(12) United States Patent
O’Neill et al.

US006779056B2

(10) Patent No.:
45) Date of Patent:

US 6,779,056 B2

Aug. 17, 2004

(54) DIRECT DATA PLACEMENT AND MESSAGE 5,799,155 A 8/1998 Yasue et al.
REASSEMBLY 5,016,309 A * 6/1999 Brown et al. 710/52
5,974,518 A * 10/1999 Nogradicceenennen.... 711/173
(75) Inventors: Eugene O’Neill, Dublin (IE); Richard 6.237.038 Bl * 5/2001 Yasue et al.oooo...... 709/236
A Gahan, Gory (IE) 2002/0095512 Al * 7/2002 Rana et al.
(73) Assignee: 3Com Corporation, Santa Clara, CA
(US) FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this EP 0603541 A2 8/1994
patent 1s extended or adjusted under 35 EP 0657824 Al 6/1995
US.C. 154(b) by 303 days. WO WO 01/75621 Al 10/2001
(21) Appl. No.: 09/897,044 * cited by examiner
(22) Filed: Jul. 3, 2001
_ . Primary FExaminer—Jellrey Gatlin
(65) Prior Publication Data Assistant Examiner—Justin Knapp
US 2002/0118703 Al Aug. 29, 2002 (74) Attorney, Agent, or Firm—Nixon & Vanderhye PC
(30) Foreign Application Priority Data (57) ABSTRACT
Feb. 28, 2001 (GB) cvieiiiiiieeereeeee e 0104940 _ _ _
A direct data placement implementation for a data reassem-
(51) Int. (:l.7 .. GO6F 3/00 bly Process. Data within a pro‘[ocol data unit 1s pl&C@d
(52) US.CL .., 710/52, 710/65, 709/232, direcﬂy 1mn preassigned application buffers. The network

709/236; 711/173; 370/351

..................... 710/65, 52; 370/351;
709/236, 232; 711/173

(58) Field of Search

References Cited

U.S. PATENT DOCUMENTS
11/1993 Rubin et al.

(56)

5265261 A

escaped data are placed. A single buf
information for a complete PDU (or message) and is handed

over to enable the next process to run on a per message basis.

interface card has buifer space into which message headers,
seoment headers and indicators of escaped data and size of

er can contain this

TCPI TCP2 TCP3 TCP4 TCPS |TCPO | TCPé
-jcontinued
TCPI TCP? TCP3 TCP4 TCPS TCPO Message
header header header header header header 2 header
(serl)
Message Message Message Message Message | | Message
header header header header header header Escaped
flag set flag flag flag flag flag data flag
(unset) (unset) {unset) (unset) (unset) (set)
t.scaped
data Escaped Escaped Escaped Escaped Escaped
tlag (sen data data data data data Message 2
flag (set) flag (set) flag (set) flag (set} | | flag (set) header
Message
header TCP2 TCP3 TCP4 TCPS TCPO Escaped
Escaped Escaped Lscaped Fscaped Escaped data size
TCP data s1ze data size data s1ze data size data size nicator
Escaped indicator indicator indicator indicator indicator for TCPG
dala s1ze TCPOG in i1
- dicator message 1 | message 2

J J) J

| | | I 5 | 4

J

16

16 Claims, 2 Drawing Sheets

U.S. Patent Aug. 17, 2004 Sheet 1 of 2 US 6,779,056 B2

™ message | > — Message 2 —»
CP 2 TCP>S TCP4 TCP5S TCP6;-': 1Po
TCP P o o ' |continued
L <« Bulk Data » L,
s
L
Fig. 1
TCPI| TCP2| TCP3 | TCP4 tcps |Tcpe | | 1CFO
= lcontinued
" " X / h F*__ /
1.‘1 { , 1!1 . 1‘:‘ :f '|II1b J p ".‘ ; ; l'li : \\x Ir;“
11\ / ;’ :'. 1‘1 JII 1;1 d f i!|, ff "11 il \1\ .'f.Jr
TCPI TCP> TCP3 TCP4 TCPS3 TCPG Message
header header header header header header 2 header
1 7 | | (set)
Message Message Message Message Message | Message
header | header | header header header header Escaped
flag set flag flag flag | flag flag data flag
i T (unset) (unset) (unset) (unset) | (unset) 1 (set)
Escaped
data Escaped Escaped Escaped Escaped Escaped
tlag (set) data data data data data Message 2
flag (set) flag (set) flag (set) flag (set) [flag (set) header
Message -] 1 T
header TCP2 TCP3 TCP4 TCPS TCPG Escaped
Escaped Escaped Escaped Escaped Escaped data size |
TCPI data s1ze data size data size data size data size indicator |
Escaped indicator indicator indicator indicator tndicator for TCPG
data size TCP6 1
indicator message | message 2
| | | 2 | | 4 [S 16

U.S. Patent

Aug. 17, 2004

Sheet 2 of 2

US 6,779,056 B2

TCP2

TCPS

TCP4

TCPS

TCP header
Status sumimary

flag

Message header

(set)

tlag

Escaped data

(set)

Message header

Escaped data

size summary TN 10
for TCPI1 - TCP6

In message |

NO

Receive Segment

Parse for message boundary

Deliver bulk data direct to
application butfers

Store message header and escaped
data tlag and size for segments
1n summary butfer
End of message ”

YES

Use summary bufter tor application
butter processing

US 6,779,056 B2

1

DIRECT DATA PLACEMENT AND MESSAGE
REASSEMBLY

FIELD OF THE INVENTION

This invention relates to direct placement of bulk data mto
application buffers and reassembly of messages.

BACKGROUND OF THE INVENTION

When data 1s transmitted from one device to another 1t 1s
controlled by a protocol such as Transport Control Protocol
(TCP). A receiving device or host runs a receive process that
moves the data to the required destination such as applica-
tion buifers. Nowadays this process 1s usually implemented
in software.

In current implementations data 1s moved via the Network
Interface Card (NIC) to TCP receive buffers in the host
memory. The Central Processing Unit (CPU) receives an
interrupt, which may be on a per segment basis. The TCP
receive process verifies that the data 1s 1in order, also on a per
segment basis, and the data 1s finally copied into application

bufters.

During this process there are two data moves across the
system bus and per segment TCP receive processing by the
host 1s slow.

The data transmitted by the TCP protocol will have
originated 1n another ‘higher layer’ protocol. One such
protocol 1s the 1SCSI specification that defines a transport
protocol for SCSI and maps the SCSI remote procedure
invocation model on top of TCP.

Communications between a device on a network and a
server (often termed client and server, or in SCSI specifi-
cation ‘Initiator’ and ‘Target’) are divided into messages,
termed 1SCSI protocol data units (PDUs). The iSCSI PDUs
are variable 1n length and consist of a message 1SCSI header
plus optional data, also termed the bulk data. Typically the
bulk data consists of data blocks being moved between
client and server.

TCP also uses variable length segments and packages
PDUs received from 1SCSI 1nto segments for the transmis-
sion. An 1ndividual 1ISCSI PDU may be packaged across
several TCP segments, for example when 1t contains a lot of
data 1n addition to the 1SCSI header, or when the 1ISCSI
PDUs contain only headers of control or status information
and no bulk data, several PDUs may be packaged into a
single TCP segment.

Although there are not current implementations, there are
proposals under 1SCSI protocol for direct placement of the
data portlons of the 1ISCSI PDUs into preassigned applica-
tion buflers in host memory without it being stored 1n TCP
receive buflers. This would save on bus bandwidth, as the
data 1s not transferred twice, and on the TCP receive side
buffer space 1s also saved as the bulk data 1s not stored 1n the

TCP receive buftters.

SUMMARY OF THE INVENTION

The present mvention i1s directed towards implementing,
direct data placement message reassembly.

According to the invention there 1s provided a data
reassembly process for a message that comprises a header
and a bulk data portion and 1s received 1n a plurality of
segments, 1n which bulk data 1s placed directly into appli-
cation buffers and a receive buffer stores an indication of the
size of the directly placed data from a plurality of segments.

10

15

20

25

30

35

40

45

50

55

60

65

2

The invention also provides an interface for a data reas-
sembly process for messages that each comprise a header
and a bulk data portion that are received 1n a plurality of
segments and for which the bulk data can be placed directly
into application buffers, the interface comprising a receive
bufler for storing summary information including indication
of the cumulative size of the directly placed data from said
plurality of segments.

BRIEF DESCRIPTION OF THE DRAWINGS

The 1nvention 1s now described by way of example with
reference to the accompanying drawings 1in which;

FIG. 1 1s a schematic diagram of a message structure,
FIG. 2 1s a schematic dlagram of handhng of direct data
placement by a plurality of receive buflers,

FIG. 3 1s a schematic diagram of handling of direct data

placement by a summary receive buifer 1n accordance with
the present invention, and

FIG. 4 1s a flow diagram of the receive process of the
present 1nvention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENT

Referring now to FIG. 1, a typical message that can be
utilised 1n the invention consists of a message header 1

followed by a series of segments, indicated in the drawing
as TCP 1, TCP2 . . . TCP6, although protocols other than

TCP could be used. This 1s then followed by a second
message that also starts with a header 1 and has its own
serics of segments. The type of package utilised in the
invention also has indicators that enable location of message
boundaries 1SCSI protocol for example includes such indi-
cators. It will be appreciated that the message may have
more than 6 segments, or fewer. It will also be noted that

TCP®6 contains the end of message 1 and the start of message
2.

With a direct data placement system the bulk data occu-
pying the segments TCP1 . . . TCP6 1s directly copied to
preassigned application buifers. This data may be several
kilobytes, say for example 8 Kbytes, and 1s represented in
FIG. 1 by the entire message minus the header. The appli-
cation buffers may be regarded as the next stage of the
process after the arrival order of data has been checked (or
reassembled).

Referring now to FIG. 2, a structure 1s shown having the
same general TCP receive bufler arrangement as may cur-
rently be used for receiving message segments complete
with their data. However as the direct data placement
procedure 1s to be used, the buifers can be smaller and could
be placed on the NIC 1tself. When the data stream arrives at
the NIC it is parsed for the message boundary (from length
data contained in the message header) and the bulk data is
routed to the preassigned application buffers. The 1nforma-
tion relating to each segment TCP1 to TCP6 1s read 1nto its
own TCP reassembly bufier, shown as buffers 11 to 16
corresponding to TCP1 through to TCP6 for message 1.
Each of the buflers receives a header identifying the
segment, 1.¢., TCP1 header and so on, and a flag 1nd1cat1ng
that the data has been placed 1n the application buflfers
together with an indication of the size of that directly placed
data. This 1s referred to as an “Escaped data” flag. Another
flag indicates whether or not the buffer also contains a
message header. Finally the buffer contains an indicator of
the size of the escaped data. The TCP1 receive buifer
contains the message header and so the header flag 1s set.

US 6,779,056 B2

3

With this system at least one builer 1s required for each
secgment, TCP6 requires a second buil

er as 1t straddles a
message. Apart from the utilisation of escaped data, this
procedure 1s analogous to that currently used where the
buffers also have to contain the data, but achieves advan-
tages 1 smaller buffer size and bus bandwidth utilisation as
envisaged by the 1SCSI direct data placement proposals.

The present invention provides an implementation of
direct data placement to save bandwidth and buffer size, and
also 1improves speed and provides a further simplification 1n
the bufler structure.

Referring now to FIG. 3, in the present invention, a
reduced number of TCP receive bulfers are required, prel-
crably utilising only a single buffer 10 for each message.
When TCP1 arrives the message header 1s copied into the
buffer along with 1ts corresponding escaped data marker and
message header present flag. As described 1n respect of FIG.
2 the size of the escaped data 1s put into the bufler by way
of an indicator. When TCP2 arrives, the escaped data size
indicator 1s modified to imnclude the size of escaped data from
TCP2. The buffer then becomes similarly updated with the
cumulative escaped data size for the remaining segments as
they arrive 1n turn and the single buifer ends up with a header
summarizing the segment headers, the message header and
escaped data flags and an escaped data size summary for the
entire message.

The summarised single buifer 10 1s then handed over to
the next stage of processing on the host, which now only has
to refer to a single buffer for the entire message. The
reduction 1n the number of TCP receive buifers required
enables a simpler and a less costly implementation, prefer-
ably on the NIC, and also enables the speed to increase from
a per segment process (0 a per message Process.

The direct data placement system 1n general relies upon
the segments of a message arriving in order, which 1s the
case the majority of the time. However, 1t 1s also necessary
to deal with the situation of segment loss or out of order
secgments. One way to handle this 1s for the direct data
placement to stop and for the NIC to revert to receiving,
complete messages including data, and checking the order
and transferring 1n the prior art manner. Additional buifers
for such emergency use need to be provided and also a
system for recommencing direct data placement. In the
1ISCSI standard the data stream has a marker at regular
intervals that indicates where the next message boundary 1s
located. Thus if segments arrive out of order the NIC
abandons tracking and direct data placement of the PDU 1n
progress, uses the reserve emergency bulfer facility for the
full data as well as headers of that PDU, and restarts direct
data placement operation once the next marker indicates the
start of the next message boundary.

From this 1t will be appreciated that although buffer size
and quantity 1s of the general level to support one summary
buffer per message, which of course requires some flexibility
in itself to cope with varying message length, suflicient
reserve buffer space 1s also provided to cope with the loss of
tracking. However, as this 1s not required for every PDU, the
overall buffer space required 1s still very much reduced.

What 1s claimed 1s:

1. A process for the reassembly of a message constituted
by a plurality of Transmission Control Protocol (TCP)
secgments, each of said TCP segments comprising a TCP
header and respective bulk data, said method utilizing appli-
cation buffers for the reception of said bulk data and
comprising:

placing said respective bulk data of each of said segments

in said application bulifers;

copying the header of a first one of said TCP segments
into a receive buffer separate from said application
buffers;

10

15

20

25

30

35

40

45

50

55

60

65

4

copying 1nto said receive buifer an escaped data size
indicator denoting the size of the respective bulk data
placed from said first one of said TCP segments 1nto
said application buil

ers; and
for a subsequent TCP segment 1n said message, modifying,
said escaped data size indicator to include the size of
the bulk data which has been placed from said subse-
quent segment 1nto said application buifers.
2. A process as 1n claim 1 and further comprising:
copying into said receive bufler an escaped data flag
indicating the placement of bulk data from said first one
of said TCP segments mnto said application buffers; and
for each subsequent TCP segment in said message, copy-
ing 1nto said receive bulfer a respective escaped data
flag denoting the placement of bulk data from that
segment 1nto the application buffers.
3. A process for the reassembly of a message constituted
by a plurality of Transmission Control Protocol (TCP)

secgments, each of said TCP segments comprising a TCP
header and bulk data, said method utilizing application

buflfers for the reception of said bulk data comprising:

placing said bulk data of each of said segments 1n said
application buflers;

placing header information of a first one of said TCP
segments 1n a receive bulfer separate from said appli-
cation buffers;

placing 1n said receive buifer for said first one of said TCP
segments an escaped size mndicator denoting the size of
the respective bulk data which has been placed 1n the
application buffers; and

for each subsequent TCP segment 1n said message, updat-
ing said header information and modifying said
escaped data size indicator to include the size of the
bulk data which has escaped from said subsequent
segment 1nto said application buffers, so that said
receive buller accumulates header information relating
to all the segments 1n the message and a cumulative
escaped data size for the whole message.

4. Aprocess as 1n claim 3 and further comprising referring
to said receive buifer to process said message.

5. An mterface for the reassembly of a message consti-
tuted by a plurality of Transmission Control Protocol (TCP)
secgments, each of said TCP segments comprising a TCP
header and respective bulk data, said interface comprising:

application buffers for the reception of said bulk data

directly from said segments, and

a rece1ve buller, separate from said application buifers, for
the reception of TCP summary header information
relating to all said TCP segments 1n said message and
a cumulative escaped data size indicator denoting the
cumulative size of the bulk data placed from all said
TCP segments 1n said message 1nto said application
buifers.

6. An 1nterface as 1n claim 5 wherein said receive bufler
receives for each TCP segment in said message a flag
denoting the placement of bulk data from said each TCP
segment 1nto said application buffers.

7. A process for the reassembly of a message conforming,
to a message protocol including message boundary
indicator, and constituted by a plurality of Transmaission
Control Protocol (TCP) segments, each of said TCP seg-
ments comprising a TCP header and respective bulk data,
sald method utilizing application butlers for the reception of
said bulk data and comprising:

placing said respective bulk data of each of said segments
in said application bulifers;

placing the header of a first one of said TCP segments into
a rece1ve bufller separate from said application buffers;

US 6,779,056 B2

S

placing 1n said receive buffer an escaped data size indi-
cator denoting the size of the respective bulk data
placed from said first one of said TCP segments 1nto
said application buffers; and

for each of the subsequent TCP segments 1n said message,
modifying said escaped data size indicator to include
the size of the bulk data which has been placed from
said subsequent segment 1nto said application builfers.

8. A process as 1n claim 7 wherein said message protocol
is 1SCSI.

9. A process as 1 claim 7 and fturther comprising;

placing 1n said receive bufler an escaped data flag 1ndi-
cating the placement of bulk data from said first one of
said TCP segments 1nto said application buffers; and

for each of said subsequent TCP segments 1n said
message, placing into said receive buller a respective
escaped data flag denoting the placement of bulk data
from that segment into the application buifers.

10. A process for the reassembly of a message conforming
to a message protocol that includes message boundary
indicators and constituted by a plurality of Transmission
Control Protocol (TCP) segments, each of said TCP seg-
ments comprising a TCP header and respective bulk data,
said method utilizing application buflers for the reception of
said bulk data comprising:

placing said respective bulk data of each of said segments
in said application buffers;

placing header information of a first one of said TCP
segments 1n a receive buller separate from said appli-
cation buffers;

placing 1n said receive buller for said first one of said TCP
segments an escaped size mdicator denoting the size of
the respective bulk data which has been placed 1n the
application buffers; and

for each subsequent TCP segment 1n said message, updat-
ing said header information and modifying said
escaped data size indicator to include the size of the
bulk data which has escaped from said subsequent
secgment 1nto said application buffers, so that said
receive buller accumulates header information relating
to all the segments 1n said message and a cumulative
escaped data size for the whole of said message.

11. A process as 1n claim 10 wherein said message
protocol 1s 1ISCSI.

12. An interface for the reassembly of a message con-
forming to a message protocol that includes message bound-
ary 1ndicators and constituted by a plurality of Transmission
Control Protocol (TCP) segments, each of said TCP seg-
ments comprising a TCP header and respective bulk data,

said interface comprising:

application buffers for the reception of said bulk data
directly from said segments, and

a rece1ve buller, separate from said application buifers, for
the reception of TCP summary header information
relating to all said TCP segments and a cumulative
escaped data size indicator denoting the cumulative
size of the bulk data placed from all said TCP segments
in said message 1nto said application buifers.

13. An interface as 1n claim 12 wherein said receive buifer
receives for each TCP segment in said message a flag
denoting the placement of bulk data from said each TCP
secgment 1nto said application buffers.

14. A process for the reassembly of a message conforming
to a message protocol including message boundary

indicator, and constituted by a plurality of Transmission
Control Protocol (TCP) segments, each of said TCP seg-

10

15

20

25

30

35

40

45

50

55

60

65

6

ments comprising a TCP header and respective bulk data,
sald method utilizing application butlers for the reception of
said bulk data and comprising:

(a) when said TCP segments are received in a proper
order:

(1) placing said respective bulk data of each of said
segments 1n said application buffers;

(i1) placing the header of a first one of said TCP
segments 1nto a receive bufller separate from said
application buflers;

(i11) placing in said receive buffer an escaped data size
indicator denoting the size of the respective bulk data
placed from said first one of said TCP segments into
said application buffers; and

(iv) for each subsequent TCP segment in said message,
modifying said escaped data size indicator to include
the size of the bulk data which has been placed from
sald subsequent segment 1nto said application bufil-
ers; and

(b) when said TCP segments are received out of said
proper order:
(v) placing said TCP segments in reserve buf
instead of said application and receive buflers.

15. A process as 1in claim 14 and further comprising, when
said TCP segments are received 1n said proper order:

ers

placing 1n said receive buifer an escaped data flag 1ndi-
cating the placement of bulk data from said first one of
said TCP segments 1nto said application buffers; and

for each said subsequent TCP segment in said message,
placing into said receive buffer a flag denoting the
placement of bulk data from that segment into the
application buifers.

16. A process for the reassembly of a message conforming
fo a message protocol that includes message boundary
indicators and constituted by a plurality of Transmission
Control Protocol (TCP) segments, each of said TCP seg-
ments comprising a TCP header and respective bulk data,
sald method utilizing application butlers for the reception of
said bulk data comprising:

(a) when said TCP segments are received in a proper
order:

(1) placing said respective bulk data of each of said
segments 1n said application buffers;

(i1) placing header information of a first one of said
TCP segments 1 a receive buller separate from said
apphcatlon buffers;

(i11) placing in said receive buffer for said first one of
salid TCP segments an escaped size indicator denot-
ing the size of the respective bulk data which has

been placed 1n the application buifers; and

(iv) for each subsequent TCP segment in said message,
updating said header information and modifying said
escaped data size indicator to include the size of the
bulk data which has escaped from said subsequent
segment 1nto said application buffers, so that said
receive buller accumulates header information relat-

ing to all the segments in said message and a

cumulative escaped data size for the whole of said

message; and

(b) when said TCP segments are received out of said
proper order:
(v) placing said TCP segments in reserve buf
instead of said application and receive buflers.

ers

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

