX 2

F1G.8

US 6,785,369 B2

820
839 J

CtiCtc.exe CtiCtc.exe

Lt

1 11
(1 1

PBX #3

U.S. Patent Aug. 31, 2004 Sheet 9 of 29 US 6,785,369 B2

‘

MessogeEmitler { | MessogeEmitter| { Messogetmitter ! L A
by

MESSAGE / ‘ AL

7 EMITTER s TXTENSION

PARAMETERS] 4 INFO LIST

Lts % %
Analyzer AgentStolustite Extensiontle
Lis A
MAN |5 ANALYZER FYTENSION Lts CollState
UILS NUMBER

 PERIODIC 7
Msq 2 A | MessageQueue
4

< Partylist

e/

SmdrDolofile TrunkMopFile LisDotakide

Smdr LINK
(RS-232)

TELEPHONY
SERVICES

PBX

FIG.9

US 6,785,369 B2

Sheet 10 of 29

Aug. 31, 2004

U.S. Patent

019l L0l

STV (3131dN0J
A1IN3O3Y 40 SNALVIS

0G0t

AJONIN NOYA

0398Nd S TIVD JYIINI 3HL NN 1SN JHL WOYA

QIAOW3IY LON 34V SIMUINI 1D 3IHL 40 341 FHL ONRNG
QINTOANI IWVD38 SIILEYd SV Y3IONOT MOYD AV LI ANV
'SINVAIOILEY] 2 LSV LV HLM SLYVIS SAYMIV ISY1 3HL NI
03LE4 34V 3000 NOSY3Y GNV 3NIL/3Lv0 ONIONT INVdIDILYVd
ML TVD JHL SIAVIT ALNVd ¥V NIHM Y31 3000 NOSY3Y
NV JRIL/3LV0 ONILYVIS ¥ HLM 0300V SI INVdIDILNYd

MIN Y 'TIVD 3JHL SNIOP ALYVd ¥ NIHM “TI¥D 3HL 40 I3
JHL 40 AYOISH JALYINNND ¥ SI SINVAIDIYY 40 1SIT 3HL

coLf
J INOHJI3L

]

U

(434SNVYL ONIONI

"TIdAVX3 ¥04) 2018
SIIVIS INIISNVYL - INOHJIN3L
NI STIVD 40 SNIVIS .
— |
01 #
_ M INOHJ313L
(10H NO SNOISNILX3
STIVD 40 SNLVIS
e INOHdI1AL 40 SNLYIS 0701

TIV) 3HL
1431 ONY Q3NIOF 11 MOH ¥04
53000 NOSYIH ANV ‘INIL/3LVQ ONI

¥ INVdIdILdvd
o
¢ INVdIOILYVd

~ON3 B ONILYVLS ONIGNIONI “TIv)
| _INVdIJILdvd JHL HLIM INIW3IATOANI SALIIN3

PLLZE TIVD NV SQHO0J3Y INVAIDILYYd HOV3
IN3AJ 1L SINVAIOILYY SII ONY TIVD 3HL 40

NOILOVH1ISEY ¥NO HLIM ONOIV INJAJ

113 1NGNI ISV JHL S193133d

IVHL SNIVIS V SYH 130K dNO

010} NIHLIM 12380 ANOHd311l HOV3

U.S. Patent Aug. 31, 2004 Sheet 11 of 29 US 6,785,369 B2

‘ 1110
DATA

COLLECTION
1120
DATA
NORMALIZATION
1150
COMMUNICATIONS
WITH
SYSTEM PLATFORM

daVinci L

F1G.11

U.S. Patent Aug. 31, 2004 Sheet 12 of 29 US 6,785,369 B2

START START
DATA COLLECTION MESSAGE EMITTER
START
DATA NORMALIZATION 1240
OPEN CONNECTION OPEN CONNECTION
10 CTI DATA SOURCE 1210 1226 10 TARGET PLATFORM
1212 . 1244
O i <

RECEIVE CTI EVENI
FROM MESSAGE QUEUE RECEVE THE CALL STATE

RECEIVE
CTl EVENT / 1230 FROM MESSAGE QUEUE
UPDATE THE 1246
1214 16 TELEPHONY MODEL 1, SONVERT DATA
/ INTO PLATFORM-SPECIFIC l
/ FORMAT
POST THE CTI EVENT POST THE CALL
TO MESSAGE QUEUE STATE TO MESSAGE _
‘ QUEUE, [F NECESSARY SEND MESSAGE TO
| 1231 TARGET PLATFORM
DISCARD PREVIOUSLY 1948
1239 COMPLETED CALLS AFTER
. THEY GET TQO OLD
1218
1233 CALL THE "HANG-UP

NO

SHUTDOWN
IN PROGRESS?

HANDLER ROUTINE FOR

HELD/BUMPED CALLS AFTER
THEY GET TOO OLD

YES 1220
(

CLOSE CONNECTION
T0 CTl DATA SOURCL

‘ 51

SHUTDOWN
IN PROGRESS?

NO

SHUTDOWN
IN PROGRESS?

1222 YES

YES
END 1236 1252
DATA COLLECTION g g NBOUND™.._ N0

MESSAGE QUEUL MESSAGE QUEUE
EMPTY? EMPTY?

YES 1238 Tt 1254

END

U.S. Patent

UPDATE THE
TELEPHONY MODEL

FIND

MATCHING OBJLCT

FOR
CTI EVENT

EXAMINE THE
STATE MATCHING RULES

USING
URRENT OBJECT STATUS
AND NEW CT| EVENT

1332

ACTION METHO[

1540

Aug. 31, 2004

Sheet 13 of 29

1230 THERE ARE MANY ACTION
METHODS WHICH CAN BE
SELECTED BY THE STAIL
MACHINE LOGIC. EACH ONE
1322 GENERALLY PERFORMS THE
FOLLOWING LOGIC FLOW USING
SPECIFIC DETAILS THAT ARE
SUITABLE FOR THE PARTICULAR
1324 TYPE OF TELEPHONY EVENT.
1 —
SAVE CTI EVENT
WITHIN THE

1342
OBJECT STATUS

UPDATE CALL-RELATED
PORTION OF THL
OBJECT STAIUS,

IF NECESSARY

UPDATE PARTICIPANTS
WITHIN THE
OBJECT STAIUS,

IF NECESSARY

RUN ADDITIONAL
ACTION METHODS
FOR OTHER AFFECTED
TELEPHONY OBJECTS,
[NECESSARY

POST OBJECT STATUS
10 MESSAGE QUEUE
FOR THE EMITTER
T0 A TARGET PLATFORM

1360

RETURN TO
Data Normalization

FIG.15

US 6,785,369 B2

US 6,785,369 B2

Sheet 14 of 29

Aug. 31, 2004

U.S. Patent

v1Ola

AIVEAVId 010NV

(MOVEAY1d
B HOYY3S)
NOILVLISYHOM
43sn

dIAYSS
35VaVIV(
\LILEN

SIINS3Y

GOyl

U.S. Patent Aug. 31, 2004 Sheet 15 of 29 US 6,785,369 B2

f

<D
=
D
O~
3
L‘_l-:r
O
Ll
O
-
"

VOICE RECORDING

LOGICAL CALL

(5
D
=
CE‘.‘:
= O
= O
— D
)
O O
|-.—-
L
LS
-
o -
n
1
- O
D =
—)
—3
-

\\

THAT ARE PART OF A SINGLE

E

o~
=t=
-
ot
-
o
-
D ot
'.—
-

VOICE RECORDINC

(-
=
[
(-
-
C.J
L)
S
)
2
-
—

7
—]
L o
NS =
=
(D L U
891.._1&-
1....120:5
&= S o
o= S
-
CLL..I:I:%
)
o7 F
_.Iz
i—— {
= =8¢
2¢O
>— = =
- -
o~
O 5 O
o '5,_..—'
] =
o = —
e D ¢
zL.I..J
X
_T__JD'.".".
m%

F1G.19

Sheet 16 of 29

Aug. 31, 2004

U.S. Patent

US 6,785,369 B2

DI W] [A

W - INId0 1aXd L

TN L0000 o) [TRva T08IN0D 0] [SHemeued] v & B8 O O (IS &)

14 SS3¥d d13H 04

< >
GNONH AIYd H3HIO OOV 30DRBND 61 g PPOL cpppzo WY LOSTE 86/11/S WY 2201 66/11/S [B) INVAOLMYE O— |
4040 TOWSON IA303Y W3SSNVML T4 | GrylZ0 WY L0SZ6 66/11/G WY ZZ0LL 66/11/S [g] INddIMYd O— |
ANV MTIONVHL INDD3Y MISSNVSL OIOH Qrg |~ IGPI00 AV Z201L 66/11/8 WY 16669 66/1L/S [z] INdiivd O—
dOM0 JONBWIINOD LIS TWMYON 71! L 1 CYRHT0 WY IGB06 66/11/S WV BO0TY 66/11/S (1] INVAIDILYYG
VAV HISNVSL LWVIS WRMON 40l ﬂf PO | —~———1 TG00 WY 16659 66/11/S WY 80029 66/11/S 0] IVl WW_
N TSSO WY ICSTE 86/11/ MY 80079 6611/ [HOW] TV
300 N0 | Jaut mouoamwon | av] NG gél‘
029! 5040034 TWI 3 o0
&) > Ellﬁ
= VIO WNNON WY 80°1Z9 66/11/5 £9%1 150 TIVD AINO ¥3ISNWYL 20:20:00 aNnogwno | | 124Na09 3wa O
: VG ON dXOVE AV 80129 66/11/5 €934l 140 TV AINO ¥3JSNvL 207000 ONNOGLNG IV AND O
! VIGIN TYWMON WY 80120 66/11/S €9Lbl 40 TIVD AINO ¥3ISNWAL 202000 ONNOALNo v NS O
: VO VANON Y 801129 66/11/S £9Lpl 340 TV KINO ¥3ISNVAL 07000 ONOBIno VA AddNG O
! VIOIW VRHON Y 80:1799 66/11/S C9d/pL 40 TID AINO Y3JSNwaiL 02000 ONAOALNO INH04S0 808 O
n MO TYWNON WY 80°1Z9 66/11/S £9aLhl 10 TV ANO YIISNYL 207000 ONNOGINo AN AT O
: WO VRMON WY 801129 66/11/6 £9oLhl 140 TVY AINO 2SNV 20000 NN0ALAO [¥VM3LS TIg O
| VO WANON WY Q0°LZ 66/11/S £9ol 40TV AINO M3 207000 ONR0BLND OINYION TI O
1] VIO YWHON Y 80°12°9 66/11/S €92/ 140 TV KINO 434SN 07000 (NNOALNO T840 AR O
; WO VHON KV 80°IZ9 66/11/S £9oLb 10 TV AINO HIISNAL Eos (NNOBLNO T3 AINVE O
H WO TYWHON IV 8001Z09 66/L1/S C9LpI 30 TV ATNO H34SNvdl INN0GING SIg Yiavauvg O
a§§§ Y 80:17:9 66/11/S %§ TIV) AINO 434SN \\&H@EE@ 00O WY O
—H WHEON 1Y 80129 66/11/5 £9Lp1 0 TV ATNO ¥IISNVHL 707000 ONA0AINO SSYN QvAHY O
ﬂsésgéé 034001 % TNIV3S TV | NOIVNG TIVD | NOILOTUO T SINI9Y T 30
Qe @J
= 130 MOONIM S100L (Q¥003d TWD MIA 10@3 314 [
X Q[(9 1v0 INOHJ](SA¥0I3Y TIWI)- DU 0P A |

91913

US 6,785,369 B2

Sheet 17 of 29

Aug. 31, 2004

U.S. Patent

V91Ol

0
NVHO

0691

¢000

1000
Nmml
NOISNILX3/NOILYLS

4304003y

43A43S 119

Xdd

001

0v31

0lL

MNNAL

¢091

US 6,785,369 B2

Sheet 18 of 29

Aug. 31, 2004

U.S. Patent

dNONVH
AldVd 43HI0

AVMY X

Joy JJX

JoM U)X

AVMY 43X

dO¥d WION

NOSV3d NOSVis
193NNOJSId 1J3NNOO

14VIS WAHON
L4VIS WON

JNIL
(N

JAIL
18V1S

d91 Il

| on
4] W

TVNYSINI

TVNY3INI

NOILYOO |

¢000

NOISNILX3 |

I

J10H

p|jusby

v

1

US 6,785,369 B2

Sheet 19 of 29

Aug. 31, 2004

U.S. Patent

(d3IMS y3ILV)
STU4 VIQIN ¥3IN0LTT
INISIHANO0D 0 TINNVHD NO YO XOA

(d3IMS ¥3LIV) ¥OW 11D
HIM Q3LVID0SSY S35 YIQIA

(dIIMS
340438) SIS VIQIN € ONISIANOD
0 TINNVHD NO ¥JW XOA

HdO dX

VX

G

¢ 314 VIO

¢ 314 VIdIR | 3113 VIQ3N

_] ¢ ,

(N
[}

S R A S S
s 5:?_82 | 2 704 VIO | 04} viO3H
m C) 4 m 0
m _“ U 4
“ T
oK
X _
- U
VX GN H _m
X3y

12 L}
0304003y .8, INJOV HLIM dOW 11D

U.S. Patent

1810

CRG
EVENT

PROCCLSOR
TASK

1806

VOX

RECORD LIST

Aug. 31, 2004 Sheet 20 of 29

MASTER CALL || MASTER CALL
RECORD LIST

1824

RECORDER
EVENTS

RECORDER
CONTROLLER
EVENT QUEUL

RECORDER

CONTROLLER
JASK**

*-PART OF AUDIO
1852 RECORDER PROCESS

CTl, SCREEN

DATA CAPTURE

AND SYSTEM
EVENTS

1864

CRG

EXTERNAL
MSMQ

FASCADL

EVENT
QUEUL

ARCHIVE
INSERT& FASCADE

UPDATE TASK "_1812
REQUESTS

LOCAL DAIA
STORL
TASK

DATA STORE
EVENT QUEUL

1816

CTl
MASTER CALL
RECORD LIST

US 6,785,369 B2

UOHDULIOJUHT) D1023Y|(079508 @ —< . O_I.._

|

SNIVING)
Ojujy) W |

US 6,785,369 B2

9|!{DIP3
PJOJYOIXOA <CU0I3|[0> D

A

0 sopjoipap w4
Juodioijiog|o)

4

> awoua) Jpadwnjgawt|
S . .
h Q00N "W Je0l -
< .
3 AIfjuapRUIDY) 0
—
7 |
Saj {55 W+ 3[t4300J0SU3IIS
CKUONIRN0D >
- (T
= Quogy W ayd w4
S _ AN d s1Dpyxop "W+
o YIS W+ 1) Wi
' J009) W+
2 0761 0/ Axg
< s_mgﬁmé | | abouopyauunynpioaay|o) |
P »761 _ L 2I0|CO}0] W4 anaNY)|LU3ATRI0}S0)0(
IN3NN|UIAT3PI0I3Y SIDPUOY)W+ |

| o |
10553201 41U3A7P1033Y||0)

| ANAI0}S0I00 W+

|
-

ap000 Jd"w+

INAP0ID{ W4 e

8C6|

U.S. Patent

U.S. Patent Aug. 31, 2004 Sheet 22 of 29 US 6,785,369 B2

STREAM CONTROL MANAGER:INITIALIZATION SEQUENCE

KEY

> ENTRY/EXIT (A) PBKCONTROLWIN OBJECT
£—7 INPUT/OUTPUT (B) PLAYER OBJECT

1 ACTION (C) STREMCONTROL OBJECT

<> DECISION

{ FLOW

USER ENTERS DA VINC! WORKSTATION SOFTHARE

USER QUERIES FOR RECORDED CALL , 2010

RECORD BY DESRED CRIERIA

CALL RECORD BROWSER DISPLAYS 2012

RESULTING CALL RECORDS

USER SELECTS DESRED RECORD 2014

2016 FOR PLAYBACK

2018 2026

PBKCONTROLWIN::CREATE

PRCONTROLWIN:ADD T0 PLAY LIST(STRING CALL RECID, STRING SECLST)

BROWSER INVOKES A PBKCONTROLWIN
0BJECT: A DIALOG CONTANING THE PLAYER
ACTVEX CONTROL

SENT AS TWO DELMITED STRINGSAIRST STRING 15 CALL RECORD K

2020 N SECOND STRNG EACH SUBTOKEN

BROWSER SENDS INFORMATION 10 REPRESENTS INFORMATION ABOUT ONE SEGMENT
PBKCONTROLWIN ABOUT ALL SEGNENIS OF THE FINAL COMPLETE CALL RECORD. EXAMPLE:
COMPRISING CALL RECORD. SEGIRECORDER, SEGISTARTIME, SEGIDURATION, SEGICHANNEL
SEGIRECORDER, SEGZSTARTTIME, SEG2DURATION, SEG2CHANNEL
2024 SEGIRECORDER, SEGISTARTTIME, SECDURATION, SEGICHANNEL;
IMMEDIATE ADD ENTRY TO PLAYLIST FOR
2032 2028

2030

- 2036
FORWARD THE CALL RECORD 1D AND SEGMENT LIS PLAYER-CONNECT(STRING CALLRECID STRING
10 THE GUI PLAYER MODULE. SEGLIST)

2034
O FIG. 20

U.S. Patent Aug. 31, 2004 Sheet 23 of 29 US 6,785,369 B2

PLAYER MODULE INSTANTIATES LOCAL SCM({STREAMCONTROL) 2038
OBJECT AND STORES POINTER IN m_plStreamControl

2040

PLAYER MODULE ACCEPTS DATA , DISPLAYS STARTING TINE AND TOTAL DURATION (BY

PARSING OUT STRING DATA) AND FORWARDS TO FINAL MODULE, STREAM CONTROL
MANAGER (SCH), FOR AUDIO PLAYBACK.

'_--_ﬂ

2042
o 2044

2046

i

l

|

|

|
StreamCantrol::INITIALIZEPloyerEvent*evt, STRING
CallReciD, STRING Seqlist, CHAR® Waveformat)

PARSE QUT SEGMENT FROM SEGLIST.

2048
PARSE OUT RECORDER 0, START T, " l—h——‘—————mct
DURATION, AND CHANNEL FROM SEGMENT. ypact 3
7048 1 string szNome; // NAME OF RECORDER
SYSTEMTINE! lorilme: //START T OF SEGHENTS
CREATE NEW SEGMENT STRUCIURE. FROM DWORD endlimeifsel; //END THE OFFSET IN MILLISECONDS
RECORDER 10, START TME, DURATION, AND |-+ poRD miliSeconds; //MILLISECOND PORTION OF STARTTINE
CHANNEL | DHORD dualon; //DURATION OF SEGMENT I¥
2050 / INILLISECONDS
| ' * D OF SEGMENT
ADD NEW SEGHENT T0 SEGHENT DHOR) chon; - //CHARNEL D
slring mdbf ile; /!
VECTOR BHE,
chor drivel etler;
052 CComPIRAIPBComObi> pPBComObj

LPWAVEFORMATEX ~ pWaveformat;
| SEGMENT, *PSEGMENT;

DONE PARSING SEGMENTS
FROM SEGLIST? NO

T 054

GET ELEMENT FROM SEGMENIS VECTOR.

2060

COPY EXISTING POINTER EROM
CONNECTIONS VECTOR TO SERVER
POINTER IN SEGMENT VECTOR

15 THIS A NEW DCOM
CONNECTION TO THE RECORDER
FOR THIS SEGMENT?

YES

CONNECT TO INDICATED RECORDER'S 2064
PloyBockServer DCOM 0BJECT |
USING CoCreatelnstancetx

2066 2068 2070 |
DD OBUECT INSTANTATE

” FIG.20A

U.S. Patent Aug. 31, 2004 Sheet 24 of 29 US 6,785,369 B2

ADD NEW OBJECT'S POINTER TO 2072
CONNECTIONS VECTOR

2074
NO

DONE CONNECTING
10 ALL SEOMENTS?

£S5

2076

GET ELEMENT FROM SEGMENTS VECTOR 2076

‘—@H PBServer. OpenPlayBack (SICNED CHARY [pCalRec, // CALL RECORD 1
(ALL PBServer OpenPloyBock METHOD

LONG ISeqNum, // WOICATES WHICH SEGNENT OF PLAY
// SESSION THS S
OU(E):ESS[%ENTAS M%H:IEEO:O?HE -] SYSTEMTIME dtPioyStortTime, ~// START TME OF ENTIRE PLAY SESSION
SERVER WHCH G0 WIH THS SEOHENT LONG PloyDurationkl, /| PUAY PERIDD (W WSEC)

SYSTEMTIME diCallSeqStarTime, ~// START TIKE OF SCGMENT OPENNG
long ICaliSeqDurationMS,] SEGHENT PERIOD (N MSEC)

CHANNEL NUMBER
9078 ;\fORD wChannnelNo //
2082 2084
<t > 0 £RR0R WESSAGE |-+ RETRN ERROR () od)
2088, YES # 080 ~

l CALL PBServer.:PloyBackReady METHOD ON

SEGNENTS [CURRENT). THS WETHOD ACTURL 0PDNS { _
THE WAYE FLES ON THE SERVER AND PREPARES THEN

FOR STREAMING. [T ALSO RETURNS THE WAVt
FORMAT OF THE AUDIO IN THE SEGMENL.

@ il 106 ERROR MESSAGE |+(RETURN ERROR (C)

0 093
2096 2094 2084

NO

HRESULT PBServerPloyBackReady (SICNED CHAR® IpCallRect, // CAL RECORD D
L PHAVEBYTE*pWAVEF ORMATEX 1] WAYE FORMA

DONE INITIALIZING
ALL SEGMENTS?

2097 2098

F16.208

MEMCPY pWAVEFORMATEX DATA
BACK 10 woveformot PARAMETER
FROM SCM::INITIALIZE CALL

U.S. Patent Aug. 31, 2004 Sheet 25 of 29 US 6,785,369 B2

O 2110
2120
2119 2114
N 5] L0G ERROR MESSAGE RETURN ERROR
YES
INDICATE "READY" ON GUI
AND ENABLE OPERATIONAL [~ 212
BUTTONS (PLAY, ETC.)
2128
RETURN SUCCESS
O 2132
2144
NO [0G ERROR MESSAGE
YES
EXIT 2148

FIG.21

U.S. Patent Aug. 31, 2004 Sheet 26 of 29 US 6,785,369 B2

KEY: STREAM CONTROL MANAGER:
PlayBock SEQUENCE

USER HAS COMPLETED INITIALIZATION : D: ,ENNPTS; //gﬁgpm
AND S WATING IN PLAYER GUI TO HIT PLAY —1 ACTION

< DECISION

USER HITS PLAY BUTTON 2202 v FLOW
2204 (® PbkControWin OBJECT

PLAYER OBJECT
StreamControl OBJECT

MESSAGE SENT TO PLAY METHOD
IN PLAYER ActiveX CONTROL

(8)——2208

PLAY METHOD IN PLAYER ActiveX CONIROL
CALLS m_plStreamControl->EnableBlockSlicing({TRUE).
THIS CAUSES THE QUTPUT BUFFERS TO BE “SLICED™ TO
INCREASE THE NUMBER OF SMALLER BUFFERS SENTI, 2210
THUS INCREASING THE RESOLUTION OF THE “totalPlayed”
VARIABLE.

(02212

StreamControl SETS enableBlockSlicing VARIABLE 2914
TO TRUE

o
K ©

(8)——2216

PLAY METHOD IN PLAYER ActiveX CONTROL CALLS
m_plStreamControl->Move(curPosition) T0 FORCE 2718

THE SERVER-SIDE POSITION TO THE CURRENT SLIDER
POSITION.

(0)2220

2222

GET SECMENT i++ FROM SEGMENT VECTOR

FIG.22

U.S. Patent Aug. 31, 2004 Sheet 27 of 29 US 6,785,369 B2

2224

IS THE END TIME OFFSET
FOR SEGMENT i GREATER

THAN curPOSITION? 2228

2226

HRESULT PositionPlay

(SIGNED char* 1p CallReclD,
LONG 1PlayOffsetMS)

// CALL RECORD ID
// OFFSET FROM START TIME
// 10 POSITION (IN MSEC)

2232

N LOG ERROR MESSAGE RETURN ERROR (C)
O

Ye
> 9938 2234

CALL PBServer.: POSITIONPLAY VIA THE SERVER

POINTER IN SEGMENT [i]. THIS CAUSES THE FILE

POINTER ON THE SERVER SIDE TO CHANGE TO THE
APPROPRIATE NEW LOCATION.

llllll

22350

2238

CALL StreamControl::StartStream

E 2240
244 | GET SEGMENT i+ FROM SEGENT VECTOR

CALL CoMarshallinterThreadlnterfacelnStream to
MARSHALL DCOM POINTER MEMBER ACROSS THREAD BOUNDARY

2242

MARSHALLED ALL SEGMENT
ELEMENTS?

2246
2248

|55Aww MAIN SCM STREAMING THREAD k—/ FIG.22A

Yes

U.S. Patent Aug. 31, 2004

BEGIN THREAD
GET SEGMENT FROM SECMENT VECTOR

CALL CoGellnterfaceAndReleaseStreom 10 UNMARSHALL
DCOM POINTER MEMBER ACROSS THREAD BOUNDARY

2254

UNMARSHALLED ALL
SEGMENT ELEMENTS?

No
2256

Yes

CET SEGMENT FROM SEGMENT VECTOR

2258

IS THE END TIME OFFSET FOR
SEOMENT 1 GREATER THAN

Sheet 28 of 29

= mbgys - @SS S . EE—— —

curAmoun{Requested?
2260
Yes
2274

S 1 < HIGHEST SEGEMENT
NUMBER?

Yes

2268

A~

IS THIS THE FIRST SEGMENT T0

CALL Event::Done
0 JETHOD RETURN SUCCESS (C)

CALL PBServer,:PusilionPIuyﬁtotulRequesled) FOR

US 6,785,369 B2

e el S SR WIS WS AR gy sk e S A ek e

2252

S totalRequested + bufierSize
{ =
Seqment(i], endTimeQffset?

CALCULATE. NEW. bufferSize N MULTIPLES
OF THE AUDIO FORNAT'S ™ BLOCK ALIGN'

2264

2266

A~

2270

SEGMENTI:

BE PLAYED IN THIS INSTANCE OF No
THE THREAD?
Yes_ -
2272
5 totalRequested <
SEGMENT[i], END TIME OFFSET? '
0

FIG.22B T e

U.S. Patent

Yes

l- CALL PBServer::ReqBuffer

FOR SEGMENT(). THIS IS
THE CORE ROUTINE THAT
ACTUAL RETRIEVES A BUFFER

OF DATA FROM THE
PloyBack SERVER.

Aug. 31, 2004

Sheet 29 of 29 US 6,785,369 B2

HRESULT PBSserver::ReqBuffer(SIGNED CHAR* 1pCollReciD,//CALL RECORD (C

DWORD ReqBuffSize, //SIZE OF REQUEST

DATA_TYPE *DataType, //TYPE OF DATA BEING RETURNED
DWORD *ActBuffSize, //NUMBER OF BYTES RETURNED
CHAR*1pBuffer) //POINTER TO BUFFER FOR REQUEST

2278 2280
@ ~—={(0G ERROR MESSAGE RETURN_ERROR(C)
s 2286 2284 2282
totalRequesled =
tololRequegted + ACTUA 2287
RETURNED BUFFER SIZE 9989
2288
SEND BUFFER BACK 10
IS BlockShicing _| PLAYER VIA EVENT::
ENABLED? NO SendData METHOD _ _
: StreomControlEvent::SendData(
1S oqp e UNSIGNED CHAR* BUFFER,

IS THE CODL
DIALOGIC OKI ADPCM
OR PCM?

YES

SIZE OF SLICES WILL
BE AN EVEN DIVIDEND
OF THE BUFFER SIZE,

.E., 1/10th BUFFER SIZE

COPY QUT "SLICE SIZE™ FROM
BUFFER AND SEND BACK TO
Ployer VIA Event::SendDolo
METHOD

HAS ENTIRE BUFFER
BEEN SENT BACK?

YES

DWORD LENGTH)

SIZE OF SLICES WILL BE
FQUAL TO AUDIO FORMAT'S
BLOCK ALIGN

2290
2293

2294

NO

F1G.22C

US 6,785,369 B2

1

SYSTEM AND METHOD FOR DATA
RECORDING AND PLAYBACK

This 1s a continuation of application Ser. No. 09/328,295,
filed Jun. &, 1999.

FIELD OF THE INVENTION

This invention relates generally to computer-aided data
recording. In particular, 1t relates to computer-aided

monitoring, recording, and playing back of telephone con-
versations.

BACKGROUND OF THE INVENTION

Telephone call monitoring systems are used 1n a variety of
contexts, 1ncluding emergency dispatch centers and com-
mercial call centers. In many currently available call moni-
toring systems, a multitude of audio input sources
(“channels”) are monitored and recorded by a single hard-
ware unit, and the audio recordings are saved and organized
according to the input channel, date, time and duration. The
capacity of the recording unit can be expanded to handle a
larger number of channels by combining several recording
units into a system using a local area network (LLAN).
Because retrieval 1s only possible using basic search criteria
(recording unit, channel, date, time and duration), it is often
difficult to locate a particular audio recording that 1s of
interest. When there 1s a need to search for a recording
according to search criteria that are not directly supported by
simple voice recording, locating a specific recording may
require tedious and repetitive searching. For example, 1if
there 1s a need to find a speciiic customer’s call to resolve a
disputed transaction, the recording unit or channel that
carried the original call might not be known, so the searcher
would be forced to manually play back many calls before
finding the correct one.

With the advent of computer telephony integration (CTI),
it 1s now possible to monitor a data link that supplies more
information about telephone calls, in addition to simple
voice recording. In a typical CTI system a telephone switch
or private branch exchange (PBX) provides an interface
suitable for processing by a computer, and expanded infor-
mation about telephone calls 1s made available through this
interface as the calls occur. Data fields that are available
within this expanded information may include the external
telephone number of the calling party, as well as 1dentifi-
cation numbers to help associate a series of events pertaining
to the same call. With such a data link being used alongside
a voice recording system, the search and retrieval system can
be supplemented by constructing a database that combines
the previously discussed basic search criteria with enhanced
search criteria (based upon information obtained through a
CTI data link) such as: telephone numbers of parties
involved in the call; Caller ID (CLID) or Automatic Number
[dentification (ANI); Dialed Number Identification Service
(DNIS); or the Agent ID Number of the Customer Service

Representative.

As shown 1n FIG. 2, with suitable equipment for tapping
into a voice communications line, a recording unit can
intercept telephone call traffic using two methods. By attach-
ing wires for recording channels on each extension within a
call center, the traffic can be intercepted and recorded as it
passes between the PBX and the agent telephone set. This
first method 1s known as “station-side” recording 180.
Alternatively, by attaching equipment on the trunk lines
between the PBX and Public Switched Telephone Network

(PSTN), the traffic can be intercepted at its point of entry

10

15

20

25

30

35

40

45

50

55

60

65

2

into the call center before the calls are dispatched by the
PBX. This second method 1s known as “trunk-side” record-
ing 170. Since businesses usually have more agent telephone
sets than trunk lines, a “trunk-side” solution 1s likely to
require less recording equipment and thus be less expensive.
Another significant point for consideration is that “trunk-
side” provides access only to external inbound or outbound
calls, which are those typically involving customers of a
business, whereas “station-side” also provides access to
internal calls between agents (which may or may not relate

to an external customer’s transaction).

With respect to data links to provide call mmformation to
computers, there are typically two different categories of
links from the PBX available. Some older links use inter-
faces such as SMDR (Station Message Detail Recording) or
CDR (Call Detail Recording) that provide summary infor-
mation about telephone calls in a line-oriented text format.
Both acronyms refer to essentially the same type of system.
Information from these links i1s generally provided after the
call has concluded, and as such 1s suitable for billing
applications or traffic analysis software. Many newer links
use real-time interfaces that are designed to supply a series
of events while a telephone call 1s still active within the
PBX, to enable computer and multimedia systems to
respond and interact with an external caller. The information

provided by such real-time links 1s typically much more
detailed than that provided by SMDR.

The detailed information and real-time nature of a CTI
link 1s particularly important when building a recording
system that 1s itended to react to telephone calls as they
occur and to dynamically select which calls ought to be
recorded or discarded. CTI-supplied information 1s also
important when building a recording system that is intended
to capture the full history of a telephone call, including
recording the different agents who were involved 1n the
conversation and how the call was held, transferred or
conferenced. Likewise, real-time mformation 1s important 1n
a system that intends to support (a) a live display of active
calls, and (b) the capability for a user to listen and monitor
the live audio traffic.

A “trunk-side” solution based upon voice recording alone
will not satisty the above requirements 1n a practical manner,
since telephone calls are assigned to trunks dynamically as
needed to handle the trathic. What trunk channel a particular
call will be carried on cannot be predicted in advance.
Without information to associate a logical telephone call
with a physical recording of audio from a trunk channel, a
user might have to search and retrieve many recordings
before finding the one that 1s of interest. Moreover, 1n a
system designed to make use of the enhanced search criteria
provided by a data link, 1t would not be possible to pro-
crammatically associate the search data with the voice

recording without information about the trunk channel
where the call occurred.

This problem can be avoided as long as the data link
provides sufficient information about the trunk channels
being used for each call. Unfortunately, some PBX environ-
ments do not supply this critical information about trunk
channels within the data provided on the real-time CTI link.
For example, this problem 1s manifested by the Lucent
Technologies DEFINITY G3 PBX, which 1s a commonly
used telephone switch in North America. While the Lucent
G3 PBX provides trunk channel information through 1its
SMDR link, that information 1s not available until after the
conclusion of the call. This presents a problem for system
features and capabilities dependent upon real-time data. The
real-time data link provided by the Lucent G3 PBX does not

US 6,785,369 B2

3

provide the necessary information about trunk channels.
There 1s thus a need for a system which 1s capable of
simultaneously monitoring both the SMDR link and the
real-time CTI link, gathering information about calls from
both sources, and combining that information into a single
data model of the telephony activity within the call center.
There 1s a further need for a system that combines the data
model with information concerning the location of call
recordings, resulting 1in a “master call record” that contains
data matching each call with the segments of which it is
comprised, and matching the data for each segment with the
location of the recording of that segment. Such a system
would facilitate monitoring, recording, and playing back
complete telephone calls. There 1s also a need for a system
capable of playing back telephone call segments stored at
different locations and assigned to different playback servers
in the order 1n which the segments occurred and without any
perceptible time lag between played back segments. Such a
system would enable a user to play back a complete tele-

phone call and hear the call the way an outside caller would
hear 1t as 1t occurred.

SUMMARY OF THE INVENTION

The present 1nvention 1s directed to a system and method
for playing back data segments stored 1n one or more
locations and managed by one or more playback servers. In
a preferred embodiment, the system and method receives
data describing data segments to be played back, transmits
notifications to the playback servers to prepare for playback,
and then transmits playback requests to the playback serv-
ers. Preferably, the received data comprises data describing
the duration of each data segment, and the system uses the
data segment duration data to determine when to transmit
playback requests to the playback servers and times the
requests so as to minimize any gaps between the segments
when they are played back. Additionally, a graphical display
can be provided to display the status of the segments being
played back.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of the system of this invention
in a preferred embodiment.

FIG. 2 1llustrates the difference between trunk-side and
station-side recording.

FIG. 3 shows a line-chart that illustrates various parties
involved 1 a complex call.

FIG. 4 shows a schematic block diagram of a preferred
embodiment for translating, summarizing and normalizing
signals received from both an SMDR link and a Dialogic
CT-Connect CTI service.

FIG. 5 illustrates the steps by which the translation
module Ct1Ctc.exe integrates the data received from the CTI

and SMDR links.

FIG. 6 1llustrates how the CTI Server can be viewed as a
set of logically distinct layers that deal with translating and
distributing CTI events.

FIG. 7 illustrates how, 1n addition to telephony events, the
CTI Server 710 1s responsible for supplying certain metadata
regarding agent events to the System Controller 130.

FIG. 8 shows the layout of the CTI Server.

FIG. 9 shows a version of CtiCtc.exe configured to work

with a Lucent Telephony Services interface (and thus called
Ctilts.exe instead of CtiCtc.exe).

FIG. 10 depicts key elements of the data model used in a
preferred embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 11 illustrates three distinct layers of the CTI Server
in a preferred embodiment.

FIG. 12 shows 1n block diagram form several threads of
the CTI Server 1n a preferred embodiment that implement
three distinct layers of processing (data collection, data
normalization, and message emission).

FIG. 13 1llustrates the program logic flow of the analyzer
layer of the preferred embodiment.

FI1G. 14 depicts the flow of information within the record-
ing system of this invention in a preferred embodiment.

FIG. 15 shows how a recording unit operating with only
voice signaling to guide the creation of its call records could
make a number of fragmented audio segments.

FIG. 16 shows a graphical user interface used 1n the
preferred embodiment.

FIG. 16 A shows a system containing a CTI Server and a
Recorder 1n a specific embodiment of the present invention.

FIG. 16B 1s a table illustrating descriptive information
from the CTI Server used 1n a speciiic embodiment.

FIG. 17 illustrates steps 1n the creation of a Master Call
Record used 1n a specific embodiment.

FIG. 18 shows the processing threads and data structures
that comprise the CRG module in accordance with the
present 1nvention.

FIG. 19 illustrates the class diagram of the Call Record
Generator used 1 a specific embodiment.

FIGS. 20, 20A, 208, 21, 22, 22 A, 22B, and 22C 1illustrate
the operation of the Stream Control Manager.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

The present mnvention 1s directed to a communication
recording system and method. Generally, the functionality of
the system involves tapping into activity on a PBX (Private
Branch Exchange) by intercepting audio on either the trunk
or station side of a telephone call. The tapped audio 1s then
redirected as input to a channel on a Digital Signal Processor
(DSP) based voice processing board, which in turn is
digitized into program addressable buffers. The recorded
digitized audio 1s then combined with descriptive informa-
tion (“metadata”) obtained through a Computer Telephony
Integration (CTI) communications link with the PBX, and
stored as a single manageable unit (“Voicedata™) to facilitate
its subsequent search and retrieval. The system uses modular
architecture 1n both its hardware and software, so that any
one component can be replaced or upgraded without atfect-
ing the rest of the system.

In a preferred embodiment the communications recording,
system comprises multiple rack-mountable computer-
processing servers (such as the Compaq ProLiant 1600 R),
using a multi-tasking operating system (e.g., Microsoft
Windows NT), DSP voice processing boards (e.g., Dialogic
D/160SC), and a distributed set of software components
available from Dictaphone Corporation. In a specific
embodiment directed to the smallest configuration, all of
these components may reside in a single computer-
processing server. In other preferred embodiments, related
components are typically packaged 1in combinations and the

entire system spans multiple servers that coordinate process-
ing through a Local Area Network (LAN).

In this preferred configuration, the overall system gener-
ally comprises CTI Servers, Voice Servers, a Central Data-
base Server, and User Workstations. CTI servers generally
use a set of components to manage a data communications

US 6,785,369 B2

S

link with a telephone switch environment, to obtain notifi-
cation of calls as they occur, along with the descriptive
information about the calls (e.g., source and destination
telephone numbers). The Voice Servers use a set of compo-
nents to collect audio recordings, manage their storage, and
facilitate their playback through the LLAN. The Central
Database Server uses a set of components to manage
system-wide search and retrieval of recorded calls. User
Workstations are typically desktop computers that use a set
of components to allow a person to submit requests to search
and retrieve recorded calls for playback and to control
automatically scheduled functions within the recording sys-
tem.

FIG. 1 shows 1n a block diagram from components of the
system of this invention 1n a preferred embodiment. Data
enters the recording system from a variety of sources. These
sources can mclude a PBX 100, CTI middleware 105, ISDN
lines 110, or other 1nput sources 115. It will thus be appre-
clated that the system of the present invention can be used
for monitoring and recording of information about any type
of electronic communications. For stmplicity, the following
discussion uses the term Telephone calls. However, 1t is
intended that term covers any electronic communication
unless specified otherwise expressly.

Data from data sources 100, 105, 110 or 115 1s transmaitted
to one or more CTI Translation Modules 165, which trans-
lates input data into a common format. The data 1s then sent
to a C1I Message Router 120, which distributes the data
onward to appropriate components of the system.

Audio Recorders 145 may be used for passive trunk-side
170 and extension-side 180 recording on a pre-determined
static set of devices, as well as dynamically mitiated record-
ing of specific devices according to scheduling criteria
through the Service Observance feature 185 provided by a
telephone switch environment. The recordings are stored on
an audio storage device 140. A Call Record Generator 150
matches data from the Audio Recorders 145 with data sent
by the CTI Message Router 120 to create a Master Call
Record (MCR) for each telephone call. The MCRs are stored
in a Voicedata Storage module 155. One or more User
Workstations 160 use the MCRs to reconstruct and play back
complete or partial phone conversations stored 1n the audio
storage device 140. A Scheduling and Control Services
module 130 controls the Audio Recorders 145 and commu-
nicates with User Workstation 160. The Scheduling and
Control Services module 1s responsible for starting and
stopping the audio recording activity, according to pre-
defined rules that are dependent upon time data provided by
the Time Service 115 and CTI1 information. As the system
components are packaged in the typical configuration, the
CTI translation modules 165 and CTI message router 120
are co-resident upon a computer-processing server called the
CTI Server 710. In a similar fashion, the combined set of
components including the Time Service 125, Scheduling &
Control Services 130, Audio Recorder 145, Audio Storage
140, and Call Record Generator 150, in a specific embodi-
ment can be co-resident upon a computer-processing server
called the Voice Server 124. The Voicedata storage 155
resides within a computer-processing server called the Cen-
tral Database Server. The specialized application software
for the User Workstation 160 resides upon desktop comput-
ers that use, 1n a preferred embodiment, Microsoft Windows
95, Windows 98 or Windows N'T operating systems.

As noted above, 1n a specific embodiment the CTI Server
comprises two main modules: a CTI translation module
(such as the software program CtiCtc.exe, Ctilts.exe, and
other translation modules) and a CTI Message Router mod-

10

15

20

25

30

35

40

45

50

55

60

65

6

ule (such as the software program CtiServ.exe discussed
below, or its equivalent). In a specific embodiment, the CTI
Server may have several translation modules, for example,
one for each PBX interface, or for each vendor API layer. As
shown 1n FIG. 1, the CTI Server of the preferred embodi-
ment accepts data from a PBX or similar equipment in a
telephone switch environment, and can use both real-time
CTI communications links and asynchronous information
sources such the Station Message Detail Recording (SMDR)
interface. The CTI Server translates and combines the vari-
ous types of input data into a unified, normalized format.
Normalized format information 1s then passed by the Mes-
sage Router to various components of the system, as
required.

As noted above, the Voice Server 1n a specific embodi-
ment has several modules, mcluding the Audio Recorder
145 and Call Record Generator (CRG) 150. The Audio
Recorder collects a plurality of audio segments, representing
the portions of a telephone call during which the sound level
exceeded an adjustable tolerance threshold, thereby discern-
ing alternating periods of speech and silence. Functionally,
the Call Record Generator (CRG) produces Master Call
Records, which encapsulate information (metadata) describ-
ing a telephone call. This descriptive information comes
from a plurality of sources, including but not limited to an
Audio Recorder and a CTI Server. The call records are
created using a participant-oriented Call Record Model. The
CRG then attempts to match the call records with existing,
recorded audio data. The CRG 1s thus able to combine data
arriving 1n different chronological order 1nto a single man-
ageable entity which describes the complete history of a
telephone call.

In a specific embodiment, a Playback Server (PBServer)
(not shown) is a sub-component within the Audio Recorder
module which uses call records to retrieve and play back
telephone calls. Each recorder has its own PBServer, which
is connected to a Player module (not shown) on the User
Workstation 160. The Player module generally contains a
Stream Control Manager module, which enables the Player
module to use the PBServers to play back a telephone call
which has several different participants and thus may have
portions of the call stored on different recorders.

C'11 Server

Still with reference to FIG. 1, when a call comes into the
PBX system, both SMDR and real-time CTI data are gen-
erated by the PBX, and supplied to the recording system via
the SMDR and CTI links. In accordance with the present
invention, these two types of data are integrated by the CTI
Server into a common format.

As known in the art, CTI (Computer Telephony
Integration) supplements the recorded audio data in several
important ways. CT1 data 1s provided through a data com-
munications link from specific telephone switching equip-
ment located at the customer site. Supplied data comprises
such 1tems as the telephone numbers of 1nvolved parties,
caller ID/ANI mformation, DNIS mformation, and agent 1D
numbers. ANI 1s Automatic Number Identification, a signal-
ing method that identifies the telephone number of the
calling party; the method 1s typically used by large-scale
commercial call centers. DNIS 1s Dialed Number Identifi-
cation Service, a feature that identifies the original “dialed
digits,” and that 1s commonly used 1n large-scale commer-
cial call centers when multiple directory numbers are routed
to the same receiving trunk group. In accordance with the
present invention, the CTI server performs the task of
analyzing and reorganizing data from both the real-time

US 6,785,369 B2

7

(CTIT) and SMDR (asynchronous) links, and passing the
results onwards 1nto the recording system for further pro-
cessing.

The design of the system of the preferred embodiment
envisions that there will be a number of CTI translation
modules 165 to accommodate a variety of possible 1nput
sources such as “native” PBX interfaces, CTI “middleware”

vendors, ISDN data channel interfaces, etc. The system
design incorporates flexibility in the manner 1n which CTI
information 1s collected, making the system prepared to
integrate with CTI links that may already exist at a customer
site. The CTI Server of the preferred embodiment 1s capable
of simultaneously monitoring both an SMDR link and a
real-time CTI link, gathering information about calls from
both sources, and combining that information 1nto a single
data model of the telephony activity within the call center.

The CTI Server i1s responsible for supplying certain
metadata regarding telephony events to the Voice Server’s
Call Record Generator 150. This metadata, such as called
party and calling party numbers, trunk and channel ID, date
and time, agent ID, etc., 1s combined by the Call Record
Generator along with the other metadata, and data that 1s
provided by the Audio Recorder 145 itself. Using this
information, other components within the system are able to
scarch for calls using a wide variety of useful and mean-
ingful criteria, rather than simply using the recorder channel,
date and time. As 1s known to those skilled in the art, an
“event” 1s simply an action or occurrence detected by a
computer program. The Call Record Generator 150 inte-
orates that data mto a sigle call record, which 1s updated
after every event during the call, so that at the end of the call,
the call’s entire history 1s contained 1n the call record. The
CRG matches the call record to the recording segments
created by the Audio Recorders. The CRG 1ntegrates the call
record with the metadata for the associated recordings of the
phone call to generate a Master Call Record. When an
operator wants to hear a recorded phone call, he uses the
User Workstation (preferably equipped with a graphical user
interface) to recall and play back the recorded call. Since the
phone call may have had several different participants,
pieces of the call may have been recorded on different
recorders, each of which 1s associated with a different
Playback Server. The system 1s nevertheless capable of
playing back the entire phone call 1in the proper sequence.

In a preferred embodiment the CTI Server obtains the
information regarding telephony events from various tele-
phone switching environments, including PBXs, ACDs, and
turret systems, which may have a wide variety of proprietary
CTI interfaces. A telephone switching environment 1s a local
telephone system that provides for routing of calls on a static
or dynamic basis between specific destinations; the system
1s capable of identifying of when calls occur and who 1s
involved 1n the calls. The CTI Server converts the informa-
tion receirved 1nto a common “normalized” format that 1s a
simplified subset of the types of information available across
the different vendors’ PBXs, ACDs, and turret systems. This
data conversion 1s partially facilitated by products such as
Dialogic’s CT-Connect API, which 1s capable of processing
CTI messages from the major vendor’s switches such as the
Lucent DEFINITY G3, Nortel Meridian and DMS-100,
Aspect, Rolm 9751, Rockwell Spectrum and Galaxy,
Siemens Hicom, and Intecom. However, 1n accordance with
the preferred embodiment an additional software layer exists
within the CTI Server to further filter and normalize the CTI
information. This feature also allows for a separate point of
integration with customized software interfaces that may be
necessary to connect with other switch vendors, especially

10

15

20

25

30

35

40

45

50

55

60

65

3

certain turret systems that are not supported by Dialogic’s
CT-Connect (CTC) product. Alternate embodiments of the
tfranslation module use Lucent CentreVu Computer Tele-
phony Server for Windows NT, or Genesys T-Server, as
middleware instead of Dialogic CT-Connect. Additional
alternate embodiments include direct “native” interfaces to
a particular telephone switch, such as Aspect, without an
interposing middleware product.

In terms of the CTI messages exchanged between the CTI
Server and the various PBXs, ACDs, and turret systems, in
accordance with a preferred embodiment the CTI Server 1s
a “passive listener.” That 1s, the CTI Server will monitor and
receive mformation about call activity, but it will not send
messages to aflect, control, or redirect the calls. Using an
“active” CTI server 1s also contemplated 1n specific embodi-
ments.

Whereas the focal point of a Voice Server 1s recording
content (e.g., audio clips), the metadata generated by the
CTI Server 1s focused on describing the facts pertinent to the
start and end points of each participant’s involvement within
a call. In other words, within the system of the preferred
embodiment, recording is managed in a call-centric (rather
than event-centric) fashion. This corresponds with the typi-
cal caller’s point of view, in which a call 1s the entire
conversation with a business entity, even if the conversation
involves transfers to other agents or conferencing of mul-
tiple parties. The CTI Server generates events with metadata
for the start and end points of the various recording segments
of a complex conversation. These event records are interre-
lated by ID numbers and reason codes (see FIG. 3) so that
the entire sequence of events for a complex conversation can
be reconstructed by a browser application, preferably imple-
mented on the User Workstation 160.

In accordance with the preferred embodiment, there can
be one or more CTI Servers within the system of the subject
system, as needed to process the traffic load of CTI infor-
mation generated by multiple PBXs, ACDs, and turret
systems. In a specific embodiment, a single CTI Server may
be configured so as to connect with several PBXs, ACDs,
and turret systems, depending upon the traffic load and
physical connectivity requirements. In alternate
embodiments, different CTI servers can be attached to
different input sources. Generally, the number of CTI Serv-
ers within the system does not have a direct relationship with
the number of Voice Servers. The telephony events gener-
ated by a CTI Server are individually filtered and
re-transmitted to the appropriate Voice Server based upon
configuration data for the system as a whole (managed by
the Central Database Server), which maps the recording
locations (extension number, or trunk & channel ID) with
the Voice Server name and recording input port (channel).

During the active lifetime of a call, real-time 1mnformation
1s accumulated within a historical call record that tracks each
participant within the call. Each participant record includes
descriptive fields for telephone numbers, agent ID numbers,
fime ranges, and reason codes for joining and leaving the
conversation. At certain key points during the accumulation
of data, whenever a party joins or leaves the conversation,
the call record 1s transmitted onward to allow the rest of the
recording system to process the information accumulated
thus far. Upon the conclusion of the call, the CTI server
retains a copy of the call record for a configurable time

interval before discarding it from memory. This delay 1is
intended to allow for the arrival of the SMDR data.

Upon receiving SMDR data, the CTI server searches 1its
memory for a call record pertaining to the same logical

US 6,785,369 B2

9

telephone call that would have been accumulated from
previous real-time messages. Matching this information 1s
not a trivial task, since the SMDR link and real-time CTI
link do not share a common reference ID number for use by
their messages 1n describing the occurrence of the telephone
call.

Theretfore the software of the preferred embodiment must
use other “clues” to guide the matching process, by com-
parison on a combination of other data fields that exists in
common between the SMDR and real-time CTI data. These
data fields include: (1) the telephone number of the first
external party involved in the call; (2) the telephone number
of the first internal party involved in the call; (3) the
direction of the call (e.g., inbound, outbound); (4) the start
time of the call, in hours and minutes; and (5) the duration,
in seconds, of the call.

Once again, the matching process 1s not trivial because the
SMDR link gives the starting time of the call only 1n hours
and minutes, whereas the starting time given by the real-time
link also includes seconds. It 1s quite possible that more than
one call could be started and stopped within a single minute.
This would result in an ambiguous match, if not combined
with other search fields. The same argument holds true for
cach of the other fields upon which a match can be per-
formed. No single field alone will provide an unambiguous
matching of the records. Even 1n combination, it 1s concelv-
able (although statistically unlikely) that an ambiguous case
could occur: if the same two parties were to call each other
twice within the span of a minute, and each call was roughly
the same length in seconds. The odds of such a problem are
increased 1f a large number of calls are routed through a
common entry point into the call center, as would be the case
if the first internal party involved in the call 1s a shared Voice
Response Unit (VRU) or Automatic Call Distribution
(ACD) queue. In addition, if information about the external
party’s number 1s missing due to limitations of the PSTN or
incoming trunk configuration, matching the call records
becomes even more problematic.

Adding to these difficulties 1s the fact that clock-time
values reported by the SMDR link and the real-time CTI link
may not be perfectly in synchronization with each other.
Theretfore, the preferred embodiment comprises a mecha-
nism 1n which an imperfect match of times can be tolerated,
while still retaining an acceptable level of reliability in
matching the call records.

Because these various factors require a degree of flex-
ibility 1n the matching algorithm, the preferred embodiment
incorporates a weighted formula that 1s applied to potential
match candidates. The formula yields a numerical confi-
dence factor that can be used to select the best apparent
match candidate. For each of the “clues,” a test 1s conducted
to determine the quality of matching on that data field. This
matching quality 1s rated as a percentage. Certain ficlds,
such as time values, are allowed to vary within a config-
urable tolerance range, whereas other fields are required to
match exactly or not at all. After the matching quality of a
field has been determined, 1t 1s multiplied by an importance
factor that applies a relative weight to each of the various
fields that can be examined during matching. The final
confidence factor 1s the summation of these calculations:

Confidence Factor=Z ((Match Quality),*(Weighting Factor),)

In order to account for the fact that characteristics of the
call tratfic may vary significantly between individual call
centers, the tolerance factors (e.g., for time value offsets) and
the weighting factors are re-configurable. There 1s also a

10

15

20

25

30

35

40

45

50

55

60

65

10

re-configurable minimum level for confidence factors,
below which the match candidate will always be rejected.

For those fields, such as time or duration, where an
imprecise match may be allowed, the configuration data will
define an allowable variance range (plus or minus a certain
number of seconds). Values that do not match exactly, but
fall within the variance range, are rated with match quality

expressed 1n percentage that 1s measured by one minus the
ratio of he difference from the expected value versus the
maximum variance.

Match Quality=1-(abs(Expected Value—Actual Value)/Maximum-
Variance)

Values outside the variance range are rated as a match
quality of zero. This produces a linearly scaled match
quality. Alternate embodiments may use other distributions
(e.g., standard deviation “bell curves”) to produce a non-
linear scale for the match quality. Where an exact match 1s
required for a field, the match quality 1s either 100% or zero.

EXAMPLE

Real-time CTI events report a telephone call from an
unknown external party (missing or deliberately suppressed
ANI/CLID information) to an internal party at extension

1234, starting at 12:25:03 and lasting for 17 seconds (CLID
1s Calling Line Identification, a signaling method that 1den-
tifies the telephone number of the calling party; the method
1s typically used by residential subscribers and small
businesses). Two SMDR records arrive which could possi-
bly match with this call. The first record indicates an
inbound call received by extension 1234 at 12:26 and lasting
26 seconds. The second record indicates an inbound call
received by extension 1234 at 12:2°7 and lasting 20 seconds.
The system 1s configured with a variance range of plus or
minus 3 minutes for the start time, and plus or minus 10
seconds for the duration.

Weighting Factors are:
20 External Party Telephone Number
40 Internal Party Telephone Number
30 Direction
20 Start Time

20 Duration
Confidence Factors are therefore calculated as follows:

CF,=(20+1.00)=(40=1.00)+ 30«1.00)+ 20«1 =1/3)) +

(20 %(1 = 9/10))
=105 1/3
CFr, =(20x1.00)+(40x1.00)+ 30100+ (20+(1 -2/3)) +
(20 % (1 —3/10))

=110 2/3

The system will therefore match the CTI events with the
second SMDR record.

After a match has been selected, the trunk channel infor-
mation (and any other useful information that can supple-
ment the previously gathered real-time CTI data) is
extracted from the SMDR data and added to the call record
within the CTI server’s data model of telephony activity.
Then the updated call record 1s transmitted onward to allow
the rest of the recording system to process it. With the trunk
channel information at hand, the recording system 1s able to
assoclate the enhanced logical search mnformation with the

US 6,785,369 B2

11

physical voice recording, and take whatever actions may
have been dependent upon this information, such as selec-
fively recording or discarding the call.

FIG. 2 1s an illustration of the difference between trunk-
side and station-side recording at a call center with agents.
With suitable equipment for tapping into a voice commu-
nications line, a recording unit can intercept telephone call
tratfic using either of these two methods. By attaching wires
for recording channels 180 on each extension within a call
center, the traflic can be intercepted and recorded as it passes
between the PBX 100 and the agent telephone sets 230. This
first method 1s known as “station-side” recording.
Alternatively, by attaching equipment 170 on the trunk lines
between the PBX and Public Switched Telephone Network
(PSTN) 250, the traffic can be intercepted at its point of entry
into the call center before the calls are dispatched by the
PBX. This second method 1s known as “trunk-side” record-
ing. Since businesses usually have more agent telephone sets
than trunk lines, a “trunk-side” solution 1s likely to require
less recording equipment and thus be less expensive.
Another significant point for consideration 1s that “trunk-
side” provides access only to external inbound or outbound
calls, which are those typically involving customers of a
business, whereas “station-side” also provides access to
internal calls between agents (which may or may not relate
to an external customer’s transaction).

A third type of recording interface 1s Service Observance
185 (see FIG. 1), which is physically wired in manner like
station-side recording, but using separated dedicated lines to
a recording input channel rather than being interposed
between a PBX and telephone set. In this mode of operation,
the Recorder joins 1nto a telephone call as a silent conference
participant using the PBX Service Observance feature
(originally intended to enable a supervisor to directly moni-
tor an employee’s telephone calls upon demand). This
differs from ordinary station-side recording in that the
internal party being recorded on a given input channel can
vary upon demand rather than being fixed by the wiring
pattern.

FIG. 3 shows a line-chart that illustrates various parties
involved 1n a complex call. A 1s the customer phone number,
and B and C are the agent phone numbers located behind
recording channels R20 and R21 respectively (see FIG. 2).

Initially, the call comes in from line A 335 to line B 340.
A real-time CTI message occurs describing that phone B 1s
ringing, but not yet answered. B answers the phone 365 at
time t0 310. The “NS” at 360 mdicates the normal start of
a phone call. Areal-time CTI message occurs describing the
start of the call between A and B. The telephony model is
updated to reflect the fact that the call between the 1nitial 2
participants (A and B) started normally at time to 310. A
copy of the call record 1s then sent onward to the rest of the
recording system. The call record 1s retained within the
telephony model, associated with device (or line) B. At time
t1 315, B places the call on hold 370 (the “XA” at 370
indicates that the call was transferred away from B; the
“XR” at 375 indicates that the transfer was received by
HOLD). A real time CTI message occurs describing that B
placed the call on hold. The telephony model 1s updated to
reflect that B transferred the call to HOLD 345 at time t1
315. (This information is accumulated with the information
previously gathered at t0 310). A copy of the call record is
then sent onward to the rest of the recording system. The call
record 1s removed from device B within the telephony
model, but kept 1n a list of held calls.

At time t2 320, B returns’ to the call 380 and conferences
in C 355 (the “XA” at 380 indicates that the call was

10

15

20

25

30

35

40

45

50

55

60

65

12

transferred away from HOLD; the “XR” at 382 indicates
that the transfer was received by B; the “CA” at 384
indicates that C was added as a conference participant). A
real-time CTI message occurs describing that B returned to
the call and invited C by conferencing. The call record 1s
moved within the telephony model from the list of held calls
back to device B. The telephony model 1s updated to reflect
that HOLD 345 transterred the call 380 back to B at {2 320.
(Note that information is accumulated with the information
previously gathered at t0 310 and t1 315). A copy of the call
record 1s then sent onward to the rest of the recording
system. The telephony model 1s updated to reflect that C
joined the call 384 as a conference participant at t2. (This
information continues to be accumulated with previously
gathered information). A copy of the call record is then sent
onward to the rest of the recording system. The call record
1s retained with both devices B and C within the telephony
model.

At time t3 325, a real-time CTI message occurs describing
that C dropped out 386 of the call (the “CD” at 386 indicates
that C was dropped from the conference). The telephony
model 1s updated to reflect that C dropped out of the
conference at t3. (This information continues to be accumus-
lated with previously gathered information). A copy of the
call record 1s sent onward to the rest of the recording system.
The call record 1s removed from device C within the
telephony model, but retained with device B.

At time t4 330, A terminates the call to B. Areal-time CTI
message occurs describing that A terminated the call (The
“ND” at 390 indicates that a normal drop of the call
occurred; the “OPH” at 395 indicates that the other party
hung up). The telephony model is updated to reflect that A
stopped normally and B stopped because the other party
hung up at t4. (This information continues to be accumulated
with previously gathered information). A copy of the call
record 1s then sent onward to the rest of the recording
system. The call record 1s then removed from device B, but
kept 1n a list of completed calls. An SMDR message 1s
received which summarizes the call in 1ts entirety. The list of
completed calls 1s searched to find a match, and the appro-
priate call record 1s retrieved. The call record 1s updated with
the trunk channel information from the SMDR message. A
copy of the call record i1s sent onward to the rest of the
recording system. The call record 1s removed from the list of
completed calls.

FIG. 4 shows a schematic block diagram of a preferred
embodiment for translating, summarizing and normalizing
signals received from both an SMDR link and a Dialogic
CT-Connect CTT unit. In the embodiment illustrated in FIG.
4, the recording system of the subject system 1s represented
by daVinci™, a new generation recording system of Dicta-
phone Corp. Alternatively (or simultaneously), Dicta-
phone’s Symphony™ CTI software can be used, 1n con-
junction with Dictaphone’s ProLLog™ recording system (the
system preceding daVinci™). Hereinafter, the translation/
summarization module of the preferred embodiment 1llus-
trated 1n FIG. 4 will be referred to as CtiCtc.exe.

The module CtiCtc.exe 1s itself comprised of a plurality of
modules, as shown 1n FIG. 4. A CtiAgentEvent module 448
1s comprised of a data structure for agent log-on and log-oft
messages. A CtiAgentStatusFile module 454 manages a file
that tracks agents currently logged on. A CtiCallEvent
module 416 1s comprised of a data structure for a call record
(i.e., normalized and summarized CTI events). A CtiCall-
State module 418 1s comprised of a generic data structure to
represent the state of telephony activity at a particular
location (extension, hold area, etc.). A CtiComMessageE-

US 6,785,369 B2

13

mitter module 476 comprises a layer that converts the stream
of CtiCallEvent objects (generated by a CtiCtcAnalyzer
456) into a format that can be sent to other da Vinci system
components. A CtiCtcAnalyzer module 456 comprises a
processing engine which examines CTC and SMDR mes-
sages and keeps track of a state machine for the activity on
cach extension. The CtiCtcAnalayzer module performs nor-
malization of the CTC and SMDR data.

A CtiCtcAnalyzerUtils module 452 comprises a collec-
tion of utility subroutines that assist in examining the CTC
and SMDR messages. A CtiCtcCallState module 420 com-
prises a data structure that represents the state of telephony
activity at a particular location (extension, hold area, etc.)
including CTC-specific information. A CtiCtcCallStateList
module 432 manages an open-ended collection of CtiCtc-
CallState objects. This collection of objects 1s typically used
to track calls that are “held” or “bumped.” A CtiCtcData
module 428 comprises a data structure wrapped around the
raw CTC data, with the addition of a time stamp indicating
when a message arrives. A CtiCtcDataFile module 412
manages a file of CtiCtcData objects that can be captured or
displayed. A CtiCtcExtensionlnfo module 442 manages a
collection of Ct1iCtcCallState objects, with one object for
cach extension.

A CuCtclnput module 464 comprises an 1nput source
engine that obtains mmcoming CtiCtcData objects, either
from a “live” server or from a playback file. A CtiCtcMain
module comprises the main() function for CtiCtc.exe. The
main() function handles command line and registry
parameters, along with other start-up processing. A CtiCtc-
Parameters module 472 comprises data structure and pro-
oram logic for managing the configuration parameters in the
Windows NT registry. A CtiCtcScanner module 446 com-
prises a utility module for building a list of all available
extensions on a particular telephone switch. A CtiCtcStats
module 434 comprises a data structure for compiling statis-
tics on the number of CTC, SMDR, and CTI messages. A
CtiDtpField module (not shown) is used by a CtiDtpMes-
sageEmitter module 478, and comprises a data structure for
an 1ndividual field in the Dictaphone Telephony Protocol
(“DTP”), used to communicate with other Symphony CTI
system components. A CtiDtpMessage module (not shown)
1s used by a CtiDtpMessageEmitter module 478, and com-
prises a data structure for a complete message 1n the DTP to
be sent onwards to the Symphony CTI system.

A CtiDtpMessageEmitter module 478 comprises a layer
that converts the stream of CtiCallEvent objects (generated
by CtiCtcAnalyzer 456) into a format that can be sent to the
Symphony CTI recording platform. A CtiDtpSocketSrv
module (not shown) manages the TCP/IP connection
through which messages for DTP are sent to the Symphony
CTI platform. A CtiDtpUtility module (not shown) com-
prises a collection of utility routines that assist 1n examining,
and processing DTP messages. A CtiExtensionFile module
450 manages the configuration file that lists all available
telephone extensions. A CtiExtensionIlnfo module 440 man-
ages a collection of CtiCallState objects, with one object for
cach extension. A CtiExtensionNumber module 430 com-
prises an abstraction of an individual extension number as
cither a numerical or string value, so that changes to this
model will not have a global impact in CtiCtc.exe.

A CtiMessageEmitter module 438 comprises an abstract
layer that converts the stream of CtiCallEvent objects
(generated by CtiCtcAnalyzer 456) into a format that can be
sent to various target platforms, including the da Vinci and
SymphonyCTI systems. A CtiMessageEmitterParameters
module 474 comprises a data structure and program logic for

10

15

20

25

30

35

40

45

50

55

60

65

14

managing conflguration parameters that relate only to the
message emitter(s). A CtiMessageQueue module 462 com-
prises shared memory for transferring data between threads.
As 1s known to those skilled in the art, a “thread” 1s a part
of a program that can execute independently of other parts.
A CtiNulMessageEmitter module 460 comprises a layer that
accepts the stream of CtiCallEvent objects (generated by
CtiCtcAnalyzer 456) and discards them instead of sending
them to a target platform. Typically this layer 1s used only
when debugging CtiCtc.exe, or to capture a sample file of
CTI events from a PBX without sending them to the da Vinci
or SymphonyCTI systems. A CtiPartyListElement module
414 comprises a sub-component of the CtiCallEvent data
structure 416. The module 414 tracks information about an
individual participant (e.g., caller, recipient) in a call.

A CtiPeriodicMsg module 468 comprises a generic han-
dler for sending timer-based housekeeping messages. A
Ct1Print module 444 comprises a layer that manages console
output and conditional trace messages. A CtiSmdrData mod-
ule 424 comprises a data structure wrapped around the raw
SMDR data, with the addition of a time stamp indicating
when a message arrives. A CtiSmdrDatakFile module 408
manages a file of CaiSmdrData objects that can be captured
or replayed. A CtaSmdrDatalList module 422 manages an
open-ended collection of CtiSmdrData objects. This 1s typi-
cally used to butfer SMDR records that have not been paired
with CTC records. A CtiSmdrInput module 466 comprises
an 1put source engine that obtains incoming CtiSmdrData
objects, either from a “live” server or from a playback file.

A CtiTagNames module 436 comprises a uftility module
that converts number values to descriptive strings for debug-
omng and tracing purposes. A CtiTime module 438 comprises
a utility module that converts time values to UTC for
internal storage and conditionally prints times in either the
UTC or local time zone. A CtiTrunkMap module 426
comprises a data structure that describes a mapping between
logical trunks and logical trunk groups, into physical trunks
and TDM timeslots. A CtiTrunkMapFile module 410 man-
ages a configuration file that contains the CtiTrunkMap
information.

FIG. 5§ 1illustrates the steps by which the translation
module CtiCtc.exe integrates the data recerved from the CTI
and SMDR links. Imitially, at step 502, the translation
module receives a message from the SMDR link or from the
CTI link. If the message 1s determined, at step 504, to be a
CTI message, the current data model of telephony activity 1s
updated at step 506. If the translation module determines at
step 514 that the C'TI message indicates a party joined or left
the call, the call record 1s at step 518 transmitted onward to
the rest of the recording system before continuing to step
512. Otherwise, no message 1s transmitted onward to the rest
of the recording system and processing continues directly to
step 512. If the translation module determines at step 512
that the CTI message indicates that the call has been
concluded, at step 520 the module removes the call record
from the associated devices. The translation module then
adds the call record to the list of recently completed calls at
step 528. Completed calls are discarded (step 530) after they
get too old (i.e., after a predetermined number of recorded
calls, or a given time period after the original recording of
the call). Processing then continues again from step 502 by
receiving the next incoming message. I at step 512 the call
has not been concluded, the completed calls are discarded
(step 530) after they get too old. Processing then continues
again from step 502 by receiving he next incoming message.

If at step 504 the message 1s an SMDR message, the
translation module at step 508 scans the list of recently

US 6,785,369 B2

15

completed calls. At step 510 the translation module calcu-
lates confidence factors for the recently completed calls by
using the formula:

Confidence Factor=Z ((Match Quality),*{Weighting Factor),)

If any matches are found (step 516), and more than one
match 1s found (step 522), the Match with the highest
confidence factor is used (step 526). If only one match is
found, that match is used (step 524). At step 540, the trunk
channel mformation 1s extracted, and at step 544 the call
record 1s updated within the list of recently completed calls.
The call record 1s transmitted at step 548 to the rest of the
recording system. At step 550 the call record 1s discarded
from the list of recently completed calls. Cpleted call are
discarded (step 530) after they get too old. If no matches
were found at step 516, the completed calls are discarded
(step 530) after they get too old. Processing then continues
again from step 502 by receiving the next incoming mes-
sage.

As shown 1n FIG. 6, the CTI Server can be viewed as a
set of logically distinct layers that deal with translating and
distributing CTI events. Starting from the bottom of the
picture, CTI events flow from a PBX 1n 1its proprietary
format to Dialogic C'T-Connect middleware 640 another API
layer 650 or custom interface layer 660 that each provide
partial normalization of the data. This helps to reduce the
complexity of the “translation™ job, since there are fewer
APIs than individual PBX types. But since one object of the
subject system 1s to retain the flexibility to integrate with a
variety of third-party CTI vendors (e.g., Dialogic, Genesys,
etc.) there 1s another layer 670 above the API or custom
interface layer to complete the job of “translation.” The final
result after passing through this “normalization” layer 1s that

all of the CTI events are 1n a single, common, integrated data
format.

Once the CTI events have been converted to a normalized
format, the CTI Server can address 1ts other mission of
distributing (routing) the messages. The distribution layer
680 cxamines each message to determine what other record-
Ing system components need to receive 1t, and then sends a
copy of the event to the appropriate destination(s).

This logical separation of responsibilities used 1n a pre-
ferred embodiment simplifies the programming required to
implement the subject system. Translation modules do not
nced to know anything about other recording system
components, and they can focus on dealing with a single
specific PBX or vendor API layer. Likewise, the distribution
module will not need to know anything about speciiic PBX
or vendor API layers, and 1t can focus on making routing
decisions and communicating with the rest of the recording
system.

FIG. 7 illustrates how, 1n addition to telephony events, the
CTI Server 710 used in accordance with the present inven-
tion 1s responsible for supplying certain metadata regarding
agent events to the System Controller, which 1s part of the
Scheduling & Control Services 130 shown m FIG. 1. This
information, which generally includes agent ID, extension
number, logon and logoif time, etc., 1s obtained when
available from the various PBXs, ACDs, and turret systems.
The agent events delivered to the System Controller 130
enable a map to be maintained of the extension number(s)
where a real person can be found, at a given date and time.
This information enables a browser application to intelli-
gently associate some of the previously recorded calls even
if a person was using different telephone sets according to a
‘free seating’ plan. The CTI Server 710 also keeps a local
cache of the agent information, so that agent information can

10

15

20

25

30

35

40

45

50

55

60

65

16

be 1ncluded when sending the telephony events to the Call
Record Generator 150.

The physical layout of the CTI Server used 1n a specific
embodiment 1s shown 1n FIG. 8. With reference to FIG. 1,
the translation modules are 1mplemented by separate
programs, such as CtiCtc.exe 406, which encapsulate the
details on converting a specific PBX interface or vendor API
layer 1nto a normalized format. The distribution module 1is
preferably implemented by a single program, CtiServ.exe
820, which includes the main processing and routing logic

for the CTI Server.

As noted, the translation modules of the CTI Server
convert proprietary-format CTI information 1nto a normal-
1zed format. In accordance with a preferred embodiment,
this 1s done 1n several layers within the program. The
information 1s first converted by Dialogic’s CT-Connect
software into the CTC-API format, and then the conversion
to the generic format used by the other components of the
recording system 1s completed by the translation module
CtiCtc.exe. Once the data 1s converted, 1t 1s transmaitted to
the distribution module (CtiServ.exe) by using a distributed
communications method such as DCOM. Component
Object Model (COM) is a Microsoft specification that
defines the interaction between objects in the Windows
environment. DCOM (Distributed Component Object
Model) is the network version of COM that allows objects
running on different computers attached to a network to
interact. An alternate embodiment of the CTT Server utilized
Microsoft Message Queue (MSMQ) technology as the
means to carry messages among the system components,
instead of the original DCOM method used by CtiServ.exe,
and those skilled 1n the art would appreciate that a variety of
additional data communications technologies are also suit-
able to this role.

The translation module and the distribution module of the
CTI Server can be located on different machines, if desired.
There can be multiple translation modules running in the
system—one for each PBX or CTI middleware environ-
ment. There can also be different types of translation
modules, with one version for each interface or API layer. As
depicted mm FIG. 8, CtCic.exe deals with the Dialogic
CT-Connect API, and there are 3 copies of this program
running to handle the PBXs. If other types of APIs are used,
there would be other programs for these various interfaces.
All translation modules contribute data upward to the dis-
tribution module 1n a single, common, normalized format.
An example of a version of CtiCtc.exe configured to work
with a Lucent Telephony Services interface (and thus called
CtiLts.exe instead of CtiCtc.exe) is shown in FIG. 9. The
modules which are common to both versions of the program
are shown 1n FIG. 9 as shaded gray. The unshaded modules
represent those portions of the program that necessarily vary
between CtiCtc.exe and Ctilts.exe, due to the differing input
parameters and data structures used by both systems.

Again with reference to FIG. 8, the distribution module
(CtiServ.exe) receives and collects all the CTI events from
the various translation modules. Then it puts the events into
a single inbound queue 830 for processing by a main control
thread 835. After the events are processed, they are sepa-
rated 1nto individual outbound queues 840. Finally, the
events are sent by various delivery threads 850 to the CRG
components within different Voice Servers. The main pro-
cessing thread 855 (WinMain) is deliberately isolated

US 6,785,369 B2

17

(decoupled) from the inputs and outputs to ensure that
delays 1 transmitting or receiving data will not impact the
overall performance of the CTT Server.

FIG. 11 shows how the CTI server 1n accordance with a
specific embodiment consists of several threads that imple-
ment three distinct layers of processing (data collection
1110, data normalization 1120, and message emission 1130).
FIG. 12 illustrates the processing steps of these layers. The
dashed lines indicate message flow between threads,
whereas the solid lines 1indicate program logic flow. The CTI
translation modules are thus internally separated into 3
major sub-tasks: (1) data collection from the input source
(PBX, CTI middleware, etc.); (2) normalization of the data
to a common format; and (3) communications with the
system platform.

In a data collection layer, the 1nitial step 1210 1s to open
the connection to the CTI data source. At step 1214 the layer
receives a CTI event, and at step 1216 posts the CTI event
to the Message Queue 462 (see FIG. 4). If at step 1218 a
shutdown 1s 1n progress, the connection to the CTI data
source 1s closed at step 1220, and at step 1222 data collection
1s ended. If at step 1218 a shutdown 1s not 1n progress, the
CTI connection remains open (step 1212).

At step 1228, the data normalization layer receives a CTI
event from the Message Queue 462. The data normalization
layer updates the telephony model at step 1230. See FIG. 13
for a more detailed explanation of the updating of the
telephony model. At step 1231, the call state 1s posted to the
Message Queue, 1f necessary. At step 1232 completed calls
are discarded from memory after they age beyond a config-
urable time limit. At step 1233 the “hang-up” routine 1s
called to update the telephony model for held or bumped
calls after they age beyond a configurable time limit. At step
1234, 1f a shutdown 1s 1n progress, the data normalization
layer checks the inbound message queue at step 1236. I the
message queue is empty, data normalization is ended (step
1238). If the message queue is not empty at step 1236 or if
there 1s not a shutdown 1n progress at step 1234, the data
normalization layer goes to step 1226 and waits for the next
CTI event to arrive.

The message emission process begins with opening a
connection to a target platform, such as the da Vinci or
SymphonyCTI recording systems at step 1240. At step 1244,
the message emission layer receives the call state from the
message queue 462. At step 1246, the call state data 1s
converted 1nto a platform-specific format. At step 1248, the
message emitter sends the message to the target platform. At
step 1250, if a shutdown 1s 1n progress, a check 1s made at
step 1252 for whether the inbound message queue 1s empty.
If the inbound message queue 1s empty, message emission 1S
ended at step 1254. If the inbound message queue 1s not
empty at step 1252, or 1f there 1s not a shutdown 1n progress
at step 1250, the message emission layer, at step 1242,
maintains the open connection to the target platform and
awaits the next call state transmission.

Master Call Record

The CTI Server sends “Call Event Records™ onward to the
recording platform. These messages provide details on the
start and end of calls, as well as significant transitions that
affect the lists of participants for the calls. The list of
participants 1s cumulative, and information regarding par-
ticipants 1s retained for the entire duration of the call even
when some participants in the list may have dropped off
from the call. If a participant rejoins the call, a new, separate
entry will be created to reflect that change within the
participant list. The following table shows the fields con-
tained within these messages.

10

15

20

25

30

35

40

45

50

55

60

65

138

CtiCallEvent

Type (max
length)

Name Description

Version WORD Version number of this message
format, for reverse compatibility.
Unique ID for this message
instance

A number that 1dentifies a
particular Voice Server

A number that 1dentifies a
recording input channel on a
Voice Server

[ndicates if this event added (0x01)
and/or dropped (0x02) participants
in the call.

Indicates if this call was affected
by a normal (1), conference (2), or
transfer (3) telephony event
Unique ID pertaining to entire call
(CTT server provides the same ID
for a call that 1s transferred,
conferenced, etc)

Indicates call origin - outbound
(0x12), inbound (0x21), internal
(0x11), or unknown (0x44)
Seconds between the first ring
signal and going off-hook (picking
up the phone)

DTMF codes entered during the
call

Character array dedicated to
information the switch may
provide along with the call (e.g.,
account number)

[Index number of the calling party
within the participant list.
Normally this 1s zero.

[ndex number of the called party
within the participant list.
Normally this 1s one.

Number provided by the PBX to
identity this call.

Count of participants in the
following array.

Array of PartylListElement
describing all participants involved
in the call

MessagelD GUID

RecorderNode WORD

RecorderChannel WORD

Eventlype BYTE

EventReason BYTE

CTICallRecId GUID

CallDirection BYTE

Ringlength WORD

DTMFCode String*(50)

ApplicationData String*(32)

CallingParty WORD

CalledParty WORD

PBXCallRecld DWORD

NumberOfParticipants WORD

ParticipantList Vector*

*ObjectSpace data types

ObjectSpace 1s a set of C++ class libraries provided by
ObjectSpace, Inc., that define usetul general-purpose data
structures including representations of strings, time values,
and collections of objects (such as vector arrays or linked
lists). These class libraries are implemented in a way that
supports a wide variety of computer operating systems.
Those skilled in the art will appreciate that many alternate
implementations for such data structures are suitable for this
role.

CtiPartyListElememt

Name Description

Type

AgentID String*(24) Registered ID of person,
typically used for “free seating”
call center environments
Telephone number of this
participant (e.g., ANI, DNIS,
Dialed Digits)

Seating position that can consist
of one or more stations.

Number String*(24)

Console String*(10)

US 6,785,369 B2

19

-continued

CtiPartyListElememt

Name

Station

Extension

Type
String*(10)

String*(6)

Description

Unique telephone set, possibly
with multiple extensions.
[nternal line number of the

participant

Number of the switch (PBX,
ACD, or turret system) which is
handling the conversation
[dentification of trunk line which
1s handling the conversation
[dentification of trunk’s channel
(time slot) which is handling the
conversation

Describes the location of
participant with respect to the
switch - can be internal (1),
external (2), or unknown (3)
Time participant joined the call
Time participant left the call
How participant joined the call:
norm start of call (1), being
added to a conference (2), or
receiving a transferred call (3)
How participant left the call:
normal end of the call by
hanging up (1), dropping out of
a conference (2), transferring
away a call (3), or call ends by
another party hanging up (4).
[ndicates 1if recent change in CTI
message.

Switchld WORD

TrunkID WORD

VirtChannel WORD

LocationReference BYTE

time__and_ date*
time and date*
BYTE

StartTime
EndTime

ConnectReason

DisconnectReason BYTE

Changed BOOL

*ObjectSpace data types

For external participants, only the fields Number,
SwitchName, TrunkID, VirtChannel, LocationReference,
Start Time, EndTime, ConnectReason, and DisconnectRea-
son will be applicable. For internal participants, all fields
may be applicable. Unused string fields will be null termi-
nated. Unused number fields are set to zero. Each call event
record will contain at least two participants in the list. These
two participants are the original calling party (0) and called
party (1) and will appear within the list in that order
respectively.

Note: The data field “Number” will be filled 1n a variety of
ways, depending upon the type of participant and direction

of the call.

Participant Type Call Direction Number Field

[nbound Call
Outbound Call

ANI
Dialed Digits

External participant
External participant

[nternal participant [nbound Call DNIS or Extension
[nternal participant Outbound Call Extension
[nternal participant [nternal Call Dialed Digits or Extension

The CTI Server sends “Agent Event Records” onward to
the recording platform’s System Controller to convey infor-
mation when an agent logs on/off at a particular location.
The following table shows the fields contained within these
Mmessages.

10

15

20

25

30

35

40

45

50

55

60

65

20

CtiAgentEvent
lype

Name (max length) Description

Version WORD Version number of this message
format, for reverse compatibility.

MessagelD GUID Unique ID for this message instance

EventType BYTE [ndicates if this event pertains to
either a logon (1) or logoff (2).

LocationType BYTE [ndicates if this event pertains to a
location type such as a console (1),
station (2) or extension (3).

AgentID String*(24) Registered ID of person, typically
used for “free seating” call center
environments

Switchld WORD Number of the switch (PBX, ACD, or
turret system) where the agent
connected.

Console String*(10) Seating position that can consist of
one or more stations.

Station String*(10) Unique telephone set, possibly with
multiple extensions.

Extension String*(6) [nternal line number of the participant

StartTime time__and_date* ‘Time that the agent logged 1n.

EndTime time__and__date* Time that the agent logged out.

*ObjectSpace data types

Within any given “Agent Event Record”, only one of the
following three fields will be applicable: Console, Station, or
Extension. The actual mapping 1s determined by the Loca-
tionType. Unused string fields will be null terminated.
Unused number fields are set to zero.

It will be appreciated that the general principles behind
the method described above are suitable not only for asso-
ciating and combining real-time CT1I data with the trunk
channel information from an SMDR message, but also for
any situation where a mixture of information 1s being
provided from two or more sources and there 1s a need to
cgather and merge the information to get a more complete
picture of what 1s actually happening in the system. The
disclosed method could easily be adapted by those of
ordinary skill in the art to situations in which the mapping
or association between the multiple sources of information
1s “weak” and prone to ambiguity. While this method does
not make the potential ambiguity disappear, 1t helps to define
a quanfitative set of rules for making a judgement call on
when a match 1s “good enough” to act upon. While human
beings are often capable of making such judgement calls
intuitively, computers need a specific set of instructions in
order to act m a repeatable and reliable fashion upon the
input data.

Previous recording systems that made use of CTI to
collect enhanced search information mimicked the event-
oriented 1nterfaces provided on the data links from a PBX.
Individual database records were constructed on a 1-to-1
basis for the events occurring during the total lifetime of a
phone call. The mterpretation of the series of events was left
to the end user. Associations between related events were
made difficult 1n certain cases because the call identification
numbers given by a PBX may change after a call has been
transterred or conferenced, or the numbers may be recycled
and reused over time. Following and tracing the history of
events for a complete call from the perspective of the
external customer could require much manual and repetitive
scarching. Playing back the enftire set of audio recordings
from the start of that customer’s interaction with the
business, to the ultimate conclusion of that customer’s
transaction, could also require additional repetitive manual
requests to play back the individual recorded segments

within a call that was transferred or conferenced.

US 6,785,369 B2

21

To resolve this problem, the CTI server of the preferred
embodiment maintains and accumulates information within
a data model of telephony activity. FIG. 10 depicts the key
elements of the data model. This consolidated information 1s
shared with the rest of the recording system when parties
join or leave a call, thereby eliminating the need for down-
stream components to store or interpret the individual CTI
events occurring during a call’s lifetime.

During the active lifetime of a call, real-time information
1s accumulated within a historical call record that tracks each
participant within the call. At certain key points during the
accumulation of data, whenever a party joins or leaves the
conversation, the call record 1s transmitted onward to allow
the rest of the recording system to process the mmformation
accumulated to that point. Upon the conclusion of the call,
the CTI server of the preferred embodiment retains a copy
of the call record for a configurable time interval before
discarding it from memory. This delay allows for the arrival
of the SMDR data.

The call records are organized into a two-tiered hierarchy
of calls and participants. Certain data fields that apply
globally to the entire call are stored at the upper level. Most
data fields, however, apply only to a speciiic party involved
within a call, and are stored at the lower level. Individual
participants can have identifying information (such as exten-
sion number, agent ID, telephone number via DNIS/ANI/
CLID, trunk and channel) along with time-stamps and
reason codes for the entry and exit from participation in the
telephone call. Reason codes include initial start, transfer,
hold, resume, conference add/drop, and hang-up.

The currently active call on each telephone set being
monitored 1s maintained within a storage area 1020 of the
data model. Also, the data model provides for an open-ended
list 1040 of calls that may be “on hold” (and therefore not
associated with any telephone set). There is also a list 1030
that can be used temporarily for calls when they are in a state
of transition during transfers, queuing or re-routing, for the
brief period of time when an active call 1s disassociated from
its original telephone set but not yet associated with a new
telephone set. Finally, there 1s a list 1050 of recently
completed calls that 1s used to await additional information
that might be provided from a SMDR message.

This complete set of data structures 1s replicated indepen-
dently for each CTI server that monitors a separate PBX
within the overall call center environment.

The call-centric structure and the list of participants
facilitate a common framework for modeling the various
types of complex call scenarios that may occur during the
life of a call, far beyond the simplest example of a basic
two-party telephone call. Moreover, the recording units can
link references (1.e., logical pointers) to the audio recordings
for a portion of the call, so that these audio sections are
associated with the total history of the logical telephone call.
Each call record can be linked within the database to an
open-ended list of references, which provides: the name of
a Voice Server; the name of a . WAV file containing the audio
recording; the offset within the WAV file to the start of the
recording segment; the start time of the recording segment;
and the duration of the recording segment.

Rather than relying exclusively upon the call identifica-
fion number assigned by the PBX, the CTI server of the
preferred embodiment obtains a Globally Unique Identifier
(GUID), that is generated at the software’s request by the
underlying Microsoft Windows NT operating system, and
uses that GUID to identify the call uniquely within the
recording system’s memory, online storage database, and
offline storage archives. The GUID 1s mmitially requested at

10

15

20

25

30

35

40

45

50

55

60

65

22

the start of the call. While the call remains active, the CTI
server maintains a record of both the call identification
number assigned by the PBX, and the GUID assigned to the
call by the software of the preferred embodiment. When a
CTI event arrives, the system searches the telephony model
to find a matching call record for the PBX-assigned call
identification number. At transition points during a call’s
lifetime, such as when it 1s transferred or conferenced, the
PBX typically provides the old and new identification num-
bers together 1n that single transition event. In these cases,
after locating the matching call record, the software of the
preferred embodiment updates its record of the call identi-
fication number now being used by the PBX while retaining
the originally allocated GUID value. In this way, the same
GUID 1identifies the call throughout its lifetime, even while
the PBX call identifier may be changing. The long-term
uniqueness of the GUID value 1s also useful if the PBX
recycles and reuses previously assigned call i1dentifiers. It
further helps 1n dealing with calls within a multiple PBX
environment. While another PBX may coincidentally use
the same call i1dentification number, a different GUID 1s

assigned at the start of each individual call, thereby avoiding
a conflict within the telephony model.

As shown 1n FIG. 11, the CTI server consists of three
distinct layers. Each layer actually runs 1n a separate thread
of execution, and communicates with the other layers
through shared memory, control semaphores, and message
queues. The first layer 1110 1s responsible for gathering
input from the PBX data link(s), and there can actually be
several threads running to provide better throughput capac-
ity or to handle multiple diverse input sources (¢.g., SMDR
and real-time CTI messages). After saving the clock time
when a message 1s received, the first layer 1110 places the
message 1nto a queue for subsequent processing by the
second “analyzer” layer. The second layer 1120 1s respon-
sible for updating and maintaining the telephony model
within the memory of the CTI server, and for deciding when
to send copies of call records onward to the rest of the
recording system. When a call record needs to be sent
onward, the call record 1s placed mnto a message queue for
subsequent processing by a third “message emitter” layer
1130, which 1s responsible for communications with other
components of the overall recording system. This separation
of layers gives the CTT server the flexibility to process its
input and output sources 1n a de-coupled fashion, so that any
delay 1n one area of communications does not affect the
processing of another area. In a sense, the design approach
provides a virtual “shock absorber” so that bursts of input
traffic, or temporary lag times in communicating with other
parts of the recording system, can be tolerated without loss
of data or incorrect operation of the system.

The call records saved within the telephony model also
include a record of the last state of the device as reported by
the PBX. This information 1s used by the analyzer to run
state machine rules, 1n order to select a handler routine for
a subsequent message. The CTI server uses the previous
state of the device (e.g., ringing, answered, and so forth)
along with the current state of the device to select a handler
routine from a matrix of potential choices.

The analyzer layer 1s of particular interest, since it 1s
responsible for updating and maintaining the data model of
telephony activity. Its overall program logic flow 1s 1llus-
trated 1n FIG. 12 and the subroutine called at step 1230 1is
shown 1n further detail by FIG. 13. This program logic is
described below.

1.

2.

US 6,785,369 B2

23

Receive a CT1 event from the message queue at step
1228.

Enter the subroutine at step 1230 to update the tele-
phony model. Referring now to FIG. 13, search the data

of model of telephony activity, to find a matching
record at step 1322 with the same monitored device

(i.e., telephone set).

. If the PBX-assigned call identification number does not

agree, search for a matching record 1n the lists of calls
on hold, 1n transition states, or recently completed. If a
match 1s then found, move the call record on the
affected device to the list of calls 1n transition states,
and move the matching record to the monitored device.

4. At step 1324, use the previous state as recording within

the telephony model, along with the new state reported
in the CTI event, to select the appropriate handler
routine at step 1332 from a matrix of choices. The
handler routine will be one such as those described
below.

5. At step 1340, run the steps of the handler routine. This

will commonly include steps to save at step 1342
imnformation from the CTT event 1nto the call record, to
update the call-related portion of the Object Status, if
necessary (step 1344), to update Participants within the
Object Status, 1f necessary (step 1352), to run addi-
tional action methods or handler routines for other
affected telephony objects, if necessary (step 1348),
and to post Object Status to the message Queue for the
Emitter to a target platform (step 1354).

6. At step 1360, returning to FIG. 12, at step 1232, discard

7.

8.

completed calls within the data model of telephony
activity, if they have aged beyond a certain
re-conflgurable time limat.

Call the “hang-up” routine at step 1233 for any held call
that have aged beyond a separate re-configurable time
limit. Likewise, call the “hang-up” routine for any calls
marked 1n transition, which have aged beyond another
separate re-configurable time limut.

Continue again from the beginning of this logical
program flow at step 1226.

The following description lists processing steps for vari-

ous handler routines that may be called in response to certain
event types using a decision matrix based upon past and
current state mnformation.

Handler Routines

[gnore:

DialTone:

Ringln:

Answer:

Abort:

Hang-Up:

RingOut:

adjust state based on CTT event

save the initial start-time of the call

save the original dialed number, if available
adjust state based on CTT event

adjust state based on CTI
event time-stamp when ring occurred

clear call record

set inbound, outbound, internal

adjust state based on CTT event

compute total ringing duration

fill 1n call record with calling party & called party
generate STARIT message to recording system
adjust state based on CTT event

clear timers & original dialed number

adjust state based on CTT event

update call record to stop all parties

indicate which party actually hung up on the call
generate STOP message to recording system
adjust state based on CTT event

time-stamp when ring occurred (i.e., now)

10

15

20

25

30

35

40

45

50

55

60

65

24

-continued

Handler Routines

Hold:

Resume:

Confterence:

Transter:

ContDrop:

OpAnswer:

DestChanged:

clear call record

set inbound, outbound, internal

compute total ringing duration (i.e., zero)

fill 1n call record with calling party & called party
generate START message to recording system

adjust state based on CTT event

stop participant placing the call on hold

add new placeholder participant for HOLD

generate TRANSFER message to recording system
move call record to hold area

fill device slot with a new empty call record

if device slot not idle, move call record to transition list
move matching call record from hold area to device slot
adjust state to “active”

stop the placeholder participant for HOLD

add new participant for telephone set that resumes the
call

generate TRANSFER message to recording system

if call record found in hold area,

if device slot not idle, move call record to transition list
move matching call record from hold area to device slot
adjust state to “active”

stop the placeholder participant for HOLD

add new participant for telephone set that resumes the
call
generate TRANSFER message to recording system
adjust state based on CTT event

add new participant for telephone set that i1s added via
conference

generate CONFERENCE-ADD message to

recording system

if call record found in hold area,

if device slot not idle, move call record to transition list
move matching call record from hold area to device slot
adjust state based on CTT event

stop the participant leaving the scope of the call (either a
device or HOLD)

add new participant receiving the transferred call
generate TRANSFER message to recording system
adjust state based on CTT event

stop the participant leaving the scope of the call
generate CONFERENCE-DROP message to recording
system

adjust state based on CTT event

re-compute total ringing duration

correct the affected participant entry in the call record
generate CORRECTED message

clear call record

the call will be processed via a subsequent CI'T event

The following step-by-step description describes the same
call scenario as 1in FIG. 3, but with emphasis on the data
model of telephony activity.

1.

2.
3.

A real-time CTI message occurs describing that phone
B 1s ringing, but not yet answered.

The “Ringln” routine 1s invoked.

The telephony model 1s updated with the time when
ringing started (for use later in measuring ring duration)
and the call direction. These facts are stored with

device B 340.

. Areal-time CTI message occurs describing the start of

the call between A 335 and B 340.

. The “Answer” routine 1s imvoked.
. The telephony model 1s updated to reflect the initial 2

participants (A and B) started normally at t0 310.

. A copy of the call record 1s sent onward to the rest of

the recording system.

. The call record 1s retained within the telephony model,

assoclated with device B 340.

. A real time CTI message occurs describing that B 340

placed the call on hold.

US 6,785,369 B2

25

10. The “Hold” routine 1s invoked.

11. The telephony model 1s updated to reflect that B 340
transferred the call to HOLD 34§ at t1 315. (This

information 1s accumulated with the information pre-
viously gathered at t0).

12. A copy of the call record 1s sent onward to the rest of
the recording system.

13. The call record 1s removed from device B 340 within
the telephony model, but kept 1n a list of held calls.

14. A real-time CTI message occurs describing that B 350
returned to the call and mvited C 355 by conferencing.

15. The “Conference” routine 1s mvoked.

16. The call record 1s moved within the telephony model
from the list of held calls back to device B 350.

17. The telephony model 1s updated to reflect that HOLD

345 transferred the call back to B 350 at t2 320. (Note
that information 1s accumulated with the information
previously gathered at t0 and t1).

18. A copy of the call record 1s sent onward to the rest of
the recording system.

19. The telephony model 1s updated to reflect that C 355
joined the call as a conference participant at t2 320.
(This information continues to be accumulated with
previously gathered information).

20. A copy of the call record 1s sent onward to the rest of
the recording system.

21. The call record 1s retained with both devices B 350
and C 355 within the telephony model.

22. Areal-time CTI message occurs describing that C 355
dropped out of the call.

23. The “ConiDrop” routine 386 1s invoked.

24. The telephony model 1s updated to retlect that C
dropped out of the conference at t3. (This information
continues to be accumulated with previously gathered
information).

25. A copy of the call record 1s sent onward to the rest of
the recording system.

26. The call record 1s removed from device C within the
telephony model, but retained with device B.

277. A real-time CTI message occurs describing that A
terminated the call.

28. The “Hang-Up” routine 1s invoked.

29. The telephony model 1s updated to reflect that A
stopped normally and B stopped because the other
party hung up at t4 330. (This information continues to
be accumulated with previously gathered information).

30. A copy of the call record 1s sent onward to the rest of
the recording system.

31. The call record 1s removed form device B 350, but
kept 1n a list of completed calls.

32. A SMDR message occurs summarizing the call in its
entirety.

33. The list of completed calls 1s searched to find a match,
and the appropriate call record 1s retrieved.

34, The call record 1s updated with the trunk channel
information from the SMDR message.

35. A copy of the call record 1s sent onward to the rest of
the recording system.

36. The call record 1s removed from the list of completed
calls.

FIG. 14 depicts the flow of information within the remain-

der of the recording system. The same enhanced search

10

15

20

25

30

35

40

45

50

55

60

65

26

information S1 1412 1s provided by the CTI server to all of
the recording units involved 1n handling a portion of the call.
Even 1f a call 1s transferred to another telephone set, which
1s attached to an 1nput channel on a different recorder, the
entire call will still remain associated as one entity within the
system. Each recorder maintains a local copy of the audio
sections V1 1416, V2 1420, and V3 1424 that 1t obtained
during the call, along with a complete call record containing
scarch 1information S1 1412 which contains the two-tiered
call and participant model. The search information 1s copied
to a central database server 1450, along with references (i.e.,
logical pointers) to the original audio recordings VR1 1428,
VR2 1432, and VR3 1436. When a user searches for a call,
the search results 1465 will include the complete call record
S1 1412. By using the audio references the playback soft-
ware can reassemble the complete audio for the original call,
including sections possibly obtained from different physical
recording units.

The general principles behind the method described above
would be suitable, not only for representing the complete
history of telephone call’s lifetime, but other forms of
multi-party communications. This may include certain
forms of radio traffic that have an associated data link, which
provides “talk group” identification numbers (or similar
types of descriptive search data in relation to the audio
traffic).

Call Record Generator

The Call Record Generator (CRG) in accordance with the
present invention performs the function of combining voice
and data into call records. It performs this function at or near
real time. The CRG, when combined with the metadata
normalization module CTI Server, makes up a system that
can be used 1n current and future communication recording
products.

The CRG 15 responsible for collecting data from different
sources with respect to portions of a call on various record-
ing input channels, and merging them together into a unified
call record. One of these sources 1s the recorder that creates
the files containing media. Another sources provides meta-
data describing the when, who, why and where information
of a call. This call record metadata comprises the start and
stop times of a segment within a call, as well as CTI data
such as telephone numbers and agent IDs. These metadata
sources 1nclude but are not limited to Telephony switches
and Trunked Radio servers. The CRG depends upon the CTI
Server to normalize data from these sources.

FIG. 1 illustrates the relationship between the CRG and
the rest of the system. Since call records are an essential part
of the recording system, there 1s one CRG dedicated to each
recorder and physically located 1n the same Voice Server. It
other system components become inoperable, call record
generation will remain functional (albeit at a reduced level).

The CTI server supplies switch events to the appropriate
recorder 1indicating either the status of calls or providing data
for population. The CTI server provides, along with call
record data, the association between the recorder location
(i.e., Voice Server and recording input channel number) and
the switch connection point. The switch connection point 1s
described as either the extension for extension side record-
ing or the Trunk ID/virtual channel (TDM time slot) for
trunk side recording. In addition to this mapping, an agent
identification will be supplied for agents currently associated
with this call. The recorder location, switch identification
and corresponding agent are stored in the call record. The
CRG 1s designed to work with many different configurations
of the disclosed system. These configurations include: sys-
tems without CTI Servers; systems with Real-time CTI

US 6,785,369 B2

27

Servers; systems with non-Real-time CTI Servers; recorders
with analog inputs; recorders with digital inputs; recording
on the trunk side of the telephony switch; and any combi-
nation of CTI Servers, Recorder inputs, and recorder posi-
fions mentioned above.

Due to the non-standard operation of telephony switches
and flexibility requirements of the recording device, the
CRG must handle event data arriving in different chrono-
logical order. In accordance with a preferred embodiment, it
accomplishes this by requiring all events to indicate time of
occurrence and maintaining a history of them. A call record
can be created solely from either event sources but when
both are present, call records are generated using recorder
information together with CTI data.

It 1s clear that the use of different data sources and
non-synchronous messages, as required to support various
alternative configurations of the overall system, add consid-
erable complexity to the CRG. For example, with the many
different objects supplying information for a particular call,
the messages from each can be received in any order. The
CRG must be able to accommodate this requirement. In
some conflgurations, objects supply redundant information
to the CRG. The CRG provides a mechanism for selecting
which information will populate the call record.

In the most basic mode of operation, the CRG has no CTI
input and 1s recording solely on VOX events from the
recorder controller (the term “recorder controller” is used
interchangeably herein with “Audio Recorder”; both terms
refer to the software that primarily directs the processing of
the audio data). VOX 1s Dialogic Corporation’s digital
encoding format for audio samples. This term 1s also some-
fimes used to refer voice-activated initiation of recording, a
process that conserves storage space since a continuous
recording process would include periods of silence. These
VOX events mark the beginning of energy activity on a
phone line and are terminated by the lack of activity. With
this approach, an actual phone call may include several call
records. To address this problem, the recorder waits a
configurable holdover period while silence 1s present before
terminating an active VOX clip (the term “Recorder” is used
interchangeably herein with the term “Voice Server”; both
terms refer to the physical recording server). The goal is to
concatenate parts of a phone call where gaps of silence exist.
The solution lies 1n determining an appropriate holdover
fime so as to avoild merging audio from the next phone call
it 1t occurs close to the end of the last call.

The next level of operation 1s where the recorder hard-
ware can detect telephony signaling such as off hook and on
hook. The CRG has no CTI input from the switch and is
recording solely on events from the recorder controller, but
these events mark the beginning and end of a phone call (off
hook and on hook). The resultant call record reflects a phone
call 1in enftirety but lacks much descriptive data that accom-
panies switch data.

The highest level of operation 1involves the use of a CTI
Server. In this configuration, the CRG receives recorder
events as well as CTT events. Since CTI events give the CRG
a description of the entire phone call, information obtained
from them drive the creation of call records. Recorder data
describing audio events are absorbed 1nto the CTI call record
whenever audio and CTI times overlap. With CTI events
driving call record generation, non-audio based call records
can be created.

Mixing of recorder and CTI data occurs by comparing,
ranges of time indicated. For example, a person whose
telephone extension 1s being recorded 1s 1nvolved 1n a phone
call for a given period of time. The recorder events imndicat-

10

15

20

25

30

35

40

45

50

55

60

65

23

ing that audio was recording on the same extension during
the same time period are associated with the CTI metadata
for that phone call. Since the data from the CTI Server may
arrive before or after the corresponding recorder events, the
CRG maintains an independent history for each type of data.

For the case where CTI events arrive before the recorder
events, the CTI events are added to the CTI history list.
When the corresponding recorder events arrive, the CTI
history list 1s swept for matching time ranges and associa-
tions are made when they occur. For the case where recorder
events arrive before the CTI events, the recorder events are
added to the recorder history list. When the corresponding,
CTI events arrive, the recorder history list 1s swept for
matching time ranges and associations are made when they
OCCUL.

Previous recording systems stored voice data and meta-
data 1n separate locations. A significant disadvantage to this
approach 1s that it 1s left up to the other software subsystems
to combine the information when required. This approach
makes the work of other system features, such as playback
and archiving to ofiline storage, more complicated and prone
to error. By performing this “early binding” of the audio and
CTI data in accordance with the present invention, such
problems are avoided and the above desirable features are
therefore much simpler to implement 1n a correct, robust
fashion.

When attempting to playback media for a given call
record, the playback mechanism must figure out where the
audio for the call record exists and when determined,
retrieve and locate the start time 1nside this media. The CRG
places this media metadata in related tables, thus imnforming
the playback mechanism what files are associated, their
location, and what time ranges inside the file are available
for playback.

Most communication systems require an archive mecha-
nism to store large amounts of data that cannot be kept
online due to capacity limitations. The CRG used 1n accor-
dance with this invention assists with archiving by allowing
both call record metadata and the media files to be stored on
the same offline media. Current versions of recording sys-
tems store call record metadata and media files on separate
offline media making restore operations more complicated.

For enhanced security purposes 1n a preferred
embodiment, the CRG accesses media files associated with
a call record through the use of media segmentation. A
media segment includes, 1n addition to a media filename and
location, a start time and duration inside the media file.
Media segmentation 1s necessary when creating CT1 based
call records since a call record may involve many recording
locations throughout the life of the call. The specified time
range 1solates a portion of the media file that can be accessed
through this call record. This feature 1s very important when
there are many call records located 1n one media file. A user
attempting to play back media of a call record, to which he
has the permission for access, may or may not have per-
mission to play back other call records sharing the same
physical file.

The Call Record Generator i1s responsible for merging,
CTI search data and a multitude of voice recording segments
together 1nto a single manageable unit of data. This software
includes a flexible receiver algorithm to allow voice and
scarch data to arrive 1n either order, without requiring one to
precede the other. Once combined, the call record can be
managed as a single entity, which greatly simplifies and
reduces the work necessary to perform search, retrieval, and
archival operations. This approach also offers a more natural
and flexible framework for controlling security access to the

US 6,785,369 B2

29

recordings, on an individual call basis (or even on selected
portions within a call).

As shown 1n FIG. 15, a recording unit operating with only
voice signaling to guide the creation of its call records could
make a number of fragmented audio segments. When the
recording unit 1s supplied with CTI search data giving a
complete history of the call’s lifetime, and when it 1is
designed to merge the CTI search data and audio segments
into a combined unit of Voicedata™, the results can simplify
and reduce the work necessary for a user to obtain a desired
call from the system. Several audio segments can be grouped
together, and can be understood by the system as being part
of the same logical telephone call. It 1s also possible that a
single audio segment was recorded, even though parts
belong to separate telephone calls, because the delay
between stopping the first call and starting the second call
was very brief. Without a sufficient silence gap, it may
appear to the voice recording unit that this was a continuous
secgment of audio, rather than belonging to two separate
calls. When the CTI search data 1s merged with the audio
segments, the system can use this information to recognize
when an audio segment should be split and divided between
two logically distinct calls.

The purpose of the Call Record Generator (CRG) is to
collect information describing multimedia data and store it
in a central location. The CRG produces Master Call
Records (MCRs) that encapsulate information describing a
phone call as well as the location multimedia that 1s asso-
cilated with 1t. This description data comes from a multitude
of sources including but not limited to a Voice Server and
CTI Server. Likewise, the design of the system envisions
that there will be a number of possible 1nput sources for
audio recording.

Whatever the means for collecting CTI information, it 1s
communicated to the rest of the system in a common,
normalized format. The CTI information is passed from the
translation modules to a message router. From that point,
copies of the information are sent to the scheduling and
control services and to the CRG for the appropriate recorder
(s). The scheduling and control services are responsible for
starting and stopping the audio recorder, according to pre-
defined rules that are dependent upon time and CTI infor-
mation. The CRG 1is responsible for merging the audio
recording with the CTI information to determine the tem-
poral boundaries of the call and prepare the Voicedata for
storage.

The user workstation typically searches and retrieves
records from the Voicedata storage, and then obtains audio
for playback directly from each recorder’s private storage
arca. The user workstation can also be used to monitor “live”™
conversations by communicating directly with the recorder.
The user workstation can also control the audio recorder
indirectly by manipulating the rules used by the scheduling
and control services.

In the preferred embodiment, the user workstation has
software that 1s configured to display a graphical user
interface (GUI) such as that shown in FIG. 16. The GUI in
FIG. 16 uses the information compiled 1n the Master Call
Record to generate a graphical representation 1610 of the
call, as well as displaying the call record immformation in
alphanumeric form 1n a table 1620. Further, when the call 1s
played back, the displayed segments 1n the graphical repre-
sentation are highlighted to indicate the portion of the call
being played back. For example, in FIG. 16, if the entire call

1s played back, when the portion of the call that occurred
between 6:20:08 AM and 6:55:31 AM 1s played back the

bars 1632, 1634, and 1636 are highlighted from left to right

10

15

20

25

30

35

40

45

50

55

60

65

30

as the call 1s played back. Thus, as the part of the call that
occurred at 6:55:31 AM 1s reached, bar 1634 1s fully
highlighted, and bars 1632 and 1636 are highlighted starting
from the left and extending to those points on bars 1632 and
1636 that are directly above and below the right-hand
endpoint of bar 1634. After the played back call reaches the
part that occurred at 6:55:31 AM, the bar 1638 begins to be
highlighted starting at the left endpoint. When the part of the
call that occurred at 7:10:22 AM 1s reached, the bar 1636 1s
fully highlighted. At that point, the bars 1632 and 1636 arc
highlighted from their left-hand endpoints and extending to
points directly above the right-hand endpoint of bar 1638.
The process continues as long as the call 1s being played
back, until bars 1632, 1634, 1636, 1638, 1642, and 1644 are
completely highlighted.

In alternate embodiments of the subject invention, play-
back of a potion of a call can be activated directly from the
graphical view by mouse-clicking or by selecting from a
pop-up menu; circular “pie-charts” show the percentage of
time for each party mnvolved during the lifetime of the call;
an animated vertical line scrolls along to indicate the pro-
oression of time when the call whose graph 1s being dis-
played 1s played back; and miniature pictorial icons are
shown within the graphs to indicate start/stop reasons, type
of participant, etc. All of these embodiments are enabled by
the data contained in the Master Call Record.

As a method of managing complexity, the preferred
embodiment of the system uses data abstraction to 1solate
the 1nternal details of certain structures to those components
which need to operate directly upon them. Information 1s
organized by the collectors (or producers) of that data, into
a digested form that 1s more easily usable by the applications
which need to retrieve and process the data.

For example, the CTI translation modules supply normal-
1zed records to the rest of the system in a common shared
format, rather than exposing the details of various different
CTI links. The system data model 1s call-centric, containing
a detailed cumulative (“cradle to grave™) history, rather than
event-centric, which would place the burden of work on the
recerving applications. Likewise, agent information 1is
session-oriented rather than event-oriented.

Whether collecting information from a CTI link, or
recording audio from a telephone call, a fundamental design
advantage for the system of the preferred embodiment that
it operates virtually mvisibly, from the end-user’s perspec-
five. The system architecture 1s designed to avoid any
interference with the normal operation of a call center
environment.

For example, the CTI translation modules are focused
exclusively on collecting and normalizing information that
1s to be supplied to the rest of the system. Liability recording
systems, and quality monitoring systems that use “service
observance” techniques, do not require any active call
control on the CTI links. Only the technmique known as
“dynamic channel allocation” requires active call control
through CTI links to establish a “conference” or “bridge”
session between the audio recorder and the telephone call
participants. When active control 1s required to implement
such a feature, 1t can be 1mplemented through a new
logically separate task, without significantly affecting the
rest of the system design. For customers that have existing
CTI infrastructure and applications, the system will not
interfere with their existing operations.

The CRG 15 responsible for collecting data from the CTI
Server, creating CTI-based call records, and attempting to
match those records with existing recorded audio data. If the
CRG receives CTI information imndicating that audio data for

US 6,785,369 B2

31

the same call resides on two or more recorders (for example,
due to a transfer), records will be generated for each portion
with a common call record ID. This ID can later be used to
query for all of the pieces (“segments™) comprising the
complete call. Each segment will identify the recorder that
contains that piece of the call.

During playback, a player module connects to a program
located on a Voice Server called the Playback server
(“PBServer”). The machine name of the particular Voice
Server which holds an audio segment 1s stored by the CRG
in the call record table within the Voicedata storage, and 1is
passed 1nto the player module after being extracted by a User
Workstation’s sub-component known as the call record
browser. A call record playback request 1s then submitted,
which causes the PBServer to query for a specific call
record’s audio files located on that physical machine, open
them, and prepare to stream the audio upon bufler requests
back to the client software (the player module) on the User
Workstation. If successtul, a series of requests 1s then 1ssued
from the client, each of which will obtain just enough audio
to play to a waveOut device while maintaining a safety net
of extra audio 1n case of network delays. Upon a request to
“move” within the scope of a call record, the PBServer
repositions 1ts lead pointer to the desired location and then
begins passing buffers from that point. This series of
Request and Move commands continues until the user
chooses to end the session by shutting down the client-side
audio player.

As used herein, the term “Call Control” refers to the part
of the metadata concerning the creation and termination of
call records. The term “Media” refers to the actual data that
1s being recorded. This term 1s used interchangeably with
audio since the primary design of the CRG 1s to support
audio recording. However, the CRG could apply to any data
being recorded including multimedia or screen 1image data.
The term “Metadata” refers to informational data associated
with multimedia data describing its contents. The term “Call
Participant” refers to an entity that 1s involved in a phone
call. There are at least two participants mnvolved 1n a call;
namely the calling and called parties. Participants can con-
sist of people, VRUs, or placeholders for parties being
placed on hold. The term “Recorder Participant™ refers to a
participant in the MCRs Participant list who 1s located at the
same connection point on the Switch to which the recorder
input channel 1s connected. In accordance with the present
invention, there can be more than one Recorder Participant
associated with a call record since participants can enter and
leave many times 1n a call. For any given recorder channel,
there can only be one matching Recorder Participant active
(not disconnected) at any given time across all call records
assoclated with that channel. A “VOX-based Master Call
Record contains information contributed by events from the
Recorder alone, 1n the absence of data from a CTT Server. A
VRU 1s a Voice Response Unit: an automated system that
prompts calling parties for information and forwards them to
the appropriate handler.

Once a recorder channel becomes 1nvolved in a phone
call, 1t will be associated with all subsequent CTI events
pertaining to the same call. This occurs even 1f the recorder
location 1s no longer 1nvolved 1n the call. As an example,
consider a phone call involving a transfer. FIG. 16A shows
the subject system containing a CTI Server 710 and
Recorder 1640. A recorder channel 0 1650 1s attached to the
extension side to extension 0001 1622. A phone call is
mitiated from the outside by some agent “A” 1602 and
initially connects to agent “B” 1608 at extension 0001 1622.
Agent “B” 1608 places “A” 1602 on hold and transfers him

10

15

20

25

30

35

40

45

50

55

60

65

32

to Agent “C” 1612 at extension 0002 1630. The CRG
recording extension 0001 1622 would receive all update
messages with regard to this call since he/she participated 1n
the call. Descriptive mnformation from the CTI Server 710
would look like that 1n table 1600 1n FIG. 16B. Audio clips
recorded while agent “B” 1608 was involved 1n the call are
recorded 1n a VOX based call record as shown 1n FIG. 17.
The three media files created from the conversation may
overlap with the recorder participant (agent “B”). At some
point, determined by the order by which recorder and CTI

events are received, audio data information from the VOX
call record 1s absorbed into the CTI MCR for the times the

recorder participant is involved (see the results after the
sweep of the VOX and CTT history lists). For this call record,
audio recorded between times t, and t, 1s absorbed. Any
remaining audio 1s left 1n the VOX MCR for possible
absorption 1n other CTI MCRs adjacent 1n time to this one.
Since extension 0001 1n this call record 1s different from the

other participants in that 1t 1s associated with the same switch
point as the recorder channel, he/she is referred to as the
Recorder Participant. From time t4 and on when the Record
Participant 1s no longer involved 1n the call, C'TI events are
still received for that channel. This allows the system to
supply information about the entire phone call involving
extension 0001 that may be of interest to the customer.

Since the CRG must be prepared to handle messages from
different components arriving 1n any order, it 1s designed to
collect information 1n separate structures. Depending upon
the operating mode of the CRG channel, call records are
created from information collected 1n one or more of these
repositories. The name given for these structures 1s Master
Call Record (MCR).

The major components of the preferred embodiment
contributing information for call records are the Recorder
and the CTI Server. In alternate embodiments of the subject
invention, other multimedia or screen image data may be
provided to the CRG 1n order to be merged with descriptive
metadata.

Recorder events are assembled mnto VOX MCRs 1denti-
fied by a unique sequence number. Individual events contain
a sequence number 1dentifying a speciiic structure to update
(or create). For example, a recorder event would be used to
indicate the beginning of a new audio segment. While that
secgment 1s active, other messages containing the same
sequence number are used to add metadata to the audio
scoment. These update events include, without limitation:
DTMF digit data; agent association information; change of
audio filenames holding future audio data; selective record
control; and ANI, ALI, DNIS information. DTMF i1s Dual
Tone Multi-Frequency and refers to sounds emitted when a
key 1s pressed on a telephone’s touch-tone keypad; ALI 1s
Automatic Location Idenfification, a signaling method that
identifies the physical street address of the calling party and
typically used to support Emergency 911 response. Finally,
a disconnect message 1dentifies the end of an audio segment.

Events received from the CTI Server are accumulated 1n
CTI MCRs. Each event received from the CTI server
contains a unique 1dentifier. Events containing the same
unique identifier are associated with the same CTI MCR. If
any VOX MCR contains audio data that overlaps 1 time
with Recorder Participants in a CTI MCR, then that audio
data 1s transferred to the CTI MCR. If the absorption process
causes all audio metadata for a VOX MCR to be consumed,
the VOX MCR 1s deleted from the VOX list. Therefore, call
records generated on the same channel will never have
overlapping audio data. VOX MCRs containing leftover
audio not absorbed by CTI MCRs are either be saved into
the central database if of significant duration or discarded.

US 6,785,369 B2

33

Data from a Master Call Record alone 1s processed mto
call record(s) that populate the system’s central database.

Thus, 1f the recorder channel 1s set up for VOX based
recording only or if the CTI Server 1s down, VOX MCRs

drive call record creation in the system. Otherwise, the CTI
MCRs drive call record creation 1n the system.

The VOX and CTI MCR structures are maintained 1n two
separate lists for each recording 1input channel. These are the
VOX History List and CTI History List respectively. These
lists represent a history of call activity sorted chronologi-
cally. The depth of the history list is driven by a configurable
fime parameter indicating the amount of history that should
be maintained. By maintaining a history, the CRG tolerates
events received 1n any order as long as received within the
time boundaries of the history list. Some CTI Servers obtain
data from SMDR type switches which report entire phone
calls at the end of the call with a summary message.
Maintaining a history buffer for VOX MCRs allows us to
hold onto audio data for a period of time to allow later CTI
summary messages to consume (absorb) the associated
audio.

The MCR has status fields associated with them indicat-
ing 1its current state. At an installation involving real time
CTI events, when a recording 1nput channel receives a CTI
event, it may indicate that a participant connected at the
same telephony switch location as the recorder (Recorder
Participant) 1s active in the call. The MCR is considered
active as long as there 1s a Recorder Participant still active
in the call. During this period, any new audio arriving on this
channel 1s associated with the MCR. When a Recorder
Participant leaves the call, the MCR becomes inactive. Since
any Recorder Participant can become involved in the con-
versation at any given time through transfers or conferences,
the MCR can transition into and out of active state many

times throughout the phone call.
Another field in the MCR 1indicates the overall status of

the call. This flag, called m__bComplete, indicates when the
phone call is over. An MCR 1s considered incomplete as long,
as there 1s at least one participant still active in the call.
When there are no participants active m a MCR 1t 1s
considered to be complete. Therefore, calls created 1n real-
time will start as incomplete and at some point transition into
completed state. When an MCR enters complete state, a
Closed Time variable 1s set to the current time. This time 1s
used 1n maintenance of the History List. A closed MCR 1s
allowed to stay 1n the History list for a configurable amount
of time before it 1s deleted. During this window of time,
events arriving out of timely order are allowed to update the
MCR. Once this configurable amount of time expires, the
MCR 1s updated 1n the local database, marked complete, and
deleted from the History List.

When the CRG starts, 1t initializes, for each recording
input channel, a location which identifies where 1t 1s attached
to the telephony switch. Each recorder location contains
status fields describing the state of the switch and CTI server
involved. These fields are m_ SwitchStatus and
m__ MetadataServerStatus respectively and are set to
“down” state until an event 1s received that indicates other-
wise. When a message 1s received indicating a change of
state, all associated recorder locations are updated with the
new state value. Any changes 1n operation are processed
upon receipt of the next event for the channel.

Another confliguration setting indicates what type of
external sources are allowed to populate call records created
on a record channel. This setting,
m__ ExternMetaDataSource, 1s set to zero when a record
channel 1s to be driven by recorder events only. It 1s set to
non-zero when external events are allowed to generate

MCRs.

10

15

20

25

30

35

40

45

50

55

60

65

34

The CRG 15 able to react to a variety of situations that may
arise. For example, when the CRG first 1nitializes and a
record channel 1s configured to receive CTI mput, how are
call records generated if the CT1 server 1s not running? What
if the CTI Server 1s running but the communication path to
the recorder 1s down? The CRG must also be able to react
to external parts of the system, that it normally relies on for
input, being temporarily unavailable for periods of time. In
accordance with a preferred embodiment, the CRG handles
these situations by operating in different modes: Initial,
Degraded, and Normal. These modes are applied individu-
ally to each channel 1n the recorder.

Initial Mode: When a recorder starts up, there can be a
considerable amount of time before the rest of the system
becomes operational. The CRG must be ready to handle
events coming from the Recorder immediately after startup.
Therefore, the CRG must be ready to accept recorder
metadata without supportive imnformation from the CTI
server. VOX MCRs are created from these recorder events
and are stored 1n the VOX History List. When VOX MCRs
are completed, they are made persistent in the Local Data
Store.

The CRG system will remain 1n this mode until all of the
following conditions occur: (1) the CTI server becomes
available; (2) the switch being recorded by this channel
becomes available; and (3) a configuration option for the
channel indicates 1t 1s to be driven from an online CTT server
and switch.

Degraded Mode: If a record channel 1s configured to be
driven from a CTI source, only CTT MCRs are entered into
the database. These CTI MCRs absorb any recorder meta-
data that intersects with the time ranges of the CTI events.
No VOX MCRs are made persistent. If, however, the CRG
detects that the CTI Server, switch, or associated commu-
nication paths are down, the channel enters Degraded mode.
This mode 1s similar to Initial mode 1n that VOX MCRs are
made persistent when completed. Any CTI MCRs that were
left open at the time the CTI Server went down are closed
and updated for the last time. The recorder channel will
remain 1n this state until the three conditions indicated in
“Initial Mode” are met. Only then will the recorder channel
transition 1mnto Normal mode.

Normal Mode: Under normal operating procedures in a
system with a CTI server and switch online, MCRs are
created whenever a VOX or CTI connect event 1s received
and stored 1n the approprate list. For each VOX message
received, the CTI History List 1s swept to see 1f audio
metadata can be absorbed by a matching MCR. Any remain-
ing audio data 1s placed in a VOX MCR. For CTI events
involving updates to Recorder Participants, the list of VOX
MCRs 1s swept to see 1f audio metadata can be absorbed.
CTI MCRs are made persistent to the Local Datastore when
first created, upon significant update events, and when
completed. VOX MCRs are not made persistent to the Local
Datastore as they should be completely absorbed by CTI
MCRs. There 1s a configuration parameter that can enable
leftover VOX MCRs to be made persistent when they are
removed from the VOX MCR history list.

Transitions from Initial/Degraded to Normal Mode: When
a CRG channel 1s 1n Initial or Degraded mode, VOX MCRs
are recorded 1nto the Local Data Store when completed. If
notification 1s received indicating a recorder channel meets
the three criteria indicated 1n “Initial Mode™, the channel 1s
set to Normal mode. From this point on, only CTI based
MCRs are made persistent and VOX MCRs will be absorbed
by the VOX events. Since CTI events represent an accumu-
lated history of a phone call, prior events occurring while the

US 6,785,369 B2

35

connection between the CRG and CTI Server was lost (or
was not yet established) are nonetheless summarized in each
update message. The time spans of Recorder Participant(s)
are compared to audio data in the VOX MCR list, with any
overlaps causing the audio data to be absorbed. In this way,
any audio data that occurred while a connection to an
external component 1s temporarily unavailable will still be
capable of being correctly associated.

Transitions from Normal to Initial/Degraded Mode: When
the CTI server and switch becomes available for driving the
call record creation and processing, the CRG channel enters
into Normal mode. A heartbeat message 1s used to periodi-
cally update the status of the switch and CTI Server. When
the heartbeat 1s lost or there 1s a message 1ndicating one the
components has gone down, the recorder channel switches
to Degraded mode. The CRG will still create and maintain

MCRs 1n the VOX list and force MCR closure on open CTI
MCRs as they pass out of the CTI history buffer. The
sweeping action of audio metadata among incomplete CTI
MCRs will cease, preventing all future audio data from
being absorbed by 1t. VOX MCRs are made persistent in the
database when they leave the history buifer.

Trunked Radio Mode: In an alternate embodiment of the
subject invention, fields 1n the call record structure are added
to support trunking radio. Information contributing to these
fields may be obtained from communications with a
Motorola SmartZone system. This system uses the Air
Traffic Information Access (ATIA) protocol to communicate
metadata related to radio activity. The embodiment has a
trunking radio server similar to the CTI server that provides
an 1nterface between the SmartZone system and the record-
ers of the preferred system. This server provides the nor-
malization of data and distribution to the correct recorder.
There are currently two modes of operation of the Motorola
trunking radio system that are discussed below.

Message Trunking: In this mode, when a radio 1s keyed,
it 1s assigned a particular frequency to communicate on.
When the radio is de-keyed, a message timeout timer (2—6
seconds) is started. If another radio in the talk group keys up
during this time, the controller uses the same frequency for
transmission and resets the timer. The conversation will
remain on this frequency until the timer 1s allowed to expire.
During this time, all events that are reported with respect to
this conversation will have the same call number associated
with them. Therefore, the concept of CTI based call records
with many participants has been applied to Message Trunk-
Ing.

If the timer 1s allowed to expire, future radio transmis-
sions will be assigned to another frequency and call number.
The server needs to detect this occurrence and properly
terminate a call record.

Transmission Trunking: Transmission Trunking does not
use the holdover timer mechanism used 1n Message Trunk-
ing. When a radio 1s keyed, i1t 1s assigned a particular
frequency for transmission. When de-keyed, the channel
frequency 1s immediately freed up for use by another talk
oroup. Therefore, a conversation can take place over many
channels without a call number to associate them. The
concept of VOX based call records which contain one radio
clip per MCR 1s used 1n this mode.

Selective Record: There may be certain phone calls
involving extension or agents that are not to be recorded.
Sclective Record 1s a feature that tells the system to refrain
from recording a call while a certain condition exists.

Virtual CRG: MCRs can exist in the subject system’s
database that have no audio associated with them. These
non-audio MCRs can be created due to different features of

10

15

20

25

30

35

40

45

50

55

60

65

36

the subject system. Some customers may require that all CTI
data coming from their switch be saved even though they are
not recording all extensions or trunk lines. By creating
records from the CTT data alone, 1n the absence of recorded
audio, this mode of operation can provide the customer with
uselul mmformation for statistical analysis or charting pur-
poses. Likewise, records created based upon CTI data alone
may provide a useful audit trail to verity the occurrence of

certain telephone calls, analyze tratfic patterns, or to perform
other types of “data mining” operations. In that case, a CRG
1s associated with the CTI Server mechanism to receive all
CTI events that are not matched to a specific recorder. These
CTI MCRs are made persistent to the Central Database upon
call completion.

Call Record Structure: Call record start and stop events
originate from two independent sources: the Recorder and
the CTI server. The CRG must perform some method of
merging events from these two sources in such a way that the
resultant call record contains the best information available.
CTI server events are advantageous in that they provide
more Information than the recorder and can also accurately
determine a call record boundary. Recorder based events are
a subset of CTI server events and can only distinguish call
record boundaries based upon VOX or off/on hook. The
recorder has advantages 1n that since 1t 1s 1n the same box as
the CRG, receipt of these events 1s guaranteed as long as the
recorder 1s running. The main purpose of the assembly
process 1s to leverage the mformation coming from the CTI
server 1n such a way that the enftire phone call 1s assembled
into one Master Call Record (MCR). The structuring of call
records 1s weighed towards trunk side recording with the
services of the CTI server driving call record creation. This
type of configuration enables the system to summarize
phone calls 1 the most effective manner. The manner in
which the structure of the MCR designed to achieve this goal
1s discussed below.

Master Call Record: The MCR holds information accu-
mulated for all events received necessary for archiving to the
local data store. It consists of individual fields that are global
to the entire call record as well as lists of specific 1nforma-
tion. Global information includes identifiers for the call
record, the start and stop times of the entire call, the recorder
location with respect to the switch, and flags indicating the
call record status.

Lists included with each MCR contain the following
information: Media File List—IList of media filenames that
make up the call (e.g., telephone or radio communications);
Screen Data Capture File List—IList of screen 1mage files
assoclated with audio on this channel; and Participant List—
List of participants 1nvolved 1n this call.

The MCR 1s populated from events recerved from the CTI
Server and Recorders. The following table shows the fields
in the MCR, 1n a preferred embodiment, their data types,
description and 1if they are stored in the database.

Master Call Record structure.

Type (max
Name length) Archive Description
m__CallRecID string¥ Y Unique ID (UUID) pertaining

to entire call (Ctl and Trunk
Radio server provides same
[D for call parts that are
related to the same
conversation.)

Name

m__MetaDataSource

m__bCallComplete

m__bCall-
HoldoverExceeded

m__bMetadata
HoldoverExceeded

m__blLastUpdate

m__bDontArchive

m__ CallDirection

m__Customer
Number

m__pReclLoc

m_ SSFile

m__Participants
m XactionSema
m__ SemaTimeout

Val

m__bModified

VOX Call Record
(Derived)

m__ dwVoxCrNum

m__bVoxInProgress

37

US 6,785,369 B2

-continued

Master Call Record structure.

Type (max
length)

BYTE

bool

bool

bool

bool

bool

BYTE

stringf

Recorder
Location

listf

list¥

HANDLE

unsigned

long

bool

DWORD

bool

Y

Archive Description

Indicates the source used to
populate call record

information.
0 = none
1 = CT1

2 = Trunking Radio

Indicates the end of a call.
(i.e., there are no more active
participants involved)

If true, MCR has been 1n a
complete state for a time
period exceeding the
configured Call Holdover
time.

If true, MCR has been
inactive for a time period
exceeding the configured
Metadata holdover period.
Used to allow completion of
MCRs that haven’t been
updated for long periods of
time possibly because of
missed events.

true when the CRG has
decided to send the last update
of this MCR. Used to prevent
any future updates.

[ndicates whether this call
record 1s to be archived by
data store. Certain record
features such as selective
record may prevent us from
storing this call record.
[ndicates call origin
QOutbound = 0x12, Inbound =
Ox21, Internal = Ox11,
Unknown = 0x44

Variable length character
array dedicated to information
the switch may provide with
the call. For custom call
record support. (e.g., account
number)

Pointer to recorder location
descriptor associated with this
channel. (see Recorder
Location class)

List of TimestampedFilename
(see below) objects represent-
ing Screen Data Capture
filename(s) associated with a
call record

Array of CallParticipants (see
below) describing all partici-
pants involved in the call
Semaphore used to lock this
MCR from being modified by
any other threads.

Maximum time thread 1s
blocked on m__XactionSema
access before returning.

Set whenever MCR 1s
changed 1n a way that requires
update to the Local Data
Store.

Sequence number of first
VOX MCR associated with
this CTT MCR (f applicable).
[ndicates this VOX clip 1s still
active (L.e., End time is
default time.)

10

15

20

25

30

35

40

45

50

55

60

65

Name

m CreationTime

m_ CloseTime

m__ MediaFiles

m__ Ctilnfo

Base Call Record
(Derived)

m_ wversion

m__ StartTime

m__EndTime

m__ MetadataServer
Status

m_ SwitchStatus

m_ ExternMetaData
Source

m__ ChanlID
m_ SwitchlD

m__SwitchChars

m__ SwitchNum
m_ wlrunkID

m__dwVirtualChannel

33

-continued

Master Call Record structure.

Type (max

length) Archive Description

time__ N Holds time at which the call

and__dateT record was created. Used for
debugging purposes to
measure how long a call
record 1s alive.

time__ N Local time at which MCR was

and__date¥ marked complete. Used for
determining when call record
is ready for archive.

list N List of TimestampedFilename
classes representing multi-
media files used to store data
with respect to this call
record.

Ctilnfo N Class containing CTT type
data associated with call
record.

WORD N Version number of call
record.

time__ Y Start time of call record

and__ date¥

time__ Y End time of call record

and__ dateT

Recorderlocation

BYTE Indicates the status of the
metadata server driving call
records for this particular
recorder location. This source
1s 1n most cases the CT1
server but can be other
servers such as Trunking
Radio Server 0 = “down”, 1 =
“yp”

BYTE Indicates the status of the
telephone switch providing call
record information for this
particular Recorder Location.

0 =“down”, 1 = “up”

BYTE Indicates what external source
(if any is contributing call
record meta data for this
channel
0 = None (recorder only)

2 = CIT server

Channel Class 1dentifying recorder

[dentifier channel.

Switch Class 1dentitying switch

[dentifier connection point.

Switch Class 1dentifying

Characteristics characteristics of switch
needed by CRG.

Switchldentifier
WORD Number identifying switch
WORD [dentification of trunk line

DWORD

attached to switch. (Valid only
if not equal to —-1)

Identifies time slot of digital
line (T1 or E1) of interest.

m_ Extension

m__wNode

m__ wChannel

m__bSignalSupport

m__bTimeSynced

m_ bReallTime

m__1CmdTimeOfiset

m_ 1SwitchTimeOftset

RinglLength

DTMFECode

Name

m__ _AFStartTime
m__ StartTime
m__EndTime

39

US 6,785,369 B2

-continued

Switchldentifier

stringt (6)

(Valid only if TrunkID is not
equal to —1)

Extension number (Valid only
if m_ wTrunkID equals —1)

Channelldentifier

WORD

WORD

bool

Unique number used to
distinguish between multiple
Voice Servers.

Unique number used to
distinguish between multiple
recording input channels
within a Voice Server.
Indicates if hardware
assoclated with this channel
supports on/off hook signaling.

SwitchCharacteristics

bool

bool

WORD

stringt (50)

int

int

Ctilnfo

[ndicates if switch 1s
synchronized with the system.
[ndicates 1f switch provides
CTT info in realtime (true) or
batched and sent periodically
(false)

Value that indicates any
known time offset between
events received at the switch
versus the time the similar
signal 1s received at the
recorder. This value will be
used to adjust CTT generated
timestamps before comparing
to recorder events

For switches that are not time
sync’d with the system, this
value indicates any known
time offset between the switch
and the system time. This
can be utilized 1f has some
way of updating the time delta
between switches and our
system on a periodic basis.

Time (in sec) between first ring
signal and off hook.
DTMEF codes entered during

conversation

TimeStampedFilename

Type

Time and
Time and
Time and

late¥
late¥

late¥

Description

Start time of audio file
Start time of interest
End time of interest

5

10

15

20

25

30

35

40

45

50

55

60

65

Name

m__SegStartTime
m__SegEndTime

m_ PathName

m__File Name

m_ wFileType

m_ wFileFormat

m_bNew

m__bDiscard

m dwVoxCrNum

m__1AssocPart

Name

m__AgentlD

m_ Number

m_ Console

m_ Station

m__T.ocRef

m__Switchl.oc

m_ StartTime

40

-continued

TimeStampedFilename

Type

Time__and_ date¥
Time_ and_ date¥

stringt (36)

stringt (36)

WORD

WORD

bool

bool

DWORD

int

Type

Description

Start time of segment inside
file absorbed by this MCR.
End time of segment inside file
absorbed by this MCR.

Path describing the Voice
Server and directory location
where the audio files are
located.

GUID-based name that
uniquely 1dentifies a specific

audio segment’s recording file.
bitmap indicating types of
media assoclated with MCR.
bit Data

Audio Present
FAX Present

Video Present
Screen Capture
Present

Recording format of media
data, as defined by Microsoft
Corporation’s multimedia
description file “mmreg.h”
Used by local data store to
indicate whether this record
should be inserted (true) or
updated (false) into the
database.

If true, don’t allow playback or
archiving of this media.
Used for the Selective Record
feature.

Sequence number
corresponding to VOX call
record that provided this
media.

Index of Recorder Participant
in the Participant list causing
this media file to be associated
with this MCR.

Description

CallParticipant

string¥ (24)

stringt (24)

string¥ (10)

string¥ (10)

BYTE

Switchldentifier

Time and dateT

Registered ID of agent at
extension (CTT) or Radio
Alias (Trunking Radio).

Full telephone number of the
participant (i.e., ANI, DNIS)
Seating position of participant
that can consist of one or
more stations (CTT) or
Talkgroup ID (Trunking
Radio).

Unique telephone set.
Possibly with multiple
extensions

Describes the location of
participant with respect to the
switch. (1 = internal,

2 = external, 3 = unknown)
Class 1dentifying the position
of a participant relative to the
telephone switch.

Time participant joined the
call

US 6,785,369 B2

41

-continued

Name Description

Type

Time and date¥
BYTE

Time participant left the call
How participant joined the
call
NotConnected =
NormalStart =
ConferenceAdd =
TransferRecv =
UnknownConnect = 9
How participant left the call
NotDisconnected = 0,

m EndTime
m__ConnectReason

Y

b]

W 1D = O

2

m_ DisconnectReason BYTE

NormalEnd = 1,
ConferenceDrop = 2,
TransterAway = 3,

OtherPartyHangup = 4,
UnknownConnect = 9

Changed Bool [ndicates 1if recent change in

CTT message. (not archived)
Trunking Radio Only Information

SourceSitelD BYTE Site number that 1s currently
sourcing audio on active call.

ZonelD BYTE Zone at which participant 1s
currently located.

CIUNumber BYTE Console Interface Unit.
Translates 12kbit into clear
audio & vice versa.

CDLNumber BYTE Channel associated with CIU

DIUNumber BYTE Digital Interface Unit.
Translates ASTRO clear
secure data 1nto analog audio
& vice versa.

DBLNumber BYTE Channel associated with DIU

TObjectspace data types

Unused string fields are null. Unused number fields are set
to zero. The version number 1S used to indicate the structure
of data contained within the call record. In order to maintain
compatibility with future versions, changes to call record

structures will be performed 1n an additive nature. That is,
current members of the call record will not change 1in
position, size, or meaning.

Each call record will contain a list to store participant
information. There will be at least two participants 1n a call
record; the calling and called parties. Any additional con-
nections that are conferenced i1n or transferred to are
appended to the end of this list.

Only one active VOX and CTI based Master Call Record
1s allowed per recording input channel at any given time.
CRG Software Architecture

FIG. 18 shows the processing threads and data structures
that comprise the CRG module 1n a preferred embodiment.

Event Processing: when the CRG 1s created and
mitialized, three threads are created. These threads are the
CRG Event Processor thread 1810, Facade thread (The
terms “facade,” “facade,” and “fascade” are used inter-
changeably 1n this disclosure) 1812 and Local Data Store
thread 1816. Additionally, three message queues are created
and are known as the Recorder 1824, Facade 1832, and Data
Store 1844 queues, respectively. These queues enable the
processing of various mput messages in a de-coupled fash-
ion within the CRG, so that any delay i1n one area of
communications does not affect the processing of another
arca. Each thread 1s described below.

Event Processor Thread: the Event Processor 1s the pri-
mary thread of the CRG module. Its responsibilities include
reading any messages placed 1n the Recorder 1824 and
Facade 1832 queues. The processing activities that occur in
response to these messages cause updates to be made to call
records belonging to one of the recording input channels

10

15

20

25

30

35

40

45

50

55

60

65

42

1856. If these changes cause a call record to be completed,
a message 1s sent to the Date Store queue 1844 requesting,
that the call record be made persistent in the local database.
This thread 1s also responsible for processing state change
messages, that cause memory resident structures to be
refreshed or to shut down the CRG module.

Facade Thread: The Facade thread handles messages that
come from outside the Voice Server. Its primary function 1s
to look for messages placed in the CRG’s external Microsoft
Message Queue (MSMQ) 1864 where events may arrive
from other components within the overall subject system.
Upon receipt of a message, the Facade thread reads the
message, translates 1t 1nto an appropriate format for the
CRG’s 1nternal data structures, and places the translated
copy 1n the Facade Queue 1832. This thread 1s known as the
Facade, because 1t manages the external interactions of the
CRG with the other components within the subject system.

Local Data Store Thread: The Local Data Store thread
1816 processes requests from the CRG Event Processor

thread 1810. The primary purpose of the Local Data Store
thread 1816 1s to take internal Master Call Record (MCR)

structures and translate their contents into structures com-
patible with database technologies, such as Microsoit SQL
Server, or comparable types of storage means. These result-
ant structures are stored within the database 1n order to make
the call record persistent.

Characteristics of some switches mandate that the CRG
be able to handle CTI events that are not real-time. Some
switches batch events and send them out periodically. CRG
conilguration settings that limit the history list by time must
be set long enough to accommodate the switch characteris-
tics. Therefore, call records that are genecrated between
switch reports (via recorder events) will not be finalized
until a configurable time period (window) after which the
call record terminated. This window (CallHoldoverPeriod)
needs to be set to a minimum of the period of time between
switch reports. Once a call record leaves this time window,
it 15 marked as read-only and committed to the local data
store.

A situation that must be dealt with 1s when the telephone
switch 1s not time synchronized with the rest of the system.
To facilitate the merger of recorder and switch events
cffectively 1n non-time-synchronized systems, alternate
embodiments of the subject system are described.

One alternate embodiment of the subject system has a
mechanism that synchronizes the clocks in the system
(manually or automatically) on a periodic basis. This must
cguarantee time skews of less than some small and known
quantity. A second embodiment has a mechanism for mea-
suring the time delta between the switch and the subject
system. This value 1s updated periodically and used by the
CRG during the merging process. A third embodiment
implements a combination of the first two.

During the call record merging process, a global time
delta 1s used to adjust switch event time stamps before
comparing to existing call record data.

The following paragraphs define the types of events the
CRG 1s designed to accept and process. These events may
cause the CRG to mmtialize, process metadata into call
records, or prepare the system for shutdown.

The Master Controller (a sub-component of the present
system’s Scheduling & Control Services) supplies system
events. The Master Controller notifies the CRG of system
related changes such as configuration changes, CTI server
status and system shutdown events. The CRG changes its
behavior based upon events received from the Master Con-
troller.

US 6,785,369 B2

43

System Events: The CRG provides an interface that
allows the client application to control its states of operation.
This 1s accomplished with an interface class that 1s used by
most system components 1n the subject system. The inter-
face 1s named IProcCtrl and supports the following methods:
Initialize(); Start(); Stop(); Pause(); Resume(); Ping();
and Shutdown().

In addition to these methods, the CRG supports two event
messages that inform 1t of status changes that are needed to
cither update its memory resident configuration information
or change 1ts mode of operation. These methods are CtiSta-
tus and AgentExtensionStatus. Each method 1s described in

the following paragraphs.

Initialization Event: This method 1s the first method that
should be called after the CRG has been created. When the
CRG object 1s created, it retrieves conflguration information
from the subject system’s database. This i1nformation
describes the number of channels 1n the recorder, the switch
location where each channel 1s connected, any fixed asso-
cilations of telephone extensions or agent i1dentifiers. Also
included are parameters that determine the behavior of the
CRG. Threads are spawned to handle the processing of CRG
events, communicating with external metadata contributors,
and processing information mto the Call Records tables.
These threads are created 1n a suspended state and require
the Start or Resume commands to begin processing activity.

Start Event: This method should be called after the
Imtialization event. It resumes all threads of the CRG
enabling it to process incoming events.

Pause Event: This method suspends all threads of the
CRG.

Resume Event: This method 1s called after the Pause
command to enable all CRG threads to continue processing.

Ping Event: This method 1s used by client applications to
test the connection to the CRG. The method simply returns
a positive acknowledgment to let the client know that the

CRG 1s still running.
Shutdown Event: This method notifies the CRG when the

subject system 1s shutting down so that i1t can cleanly
terminate 1tself. The shutdown event supports a single
parameter (ShutdownMode) that indicates how it should
shutdown.

If the ShutdownMode 1s specified as “Normal”, all pend-
ing events read from the input event queues and processed
into the call records, any open call records remaining are
closed at the current time and written to the database.

If the ShutdownMode 1s “Immediate”, input event queues
are cleared without processing into call records, open call
records are closed and written to the database.

Once these actions are completed, the CRG threads ter-
minate. At this point, it 1s now safe for the client application
to release the resources of the CRG.

Stop Event: This method 1s implemented for consistency
with the common interface of IProcCtrl. The CRG has no
purpose for this method and just returns a positive acknowl-
cdgment.

10

15

20

25

30

35

40

45

50

CTI Event (BEGIN)

44

CtiStatus Event: This event informs the CRG of the
operational status of the CTI server that 1s providing it with
telephony metadata needed for CTTI call record generation.
The Scheduler component of the subject system 1s respon-
sible for maintaining a heartbeat with the CTI server to
detect when connection has been lost. Any changes 1n CTI

server status result 1n a CtiStatus message directed at the
CRG.

This message contains one parameter that indicates the
new state of the CTI Server. If the parameter indicates that
a CTI Server has become operational, recording input chan-

nels. associated with the CTI Server change from
“Degraded” mode of operation of “Normal” mode. If the
parameter indicates that the CTI Server 1s not operational,
recording input channels associated with the CTI Server
change from “Normal” mode of operation to “Degraded”
mode.

AgentExtensionStatus Event: This event indicates that a
change 1n one of the Agent or Extension tables has occurred.
Since the CRG uses these tables to associate with recorder
channels, the memory resident version must be updated.
Therefore, this event causes the CRG to read these tables
and update 1ts memory resident copy.

Call Record Events: When a call record event 1s received,
the message 1s interpreted to determine which recording
input channel may be affected. Any filtering necessary on a
per channel basis 1s performed at this stage. Call record
events are then dispatched to the appropriate Call Record
Channel Manager. There 1s a separate call record channel
manager, which 1s a software sub-component of the CRG,
for each recording input channel 1n a Voice Server. There are
three messages that directly contribute to the creation and
completion of call records. One comes from the CTI Server
in the form of a CTI Event. The other two originate from the
recorder and are the VoxSummary and VoxDisconnect mes-
sages. Each message 1s described in detail below.

CTI Event: The CTI Event 1s a message originating from
the CTI Server software module that processes the informa-
tion received from the telephone switch. The message details
cach participant mvolved with the phone call as well as
information global to the call such as ring duration and
DTMF codes. A CTI event message 1s sent to the CRG
whenever a change 1n participant status occurs as well as
when new ones enter the call. The messages are cumulative
in that all information of the previous messages 1s contained
in the new one with any additions included. This makes for
a more robust system 1n cases where one of the messages 1s
lost.

The pseudo code for processing a CTI event 1s shown
below:

Pseudo code for CTT Event

// Don’t process CTI events 1f we’re not in correct mode

[s this recorder channel configured to receive CTI event data?

{// Yes

Does this event match an MCR 1n my CTI History list?

{// Yes

Update MCR participants with matching one in CIT event

US 6,785,369 B2
45

-continued

Pseudo code for CTI Event

Add any new participants to MCR.
UpdateMediaFiles() (see pseudo code)
H/ End - Does this event match an MCR in my history list?
Otherwise
{
Create new MCR
[nitialize MCR Start time from Oldest Participant Start time in event
Copy participants from event to message to MCR.
// Now that we’ve updated the participants, see it
// we need to change media file associations.
UpdateMediaFiles() (see pseudo code)
[nsert new MCR Into Cti MCR history list.

h

Are there any participants still active?
Mark MCR as active
Otherwise
Mark MCR as complete
H/ End - Is this recorder channel configured to receive CTI event data?
A CTI Event (END) ---------m------
ff -mmmmmmmm - UpdateMediaFiles (BEGIN) ---------------
for each Recorder Participant in the MCR

{

[s this not a new Recorder Participant?

1
//This participants start and/or end time may have been adjusted.
//See 1f audio previously absorbed by it has to be returned to the VOX history
list
FindGiveBackMediaFiles() (see pseudo code below)

h

for each MCR 1n VOX History list with a time range that overlaps with this recorder

participant

{
for each media file in this VOX MCR that’s timespan overlaps with this recorder
participant

d
CheckAndApplyMediaFile{) (see pseudo code)
}End - for each media file in this VOX MCR that’s timespan overlaps with this
recorder
participant
Did we consume all audio in this VOX MCR?
Remove VOX MCR from History list and delete it.
}End - for each MCR in VOX History list that’s time overlaps with this recorder
participant
}End - for each Recorder Participants in the MCR
GiveBackAudio() (see pseudo code)
ff -mmmmmmmm - UpdateMediaFiles (END) ---------------
ff =mmmmm e FindGiveBackMediaFiles (BEGIN) ---------------
for each media file associated with the given CTT MCR

{

Was this media file contributed from the given recorder participant?
U/ Yes
if media file lies completely outside recorder participant timespan?
|<------Participant Timespan -------------- —|
|<—---Media File timespan---—|
Move this entire media file to the Giveback list

Otherwise, If media file start time 1s before the recorder participants start

time?
|e—--mm - Participant Timespan---------- —|

|e—-mm - Media File Timespan----------- —|
Make a copy of this media file and set its end time to the participants start
time.

Add media file to giveback list.
Set original media files start time to that of recorder participant.
Otherwise, if media file end time 1s after the recorder participants end time?

|e—-mm--- Participant Timespan------- —|
|e—---m-- Media File Timespan------ —|
Make a copy of this media file set its start time to the participants end
time.

Add media file to giveback list.
Set original media files end time to that of recorder participant.
)
} End - for each media file associated with the given CTI MCR
R FindGiveBackMediaFiles (END)-----------=-mmmmememeee -
[=mmmmmmem e GivebackAudio (BEGIN) ---------------

// Sweep through VOX MCRs re-populating any giveback audio
for all audio portions in given back list

{

US 6,785,369 B2

47

-continued

Pseudo code for CTI Event

if we find the VOX MCR this audio originally came from?
{// Yes

43

Attempt to merge the give back media file with an existing VOX MCR media

file
that’s start or end time 1s adjacent to this ones.
Otherwise, assoclate this media file with the VOX MCR.
} End - if we find the VOX MCR this audio originally came from?
Otherwise

{

// Original VOX MCR containing this audio file doesn’t exist anymore.

Create a new MCR.
Associate the giveback media file with the new MCR
[nsert MCR 1nto VOX History list

)

} End - for all audio portions given back

ff =mmmmmmmm e GivebackAudio (END) --------mmmmmm oo
ff-mmmmmm e CheckAndApplyMediaFile (Begin)

Does Recorder Participant span the entire media file?

[/ gmmmm e o Participant Timespan-------------------------———- —|

|«<—---Media File timespan—-—>|
Move media file from VOX MCR to Cit MCR.
Otherwise, Does Recorder Participant overlap with media file start time?

Make a copy of this media file and set 1ts end time to the participants end time and

associate with recorder participants MCR.
Set the original media files start time to the recorder participants end time.
Otherwise, Does Recorder Participant overlap with media files end time?

Make a copy of this media file and set 1ts start time to the participants start time and

Make another copy of this media file and set its start time to the participants end

time and associate with VOX MCR.
Set the original media files end time to the recorder participants start time.

CheckAndApplyMediaFile (End)

VOX Summary Event: The VOX Summary Event 1s a
message originating from the recorder associated with this
CRG. It can be used 1n one of two ways.

The primary use of this message 1s to indicate the start of
audio activity 1n real-time. When used in this mode, the
VOXSummary command indicates the beginning of audio
activity. But since the activity 1s not complete, the end time
1s set to 1ndicate that the VOX segment 1s incomplete. The
end time of incomplete media file 1s also set 1n this way. In
this case, a VOX Disconnect message 1s required to com-
plete the end times.

The second mode 1s used to mdicate a history of audio
activity. The VOX Summary start and end times reflect the
per1od of time covered by all accompanying media files. The
media files also have there respective start and end times
filled 1n. This message 1s complete and thus requires no
follow up messages. The VOXSummary message 1s shown
below.

Field Name Description
VOX Summary Message Format
Channel Recorder channel of audio activity
VOXCrNum Sequence number used to correlate related VOX
cvents.
StartTime time at which audio activity first started
EndTime Time at which last audio activity ended.

list of multimedia filenames used to store data with
respect to this call record. (see below for details)
Time from start of ring to off hook (in sec)

String of DTMF codes detected during

Media Files

Ringlength
DimfCodes

35

40

45

50

55

60

65

-continued

Field Name Description
VOXSummary period

ConnectReason [ndication of why VOX segment was started

DisconnectReason Indication of why VOX segment was terminated

Media File Structure

FileStartTime Time corresponding to first byte of audio data in a
file.

StartTime Time corresponding to first byte of audio at which
activity occurred

EndTime Time corresponding to last byte of audio at which
activity occurred

FileName String containing name of audio file.

PathName String describing the location of audio file.

1AssocPart Used by the CRG to indicate with which Recorder
Participant this audio segment 1s associated, when it
1s part of a CTI-based MCR.

dw VOXCrNum Used by CRG to indicate which MCR 1n the VOX
History list this audio segment originated.

The pseudo code for processing a VOX Summary event
1s shown below.

[s this recorder channel configured to receive CTI event data?
{// Yes

// Attempt to merge media files in message with CTT based
MCRs

for each CI'T MCR 1n History list

US 6,785,369 B2

49

-continued

[f any of the given media files fall inside the timespan
of the Ct1 MCRY

{ // Yes
// Merge media files with overlapping recorder
participants in CTT MCR
for each given media file in VOX Summary message

1

1
CheckAndApplyMediaFile () (see psuedo code)
} End - for each recorder participant in the given
CTT MCR
} End - for each given media file
} End - If any of the given media files fall inside the
timespan of the Ct1 MCR?
} End - for each CTI MCR in History list
Remove media files from VOX Summary message that are
completely consumed

h

Any unabsorbed audio remaining in message?
{ // Yes

Create MCR for remainder of audio.
[nsert MCR 1nto VOX History List

for each recorder participant 1n the given CTT MCR

VOX Disconnect Event: The VOX Disconnect Event 1s a

message originating from the recorder associated with this
CRG. It 1s used to terminate a VOX segment that has been
started by a real-time VOXSummary message.

The VOXDisconnect message 1s shown below.

VOX Disconnect Message Format

Field Name Description

Channel Recorder channel of audio activity

VOXCrNum Sequence number used to correlate related VOX
cvents.

Time End time of the VOX segment. Also indicates the
end time of open media file.

DisconnectReason Indication of why VOX segment was terminated

The pseudo code for processing a VOX Disconnect event
1s shown below.

[s there a MCR 1n VOX History list with the same sequence
number?
{ J/ Yes
// Close and update all media files 1n both VOX and
// MCR list related to this one
Close Active media file in VOX MCR at given message time
UpdateFromMediaFile ()
// Update any CtiMCRs that absorbed the audio file
closed.
for each MCR 1n CTT History list
{
// Attempt to merge audio with MCR.
// Look for matches with audio filenames.
for each media file in Cti1 MCR contributed by this
VOX clip
1
Close media file at given message time

// Now that we’ve closed it, does this media file
st1ll

10

15

20

25

30

35

40

45

50

55

60

65

50

-continued

// belong with this CtiMCR?Y
Does media file still fall in time span of MCR?
{ /] Yes
CheckAndApplyMediaFile () (see pseudo code)
;

Otherwise

{

Remove media file from MCR list and discard

h

} End - for each media file in MCR contributed by
this VOX clip

i
Close VOX MCR and mark as complete
i
A I I I I VOXDisconnect (END) - - - - - -
A I I R R UpdateFromMediaFile (BEGIN) - -
/f Look tor matches with audio filenames
for each media file in MCR contributed by this VOX clip
{
Close media file at given message time
// Now that we’ve closed 1it, does this media file
still
// belong with this CtiMCR?
Does media file still fall in timespan of MCR?
{ //No
CheckAndApplyMediaFile {) (see psuedo code)
i
Otherwise
{
Remove media file from MCR list and discard
!
} End - for each media file in MCR contributed by this
VOX clip
f = e e e e e e e e e e oo oo oo UpdateFromMediaFile (END) - -

Data Events: Data events are appended to the currently
open associated call record. For CTI data events, this
pertains to a currently open MCR based upon CTI connect
events and containing a matching call record ID. For VOX
data events, the currently open VOX call record 1s affected.
If an open call record doesn’t exist, an error condition 1s
reported.

Correction Events: Correction events exist to remove a
previous alteration to a call record after 1t has already been
populated. One reason for such an event 1s to support
selective record. An audio file that cannot be recorded due
to customer or legal reasons might need to be removed from
the call record or the entire call record might need to be
deleted. The VOX event for a filename might have already
been processed mto a call record betore the selective record
mechanism has determined it not to be recorded.

Selective Record (Exclusion): Selective Record is an
important feature of the subject system, 1imposed by cus-
tomer requirements. If the customer does not want certain
participants recorded when they become involved in a
recorded call, the CRG must exclude any audio associated
with the call record for that participants’ time of mvolve-
ment. Implementing this feature 1s complicated by the
varylng characteristics of customer switches. If the tele-
phone switch environments report events in real-time,
recording of media can be prevented by turning the record-
ing 1mnput channel off during the selective record partici-
pants’ time of involvement. However, what happens when
events are not reported 1n real time from the switch? The
answer lies 1 the sweeping action of the CRG previously
discussed for recorder participants.

The CTI Event message 1s routed through the Scheduler,
and 1s altered by the Scheduler to indicate which participants

US 6,785,369 B2

51

re recorder participants as well as which ones are selective
record participants. Recorder participants trigger the CRG to
sweep any audio from VOX MCRs that overlap in time.
When the CRG detects an overlap between recorder partici-
pant and selective record participant times, the audio that 1s
swept into the CTI MCR for this overlap period 1s discarded.
This causes the audio to be removed from both VOX and
CTI MCRs, which prevents any chance of the audio being
made available for playback or archive.

Selective Record Event: The Selective Record command
1s an event originating, from the Scheduler. It 1dentifies
cither a participant that 1s not to be recorded or that an entire
call record should not be recorded. In one embodiment the
system 15 capable of handling recording exceptions based
upon mformation obtained from the CTI data. Criteria for
selective record processing are discussed below.

Selective Record feature can take on two meanings. In
one 1nstance, a customer may want to record all telephony
events except for ones that meet speciiic criteria. In a second
instance, a customer may only want to record calls that meet
certain criteria.

Since selective recording can possibly be triggered from
multiple sources, in a preferred embodiment this decision
process 15 located 1 the Master Controller, a sub-component
of the subject system’s Scheduling & Control Services.

Suggested reasons for not recording all or parts of a call
are based upon the following examples of CTI event data.

Event Data Explanation Results

Agent exclusion based
upon participants
AgentlD

Supervisor involved
calls not to be
included

Delete audio for agent’s
participation during the
call, and the associated
references 1 the MCR.
Delete audio for agent’s
participation during the
call, and the associated
references 1 the MCR.
Delete all audio as well
as the entire call record.

CEO 1nvolved calls
not to be recorded.
(whether at office
or at home)
Prisoner calls his

lawyer.

FExclusion based upon
Extension or fully
qualified phone

Number of participant.
Combination of AgentID
of one participant and
fully qualified phone
number of another
participant

Based upon these conditions and any future rules estab-
lished inside the Master Controller (MC), exclusion can take
place on audio recorded during a target participant’s time of
involvement or over the entire call record.

The chain of events involved in Selective Record (Call
Exclusion) is as follows:

1. Recorder detects presence of audio and records to audio
buffer

2. Recorder sends VOX events to CRG mdicating pres-
ence of audio.

. CRG creates new call record based upon VOX event.
. The CTI server sends call events to CRG and MC.

5. CRG associates CTI event data with VOX based call
record.

6. MC checks for selective record triggers based upon
criteria indicated above. If a criterion 1s met, a Selective
Record (exclusion) command is sent to both Recorder
and CRG indicating the start of the selective record
interval.

7. Recorder deletes audio indicated 1n selective record

message and continues to suppress recording until
instructed otherwise.

8. CRG alters the call record to eliminate details of
participant or deletes the call record.

~

5

10

15

20

25

30

35

40

45

50

55

60

65

52

9. Upon completion of the call, the CTI Server sends call
events to the CRG and MC.

10. MC checks for selective record triggers based upon
criteria indicated above. If a criterion 1s met, a selective
record (exclusion) is sent to the Recorder indicating the
end of the selective record interval.

11. The Recorder resumes 1ts normal mode of audio
recording.
Selective Record (Call Inclusion)

1. The CTI server sends call events to CRG and MC. CRG

creates MCR and populates with events. Since default
1s set not to record, the flag m_ bDontArchive 1s set to
prevent the local data store from writing 1t to the
database.

2. MC checks for selective record triggers based upon
criteria indicated above. If a criterion 1s met, a Selective
Record (inclusion) command is sent to both Recorder
and CRG indicating the start of the selective record
interval.

CRG sets m_ bDontArchive to false and immediately
instructs local data store to archive.

3. Recorder detects presence of audio and records to audio
buifer.

4. Recorder sends history of VOX events to CRG 1n a
VoxSummary message.

5. CRG creates new call record based upon VOX event.

6. CRG associates CTI event data with VOX based call
record.

7. Upon completion of the call, the CTI Server sends call
events to the CRG and MC.

8. MC checks for selective record triggers based upon
criteria indicated above. If a criterion 1s met, a selective
record (inclusion) command is sent to the Recorder
indicating the end of the selective record interval.

9. The Recorder resumes 1ts normal mode of suppressing
the audio recording.
The format of the Recorder’s Selective Record command
1s shown below.

Name Type Description

StartTime time__and__date Start Time of recording
interval

EndTime Time__and_ date End Time of recording
interval

bRecordAudio bool If true, record audio during

the indicated interval. If
false, suppress any audio
recording during the
indicated interval.

Since the recorder has no knowledge of participants or
call record boundaries, the MC needs to inform the recorder
when to start a selective record interval and when to stop.
The boolean bRecordAudio signifies what action should be
taken during this interval.

When an event occurs that triggers the start of a selective
record interval, the Recorder’s selective record command
informs the recorder of the interval start. The End time 1s
most likely not known at this point so 1t 1s set to some 1nvalid
value 1n order to indicate that audio should be recorded (or
suppressed) for an indefinite period until a subsequent
command 1s received.

When an event occurs that triggers the end of a selective
record interval, the Recorder’s selective record command

US 6,785,369 B2

53

informs the recorder of the interval end. The End time
indicates when the selective record interval 1s complete. The
recorder returns to 1ts normal recording mode based upon its
original configuration.

Any selected audio committed to file needs to be removed
from the file and replaced with a silence entry for that period.

The format of the CRG selective record command 1s
shown below.

Name Type Description
MCR Number UUID MCR affected by this
selective record command
Participant Index UINT Index of participant in MCR
not to be recorded.
(if Reason=1)
Reason BYTE 1 = Participant, 2 = Entire Call

For the CRG, only a single event that indicates what 1s
selectively recorded 1s needed. If the Reason code indicates
that the entire call record 1s to be deleted, the CRG will mark
the call record such that 1t 1s removed from the database 1f
it has already been written or not logged 1n the first place. If
selective record alfects a specific participant, the call record
can either be left unmodified (since the recorder has already
handled deletion of audio) or the participant can be over-
written to remove his/her details.

The system configuration can be adjusted so that the CRG
will operate 1n either fashion, depending on whether remov-
ing the audio alone 1s sufficient for the desired application of
the system, or i1f the metadata must also be removed to
climinate the records of telephone numbers dialed, etc.
CRG Software Implementation

In the preferred embodiment of the subject system, the
CRG 1s implemented as an in-process COM DLL that 1s
associated with the Audio Recorder process, and therefore
these two components reside together upon the Voice Server.
COM, here, 1s Common Object Model, a distributed com-
puting architecture designed by Microsoft Corporation to
facilitate cooperative processing among software elements
on a LAN. DLL 1s Dynamic Link Library, a means whereby
executable code can be encapsulated 1n a package that can
be loaded upon demand and shared by several programs,
rather than being packaged as a separate, 1solated executable
program. The Audio Recorder process 1s responsible for
creating the CRG COM object as well as starting and
stopping the CRG subsystem. The Data Store module that
interfaces with the CRG 1s a statically linked DLL.

Configuration Field

ssysTimeCoupling

nCompleteCallHoldOver
Period

10

15

20

25

30

35

40

45

Type

String

DWORD

54

Class Design

FIG. 19 illustrates the class diagram of the Call Record
Generator. The CRG module 1s itself comprised of a plu-
rality of modules, as shown 1n the figure, and explained
below.

CallRecordEvent Processor—the CallRecordEventPro-
cessor class 1912 1s the main class of the CRG. It 1s
instantiated during the Initialize method call of the CRG
interface. It 1s responsible for allocating the rest of the CRG
objects. On 1nstantiation, it acquires the channel count for
the recorder (currently limited to 128) and instantiates a
oroup a classes for each recording mput channel. These
classes mclude a CallRecordChannelManager 1916 and
RecorderLocation 1920 for each channel. The CallRecord-
EventProcessor 1912 creates the Recorder 1924 and Facade
1928 Event input queues. Reading and processing of con-
figuration information from the subject system’s database
takes place 1n the CallRecordEventProcessor 1912. Events
received that cause a change 1n configuration are processed
there.

CallRecordChannelManager—This class manages the
call records for a specilic recording input channel. It is
responsible for creating, populating, and closing call records
with event information received from the CRG event pro-
cessor. If event mmformation 1s deemed as significant, the
CallRecordChannelManager 1916 will send an event to the
DataStoreEventQueue 1932 in order for the update to be
reflected 1n the local data store.

MasterCallRecord—This class 1936 holds information
that 1s global to an entire call. Global information includes
identifiers for the call record, the start and stop times of the
entire call, the recorder location with respect to the switch,
and flags indicating the call record status. It also contains a
list of the participants within a call, based upon information
supplied by CTI events. It acts as a centralized point of
control for merging call record mmformation for a given
telephone call.

VoxCallRecord—This class 1940 1s a superclass of the
MasterCallRecord class 1936. It contains information deal-
ing with events provided by the recorder. It holds the details
of a call, such as the start/stop times, media filenames and
other data that can be supplied by the recorder.

RecorderLocation—This class 1920 holds the informa-
tion relating a logical device on a telephony switch with a
specific Voice Server and recording input channel.

The following table indicates configuration information
needed by the CRG at runtime.

Acceptable

Values Default Description

[ndicates how time-based recorder
and CTT events are compared to
determine a match. TIGHT -
Recorder times must fit entirely
inside CTT times for a positive
result.

LOOSE - Recorder times need to
overlap with CTT times for a
positive result.

Maximum number of seconds that
a completed call record 1s kept in
the history list. This holdover
allows events coming from
different sources to affect the call
record before it 1s made persistent.
After this holdover period expires,

“TIGHT™,
“LOOSE”

“LOOSE”

0..42949672
96

(in sec)

90 - For
realtime
CTI. (Much
larger if non-
realtime

CTI)

US 6,785,369 B2

-continued
Acceptable
Configuration Field Type Values Default

nActiveCallHoldoverPeriod DWORD 0..42949672 86400

96 (24 hours)
(in sec)

nMCRMaxSize WORD 0..65535 100
(in entries)

nSystemSkew WORD 0..65535 0
(in sec)

ynCTIDataFromRecorder bool 1 = yes yes
J = no

nSave VoxClipsLongerThanSeconds ~ WORD 0..65535 6

Stream Control Manager

As noted above, 1n a preferred embodiment, the system of
the present invention taps into activity on a PBX (Private
Branch Exchange) by intercepting audio on either the trunk
or extension side of a phone call. The tapped audio 1s then
redirected as input to a channel on a DSP (Digital Signal
Processor) based voice processing board, which in turn is
digitized and stored into program-addressable buflers. The
recorded audio 1s then combined with descriptive informa-
tion (“metadata™) obtained through a Computer Telephony
Integration (CTI) communications link with the PBX and
stored as a single manageable unit (“Voicedata™) to facilitate
its subsequent search and retrieval.

The preferred embodiment leverages Computer Tele-
phony Integration, to supplement the recorded audio data.
As discussed above, CTI 1s provided through a data link
from speciiic telephone switching equipment located at the
customer site, which 1s then input to the recording system’s
CTI Server. Supplied data includes such items as telephone
numbers of imvolved parties, caller ID/ANI 1nformation,
DNIS information, and agent ID numbers. The CTI Server
performs the task of analyzing and reorganizing data from
both the real-time and SMDR (asynchronous) links, and
passing the results onwards to the remainder of the recording,
system for further processing.

A module called the “Call Record Generator,” or CRG,
discussed above, 1s then responsible for collecting data from
the CTT Server, creating ‘master call records’ and attempting
to match those records with existing recorded audio data. It
the CRG receives CTI information mdicating that audio data
recorded on two Voice Servers 1s related (for example, due
to a transferred call), records will be generated for each
portion with a common call record ID. This ID can later be
used to query for all the pieces (or “segments”) comprising
the complete call. In addition, each segment will indicate the
Voice Server which contains that piece of the call.

During playback, the User Workstation’s player module

connects to a program located on a Voice Server called the

35

40

45

50

55

60

65

Description

no more events can update the call
record.

The maximum number of seconds a
call 1s allowed to exist before being

forcibly closed. This 1s used as a
safeguard against missing CIT or
Recorder events that would
normally end a call record.
Maximum number of entries
allowed 1n the MasterCall Record
history list

A known, fixed difference (in
seconds) that specifies the skew
between a Recorder clock and a
PBX clock. Used to adjust
incoming CTI event times before
processing and comparing with
Recorder event times.

[dentifies, in cases where Recorder
and CTT information overlaps,
which source 1s preferred to
populate the call records.

This setting 1s used to avoid
creating VOX based call records
from noise on recording input
channels. It directs the CRG to
discard any VOX clips that do not
exceed the specified number of
seconds 1n duration.

Playback Server, or PBServer. The machine name of the

particular Voice Server with which a communications ses-
sion should be established, stored by the CRG 1n the call

record table of the Voicedata storage module, 1s passed into
the player module after being extracted by the User Work-
station’s call record browser. A call record playback request
1s then submitted, which causes the PBServer to query for a
specific call record’s audio files located on that physical
machine, open them, and prepare to stream the audio upon
buffer requests back to the client. If successtul, a series of
requests 1s then i1ssued from the client, each of which will
obtain just enough audio to play to a waveOut device while
maintaining a safety net of extra audio 1n case of network
delays. Upon a request to “Move” within the scope of a call
record, the PBServer will reposition its read pointer to the

desired location and then begin passing back buflers from
that point. This series of Request and Move commands will
confinue until the user chooses to end the session by shutting
down the client-side audio player.

When a call 1s transferred between locations, it 1s possible
that the call may span multiple Voice Servers, since the
extensions or trunks involved may be monitored by different
recorders. If this 1s the case, the audio data 1s spread out
between playback servers, and 1t must be properly pieced
back together to reconstruct the complete call for a playback
client.

There are several possible solutions to the problem. First
of all, one could choose one central server and copy 1n all
data from the involved servers. This 1s as slow as copying
the files locally to the client, but 1t at least consolidates the
data to one location for the playback server to operate on.
Assuming that this method 1s chosen, however, several new
problems arise. First 1s the 1ssue of drive space: depending
on the number of transfers and recorders involved with a call
record, the central playback server could end up suddenly
storing a large number of files. This 1s multiplied by the total
number of clients requesting playback sessions. Soon

US 6,785,369 B2

S7

enough, a large amount of unpredictable space 1s being
allocated and freed without any reasonable way of estimat-
ing the space necessary to service all requests. Similarly, the
processor and memory load on this server 1s taking the brunt
of being used for every playback request, since even normal,
single recorder playback sessions would be routed through
this one machine.

Another solution would be to have the central playback
server run some intermediate process that would stream all
of the data from the multiple servers back to each client, like
a “funnel.” This would avoid the copying and drive space
1ssues, but there are still two problems. First, the centralizing
of this server once again puts the entire load on a single
machine. But more importantly, if multiple streams are
being funneled through this one location, the server would
somehow need to organize the streams so that during
playback, they appear to be arranged 1n the proper order.

The Stream Control Manager (SCM) used in accordance
with a preferred embodiment is the result of addressing the
1ssues referred to 1 the second solution discussed above.
With regard to the resource 1ssue, the solution was to simply
move the “funneling” module from one central server to the
client side. In this way, servers are still providing the actual
requested data, but it becomes the client side’s responsibility
to bring the data together. Yet the SCM remains a separate,
COM-based module so encapsulation 1s still maintained (a
client application 1s not hard-wired directly into the SCM
code). This was intentional since other system modules in
alternate embodiments of the system need to reuse the SCM
to gather playback data (e.g., for phone handset playback
support instead of LAN playback support) or to gather audio
from a multitude of Voice Servers for long-term offline
storage on DAT or DVD media.

The process of stream management begins when the SCM
1s sent a list of segments which comprise the entire call. Each
segment includes the machine name of the Voice Server, the
secgment’s start time, duration, channel ID, and an event
callback routine provided by the client which serves as a
destination for the final organized data.

Once this list is received and stored as a vector (array), the
SCM proceeds to try connecting to all servers required to
play back this call. The connection, 1f successiully
established, 1s associated with 1ts respective segment via a
pointer 1n the segment entry. The connection 1s also added to
an array so that if a subsequent segment’s server 1s the same
as an earlier segment, the connection can be reused. This
may occur 1f a call transfers away to a line monitored by a
second recorder and 1s later transferred back again to the
original line. If the process cannot complete successiully
(i.e., if a Voice Server is malfunctioning), playback is
aborted to avoid skipping over any necessary data.

Next, the SCM goes through 1ts list of segments and for
cach, handshakes with 1ts server through a series of function
calls. During this phase, the SCM informs each playback
server of the desired segment to stream back by providing its
start time, duration, channel ID using the parameter data that
was passed 1n earlier. Once again, 1f any part of the proce-
dure fails, the entire initialization (and thus playback) is
aborted. At the completion of this phase, every server should
have loaded all the audio files associated with their portion
of the entire data stream. Each 1s now ready for audio buifer
requests.

The SCM then waits for a client to execute a “Start-
Stream”™ call. In a graphical interface, this would occur, for
example, when a user hits a Play button or begins a Save
operation. Once this function 1s called, a separate thread
spawns which will handle the entire process.

10

15

20

25

30

35

40

45

50

55

60

65

53

First, the current play position 1s checked to see which
segment to begin playing on (a Move operation, explained
below, controls the manual repositioning of this value). This
1s determined by looping through all of the segments, adding
cach segment’s duration to a running total. When the current
secgment’s duration added to the total exceeds the play
position, that 1s the segment which contains the current play
position.

Once this calculation 1s complete, a loop begins which
starts from the previously determined segment and proceeds
through the rest of the segment vector. For each segment,
requests are formed for a predetermined buifer size and sent
to the associated server. Once a buffer 1s returned, based on
a flag configurable from the client, the SCM will either
directly send back this data or “slice” 1t for the client first
before returning it. Here, slicing refers to a process of
dividing the buffer into smaller buifers by a least common
multiple known as a block align; this 1s sometimes useful to
a client with a graphical component because the interface
may need to reflect the amount played in smaller subdivi-
S101S.

When 1t 1s detected that all data from a segment has been
requested, the SCM automatically steps to the next segment
(possibly located on a different Voice Server) and begins
requesting data from 1t instead. Because all Voice Servers are
pre-loaded with the data and “ready to go,” this process
takes place 1n a fraction of a second, and the client does not
sense any gap 1n the audio data being returned. In fact, the
only true method for discerning the segment boundaries
involves listening for normal, audible indicators of a transfer
being made (clicking, ringing, or hearing the voice of a new
participant) as provided through the telephone switch envi-
ronment.

At the close of a play session (e.g., the user hits Stop or
Pause 1n a typical audio playback GUI displayed 1n con-
junction with the GUI described in FIG. 16) a StopStream
call 1s made to the SCM. The thread in turn detects that the
stopped state has been entered, exits from the request loop
code, and frees up any used resources. Finally, 1t informs the
client that a Stop event has occurred. If the entire call record
1s played without calling StopStream, the SCM performs the
same exit and cleanup code, but informs the client that a
Done event has occurred instead.

Movement within the overall stream 1s straightforward,
ogrven the aforementioned method that the SCM uses to
determine which segment to begin playing from. A global
variable holds the total number of milliseconds of audio data
requested thus far. When a Move 1s performed, the server
containing the data at the destination position i1s told to
re-position itself, and the current play position 1s reset. Now,
once StartStream executes again, 1t will 1mitially start
requesting from the server that was just moved to. And
because that server had also moved its position pointer
ahead, data will not be streamed from the beginning of the
segment, but from where the Move position fell within that
secgment. Thus movement 1s a synchronized action com-
pletely transparent to the client, who 1s, ultimately, only
interested 1n treating the data as a single stream.

SCM Pseudo-code

1. Initialize receives segment description data (start time,

duration, etc.)

a.) Form a vector of all segments.

b.) Try to connect to all segments’ servers.

c.) If there is an error connecting to any server, exit.
d.) Try to initialize each connected server.

¢.) If there is an error initializing any server, exit.

US 6,785,369 B2

59

2. If StartStream received:

a.) Go through segment list. Find segment of current play
position.

b.) Starting with that segment, contact the associated
server and begin requesting buifers.

c.) If option set, divide up buffer into smaller chunks.
d.) Send buffer(s) to client via event callback.

¢.) Repeat until all data requested for this segment on that
SETVer.

f.) Repeat from step b. with next segment in list.
3. If Stop received:

a.) Exit from request loop.
b.) Clean up used resources.

c.) Send “Stop” event back to client.

4. If Stop not received, but all data from all segments
played:

a.) Exit from request loop.

b.) Clean up used resources.

c.) Send “Done” event back to client.
5. Move received:

a.) Go through segment list. Find segment of desired play
position.

b.) Contact the associated server and reposition to that
desired position.

c.) Reset current play position variable to reflect change.

Detailed flow diagrams describing SCM operation are
provided in FIGS. 20, 20A, 208, 21, 22, 22A, 22B, and 22C.

FIG. 20 illustrates the mnitialization process of the Stream
Control Manager. The Initialization Sequence begins when
a user enters the User Workstation playback software and at
step 2010 queries for a recorded call record by desired
criteria. At step 2012 a call record browser displays resulting
call records. At step 2014 the user selects the desired record
for playback. At step 2016 the browser invokes a PbkCon-
trolWin object: a dialog containing the ‘player’ ActiveX
control.

At step 2020 the browser sends information to PbkCon-
trolWin about all segments comprising the call record. If at
step 2024 immediate playback 1s not required, at step 2028
the entry 1s added to a playlist for future playback, and at
step 2030 SUCCESS 1s returned. If at step 2024 immediate
playback 1s required, at step 2032 the call record ID and
segment list are forwarded to a GUI Player module. At step
2038 (see FIG. 20A) the player module instantiates a local
SCM (StreamControl) object and stores a pointer in
m_ plStreamControl. At step 2040 the player module
accepts the data, displays starting time and total duration (by
parsing out string data), and forwards it to the final module,
the Stream Control Manager (SCM), for audio playback.

Step 2046 begins the creation of a segments vector. At
step 2046, a segment 1s parsed out from segl.ist. At step
2048, recorder ID, start time, duration, and channel are
parsed out from the segment. At step 2050, a new SEG-
MENT structure 1s created from recorder ID, start time,
duration, and channel. At step 2052, a new SEGMENT 1s
added to the SEGMENT vector. At step 2054, 11 all segments
have been parsed from seglist, at step 2058 an element 1s
ogotten from the SEGMENT vector. If at step 2054 more

secgments remain to be parsed from seglist, steps 2046,
2048, 2050, and 2052 are repeated.

After step 2058, the program determines at step 2060
whether a new DCOM connection 1s required to the recorder
for this segment. If not, at step 2062 the existing pointer 1s
copied from the Connections vector to the server pointer in

10

15

20

25

30

35

40

45

50

55

60

65

60

the SEGMENT vector and the program proceeds to step
2076. It at step 2060 the connection 1s new, a connection 1S
made to the indicated recorder’s “PlayBackServer” DCOM
object using CoCreatelnstanceEx. At step 2066 the program
checks whether the object instantiated successtully. If not, at

step 2068 a log error message occurs and at step 2070
ERROR (C) is returned. If at step 2066 the object instanti-

ated successfully, at step 2072 (see FIG. 20B) the new
object’s pointer 1s added to the Connections vector. At step
2074 the program determines whether all segments have
been connected. If not, the program returns to step 2058. If
at step 2074 all segments have been connected, at step 2076
an element 1s gotten from the SEGMENT vector. At step
2078 the program queries for a list of wave files on the server
that go with this segment. At step 2080 the program deter-
mines whether the query was successtul. If not, at step 2082
a log error message occurs, and at step 2084 ERROR (C) is
returned.

If at step 2080 the query was successiul, at step 2088 the
program opens the wave files on the server and prepares
them for streaming. It also returns the wave format of the
audio 1n the segment. At step 2093 the program determines
whether the wave files and format were obtained success-
fully. If not, at step 2094 a log error message occurs and at
step 2095 ERROR (C) is returned. If step 2088 1s determined
at step 2093 to have been successtul, at step 2096 the
program checks whether all segments have been 1nitialized.
If not, the program returns to step 2076. If so, step 2097 1s
performed and at step 2098 SUCCESS 1s returned.

FIG. 21 1llustrates how the program manages a Player
Object 2110 and a PbkControlWin Object 2132.

FIG. 22 1llustrates the playback sequence of the Stream
Control Manager. Initially, at step 2202 a user has completed
initialization and 1s waiting to hit Play in the Player GUI. At
step 2204 the user hits the Play button. At step 2206 a
message 1s sent to the Play method in the Player ActiveX
control. At step 2210 the Play method in Player ActiveX
control causes the output butfers to be “sliced” to increase
the number of smaller buffers sent, thus increasing the
resolution of the “totalPlayed” variable. At step 2218 Play
method causes the server-side position to move to the
current shider position. At step 2222 the program gets
segment 1++ from the SEGMENT vector. At step 2224 (see
FIG. 22A) the program determines whether the End Time
oifset for segment 1 1s greater than curPosition. If not, the
program returns to step 2222. If so, the program proceeds to
step 2226 and causes the file pointer on the server side to
change to the appropriate new location. The program checks
at step 2230 whether step 2226 was successtul. If not, at step
2232 a log error message occurs and at step 2234 ERROR
(C) 1s returned.

If at step 2230 step 2226 1s determined to have been
successtul, at step 2238 the program calls Stream Control-
:StartStream. At step 2242 the program gets segment 1++
from the SEGMENT vector. At step 2244 the program calls
CoMarshallnterThreadlInterfaceInStream to marshal a
DCOM pointer member across a thread boundary. At step
2246 the program determines whether all SEGMENT ele-
ments have been marshaled. If not, the program returns to
step 2242. 1t so, at step 2248 the main SCM streaming thread
1s spawned.

FIG. 22B illustrates an SCM main streaming thread.
When the thread begins, at step 2250 the thread gets a
secement from the SEGMENT vector. At step 2252
CoCetlnterface AndReleaseStream 1s called to unmarshal a
DCOM pointer member across the thread boundary. At step

2254 the thread checks whether all SEGMENT elements

US 6,785,369 B2

61

have been unmarshaled. If not, the thread returns to step
2250. It at step 2250 all SEGMENT elements are deter-
mined to have been unmarshaled, at step 2256 the thread
oets a segment from the SEGMENT vector. The thread then
checks at step 2258 whether the End Time offset for segment
1 1s greater than curAmountRequested. If not, the thread
returns to step 2256. If so, at step 2260 the thread gets
Segment|i++|. The thread checks at step 2262 whether 1 is
less than the highest segment number. If not, an Event::Done
method 1s called at step 2264, and at step 2266 SUCCESS
(C) is returned. If so, at step 2268 the thread determines
whether this 1s the first segment to be played in this instance
of the thread. If not, at step 2270 the thread calls
PBServer::PositionPLay(totalRequested) for Segment|[i]
and goes to step 2272. If so, the thread goes directly to step
2272,

At step 2272, the thread checks whether totalRequested 1s
less than Segment|[i].endTimeOffset. If not, the thread
returns to step 2260. If so, the thread proceeds to step 2274
and checks whether totalRequested plus buflerSize 1s less
than or equal to Segment]i].endTimeOffset. If not, at step
2276 the thread calculates a new buflerSize 1n multiples of
the audio format’s “block align.” and proceeds to step 2278
(see FIG. 22C). If so, the thread proceeds directly to step
2278. At step 2278, the thread calls PBServer::ReqButfer for
Segment|i]. This is the core routine that actually retrieves a
buffer of data from the PlayBack Server. At step 2286 the
thread checks whether step 2278 was successtul. If not, at
step 2284 a log error message occurs, and at step 2282
ERROR (C) is returned.

If at step 2286 the thread determines that step 2278 was
successtul, at step 2287 toatlRequested 1s set equal to
totalRequested plus Actual returned buller size. At step
2288, the thread checks whether Blockslicing i1s enabled. If
not, at step 2289 the thread sends the buffer back to the
Player via Event::SendData method and returns to step
2274. If BlockSlicing has been enabled, at step 2292 the
thread checks whether the CODEC 1s Dialogic OKI
ADPCM or PCM. If not, at step 2293 the slice of the slices
1s set equal to the audio format’s block align and the thread
proceeds to step 2296. If so, at step 2294 the size of the slices
is set to an even dividend of the buffer size (e.g., one-tenth
of the buffer size). At step 2296, the thread copies out “slice
size” from the buffer and sends 1t back to Player wvia
Event::SendData method. At step 2298 the thread checks
whether the entire buffer has been sent back. If not, the
thread returns to step 2298. If so, the thread returns to step
2274,

The Stream Control Manager could theoretically be
adapted to be used 1n more general streaming media
situations, outside that of communications recording sys-
tems. In most current stream-based systems for network-
based playback of audio content, such as RealMedia and
NetShow, two general broadcast architectures exist known
as unicast and multicast. Unicast mvolves a single client-
server connection for data streaming, while 1n the multicast
scenarlo a server pushes data to a single network address
which multiple clients can then “tune in” to. However both
models assume that data 1s being continuously fed from a
single server. In the 1nterest of load balancing, or if pieces of
a streaming presentation were spread out across multiple
locations, the SCM model could provide an innovative
solution where the client side has the power to weave
together many streams 1nto a single playback session. An
example could be imagined where a news organization, such
as CNN, dynamically assembles a streaming broadcast for
the online viewer from many different reports located on

10

15

20

25

30

35

40

45

50

55

60

65

62

servers across the country. The components could be played
scamlessly end-on-end using the SCM model, and if the
viewer desired to rewind or fast-forward to a specific point
in the stream, the SCM model would allow for complete
transparent control.

The present invention 1s not to be limited 1n scope by the
specific embodiments described herein. Indeed, modifica-
tions of the preferred embodiment 1n addition to those
described herein will become apparent to those skilled 1n the
art from the foregoing description and accompanying fig-
ures. Doubtless, numerous other embodiments can be con-
ceived that would not depart from the teaching of the present
invention, which scope 1s defined by the following claims.

All the features disclosed in this specification (including
any accompanying claims, abstract, and drawings) may be
replaced by alternative features serving the same,
equivalent, or similar purpose, unless expressly stated oth-
erwise. Thus, unless expressly stated otherwise, each feature
disclosed only of a generic series of equivalent or similar
features.

What 1s claimed is:

1. A method of playing back data segments of a file stored
in two or more locations accessible by a plurality of play-
back servers, the method comprising:

(a) identifying data segments to be played back and an
order 1n which the i1dentified segments are to be played

back;

(b) transmitting notifications to identified playback serv-
ers storing said identified segments; and

(c) playing back the identified segments from respective
identified playback server in the identified order upon
receipt of a request for playback.

2. The method of claim 1, wherein the step of 1dentifying
further comprises 1dentifying the location of data segments
that are to be played back.

3. The method of claim 1 wherein the step of 1dentifying
further comprises 1dentifying the duration of each data
secgment and the playback server that 1s responsible for its

playback.

4. The method of claim 1 wherein the step of identifying
further comprises identifying playback destinations for the
identified data segments.

5. The method of claim 4 wherein the playback requests
transmitted to the playback servers direct the playback
servers to send the played back data segments to the 1den-
tified destination.

6. The method of claim 1 wherein the data segments
comprise audio data.

7. The method of claim 6 wherein the data segments
comprise audiovisual data.

8. The method of claim 1 wheremn the data segments
comprise recorded telephone conversations.

9. The method of claim 1 further comprising the step of
displaying a graphical representation of the playback status
of the data segments being played back.

10. A method of playing back data segments stored in one
or more locations accessible by one or more playback
servers, the method comprising;:

(a) identifying data segments to be played back and an

order 1n which the i1dentified segments are to be played
back;

US 6,785,369 B2

63

(b) transmitting notifications to playback servers associ-
ated with the identified data segments to prepare for
playback; and

(¢) playing back the identified segments in the identified
order upon receipt of a request for playback, wherein
the notifications transmitted to the playback servers are
canceled and replaced by new notifications whenever
data 1s received describing a request to begin playing a
different portion of a data segment or a different data
segment.

11. A computer program for playing back data segments
stored 1n two or more locations and managed by one or more

playback servers comprising:

(a) software for identifying data segments to be played
back and an order in which the 1dentified segments are

to be played back;
(b) software for transmitting notifications to identified
playback servers storing said i1dentified segments; and

(¢) software for playing back the identified segments from
respective 1dentified playback server in the identified
order upon receipt of a request for playback.

12. The program of claim 11 wherein the step of identi-
fying further comprises identifying the location of data
secgments that are to be played back.

13. The program of claim 11 wherein the step of identi-
fying further comprises 1dentifying the duration of each data
secgment and the playback server that is responsible for its
playback.

14. The program of claim 13 wherein the step of 1denti-
fying further comprises identifying playback destinations
for the 1dentified data segments.

15. The program of claim 14 wherein the playback
requests transmitted to the playback servers direct the play-
back servers to send the played back data segments to the
identified destination.

16. The program of claim 15 wherein the data segments
comprise audio data.

17. The program of claim 16 wherein the data segments
comprise audiovisual data.

18. The program of claim 11 wherein the data segments
comprise recorded telephone conversations.

19. The program of claim 11 further comprising the step
of displaying a graphical representation of the playback
status of the data segments being played back.

20. A computer program for playing back data segments
stored 1n one or more locations and managed by one or more
playback servers comprising:

(a) software for identifying data segments to be played
back and an order in which the identified segments are
to be played back;

(b) software for transmitting notifications to playback
servers assoclated with the 1dentified data segments to
prepare for playback; and

(c) software for playing back the identified segments in
the 1dentified order upon receipt of a request for
playback, wherein the notifications transmitted to the
playback servers are canceled and replaced by new
notifications whenever data 1s received describing a
request to begin playing a different portion of a data
segment or a different data segment.

21. An article of manufacture for storing a computer
program for playing back data segments stored in two or
more locations and managed by one or more playback
SErvers comprising:

(a) software for identifying data segments to be played
back and an order in which the identified segments are
to be played back;

10

15

20

25

30

35

40

45

50

55

60

65

64

(b) software for transmitting notifications to identified
playback servers storing said i1dentified segments; and

(¢) software for playing back the identified segments from
respective 1dentified playback server in the identified
order upon receipt of a request for playback.

22. The article of claim 21 wherein the step of 1dentifying
further comprises 1identifying the location of data segments
that are to be played back.

23. The article of claim 22 wherein the step of 1dentifying
further comprises i1dentifying the duration of each data
scgment and the playback server that is responsible for its
playback.

24. The article of claim 23 wherein the step of identifying
further comprises identifying playback destinations for the
identified data segments.

25. The article of claim 24 wherein the playback requests
transmitted to the playback servers direct the playback
servers to send the played back data segments to the 1den-
tified destination.

26. The article of claim 25 wherein the data segments
comprise audio data.

27. The article of claim 26 wherein the data segments
comprise audiovisual data.

28. The article of claim 21 wherein the data segments
comprise recorded telephone conversations.

29. The article of claim 285 further comprising the step of
displaying a graphical representation of the playback status
of the data segments being played back.

30. An article of manufacture for storing a computer
program for playing back data segments stored 1n one or
more locations and managed by one or more playback
SErvers comprising:

(a) software for identifying data segments to be played
back and an order in which the identified segments are
to be played back;

(b) software for transmitting notifications to playback
servers assoclated with the identified data segments to
prepare for playback; and

(¢) software for playing back the identified segments in

the 1dentified order upon receipt of a request for
playback, wherein the notifications transmitted to the
playback servers are canceled and replaced by new
notifications whenever data 1s received describing a
request to begin playing a different portion of a data
segment or a different data segment.

31. Amethod of playing back data segments stored in two
or more locations among a plurality of storage devices
accessible by two or more playback servers, the method
comprising:

(a) identifying a plurality of data segments associated
with two or more playback servers to be played back
and 1n order in which the identified segments are to be
played back;

(b) transmitting notifications to said associated playback
servers to prepare for a request for playback; and

(¢) playing back the identified segments from respective
associated playback server 1n the identified order upon
receipt of the request for playback.

US 6,785,369 B2
65 66

32. Amethod of playing back data segments stored 1n two (c) playing back the identified segments in the identified
or more locations among a plurality of storage devices order upon receipt of the request for playback, wherein
accessible by two or more playback servers, the method the notifications transmitted to the playback servers are
comprising: canceled and replaced by new notifications whenever

(a) identifying a plurality of data segments associated 9 data 1s received describing a request to begin playing a

with two or more playback servers to be played back different portion of a data segment or a different data
and 1n order 1n which the identified segments are to be segment.
layed back;

P
(b) transmitting notifications to said associated playback
servers to prepare for a request for playback; and %k sk %k ok

	Front Page
	Drawings
	Specification
	Claims

