US006769052B2
a2 United States Patent (10) Patent No.: US 6,769,052 B2
Chauvel et al. 45) Date of Patent: Jul. 27, 2004
(54) CACHE WITH SELECTIVE WRITE 6,280,413 B1 * 9/2001 Rogers et al. 711/105
ALLOCATION 6,360,298 B1 * 3/2002 Osanai et al. 7117133

* ’ .
(75) Inventors: Gerard Chauvel, Antibes (FR); Maija cited by examiner

Kuusela, Mouans Sartoux (FR); Primary Examiner—Hiep T. Nguyen
Dominique D’Inverno, (74) Attorney, Agent, or Firm—Robert D. Marshall, Jr.; W.
Villeneuve-Loubet (FR) James Brady, III; Frederick J. Telecky, Ir.

(73) Assignee: Texas Instruments Incorporated, (57) ABSTRACT

Dallas, TX (US) A digital system and method of operation 1s provided in

which several processors (890x) are connected to a shared
cache memory resource (500). A translation lookaside buffer
(TLB) (310x) is connected to receive a request virtual
address from each respective processor. A set of address
regions (pages) is defined within an address space of a

(*) Notice: Subject to any disclaimer, the term of this

patent 15 extended or adjusted under 35
U.S.C. 154(b) by 183 days.

(21) Appl. No.: 10/157,555 back-up memory associated with the cache and write allo-
(22) Filed: May 29, 2002 cation 1n the cache 1s defined on a page basis. Each TLB has

a set of entries that correspond to pages of address space and
(65) Prior Publication Data each entry provides a write allocate attribute (550) for the

assoclated page of address space. During operation of the
system, software programs are executed and memory trans-

(30) Foreign Application Priority Data actions are performed. A write allocate attribute signal (550)
1s provided with each write transaction request. In this

US 2003/0101320 Al May 29, 2003

Oct. 17, 2001 (EP) ceviiiiiiiceeee e 01402685 manner, the attribute signal is responsive to the value of the
(51) Int. CL7 oo, GO6F 12/00; GO6F 12/08 write allocation attribute bit assigned to an address region
(52) US.CL oo, 711/154; 711/133; 711/135; that includes the address of the write transaction request.

711/138 Write allocation in the cache memory is performed generally
(58) Field of Searchccccovvvceiii.... 711/154, 133, 0 accordance with the write allocate atiribute signal.

711/135. 138 However, write allocation policy circuitry (560) is also
’ provided and operates to refine the operation of the write

(56) References Cited allocation. Thus, the cache memory 1s responsive to the
write policy circuitry such that write allocation 1s performed
U.S. PATENT DOCUMENTS in a selective manner 1n accordance to the attribute signal for
5355467 A * 10/1994 MacWilliams et al. 711/146 a first write policy state and write allocation 1s always
5359723 A * 10/1994 Mathews et al. 711/122 performed 1n accordance to the attribute signal for a second
5584017 A * 12/1996 Pierce et al. 711/146 Wwrite policy state.
5,680,679 A 11/1997 Jouppi
5,796,980 A * 8/1998 Bowlesccevvvvnvinnnnnnns 711/144 11 Claims, 9 Drawing Sheets

310(0)~_ uTLBs
VICTIM
VICTIM~—— PO[NTER‘ —— I VICTIM
JL Miss-uTLBs
322 3139
CONTROL
REGS I I H Task_id ‘ | HV AddressH S/P ” \
323

SHARED LB
301 .302 303 .304 3

05
N\
‘R id H Tusk d ‘ | HV Addressl

TLBs
CONTROL

320

306 307

5

308 3090 309
)
WA | Attributes

VICTIM

MISS-SHARED TLB
] e e "
v .
SYSTEM ' R_id ‘ Tosk_id l I HV Address“ S/P \. P_Address | WA | Attributes :TLB REGISTER ENTRY
INTERRUPT L- _______________________________________ -
CONTROLLER
330 WRITE ALL

750 REQ REGISTER ENTRY

/

US 6,769,052 B2

Sheet 1 of 9

Jul. 27, 2004

U.S. Patent

/

|
Ik

1041INQD
N0 10
PPA
4IMOd

JOVIYIIN] mem_%o
B NILSAS
SLANYYIINI —~ %wwzumw _
NILSAS M3
001

qO¢1

<—— 2 JOVAHIAINT LSOH

JOVI4IINI

Wy3HdINId WHIHAINId | -0pl
JIVAIY] NdA JIVAIYd dSQ

0| 3 MH GO|

40
1407 40SS3704d dSC %mw_w,_mo%
MH17dS

40SSII08d | | oy | | 80853008

NdA 4S(

/ N
(01 801 2011 901
04INOD D144Vl

\
- == ln Ol
|
a3wvhs | | SV FHAINId
Q “ J34VHS
. CLL N
|||||||||||||| J 9l

SYWQ W3LSAS K=>

o0

Qc| AV 1dSId

<

VHiHd[ddd QI4VHS

JOVAIINT WALSAS

gdv NV 43T104INOO Jl44VHL WALSAS

4—~ 0%

41444
INVY4 Wa01 | 9%l

“NQ

dlHO-NO IVNY31X3
o1 [N

— A LSOH W3LSAS

00C L

AJONWIN
NJLSAS

U.S. Patent Jul. 27, 2004 Sheet 2 of 9 US 6,769,052 B2

| L3 TRAFFIC CONTROL |

FIG. 2A 130\1 REQ BURST/ |

I
| CTRL uTLB DATA ADD PRI i

100 o S
12 DMA intfl | B -
DATA 106
| SYSTEM DMA
BURST CONTROL | 11 19 RAM
REQ CTRL —>A1 D A?

il

. — 240
BURST ' |J<_:‘E|/ -----
' 242 ullB L2 TRAFFIC CONTROL N

DATAL — >
REQ CTRL 244 ——-

SHARED
PERIPHERAL T MM PER I I \SPX 110

L2 IF B 212 210

ulLB

o &
)
214 .
DSP DMA o
REQ CTRL ~
104
DEBUG
AND TRACE I
DSP [0<——> PRIVATE INT o
DSP_int0 S I 1/0
DSP_intp - — .
292
/
POWER AND CLOCK CONTROL
Vdd vdd vdd CLK CLK

DSP SYS MPU DSP MPU

U.S. Patent Jul. 27, 2004 Sheet 3 of 9 US 6,769,052 B2

|
|
PHYSICAL L2 CACHE —Jl J
] | L2 Wbuf l

___________________ _1 290

/
SYSTEM Sys_int0

— INTERRUPT -
L2 TRAFFIC CONTROL MAP Sys_intn

110 I 751

L2 IF TLB }f232 250

ullB _

238 237 WB 236

FROM FIG. 2A

r~—J-—ar——--=--
| | I y l__ |
| 1| D-C I
| 11 222
| 11
102~ X 234
: 1| LOC RAM DEBUG
| Il ANU
: | | TRACE
e e] e — — J
PRIVATE [|
INT MPU_CPio
- | CP —
32b CORE CP /01 A 1 ‘ ——~, MPU_LFio
| 10 T L MPU_int0
MPU_ intm

S
POWER AND CLOCK CONTROL 2957

master_rst idle_req

US 6,769,052 B2

Sheet 4 of 9

Jul. 27, 2004

U.S. Patent

/

AJINI d31S193y

AUING 318193 8L} [V sainquy E SS3JPPY 4

NILJIA

A%Y

NILIIA

r
|
_

TV AL1YM

4%3

60¢ Lo60%

Ure 4IT104INOD
et Sttt ~—mm———— e —— | [dNY¥Y3INI
— o — —— ——— e ———— e T TT/—9cs

8¢S
00¢ 411 GIMVHS-SSIN
BN [\
10¥INOD
80¢ [0 90€ GOS ¥0§ ¢€0§ 208 10 sg1
q11 QIYVHS
¢C¢
NN
— — | T0¥INO?
- @17 ssii e
3 vee 43INIO
o e b
sgLm sg11" (0)oLg
& OIAd

NILOIA

US 6,769,052 B2

Sheet 5 of 9

Jul. 27, 2004

U.S. Patent

(S)NdD IUNOSTY | yp (¥0SS300¥d00 ‘LSOH

“INIONI YINQ)
Uy i Uz v oY |7 S0 N0 bt
o]] [Xl
. B
oo | [PL ery| ssawoav| [uivm VIYQ
0ZY MIvm | | viva (VN L1YIA) SIvM | | (IVDISAHA)
SR SS3¥AQY
(8% 607 9l 0505
J3d Oy Qv DY | ¥
dvM SS3IHAQY
08 0Ly HM_ oLy 817
99y VA i :

09y —{ 40NN ;

vy oold

U.S. Patent Jul. 27, 2004 Sheet 6 of 9 US 6,769,052 B2

FIG. 5 I DATA FROM MEMORY
Fr—-___ e _——_———_—_————e—emre- e [- M
LEVEL 2 CACHE v
500 \/
526 V I
D24 1 | v E—
S0~ T I

| |
| !
| |
| l
| I
| |
| |
| |
| I
i |
| |
i |
] |
|]
| i
| |
| |
T s =
' l CaC1 515 '
| | (x 4) | |
] E G :
| | | !
i | | B CACHL
: ' D 5 LOAD :
| | : B CONTROLLER |
| P
| | ' :D N |
548~ | T~ | =2
| S ! | ’ l
| |
) _qu 14| :
| | ,
l : 512 | :
l | ' l
| | ' : |
|
: R i :
| 4 |
' 510 WAY HIT |
e e e e e e e e e e . o . e e e e M e e e e e G | I I ——
- WATR
\
T_id | VA| DESCRIPTOR 220 oo
m 310(m) WAP
uiLs ALLOCATE
POLICY
VIRTUAL
ADDRESS ko

|T_id REG| WRITE SYSTEM REQUEST
\

PROCESSOR 590(n) 552

U.S. Patent

Jul. 27, 2004

| INITIATE WRITE

000~ TRANSACTION

602

WAIR

Iy

ASSERTED

WITH

WATR SIGNAL

NO

Sheet 7 of 9

riG.

604 y' =
NO
506 ¥ '©
NO
YES 690
| NO WRITE
608-"| ALLOCATION

MISS, SEGMENT
WRITE ALLOCATION

NO

6

US 6,769,052 B2

614

616

MISS, SEGMENT
WRITE ALLOCATION

YES

NO WRITE
ALLOCATION

US 6,769,052 B2

Sheet 8 of 9

Jul. 27, 2004

U.S. Patent

1

SS34AaY

| | P! %sD] _

J3X3 €Ndd

1

N3N0 AQV3Y

S40IAI0 Q3¥VHS

INANAIYNVIN D[44v8L SNE 3AIM TVYNYIINI
553400V

pi V_mE

e ;(Noj

ouxu N:au

N3N0 AdV3

0¢Yl

T Jsasaon

Pl YSD|
e ~ 0011
J3X3 LNdI
“ INAND AQV3IY v\,@¢¢e
| Gy |
_ \ 0 /e I 9NIINQ3HOS
_ N7 v “ mmmO
| N3 |
\\ml.. ./J.l.
r.,f D / m/z mv_md‘._.
—) NOILVDIddV

US 6,769,052 B2

Sheet 9 of 9

Jul. 27, 2004

U.S. Patent

009

SILNGIYLLY AYOWIN »
SALNBIYLLY MSVYL e
ALIJOIdd MSVL »

SJINGIYLIY AYOWIN e
SJIINGIYLLY «
ALIJOIEd ASV] »

4¢89 S318vl

J0.1d[¥3S3(

SALNEIYLLY AYONIN o

ALldO[dd ASV]

SALNGIYLLY o D7Q9

921 D NSyl 901 9 WSV iy~ §0L ¥ NSyl
0969 lﬂ -
069
\ N
¢69 4¢69 A 0269 669 | 69
[N\
/] X
SILNGIYLLY NSVl ALIYOINd MSVL . _9 NSYL ;_#_%o_
) 140
m0\© SSIN g1 ..
4299 44nd M 135 W 135 WY
| o | N@@ _
JHIVO VIV(Q JHIVD YISN] _
1]
_ g
4569 — —

L
08530080 D_ g1u" " N_q19 ﬁ _H g TSE

VNG
— / _ 4969
019 — 811

0l
8@_ dvM LM

N31SASENS NdW LOANNQOIY LN mbm NIVAA

g

0¢9

US 6,769,052 B2

1

CACHE WITH SELECTIVE WRITE
ALLOCATION

This application claims priority to European Application
Serial No. 01402685.0, filed Oct. 17, 2001. U.S. patent

application Ser. No. 09/932,651 1s incorporated herein by
reference.

FIELD OF THE INVENTION

This invention generally relates to microprocessors, and
more specifically to improvements 1n access and data trans-
fer to cache storage resources, systems, and methods of
making.

BACKGROUND

Microprocessors are general-purpose processors that pro-
vide high instruction throughputs in order to execute soft-
ware running thereon, and can have a wide range of pro-
cessing requirements depending on the particular software
applications 1nvolved.

Many different types of processors are known, of which
microprocessors are but one example. For example, Digital
Signal Processors (DSPs) are widely used, in particular for
specific applications, such as mobile processing applica-
tions. DSPs are typically configured to optimize the perfor-
mance of the applications concerned and to achieve this they
employ more specialized execution units and instruction
sets. Particularly 1n applications such as mobile
telecommunications, but not exclusively, 1t 1s desirable to
provide ever-increasing DSP performance while keeping,
power consumption as low as possible.

To further improve performance of a digital system, two
or more processors can be interconnected. For example, a
DSP may be mterconnected with a general-purpose proces-
sor 1n a digital system. The DSP performs numeric intensive
signal processing algorithms while the general-purpose pro-
cessor manages overall control flow. The two processors
communicate and transfer data for signal processing via
shared memory. A direct memory access (DMA) controller
1s often associated with a processor 1n order to take over the
burden of transferring blocks of data from one memory or
peripheral resource to another and to thereby improve the
performance of the processor.

A shared cache can also be associated with the shared
memory to improve storage access time for each of the
processors. Various caches handle write transactions in
different manners. A first embodiment of a cache performs
write through, 1n which data 1s written directly to backing
memory. If the address was also present 1n the cache, a hat,
the cache 1s updated. A second embodiment of a cache
performs write allocation. In this case, i1f a write address
misses 1n the cache, then a cache line 1s allocated to receive
the data being written. A third embodiment of a cache
performs copy-back. In this case, data 1s not immediately
written directly to backing memory, but is first written only
to the cache using write allocation. A dirty bit 1s set to
indicate incoherent cache data. When the line 1s evicted, then
the dirty data 1s written to backing memory.

Modular programming builds a computer program by
combining independently executable units of computer code
(known as modules), and by tying modules together with
additional computer code. Features and functionality that
may not be provided by a single module may be added to a
computer program by using additional modules.

The design of a computer program unit known as a task
(or function) i1s often accomplished through modular

10

15

20

25

30

35

40

45

50

55

60

65

2

programming, where a speciiic task 1s comprised of one
module and the additional computer code needed to com-
plete the task (if any additional code is needed). However, a
task may be defined as broadly as a grouping of modules and
additional computer codes, or, as narrowly as a single
assembly-type stepwise command. A computer program
may be processed (also called “run” or “executed”) in a
variety of manners. In task processing, a computer may
process computer code one task at a time, or may process
multiple tasks simultaneously, for example.

Various tasks may operate on a set of data stored in
memory. The various tasks may be executed on various
processors that have shared access to the memory and cache.
Accordingly, there 1s needed a system and method for
managing a shared cache taking into account resource
capabilities and capacity, and other task processing needs.

SUMMARY OF THE INVENTION

Particular and preferred aspects of the mvention are set
out 1n the accompanying independent and dependent claims.
In accordance with a first embodiment of the invention, a
method 1s provided for operating a digital system that has a
shared cache memory and an associated back-up memory.
During operation of the system, a write allocation policy 1s
established, software programs are executed and memory
transactions are performed. According to an aspect of the
present invention, a write transaction request 1s mitiated to
an address 1n the back-up memory and an attribute signal 1s
provided with the write transaction request. Write allocation
in the cache memory 1s performed in a selective manner in
response to the attribute signal 1n accordance with the write
allocation policy.

In another embodiment, write allocation in the cache 1s
responsive to the write allocate policy such that write
allocation 1s performed 1n a selective manner 1n accordance
to the attribute signal for a first write policy state and write
allocation 1s always performed 1n accordance to the attribute
signal for a second write policy state.

In another embodiment, write allocation 1n the cache 1s
defined on a page basis. A set of address regions (pages) 1s
defined within an address space of the back-up memory. A
write allocation attribute bit value 1s assigned to each of at
least a portion of the set of address ranges. In this manner,
the attribute signal i1s responsive to the value of the write
allocation attribute bit assigned to an address region that
includes the address of the write transaction request.

Advantageously, the usage of a shared cache 1n a multi-
processor system can be optimized by controlling write
allocation on a page by page basis and refined 1n accordance
with a write allocation policy 1n order to improve perfor-
mance of tasks operating on the various processors of the
system and to also reduce power consumption.
Advantageously, the write attribute policy can be changed
over time based on a currently executing task or on other
factors known to the OS, for example.

BRIEF DESCRIPTION OF THE DRAWINGS

Particular embodiments 1n accordance with the invention
will now be described, by way of example only, and with
reference to the accompanying drawings in which like
reference signs are used to denote like parts and 1n which the
Figures relate to the digital system of FIG. 1 and in which:

FIG. 1 1s a block diagram of a digital system that includes
an embodiment of the present invention 1n a megacell core
having multiple processor cores;

US 6,769,052 B2

3

FIGS. 2A and 2B together 1s a more detailed block
diagram of the megacell core of FIG. 1;

FIG. 3 1s a block diagram 1illustrating a shared translation
lookaside buffer (TLLB) and several associated micro-TLBs
(«uTLB) included in the megacell of FIG. 2;

FIG. 4 1s a block diagram of the digital system of FIG. 1
illustrating selective write allocation responsive to attribute

signals from several processors and a write allocation policy
circuit;
FIG. 5§ 1s a block diagram illustrating circuitry for pro-

viding selective write allocation for the L2 cache in the
system of FIG. 1;

FIG. 6 1s a flow chart illustrating operation of selective
write allocation, according to aspects of the present inven-
tiomn;

FIG. 7 1s a block diagram of a digital system similar to

that of FIG. 1 illustrating a cloud of tasks that are scheduled
for execution on the various processors of the digital system;

FIG. 8 1s a combined timing diagram and flow diagram
illustrating how task memory attributes are loaded mito a
memory management unit 1n the system of FIG. 7; and

FIG. 9 1s a representation of a telecommunications device
incorporating an embodiment of the present mnvention.

Corresponding numerals and symbols in the different
figures and tables refer to corresponding parts unless other-
wise 1ndicated.

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE INVENTION

Although the invention finds particular application to
Digital Signal Processors (DSPs), implemented, for
example, 1n an Application Specific Integrated Circuit
(ASIC), it also finds application to other forms of proces-
sors. An ASIC may contain one or more megacells which
cach 1nclude custom designed functional circuits combined
with pre-designed functional circuits provided by a design
library.

FIG. 1 1s a block diagram of a digital system that includes
an embodiment of the present invention 1n a megacell core
100 having multiple processor cores. In the interest of
clarity, FIG. 1 only shows those portions of megacell 100
that are relevant to an understanding of an embodiment of
the present mvention. Details of general construction for

DSPs are well known, and may be found readily elsewhere.
For example, U.S. Pat. No. 5,072,418 1ssued to Frederick

Boutaud, et al, describes a DSP 1n detail. U.S. Pat. No.
5.329,471 1ssued to Gary Swoboda, et al, describes 1n detail
how to test and emulate a DSP. Details of portions of
megacell 100 relevant to an embodiment of the present
invention are explained in suflicient detail herein below, so

as to enable one of ordinary skill 1n the microprocessor art
to make and use the invention.

Referring again to FIG. 1, megacell 100 1includes a control
processor (MPU) 102 with a 32-bit core 103 and a digital

signal processor (DSP) 104 with a DSP core 105 that share
a block of memory 113 and a cache 114, that are referred to
as a level two (IL2) memory subsystem 112. A traffic control
block 110 receives transfer requests from a host processor
connected to host interface 120b, requests from control

processor 102, and transfer requests from a memory access
node in DSP 104. The trath

ic control block interleaves these
requests and presents them to the shared memory and cache.
Shared peripherals 116 are also accessed via the ftraffic
control block. A direct memory access controller 106 can
transfer data between an external source such as off-chip

10

15

20

25

30

35

40

45

50

55

60

65

4

memory 132 or on-chip memory 134 and the shared
memory. Various application specific processors or hard-
ware accelerators 108 can also be included within the
megacell as required for various applications and interact

with the DSP and MPU wvia the trathc control block.

External to the megacell, a level three (L3) control block
130 1s connected to receive memory requests from internal
traffic control block 110 1n response to explicit requests from

the DSP or MPU, or from misses 1n shared cache 114. Off
chip external memory 132 and/or on-chip memory 134 is
connected to system tratfic controller 130; these are referred
to as L3 memory subsystems. A frame buffer 136 and a
display device 138 are connected to the system traflic
controller to receive data for displaying graphical images. A
host processor 120a 1nteracts with the external resources a
system traffic controller 130. A host interface connected to
traffic controller 130 allows access by host 120a to external
memories and other devices connected to traffic controller
130. Thus, a host processor can be connected at level three
or at level two 1n various embodiments. A set of private
peripherals 140 are connected to the DSP, while another set
of private peripherals 142 are connected to the MPU.

FIG. 2, comprised of FIG. 2A FIG. 2B together, 1s a more
detailed block diagram of the megacell core of FIG. 1. DSP
104 includes a configurable cache 203 that 1s configured as
a local memory 200 and data cache 202, and a configurable
cache 204 that 1s configured as instruction cache 206 and a
RAM-set 208, which are referred to as level one (L1)

memory subsystems. The DSP i1s connected to the traffic
controller via an L2 interface 210 that also includes a

translation look-aside buffer (TLB) 212. A DMA circuit 214
1s also included within the DSP. Individual micro TLBs
(uTLB) 216-218 are associated with the DMA circuit, data
cache and instruction cache, respectively.

Similarly, MPU 102 includes a configurable cache 223

that 1s configured as a local memory 220 and data cache 222,
and a configurable cache 224 that 1s conﬁgured as 1nstruc-

fion cache 226 and a RAM-set 228, again referred to as L1
Memory subsystenls The MPU 1s connected to traffic con-

troller 110 via an 1.2 interface 230 that also includes a TLLB
232. A DMA circuit 234 1s also included within the MPU.
Individual micro TLBs (¢ TLB) 236—238 are associated with
the DMA circuit, data cache and instruction cache, respec-
fively.

[.2 traffic controller 110 includes a TLLB 240 and one or
more micro-TLB (¢TLB) 242 that are associated with sys-

tem DMA block 106, host processor interface 1205 for a

host connected at level two, and other application speciiic
hardware accelerator blocks. Similarly, L3 tratfic controller
130 includes a ¢ TLLB controllably connected to TLB 2440 that
1s assoclated with system host 120a at level three. This
uTLB 1s likewise controlled by one of the megacell 100
ProCessors.

Memory Management Unit

At the megacell traffic controller level, all addresses are
physical. They have been translated from virtual to physical
at the processor sub-system level by a memory management
unit (MMU) associated with each core, such as DSP core
105 and MPU core 103. At the processor level, access
permission, supplied through MMU page descriptors, 1s also
checked, while at the megacell level protection between
processors 1s enforced by others means, which will be
described 1n more detail later.

The translation look-aside buffer (TLB) caches contain
entries for virtual-to-physical address translation and access
permission checking. If the TLB contains a translated entry
for the virtual address, the access control logic determines

US 6,769,052 B2

S

whether the access 1s permitted. If access 1s permitted, the
MMU generates the appropriate physical address corre-
sponding to the virtual address. If access 1s not permitted, the
MMU sends an abort signal via signal group 244 to the
master CPU 102. The master CPU 1s 1dentified by the value
of a resource identification (R-ID) field. On a slave proces-
sor such as a hardware accelerator the R-ID 1s equal to the
R-ID of the master CPU.

Upon a TLB miss, 1.e., the TLB does not contain an entry
corresponding to the requested virtual address, translation
table walk software retrieves the translation and access
permission information from a translation table 1n physical
memory. Once retrieved, the page or section descriptor 1s
stored 1nto the TLB at a selected victim location. Victim
location selection 1s done by software or with hardware
support using methods known by persons skilled 1n the art.
Translation Table

To provide maximum flexibility, the MMU 1s 1mple-
mented as a software table walk, backed up by TLB caches
both at the processor sub-system and megacell level. This
allows easy addition of new page size support or new page
descriptor information if required. A TLB miss 1nitiates a
TLB handler routine to load the missing reference into the
TLB. At the Megacell 100 level, a TLB miss asserts a miss
signal 1n signal group 244 and is routed via system 1nterrupt
router 250 to the processor having generated the missing
reference or to the processor 1n charge of the global memory
management, via interrupt signals 251, 252. Translation
tables and TLB cache contents must be kept consistent. A
flush operation 1s provided for this reason.

An address reference 1s generally located within the uTLB
or main TLB of each processor sub-system; however, certain
references, such as those used by system DMA 106 or host
processor 120, for example, to access megacell memories
can be distributed within L2 traffic controller 110 and cached
into L2 system shared TLB 240. Because system perfor-
mance 15 very sensitive to the TLB architecture and size, it
1s 1mportant to implement efficient TLB control commands
to lock entries for critical tasks or unlock and flush those
entries when a task 1s deleted without degrading the execu-
tion of other tasks. Therefore, each TLB and L2 cache entry
holds a task-ID. Commands are supplied to flush locked or
unlocked entries of a TLB/«TLB corresponding to a selected
task.

As part of the page descriptor information, the MMU
provides cacheability and bufferability attributes for all
levels of memory. The MMU also provides a “Shared” bat
for each entry to indicate that a page 1s shared among
multiple processors (or tasks). This bit, as standalone or
combined with the task-1D, allows specific cache and TLB
operation on data shared between processors or/and tasks.
The MMU may also provide additional information, such as
cache write allocate selection on a page basis, which will be
described later.

All megacell memory accesses are protected by a TLB. As
they all have different requirements 1n term of access ire-
quencies and memory size, a shared TLB with individual
uTLB backup approach has been chosen to reduce the
system cost at the megacell level. This shared TLB 1s
programmable by each processor. The architecture provides
enough flexibility to let the platform work with either
independent operating systems (OS) on each processors or a
distributed OS with a unified memory management, for
example.

The present embodiment has a distributed operating sys-
tem (OS) corresponding to each processor but only a single
table manager for all processors. Slave processors do not

10

15

20

25

30

35

40

45

50

55

60

65

6

manage the tables. In a first embodiment slave processors
R-ID are equal to the R-ID of the master CPU. In another
embodiment, they could, however, have a different R-ID to
control their TLB entries lock/unlock entries corresponding
to some of their own tasks or flush all their entries, when

putting themselves 1n sleep mode to free entries for the
others processors. Having different R-ID provides a means
to 1ncrease security 1n a concurrent multi-processor
environment, processor X cannot access memory allocated
to processor Y.

In another embodiment with several independent OS(s),
for example, there will be independent tables. These tables
can be located in a memory space only viewed by the OS
that they are associated with in order to provide protection
from 1nadvertent modification by another OS. As they man-
age the virtual memory and task independently, the R-ID
provides the necessary inter-processor security. R-IDs are
managed by a single master CPU. This CPU can make TLB
operations on all TLB entries. TLB operation or memory
accesses from slave processor are restricted by their own
R-ID. The CPU master will have rights to flush out entries
belonging to another processor 1n a different OS domain.

The organization of the data structures supporting the
memory management descriptor 1s flexible since a software
TLB-miss handler resolves each TLB miss. These data
structures 1nclude the virtual-to-physical address translation
and additional descriptors to manage the memory hierarchy.
An example list of these descriptors and their function 1s
described 1n Table 1. Various memory access permission
attributes can be specified. In other embodiments, a proces-
sor may have other modes that enable access to memory
without permission checks. Similarly, other embodiments
may provide more or fewer permission attributes and/or
more or fewer memory management descriptors.

TABLE 1

Memory Management Descriptors

Memory Access
Permissions attributes

Supervisor: no access, read only, read/write
User: no access, read only, read/write

Execute Never provides access permission to protect data
memory area from being executed. This informa-
tion can be combined with the access permission

described above or kept separate.

Shared indicates that this page may be shared by
multiple tasks across multiple processor.
Cacheability Various memory enfities such as individual

processor’s cache and write buffer, and

shared cache and write buffer are managed
through the MMU descriptor. The options
included in the present embodiment are

as follows:

Inner cacheable, Outer cacheable, Inner

Write through/write back, Outer write
through/write back, and Outer write

allocate. The terms Inner and outer refer to
levels of caches that are be built in the
system. The boundary between 1nner and outer
1s defined 1n specific embodiment, but inner
will always include 1.1 cache. In a system with
3 levels of caches, the 1nner correspond to L1
and 1.2 cache and the outer correspond to 1.3
due to existing processor systems. In the
present embodiment, inner 1s .1 and outer

1s 1.2 cache.

MMU/TLB Control Operation

FIG. 3 1s a block diagram 1illustrating a shared translation
look-aside buffer (TLB) 300 and several associated micro-

TLBs (#TLB) 310(0)-310(m) included in megacell 100 of
FIG. 2. On a 4TLB miss, the shared TLB 1s first secarched.

US 6,769,052 B2

7

TLB controller 320 1s alerted by asserting a #TLB miss
signal 324. In case of a hit on the shared TLB, the #TLB that
missed 1s loaded with the entry content of the shared TLB
300. In case of miss 1n shared TLB 300, the shared TLB
alerts TLB controller 320 by asserting a TLB miss signal
326. Controller 320 then asserts an interrupt request signal
328 to system interrupt controller 250. Interrupt controller
250 asserts an imterrupt to the processor who’s OS super-
vises the resource that caused the miss. A'TLB entry register
330 associated with TLB controller 320 1s loaded by a
software TLB handler in response to the interrupt. Once
loaded, the contents of TLB entry register 330 are trans-
ferred to both shared TLB 300 and the requesting #TLB at
a selected victim location as indicated by arcs 332 and 334.

A separate TLB entry register 330 1s only one possible
implementation and 1s not necessarily required. The separate
TLB entry register 1s a memory mapped register that allows
buffering of a complete TLB entry (more than 32 bits). A
TLB value 1s not written directly in the TLB cache but 1s
written to the TLB entry register first. Because of the size of
an entry, several writes are required to load the TLB entry
register. Loading of a TLB cache entry i1s then done in a
single operation “Write TLB entry”. Advantageously, other
uTLBs associated with other modules can continue to access
the shared TLB while the TLB entry register 1s being loaded,
until a second miss occurs. Advantageously, by controlling
access to the TLB via the TLB entry register, CPUs have no
direct access to TLB cache internal structure and thus the
risk of partial modifications inconsistent with the MMU
tables 1s avoided.

The sequence of operations to update a TLB cache entry
after a miss 1s:

1—the software TLB handler writes to the TLB entry
register,

2—the software TLB handler sends a command to write
the TLB entry, which transfers a value from TLB entry
register to a preselected victim TLB cache entry; and

3——control circuitry checks and preselects a next victim
TLB entry, in preparation for the next miss. In this
embodiment, this step 1s generally performed 1n back-
oground prior to the occurrence of a miss.
Advantageously, TLB cache entries can be preemptively
updated under OS software control to prevent TLB miss by
pre-loading a new entry, using the following sequence of
operation:

1—control circuitry checks and selects a TLB entry,
referred to as a victim TLB cache entry.

2—the software TLB handler writes to the TLB entry
register, and

3—the software TLB handler sends a command to write
the TLB entry, which transfers a value from TLB entry
register to the selected victim TLB cache entry.

The priority on the shared TLB 1s managed 1 the same
way as priority on a memory access. One or more resources
can be using the shared TLB. One or more resources can
program the shared TLB. The replacement algorithm for
selecting the next victim location 1n the shared TLB 1s under
hardware control. A victim pointer register 322 1s main-
tained for each TLB and uTLB to provide a victim separate
pointer for each. A typical embodiment will use a round
robin scheme. Another embodiment may use a least recently
used scheme or a random scheme, for example. Different
TLBs within a single megacell can use ditferent replacement
schemes. However, 1n an embodiment 1n which the system
has a master CPU with a distributed OS, this master CPU
could also bypass the hardware replacement algorithm by

10

15

20

25

30

35

40

45

50

55

60

65

3

selecting a victim entry, reading and then writing directly to
the shared TLB, for example.

In this embodiment, each shared TLB has 256 entries.
Each #TLB 1s generally much smaller, 1.€., has fewer entries,
than the shared TLB. In various embodiments, each shared
TLB has 64-256 or more entries while #ITLBs generally
have 4—16 entries. The penalty for a miss 1n a #TLB 1s small
since a correct entry 1s generally available from the shared
TLB. Therefore, the present embodiment does not provide
direct control of the victim pointers of the various uTLBs;
however, direct control of the victim pointer of shared TLBs,
such as 212, 232, and 240, 1s provided.

Each entry 1n a TLB has a resource 1dentifier 301 along
with task-ID 302. Resource-IDs and task IDs are not exten-
sion fields of the virtual address (VA) but simply address
qualifiers. Resource IDs are provided by a resource-1D
register associated with each resource; such as R-1D register
442a associated with resource 440 and R-ID register 442n
assoclated with resource 450 of FIG. 4. Resource 440 1s
representative of various DMA engines, coprocessor, etc
within megacell 100 and/or an external host connected to
megacell 100. Resource 450 1s representative of various
processors within megacell 100. Each resource 440, 450
typically has 1ts own associated R-ID register; however,
various embodiments may choose to provide resource ID
registers for only a selected portion of the resources. A task
ID 1s provided by a task-ID register, such as task-ID register
4444a associated with resource 440 and task-1D register 444n
associated with resource 450. A task register associated with
a non-processor resource, such as DMA, a coprocessor, efc,
1s loaded with a task value to indicate the task that it 1s
supporting.

In another embodiment, only processor resources 440,
450 that execute program modules have an associated pro-
crammable task-ID register. In this case, a system wide
default value may be provided for access requests 1nitiated
by non-processor resources such as DMA. The default value
may be provided by a programmable register or hardwired
bus keepers, for example.

Advantageously, with the task-ID, all entries in a TLB
belonging to a specific task can be 1dentified. They can, for
instance, be 1nvalidated altogether through a single opera-
tion without affecting the other tasks. Advantageously, the
resource ID permits discrimination of different tasks being
executed on different resources when they have the same
task number. Task-ID number on the different processors
might not be related; therefore, task related operations must
be, 1n some cases, qualified by a resource-ID.

In another embodiment, the R-ID and Task_ID registers
are not necessarily part of the resource core and can be
located elsewhere 1n the system, such as a memory mapped
register for example, and associated to a resource bus. The
only constraint 1s that a task__ID register related to a CPU
must be under the associated OS control and updated during
context switch. R-ID must be set during the system 1nitial-
ization. In some embodiments at system initialization, all
R-ID and Task-ID registers distributed across the system are
set to zero, which 1s a default value that causes the field to
be 1gnored. In other embodiments, a different default value
may be used. In other embodiments, R-ID “registers” pro-
vide hardwired values.

Referring again to FIG. 3 each TLB entry includes a
virtual address field 305 and a corresponding physical
address field 308 and address attributes 309. Various address
attributes are described in Table 1. Address attributes define
conditions or states that apply to an entire section or page of
the address space that 1s represented by a given TLB entry.

US 6,769,052 B2

9

An aspect of the present invention 1s that a write allocate
(WA) attribute bit 309« is included in each TLB entry. The
write allocate attribute bit selectively specifies whether write
transactions to the level 2 cache should include write allo-
cation or not. The operation of the write allocate attribute bit
will be described in more detail below.

An S/P field 306 speciiies a page size. In the present
embodiment, an encoding allows page sizes of 64 kb, 4 kb
and 1 kb to be specified. Naturally, the page size determines
how many most significant (ms) address bits are included in
a check for an entry. Each TLB entry also includes “shared”
bit 303 and a lock bit 304. All entries marked as shared can
be flushed 1n one cycle globally or within a task.

AV field 307 mdicates 1f an associated TLB cache entry
1s valid. V field 307 includes several V-bits that are respec-
tively associated with R-ID field 301 to indicate 1f a valid
R-ID entry 1s present, task-1D field 302 to indicate if a valid
task-ID entry 1s present, and virtual address field 305 to
indicate 1f a valid address entry 1s present. These valid bits
enable compare logic for each associated field.

As mentioned earlier, the resource ID field and task ID
field 1n each entry of the TLB/¢TLB can be used to improve
security. During program task execution, each transaction
request 1s checked by the miss control circuitry of the
TLB/uTLB to determine if the entry 1s allowed for a specific
resource or for all resources and for a specific task or for all
tasks. For example, if a request 1s received and a valid entry
1s present for the proffered virtual address but a task ID or
R-ID which accompany the request does not match the
corresponding valid task ID and R-ID fields of the entry,
then a miss 1s declared. If the task ID and/or R-ID fields of
the entry are marked as invalid, then they are 1gnored.
Shared Cache and RAM

Referring again to FIG. 1, Megacell 100 includes large
shared memory subsystem 112 that functions as a secondary
level of RAM (I.2 RAM) 113 and cache (.2 Cache) 114.
This level of memory 1s preferably called the outer level, as
cach processor 1 various embodiments may have multilevel
internal memory. However, for the present embodiment,
processors 102, 104 have one level of internal memory,
which 1s referred to herein as L1 within the memory
hierarchy, therefore the outer level memory subsystem will
be referred to as level two (1.2). The megacell outer memory
112 1s organized as what’s called a SmartCache, which 1s a
coniigurable cache and which allows concurrent accesses on
cache and RAM-set. RAM-set 1s a block of RAM that has
aspects of cache behavior and cache control operations as
well as DMA capability. The SmartCache architecture pro-
vides predictable behavior and enhanced real-time perfor-
mance while keeping high flexibility and ease of use. A
detailed description of a SmartCache 1s provided m U.S.
patent application Ser. No. 09/591,537, entitled “Smart
Cache” and 1s incorporated herein by reference.
Advantageously, RAM-set configured as a RAM offers fast
memory scratchpad feature.

A unified shared cache architecture of this embodiment 1s
a four way set associative cache with segmented lines to
reduce system latency. A segment 1s a portion of cache line
that has a separate valid bit associated with 1t. In preferred
embodiment, a level-2 cache segment corresponds to the
size of a level-1 cache line. All outer memories are treated
as unified nstruction/data memory to avoid compiler restric-
fions such as data 1 program space or vice-versa. Size of
this cache or the degree of associativity 1s a design choice
and may vary in other embodiments of the present invention.
General construction of set-associative caches are known
and need not be described 1n detail herein. Typically, L1

5

10

15

20

25

30

35

40

45

50

55

60

65

10

caches are 16 kbytes or 32 kbytes, and the .2 cache. 1s 128
kbytes, 256 kbytes or larger, for example. Likewise, the
number of assoclated RAM-sets may vary in other embodi-
ments.

RAM-set control registers in cache control circuitry are
memory mapped and therefore also benefit from the protec-
tion provided by the MMU. However, this would force
operations on cache or any specilic RAM-set to be on
separate pages for protection reasons. Therefore, a control
register 1s provided in TLB control register set 323 (FIG. 3)
to configure how and by which CPU the various parts of
megacell memory are controlled. All CPUs can execute
operations such as cache flushing or cache cleaning as these
operations will be restricted by a resource identifier field
located 1n the TAG area of the cache.

The unified cache memory of the present embodiment
supports write back, and write through with/without write-
allocate on a page basis. These controls are part of the MMU
attributes. Hit under miss 1s supported to reduce conflicts
between requesters and consequent latency. Concurrent
accesses on RAM-sets and cache are supported.

FIG. 4 1s a block diagram of a digital system of FIG. 1
illustrating selective write allocation responsive to attribute
signals from several processors. As described above, each
TLB 400, 402 or uTLB 410a—n provides a translated physi-
cal address 414a, 4147 1n response to a virtual address value
404a, 404n provided by an 1nitiator resource 1n a transaction
request. Additionally, a write allocate transaction (WATR)
signal 409a, 4097 1s provided by the TLB/uTLB along with
the translated physical address. WATR reflects the value of
the write allocate attribute associated with the wvirtual
address of the transaction request. Thus, if WAITR 1s
asserted, then the associated write transaction 1s also
requesting write allocation 1n the .2 cache. Traffic control
circuitry 420 provides arbitration and passes the highest
priority transaction request to storage resource 460. The
fransaction request includes a physical address value on
address bus 414 and a WAITR value on WATR bus 409.

An aspect of the present invention 1s that operation of the
write allocate attribute bit can be modified by a system
policy that can be indicated by a bit 1n a register, such as
register 480. Write allocate policy (WAP) signal 482 pro-
vides the value of a write allocate policy bit 1n register 480
to control circuitry 1n cache 470. If the WAP signal 1is
asserted, then selective write allocation 1s performed, oth-
erwise write allocation 1s performed 1n accordance with the
WATR signal. The write allocate policy bit 1s controlled by
the operating system and may be changed from time to time
according to what tasks are being executed.

Data bus 416—466 1s arranged so that data being trans-
ferred between an initiator resource 440, 450 and storage
resource 460 can be cached with selective write allocation in
shared cache memory 470 1in a manner that 1s defined by the
WATR signal provided by each transfer request in combi-
nation with the WAP signal provided by policy register 480.
Advantageously, this allows data that 1s being transferred to
a selected address 1n memory 460 by one task to be cached
in one manner, and data that 1s being transferred to the same
address by another task on a same or on a different processor
to be cached m a different manner.

FIG. § 1s a block diagram illustrating circuitry for pro-
viding selective write allocation for the L2 cache in the
system of FIG. 1. In computing systems, write allocation 1s
a common technique used 1n data caches 1n order to 1improve
processor performance. When a write miss occurs, write
allocation 1s performed by loading in the data cache the
corresponding line from the memory before writing the data,

US 6,769,052 B2

11

so that 1t may be accessed later with a mimimum latency.
This 1s particularly interesting for data accesses that have
strong temporal locality, such as stack management 1in
routine calls or context switches, since all pushed data are
very likely to be popped afterwards.

One drawback 1s that write allocation efficiency 1s highly
dependant on data locality properties, and may introduce
cache miss degradation due to self-interference or inter-tasks
interference 1f written data are not reused afterwards, par-
ticularly when the number of tags 1s limited such as 1n small
caches or 1n caches with long lines. Advantageously, the
present invention provides a means for selectively enabling,
write allocation so that cache performance can be optimized.

As discussed above, the L2 cache of the present embodi-
ment 1s composed of a 4-way set-assoclative cache that
includes a TAG Array 502(0-3) and Data array 506(0-3) and
one or more additional RAM-sets, not shown here. In the
present embodiment, each data array 1s 32 kbytes. For
simplicity, only a single set will now be described. The other
sets are all similar. and other embodiments may have a
different number of sets.

During an access request, each TAG array 502 provides a
tag value to a respective comparator 546 and 1s compared
against a most significant portion of a protfered address 548.
A tag value 1s stored 1n tag array 502 according to an index
value that corresponds to a least significant address of a
proffered address. Thus, for any proifered address, an asso-
clated tag may be found on any of the four tag arrays. If a
tag matches a proffered address, then hit/miss logic 510
asserts a respective hit signal hit-way 513. Prefetch circuitry
516 forms a request to L3 memory when a miss occurs.

During each transaction request, write request signal 552
indicates 1f the transaction request 1s a write request. For
write requests, write allocate transaction (WATR) signal 550
1s provided by TLB 310, as described above. If the WATR
signal 1s asserted for a given transaction, then selective write
allocation 1s requested. If the WATR signal 1s not asserted for
a given ftransaction, then write allocation i1s not performed
for that transaction.

Referring still to FIG. §, write-allocate policy circuitry
560 1s also provided as a bit 1n a system register 1n this
embodiment of the mvention. Circuitry 560 1s one bit of a
memory-mapped system control register m the system of
FIG. 1. The write-allocate policy circuit permits system
wide selection of static write allocation or selective write
allocation as described above. Thus, 1f write allocate policy
signal 554 1s asserted, for example, then prefetch circuitry
516 performs selective write allocation on each transaction
request 1n response to WATR signal 550. However, 1f write
allocate policy signal 554 1s not asserted, then prefetch
circuitry 516 always performs write allocation in accordance

with WATR signal 550. Table 2 summarizes interactions of
the WATR and WAP signals.

TABLE 2

Selective Write Allocation

if “WATR == Yes” then
if “Tag matching™ then
if “Segment valid” then
cache write hit;
else
write miss with segment write allocation
end

/* write request with write allocate */

/* no need to allocate in that case */

/* 1n case of cache write miss */
if “WAP = selective” then
write miss - no allocation;

clse

10

15

20

25

30

35

40

45

50

55

60

65

12

TABLE 2-continued

Selective Write Allocation

else
write miss with line allocation;
end
else
no allocation (whatever happens, Tag matching or not,

segment valid or not);
end

According to an aspect of the present invention, selective
write allocation of a line 1 the cache for a write transaction

1s performed only 1f a tag for that line 1s valid and only on
invalid segments within that line. Recall that a segment 1s a

portion of cache line that has a separate valid bit associated
with 1t. If the tag i1s not valid, then no write allocation 1s

performed when the selective allocation policy bit 1s
asserted. AND-OR circuitry 512 of hit-miss circuitry 510

asserts hit signal 513 1f a proffered address matches tag field
524 of tag array 502 AND 1if a selected valid bit 526 1s also
asserted to indicate the requested segment of the line being,
accessed within data array 506 1s valid. At the same time,
one or more of hit-miss signals 515 may be asserted by AND
cgates 514 if a selected tag 524 matches the proffered address
AND one or more segment valid bits 526 are not valid. Thus,
for a given write transaction in which write allocate signal
550 1s asserted, if a hit-miss signal 515 1s asserted, then
prefetch circuitry 516 performs write allocation of a line in
the cache by prefetching segments for a line 1n which one or
more segments are invalid; however, 1f there 1s not a tag
match, then no prefetch is performed.

In another embodiment of the invention. write-allocate
policy circuitry 560 may be included with each of several
processors that share access to an L2 cache. In this case, a
WAP signal 1s included as a signal on the system bus that
provides the transaction request to the cache.

FIG. 6 1s a flow chart illustrating operation of selective
write allocation. according to aspects of the present imven-
tion. At node 600, a write transaction request 1s initiated by
an 1itiator resource 1n a digital system to a proflered address
in a back-up memory resource. such as memory 460 of FIG.
4. A write allocate transaction (WATR) signal is also pro-
vided with the write transaction request, as described above.

At node 602, the WATR signal 1s tested. If the signal 1s
asserted to mndicate that this transaction 1s to perform write
allocation, then the process proceeds to node 604. If the
signal 1s not asserted indicating no write allocation, then the
process proceeds to node 612.

At node 604, cache hit/miss circuitry determines if there
1s a line 1n the cache with a tag that matches the protfered
address. If there 1s not a tag match, then the write allocation
policy signal 1s checked in step 614. However, 1if there 1s a
tag match, then the process moves to step 606 where the
assoclated valid bits are checked.

At node 606, the valid bit of the requested segment 1s
checked. If the wvalid bit 1s asserted, then the requested
segment 15 already 1n the cache and no allocation needs to be
done as indicated by node 608. If the valid bit 1s not asserted,
then a segment write allocation 1s performed 1n step 620. As
described above, an 1.2 segment 1s the same size as an L1
cache line. Thus, additional instructions/data are accessed
from the backup memory 1n order to completely populate the
[.2 cache segment that 1s being written to by the current
write request.

If a tag matches, segment write allocation 1s performed 1n
node 620 by pre-fetching data/instructions from the back-up

US 6,769,052 B2

13

memory resource for any segments within the cache line that
are not already valid. Such a situation can happen 1n an 1.2
cache for lines or segments that have been 1nvalidated but
not yet reused, for example. Such a situation may also occur
if a prefetch of a line 1n the catch was terminated due to an
mterrupt, for example.

Referring again to step 604, if there was not a tag match,
then at node 614 a check 1s made to determine the write-
allocate policy of the system. The write-allocate policy can
be specified by a system register, such as policy register 560,
for example. If the write-allocate policy 1s “selective”, then
a write allocation 1s not performed as 1indicated by node 612,
even though the WATR signal was asserted for this trans-
action request. If the mode 1s not selective. then write
allocation 1s always performed i1n accordance with the
WATR signal provided with the transaction request. In this
case, since step 602 determined the WATR signal 1s asserted
for this transaction, a segment allocation will be performed
in step 616.

At node 610, the write transaction 1s completed according
to system policy or according to other attribute bits provided
by the TLB entry for this transaction request, such as those
described 1n Table 1. For example, write through may be
performed, or write back may be performed 1if dirty bits are
provided in the cache.

Advantageously, the write allocate attribute bit provided
by the TLB can selectively direct write allocation based on
the address of the transaction (pages, for example) while the
write allocation policy circuitry can then refine write allo-
cation operation over time based on a currently executing
task or on other factors known to the OS, for example.

While 1n this embodiment, steps 616 and 620 perform
segment write allocation, in another embodiment one or the
other or both of these steps may perform line allocation, in
which an entire cache line 1s then prefetched 1n response to
a miss.

FIG. 7 1s a block diagram of a digital system similar to
that of FIG. 1 1llustrating cloud of tasks that are scheduled
for execution on the various processors of the digital system.
Typically, each software task includes a task priority value
that 1s commonly used by an operating system to schedule
an order of execution for a set of pending tasks 1440.

In this 1llustration, a circle such as 1442 represents a task,
with a task name “c” and a task priority of 12, for example.
Likewise, task 1443 has a task name “r” and a priority of 15,
where a lower number indicates a higher priority. If the set
of tasks 1440 arec assigned to three processors, then an
operating system on each processor forms a ready to execute
queue, such as ready queue 1446 i which task “c” 1is
scheduled for first execution, then task “a” and finally task
“b” according to priority values of 12, 15, and 50 respec-
tively. The Task ID register in each processor 1s loaded when
a task 1s invoked.

Referring again to FIG. 3, 1n an alternative embodiment of
the 1nvention, each TLB entry also includes a task related
write allocate attribute (WA) instead of an address related
write allocate attribute. A task related WA value 1s provided
along with a translated physical address for each transaction
request, the operation of which 1s similar to that described
above. Advantageously, a task related WA value 1s provided
to the TLB via a task control block associated with each task
rather than via the system MMU table.

Table 3 illustrates several portions of an example 1nstruc-
tion code sequences 1n a task 1s spawned. From line 1 to line
5, task “c” 1s active and spawns a new task, “audio” on line
5. The kernel 1s then mnvoked to 1nstantiate the new task and
create an associated task control block (TCB). A TCB is a

10

15

20

25

30 -

35

40]

45

50

55

60

65

14

control structure that 1s stored 1n memory; a separate TCB 1s
used to 1dentily each mstantiation of a task, as i1s generally
known. An eight-bit (numbers of bits can be more or less in
other embodiments) task-ID field is stored in the TCB at line

11. At line 12, a task memory attribute value 1s stored in the
TCB.

During the context switch (reschedule in line 14) before
launching the “audio” the kernel loads task-ID register 1412

with the task-ID value held in the TCB (Table 4) or in
another table. At line 15, the new task 1s now active.

TABLE 3

Setting Task ID at the Start of a Task

1 // (Task ¢ code execution)

2 Instruction 1

e

4 1nstruction n

5 Taskspawn(“audio™,200,0,5000,(FUNCPTR)audio,// (Task ccode
execution: instruction n+2)

6 //(Kernel code execution)

7

8 TaskCreate()

9 //(taskcreate code execution)

0

11 SetTaskArtributeID(TID)

12 SetTaskAtrribute MA(WA)

3 emmeee-

14 // Kernel reschedule code execution

15 //(Task Audio code execution)

16 Instruction 1

17 --e---

As the new task begins to execute, data transfer requests
to memory are 1nitiated by either a processor that 1s execut-

ing the task, or by other initiator resources such as a DMA
resource 1n support of the task. Since this 1s a new task,
misses may occur 1n the TLB due to new pages of memory
being accessed by the new task. Of course, if the task had
been previously executed, correct page entries may already
be present 1n the TLB. Also, as described below, if the new
task accesses a page of memory that has previously been
accessed by another task and the page entry 1s still present
in the TLB, a miss will still occur 1f the task-valid bit 1s set
because the task-ID field does not match the new task-ID
value provided by the imitiator resource with each data
transter request. The MMU handler will be invoked to
handle each of the TLLB misses and will access, in addition
to the standard MMU table, the TCB of the currently
executing task 1 order to obtain WA values for WA field
309a of each new TLB entry that 1s handled.

Advantageously, by accessing TCBs to obtain WA values
to be included as memory attributes 1n each TLB entry, the
contents of the operating system memory address translation
tables are not impacted.

Table 4 1s an example task control block that 1s used to
define a task memory attribute value. Typically, the OS uses
a 32-bit task-ID that 1s 1n fact an address that enables the OS
to locate the task control block mformation. At line 4, an
execution priority value 1s defined that i1s used by the
operating system to schedule execution of the task. At line
S, a task-ID wvalue 1s defined that 1s used to set the task ID
register when the task 1s instantiated. At line 6, the task
memory attribute 1s defined.

US 6,769,052 B2

15

TABLE 4

Setting Task ID Using a TCB

1 TCB (task control block)

2 Typedet struct TCB

31

4 UINT OS-priority

5 UINT Task ID

6 WA Task attribute // WA composite “C” data type holding Task
// write allocation Information

7 -

8 1if CPU_FAMILY == xx

9 EXC_ INFO excinfo;
REG__SET regs;

#endif

h

!.'.!.'.!.'.!.'.
b b = O

For a given task-id, there can be different WA values
depending on the address range. In this embodiment, the
ranges of address correspond to pages. Therefore, several
TLB entries may be used for the same task for the different
pages. each of them having a different WA value. The
information resides 1in the TCB 1n a composite “C” Data type
WAA that may hold several WAA values for several address
ranges. Of course. other embodiments may equate an
address range to something other than a page in an MMU,
for example. Likewise, the various WAA values may be
stored as separate entries 1n the TCB, for example.

In other embodiments, other means than a TCB may be
provided for storing the task ID for use by the OS or MMU
handler, such as a table of task-IDs, for example.

Referring again to FIG. 3, task related write allocate
attribute field 3094 can be set 1n response to iformation
provided at line 6 of the TCB 1illustrated in Table 4. This
information can be used directly by the MMU manager
when loading a new entry in TLBs. In the present
embodiment, WAA information 1s not maintained 1n page
tables but 1s inserted by the TLLB miss handler at the time of
a TLB miss by using the task-ID value of the transaction
request that caused the TLB miss to access the correspond-
ing task control block. Other embodiments may use other
means for setting the WA field 1n the TLB entry, such as by
storing this information 1n a separate table or in the MMU
page tables. for example, but this might require multiple
table entries for a same page if different tasks use the same
page.

In the present embodiment, the valid bit associated with
the task-ID field 1s loaded through the MMU table walk and
1s part of the MMU tables. Thus, when the TLB miss handler
accesses a page table 1n response to a TLB miss, 1t queries
the task-ID valid bit field of the MMU page table; if this bit
field 1s asserted, then the TLB miss handler asserts the
task-ID valid bit 1n the TLB entry and loads the task-1D
value from the task-ID register of the requester that caused
the TLB miss into task ID field 302. If the task-ID valid bit
field of the MMU page table 1s not asserted, then the TLB
mi1ss handler de-asserts the task-ID valid bit in the TLB entry
and the task-ID value from the task-ID register of the
requester that caused the TLB miss 1s 1gnored. Thus, a page
entry 1in the TLB can be made sensitive to the task-ID of a
transaction request. or the task-ID can be 1gnored such that
several tasks can use the same TLB entry.

FIG. 8 1s a combined timing diagram and flow diagram
illustrating how task memory attributes are loaded into a
memory management unit 1n the system of FIG. 7. Digital
system 600 1s a subsystem representative of any of the
previously described processors, such as DSP 104 or MPU

10

15

20

25

30

35

40

45

50

55

60

65

16

102 of FIG. 1. Main bus interconnect 620 connects this
processor subsystem to other subsystems. TLB 610 with
assoclated uTLBs 610a—c operate as described previously.
Task-ID register 644 provides a task-ID of a task being
executed on processor core 605 as described previously.
MMU page tables 680 are representative of earlier described
MMU page tables. Task control block 682a 1s associated
with task A, task control block 6825 1s associated with task
B, and task control block 682¢ 1s associated with task C.

Timeline 690 illustrates sequential execution of three
tasks. Task A executes during time period 691, task B
executes during time periods 692a—b, and task C executes
during time period 693. At each task transition, there 1s a
context switch CTSW, such as during time period 699. As
described previously, during each context switch, task-1D
register 644 1s loaded with a task-ID value of the new
currently executing task.

When 1nifiator resource 605 initiates a memory transfer
request a page miss will occur 1f a corresponding page entry
1s not available in TLB 610, as represented during time
period 694. An MMU handler task will then be 1mnvoked to
handle the TLB miss. Page tables 680 will be accessed to
provide a translated address and associated address
attributes, as indicated at 695a and these will be loaded 1nto
TLB 610 as indicated at 695b. The TCB of the currently
executing task, 1n this case task B, will be accessed 1n order
to obtain a WA value for the WA field of the new TLB entry
as 1ndicated at 696a and this will be loaded into the TLB as
indicated at 696b.

Advantageously, WA values can be provided by the task
control blocks without modifying MMU tables 680.

In a similar manner, write allocate policy circuitry 660 can
be established at each context switch, such as context switch
699 between task A and task B. At the time of a context
switch, the task control block of the next scheduled task is
consulted to determine the write allocation policy for that
task, as indicated at 662a. This policy information is then
established 1n write allocate circuitry 660 as indicated at
662b.

Digital System Embodiment

FIG. 9 1illustrates an exemplary implementation of an
example of such an integrated circuit in a mobile telecom-
munications device, such as a mobile personal digital assis-
tant (PDA) 10 with display 14 and integrated input sensors
12a, 12b located 1n the periphery of display 14. As shown 1n
FIG. 9, digital system 10 includes a megacell 100 according
to FIG. 1 that 1s connected to the mnput sensors 12a,b via an
adapter (not shown), as an MPU private peripheral 142. A
stylus or finger can be used to input information to the PDA
via 1nput sensors 12a,b. Display 14 1s connected to megacell
100 via local frame buffer similar to frame buffer 136.
Display 14 provides graphical and video output 1n overlap-
ping windows, such as MPEG video window 144, shared
text document window 14b and three dimensional game
window 14c¢, for example.

Radio frequency (RF) circuitry (not shown) is connected
to an aerial 18 and 1s driven by megacell 100 as a DSP
private peripheral 140 and provides a wireless network link.
Connector 20 is connected to a cable adaptor-modem (not
shown) and thence to megacell 100 as a DSP private
peripheral 140 provides a wired network link for use during
stationary usage 1n an office environment, for example. A
short distance wireless link 23 1s also “connected” to ear-
piece 22 and is driven by a low power transmitter (not
shown) connected to megacell 100 as a DSP private periph-
eral 140. Microphone 24 1s stmilarly connected to megacell
100 such that two-way audio information can be exchanged

US 6,769,052 B2

17

with other users on the wireless or wired network using
microphone 24 and wireless ear piece 22.

Megacell 100 provides all encoding and decoding for
audio and video/graphical information being sent and
recerved via the wireless network link and/or the wire-based
network link.

It 1s contemplated, of course, that many other types of
communications systems and computer systems may also
benelit from the present invention, particularly those relying,
on battery power. Examples of such other computer systems
include portable computers, smart phones, web phones, and
the like. As power dissipation and processing performance 1s
also of concern 1n desktop and line-powered computer
systems and micro-controller applications, particularly from
a reliability standpoint, it 1s also contemplated that the
present invention may also provide benefits to such line-
powered systems.

Fabrication of the digital systems disclosed herein
involves multiple steps of 1mplanting various amounts of
impurities 1mnto a semiconductor substrate and diffusing the
impurities to selected depths within the substrate to form
transistor devices. Masks are formed to control the place-
ment of the impurities. Multiple layers of conductive mate-
rial and insulative material are deposited and etched to
interconnect the various devices. These steps are performed
In a clean room environment.

A significant portion of the cost of producing the data
processing device involves testing. While 1n wafer form,
individual devices are biased to an operational state and
probe tested for basic operational functionality. The wafer 1s
then separated into individual dice which may be sold as
bare die or packaged. After packaging, finished parts are
biased 1nto an operational state and tested for operational
functionality.

The digital systems disclosed herein contain hardware
extensions for advanced debugging features. These assist in
the development of an application system. Since these
capabilities are part of the megacell itself, they are available
utilizing only a JTAG interface with extended operating,
mode extensions. They provide simple. inexpensive, and
speed mdependent access to the core for sophisticated
debugging and economical system development, without
requiring the costly cabling and access to processor pins
required by traditional emulator systems or intruding on
system resources.

As used herein, the terms “applied,” “connected,” and
“connection” mean electrically connected, including where
additional elements may be in the electrical connection path.
“Assoclated” means a controlling relationship, such as a
memory resource that 1s controlled by an associated port.
The terms assert, assertion, de-assert, de-assertion, negate
and negation are used to avoid confusion when dealing with
a mixture of active high and active low signals. Assert and
assertion are used to indicate that a signal 1s rendered active,
or logically true. De-assert, de-assertion, negate, and nega-
tion are used to mndicate that a signal 1s rendered 1nactive, or
logically false.

A storage resource 1s typically a memory or a cache;
however, other resources may make use of selective write
allocation capabilities as described herein. For example,
memory mapped input/output (I/O) devices and ports,
graphical or video frame buflers, etc. An 1nifiator resource 1s
generally a processor or a DMA controller; however, other
resources may initiate transfer requests, such as smart 1/0
devices or ports or bridges to other systems or subsystems.

While the invention has been described with reference to
illustrative embodiments, this description 1s not intended to

10

15

20

25

30

35

40

45

50

55

60

65

138

be construed 1n a limiting sense. Various other embodiments
of the invention will be apparent to persons skilled 1n the art
upon reference to this description. For example, various
sizes and configurations of cache may be optimized using
selective write allocation. The concepts of write allocation
and copy-back are not correlated; a cache embodiment that
employs the concept of write-allocation according to the
present invention may or may not also embody copy-back
operation.

Write allocation attributes may be specified by means
other than TLB entries. For example, a task related WA may
be stored in a register, such as the task-ID register, and
provided there-from with each write request. Alternatively,
a look-up table may be provided that i1s responsive to
transaction request addresses and which provides a WA
signal there-from with each write request.

In another embodiment, a selective write allocation policy
may be 1nvoked for a period of time by setting a bit 1n a
control register under programmatic control, such as at the
begmning a particular code sequence. At the end of the code
sequence, the control bit may then be programmatically
reset to return to a write allocation policy of “always”.

It 1s therefore contemplated that the appended claims will
cover any such modifications of the embodiments as fall
within the true scope and spirit of the invention.

What 1s claimed 1s:

1. A method for operating a digital system having a cache
memory and an associated back-up memory, comprising the
steps of:

establishing a write allocation policy;

initiating a write transaction request to an address 1n the
back-up memory;

providing an attribute signal with the write transaction
request; and

performing write allocation in the cache memory 1n a
manner 1n accordance with the attribute signal and the
write allocation policy such that write allocation 1s
performed 1n a selective manner 1n accordance to the
attribute signal for a first write policy state and write
allocation 1s always performed 1n accordance to the
attribute signal for a second write policy state, the step
of performing write allocation 1n a selective manner
includes the steps of
determining 1f a tag 1n the cache matches the address of
the transaction request;

if the tag does match, then performing write allocation
if the attribute signal 1s 1n a first state and not
performing write allocation 1if the attribute signal 1s
1n a second state; and

if the tag does not match, then not performing write
allocation regardless of the state of the attribute
signal.

2. The method according to claim 1, wherein the step of
initiating a write transaction can be 1nitiated from any of a
plurality of 1initiator resources connected to the cache
memory, whereby write allocation in the cache memory for
the plurality of inifiator resources 1s responsive to the
attribute signal and the write allocation policy.

3. The method according to claim 1, further comprising
the steps of:

defining a set of address regions within an address space
of the back-up memory;

assigning a write allocation attribute bit value to each of
at least a portion of the set of address ranges; and

wherein the step of providing an attribute signal is respon-
sive to the value of the write allocation attribute bat

US 6,769,052 B2

19

assigned to an address region that mcludes the address
of the write transaction request.
4. The method according to claim 1, further comprising
the steps of:

executing a set of tasks on at least one processor 1n the
digital system,;

assigning a write allocation attribute bit value to each of
at least a portion of the set of tasks; and

wherein the step of providing an attribute signal 1s respon-
sive to the value of the write allocation attribute bit
assigned to a task that initiated the write transaction
request.
5. The method according to claim 1, further comprising,
the step of storing a plurality of write allocation attribute bit
values, in a memory management unit (MMU); and

wherein the step of providing an attribute signal selects a
value for the attribute signal from the plurality of write
allocation attribute bit values stored in the MMU.

6. The method according to claim 1, further comprising
the step of reestablishing the write allocation policy 1n a
manner that for first write transaction request to a first
address the write allocation policy 1s 1n a first state and for
a second write transaction to the first address the write
allocation policy 1s 1n a second state.

7. The method according to claim 6, further comprising
the steps of:

executing a plurality of program tasks;

performing a context switch between each program task;
and

wherein the step of reestablishing a write allocation policy
1s performed during the context switch step.

8. A digital system comprising:

an 1nitiator resource connected to a storage resource, the

nitiator resource operable to provide a write transfer
request to the storage resource and an attribute signal;

a cache memory connected to the storage resource, the
cache memory including a tag associated with each
cached address;

write allocation policy circuitry connected to the cache
memory providing either a first write allocation policy
signal or a second write allocation policy signal; and

10

15

20

25

30

35

40

20

attribute circuitry connected to provide a write allocation
signal to the cache memory with each write transfer
request, wherein for each write transfer request the
cache memory 1s operable to perform write allocation
in a manner 1n accordance with both the attribute signal
and the write allocation policy signal such that write
allocation 1s performed 1n a selective manner 1n accor-
dance to the attribute signal for a first write policy state
and write allocation 1s always performed 1n accordance
to the attribute signal for a second write policy state,

performing write allocation 1n a selective manner
includes

determining 1f a tag 1in the cache matches the address of
the transaction request;

if the tag does match, then performing write allocation
if the attribute signal 1s 1n a first state and not
performing write allocation if the attribute signal 1s
1n a second state; and

if the tag does not match, then not performing write
allocation regardless of the state of the attribute
signal.

9. The digital system according to claim 8, further com-
prising a plurality of initiator resources each having separate
attribute circuitry connected to the cache memory; and
wherein for each write transfer request from the plurality of
nitiator resources the cache memory 1s operable to perform
write allocation 1 a selective manner 1n response to the
write allocate policy signal.

10. The digital system according to claim 9, wherein the
cache memory 1s responsive to the write allocation policy
signal such that write allocation 1s performed 1n a selective
manner 1n accordance to the attribute signal for a first write
allocation policy state and write allocation 1s always per-
formed 1n accordance to the attribute signal for a second
write allocation policy state.

11. The digital system according to any of claim 10 being
a personal digital assistant, further comprising;:

a display, connected to the mnitiator resource via a display
adapter;

radio frequency (RF) circuitry connected to the initiator
resource; and

an acrial connected to the RF circuitry.

	Front Page
	Drawings
	Specification
	Claims

