(12) United States Patent

Moreau

US006766350B1
(10) Patent No.: US 6,766,350 Bl
45) Date of Patent: Jul. 20, 2004

(54) SHARED MANAGEMENT OF DATA
OBJECTS IN A COMMUNICATION
NETWORK

(75) Inventor: Jean-Jacques Moreau, Rennes (FR)

(73) Assignee: Canon Research Centre France S.A.,
Cesson-Sevigne (FR)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 825 days.

(*) Notice:

(21) Appl. No.: 09/598,199

(22) Filed: Jun. 21, 2000
(30) Foreign Application Priority Data
Jun. 25, 1999 (FR) cooiiiiiiiiii e, 99 (08156
Jun. 25, 1999 (FR) .oiiiiiiiiiiee e, 99 (08155
(51) Int. CL7 .. GO6F 15/16
(52) US.CL ..o 709/200; 709/230; 719/330;
719/316
(58) Field of Search 719/310-320,
719/330; 709/200-203, 230
(56) References Cited
U.S. PATENT DOCUMENTS
5,577,251 A * 11/1996 Hamilton et al. 718/101
6,044,409 A * 3/2000 Lmm et al. 719/315
6,157,961 A * 12/2000 Kessler et al. 719/315
6,175,864 B1 * 1/2001 Addison et al. 709/219
6,180,048 B1 * 2/2001 Lim et al. v.oovveveenn..... 719/330
6,249,803 B1 * 6/2001 IJindal et al. 709/203
6,253,256 B1 * 6/2001 Wollrath et al. 719/330
6,260,078 B1 * 7/2001 FOWIOW .vveeevverveenrnn.. 719/332
6,272,557 B1 * 872001 Lim et al. ...coveevvenn..... 719/315

OTHER PUBLICAITONS

Simeon Simeonov, “WDDX: Distributed Data for the Web,”
Dec. 7, 1998, XP002135918, retrieved from <URL:http://
www.wdx.org>.

(Stat)

Select
15t field
B A

Jeremy Allaire, “The Emerging Distributed Web, Part 3/4
and 4/4,” Sep. 1998, XP002135919, retrieved Ifrom
<URL:http://www.wdx.org>.

Reza Nekovel, “Data Interoperability via Surrogate API
Libraries,” Proceedings International Symposium on Soft-
ware Engineering for Parallel and Daistributed Systems, Los
Angeles, CA, USA, May 17-18, 1999, pp. 190-96,
XP002135920.

Eckhard Moeller et al., “The Berkom mutimedia—mail
teleservice,” Computer Communications, NL, Elsevier Sci-
ence Publishers BV, Amsterdam, vol. 18, No. 2, Feb. 1,
1995, pp. 89-102, XP004032505.

James A. Storer, “A Parallel Architecture for High Speed
Data Compression,” Proceedings of the Symposium of
Massively Parallel Computation, US, Los Alimitos, IEEE
Comp. Soc. Press, vol. Symp. 3, 1990, pp. 23843,
XP000268914.

* cited by examiner

Primary FExaminer—>5t. John Courtenay, 111
(74) Attorney, Agent, or Firm—Fitzpatrick, Cella, Harper &
Scinto

(57) ABSTRACT

A method of marshalling on a computer communication
network makes 1t possible to marshall a data object from a
programming language used by a data processing applica-
fion to a communication language which can be used by a
communication protocol of the computer communication
network. This marshalling method comprises the following
Steps:

reading (E1) a data field included in the data object;

substituting (ES—-E7), for the data field, a computer
address associated with the data field when the struc-
ture of the data field 1s complex; and

storing (ES—E7) said computer address associated with
the data field in a table of associations (T).

Use notably for transferring data objects and executing
remotely a function on a data object.

26 Claims, 9 Drawing Sheets

E10
.

Select <

following field

ES
S V.
Marshall by Marshall by
reference reference

Marshall by
refarence value

Marshall by

;

U.S. Patent Jul. 20, 2004 Sheet 1 of 9 US 6,766,350 B1

_‘i C1 FIG 1

:---—-:E
l___ - v\

==
1. - ~— .\

C2

FIG. 2

U.S. Patent Jul. 20, 2004 Sheet 2 of 9 US 6,766,350 B1

| 500 |

| CPU

503

I |
| Screen [4——lqp| COMMUNIcation
E interface

| i
504 z 600
Keyboard

| oudspeakers

/ { —— 601

I Mouse Inpuct/ac‘}lgtput | Microphone
| I
:506 -—

N | ———"

. |
| Hard disk L Headphon
512

700 507
—— T e
Disk

Diskette rl—b' drive 800

| - F/
701 508 N
l | Digital
(camera
CD -t CD drive
509 %
PC card PC card |
1 reader ?

U.S. Patent

Jul. 20, 2004 Sheet 3 of 9 US 6,766,350 B1

FIG. 4

12

Representation of

10 XML
\/ﬁ -
arshaller Marshaller
C++->XML i XML->C++
f > e
11
otart
=10
Select %
/\/l 1st field Select
E1 fDIIOWiI‘Ig ﬁEId
T
n F4
Y
|
ES £E6
_ o
Marshall by Marshall by Marshall by Marshall by
reference reference reference value

” -
EQ v -
(__End

U.S. Patent Jul. 20, 2004 Sheet 4 of 9 US 6,766,350 B1

et
; 20 :
‘ -@ 23 | 5
': | - 273 Internal :
| | _L Intemal—!/—\/ data ' ;
: data :
; 'Applic:ation —_— 24 Applicationl E
E External '
: data :
: l 1'
: 29 221 1
. 25 Interfaces Interfaces !
bt o e o e e e e e e e e EE EE A o e e E B . e - g g g g .\
.) 4 C1
E Network
29 :
26 Interfaces :

N)
I
i
|
|
]
!
|
)
|
I
|
)
]
!
!

datz server

;
{
|
]
|
E
|
|
i External Object
|
|
I
i
{
1
|
|
!
|

9,
- (o

U.S. Patent Jul. 20, 2004 Sheet 5 of 9 US 6,766,350 B1

FIG. 9
FIG. 8

Reception
of PUT

request

Reception

of GET /7 \ _E11
request

r |

Extract URJ b\ _E12

Extract URI

Extract XML
object N_E22

Find -
corresponding E13
object

Marshall XML
object “_E23

E16 Find

,L L\J correspondmg

Ob]ect

Send back =14 Marshall to
exception XML

E15 S

E17 Send back
marshalling

Add object

E27

sSend back OK

E28
D

U.S. Patent

Send back
exception

no

E34

Jul. 20, 2004 Sheet 6 of 9

FIG. 10

Reception
of DELETE

reguest =30
Extr |
act UR 34
Find
corresponding
object E32
ves

£33
table

Send back OK

E36

Eliminate from

US 6,766,350 B1

E35

U.S. Patent Jul. 20, 2004 Sheet 7 of 9 US 6,766,350 B1

FIG. 12
FIG 11 Reception of

E40 object in XML

E44 " Jinterface URI'
-RI1 11 Sending of
T /\‘!/ U 3'2, |.2 EA42 request to

URI interface

URIp’ Ip Reception of

' result of

— E43 GET

intarface

E 44 Extract

interface

FIG. 13 .

_ Create a class
Reception E45 corresponding to
of request the interface

interface -—l
Select
‘ first
E46 function
Extract
interface URI ’ £52
47
Find yes I
interface in |
Table T ES3
"\ | o |
E54 Obtain name]]
. and ¢ode of
Ye £48 function
:
| Add ~]
Send back E&55 Maf&'ﬁ"&” =56 code to the
ti
exception hecessary) E40 }_/I:r class o
I
ES57 Following
Retum - function

E50

marshalling

U.S. Patent Jul. 20, 2004 Sheet 8 of 9 US 6,766,350 B1

FIG. 14

Create an
empty request E60
Add URI E61
of the object
3
Add
function .
E62 identifier - Following
INput argument
no Input yes
arguments?
8 Marshall input
=67 argument
=63 C->XML
Add the code
to be executed EG8 Adad to the
EB5 request

E£69

U.S. Patent Jul. 20, 2004 Sheet 9 of 9 US 6,766,350 B1

FIG. 15

Reception
of reques
POST

E/70

Exiract URI
E/71 E76

Extract Following
function input
ET/;\/ identifier argument
no Input yes E74
E77 arguments
o C) Extract |
/oS input
E/73 argument
Execution of .
local F78 | Extraction of Marshall input
method code argument
C++->XML
E80
| ExXecution of E75
code E79
E83
yes no esult to be no Send
supplied? | OK
yes
Send E31 Marshall input a4
exception E82 argument
CH++->XML E85

[
| Send back

I result “_E86

US 6,766,350 Bl

1

SHARED MANAGEMENT OF DATA
OBJECTS IN A COMMUNICATION
NETWORK

The present mvention aims in general terms to 1mprove
the shared management of data objects on communication
networks

It concerns, according to a first aspect, a method of

marshalling a data object on a computer communication
network

It also concerns a method of transferring a data object on
a computer communication network and a method of remote

updating a data object on a site 1n a computer communica-
fion network.

The present mvention concerns, according to another
aspect, a method of executing remotely, on a computer
communication network, a function on a data object.

It also concerns a method of activating, on a local
computer, a function of a distant data object, a method of
transferring an interface on a computer communication
network, a method of producing a computer request for
activation of a function of a data object on a distant
computer and a method of activating, on a computer com-
munication network, a function of a data object on a distant
computer.

Correlatively, the present invention concerns a device for
marshalling a data object, a device for transferring a data
object and a device for the updating remote of a data object
on a site 1n a computer communication network, all adapted
to 1mplement the aforementioned methods in accordance
with the invention.

The present invention also concerns a device for execut-
ing remotely, on a computer communication network, a
function on a data object, a device for activating on a local
computer a function of a distant data object, a device for
transferring an interface on a computer communication
network, a device for producing a computer request for
activating a function of a data object on a distant computer,
and a device for activating on a computer communication
network a function of a data object on a distant computer.

The present invention lies 1n general terms 1n the field of
computer communication networks which make 1t possible
to transfer mformation between sites connected to the net-
work.

The present mvention applies to the communication
networks which define a communication protocol between
the different sites connected to the network.

Such a network can, by way of non-limitative example,
be the worldwide communication network such as the
Internet, built on top of the HTTP (Hypertext Transfer
Protocol) communication protocol.

Such communication networks also define an annotation
language, for example XML (Extended Markup Language),
which makes 1t possible 1n particular on these networks to
connect documents together by hypertext links normally
referred to as “pointers”.

The present invention aims notably to improve the shared
management of data objects on such computer communica-
tion networks.

In a distributed object system, the data object 1s an
clement comprising data, also referred to as attributes, and
functions possibly using input arcuments. Conventionally,
these functions can be invoked to manipulate the data of the
object.

All the functions applicable to an object and attributes
constitute 1its interface.

Each data object 1s created in a programming language
used by a data processing application which 1s used on the
site 1n the network on which the object 1s created.

10

15

20

25

30

35

40

45

50

55

60

65

2

Such programming languages are known, for example,
by the name of JAVA or C++.

So that a data object can be shared on a communication
network, 1t 1s necessary to code it 1n such a way that 1t 1s
neither dependent on the architecture of the communication
network nor dependent on the programming language 1n
which the data processing application has created the object.

This 1s necessary since another computer cannot have the
same network architecture or may implement a different data
processing application.

When the data object 1s received by another site, a
reverse marshalling operation must be applied to the object
in order to obtain a representation of the object 1n the data
processing application used on this second site.

The company Allaire Corporation recently developed a
WDDX system which makes 1t possible to distribute data
objects on a network. This WDDX system uses an XML
communication language for facilitating the exchanges of
complex data structures on a communication network.

For example, this WDDX system enables a data structure
programmed m C to be marshalled to the XML communi-
cation language, then transferred from a first computer to a
second computer 1n the network, and finally unmarshalled
on the second computer in an equivalent data structure.

However, this WDDX system 1s largely unsuited to the
marshalling and transfer of a data object having data fields
with a complex structure. Such a complex structure 1s
observed 1n particular when a data field points to or contains
at least one other data field which 1tself may be complex.

The WDDX system 1n this case requires the XML
representation of the higher data structure also to contain the
XML representation of the lower data structures, and this
recursively.

This way of proceeding considerably affects the perfor-
mance of the marshalling and transfer of data objects on a
network.

In addition, representation in XML communication lan-
guage unnecessarily occupies a broad bandwidth of the
network, whilst the destination site may in reality not need
lower data structures.

In addition, this WDDX system concerns only the trans-
fer of data, and does not permit the mnvocation of function on
data at a distance.

In general terms, the interface of the object does not
concern the WDDX system.

The company Datachannel has also proposed a Web
Broker system which makes 1t possible to distribute data
objects on a communication network.

This Web Broker system makes 1t possible to define the
concept of the interfaces on the network

However, 1t 1s not possible 1n this system to obtain a
source code for a function catalogued 1n an interface. Thus
it 1s not possible to rexmplement this function on a local
computer and to mvoke it locally on a copy of a distant
object.

The aim of the present invention 1s to facilitate the
sharing of data objects on a communication network.

To this end, the present invention relates first of all to a
method of marshalling a data object on a computer com-
munication network, from a programming language used by
a data processing application to a communication language
which can be used by a communication protocol of the
computer communication network, comprising the follow-
Ing steps:

reading a data field included 1n said data object;

substituting, for said data field, a computer address asso-
clated with said data field when the structure of said

data field 1s complex; and

US 6,766,350 Bl

3

storing said computer address associated with said data

field m a table of associations.

Thus the method of marshalling a data object according to
the 1nvention makes it possible to temporarily replace at
least one complex data field with a computer address and 1t
necessary to proceed with the marshalling of this data field
to a communication language only when 1t 1s required by a
site 1n the communication network.

The data fields included 1n a data object comprise both
data or attributes proper, the interfaces related to this object

and the applicable functions.

By virtue of the table of associations 1n which there are
stored the computer addresses associated with each data
field, different complex data fields are made visible for all
the sites connected to the network.

Only the literal objects are marshalled by value.

These literal objects are for example integers, decimal
numbers, Boolean elements, characters or a short chain of
characters.

According to a preferred characteristic of the invention, at
the storage step, said data field 1s stored 1n said programming
language.

Thus 1t 1s possible to generate 1n advance representations
of the different data fields by means of a computer address
stored 1n the table of associations without actually having to
perform the marshalling of this data field from the program-
ming language to the communication language.

This marshalling 1n the communication language can be
postponed until an object i1s requested by one of the sites in
the network via a computer address.

In practice, the complex data structures are chosen from
at least one data object, an array or a chain of characters of
minimum length.

Thus, when the complex data fields are themselves data
objects, the marshalling method according to the imvention
makes 1t possible to obtain a representation of a data object
by means of links pointing to other data objects, similar to
the pointers included in the HI'ML annotation language used
on the Internet.

In this way a graph of data objects 1s obtained similar to
the graph of documents pointing to each other which form
the World Wide Web 1n a communication network of the
Internet type.

According to an advantageous characteristic of the
invention, the marshalling method includes a step of com-
paring the structure of a data field with a pre-established list
of complex data structures.

This comparison 1n practice facilitates the detection of the
complex data fields included in a data object 1in order to
assoclate a computer address with them.

According to a second aspect of the invention, a method
of transferring a data object on a computer communication
network comprises the following steps:

receiving a computer request to transfer;

extracting a computer address from said computer
request;

identifying a data object associated with said computer
address 1n a table of associations;

marshalling said i1dentified data object to a communica-
tion language which can be used by a communication
protocol of said communication network; and

transferring said marshalled data object.

Thus, by virtue of the identification of each data object in
a table of associations by means of 1ts computer address, the
data objects can easily be shared on the communication
network and be transterred from one site to another accord-
Ing to requirements.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

According to a third aspect of the invention, a method of
remote updating a data object on a site In a computer
communication network comprises the following steps:

recelving a computer request to update;

extracting a computer address from said computer
request;

extracting from said computer request a data object mar-
shalled to a communication language which can be

used by a communication protocol of said computer
communication network; and

assoclating, 1 a table of associations of said site, said

computer address and data object extracted.

It 1s thus possible to update at a distance a table of
assoclations on a site, from computer requests including,
both a computer address and a data object marshalled to a
communication language.

In practice, when an operation has taken place on a data

object and the data fields have been modified, the site on
which the data object has been modified can send a broad-
cast updating computer request to all the sites 1n the
network, so that the latter update the tables of associations
stored respectively on these sites.

Each site can also store in memory the list of data objects
which have been copied on distant sites, 1n association with
the address of these distant sites, and send an update request
to these distant sites when the associated object has been
modified.

Preferably the remote updating method also includes a
step of marshalling the extracted data object to a program-
ming language used by a data processing application of said
site.

Thus each site can update, 1n 1ts 1internal data, data objects
marshalled to a programming language peculiar to the data
processing application of the site.

According to a preferred characteristic of this distance
updating method, the association step comprises the follow-
Ing sub-steps:

identifying the extracted computer address in the table of

associations of said site; and

in the affirmative, substituting the extracted data object for
a prior data object stored 1n association with said
extracted computer address 1n the table of associations.

Thus the table of associations i1s updated so that the
computer address 1s associated with the new data object
transferred.

Preferably, at the substitution step, data fields of the data
object extracted are copied to the prior data object stored in
the table of associations of said site.

Thus, 1nstead of eliminating overall the prior data object
stored 1n the table of associations, the data fields of the new
object are copied one by one to the prior data object.
Consequently all the links internal to the application which
pointed to the prior data object are still valid and will then
point to an updated data object.

Alternatively, the association step comprises the follow-
Ing sub-steps:

identifying the extracted computer address in the table of

associations of said site; and

in the negative, adding the association of said extracted
data object and said extracted computer address in the
table of associations of said site.

The table of associations of a site can thus be increased
remotely by the insertion of new data objects resulting from
a request to update.

According to a fourth aspect of the mnvention, it relates to
a method of executing remotely, on a computer communi-
cation network, a function on a data object.

US 6,766,350 Bl

S

In fact 1t 1s generally not possible, 1n the known systems,
to 1mplement a function on a data object stored on a distant
computer.

However, in a computer communication network, the
main constraint lies in the transmission rate and bandwidth
available on this network.

Another aim of the present invention 1s to permit the
execution at a distance, on a computer communication
network, of a function on a data object.

According to the invention, this execution method
includes a step of transferring, according to a communica-
tion protocol of the communication network, the function
assoclated with an execution code of this function.

Thus 1t 1s possible to obtain at a distance the execution
code of a function catalogued 1n an mterface of a data object.

This makes 1t possible to transport on the network the
behaviour of the data objects rather than only their state.

This method opens the possibility of redefining functions
at a distance, since the data processing applications imple-
mented on the computers 1n the network support at least one

execution code, for example a source code such as ECMA
Script (JAVA Script 1.3).

Thus the function execution code 1s made visible on the
network.

According to a preferred characteristic of the invention, at
said transfer step, said function 1s also associated with at
least one parameter marshalled to a communication lan-
guage which can be used by the communication protocol of
the computer communication network.

Thus the 1nput arcuments are also transmitted at said
transfer step and make 1t possible to implement the function
by associating chosen mput arguments with 1it.

Preferably the distance execution method includes a step
of transferring, according to a communication protocol of
the communication network, an interface of a data object,
comprising one or more functions associated respectively
with the execution code of said functions.

It 1s thus possible to transfer and make visible on the
communication network not only a function associated with
a data object, but also the whole of its interface, in which
cach function catalogued 1s associated with its execution
code, 1n order to permit the execution of the functions at a
distance on the communication network.

In practice, the execution code 1s a source code, such as
the JAVA Script code, a precompiled code, such as a
bytecode, or a compiled code, ready to be executed by the
data processing application.

According to a fifth aspect of the invention, a method of
activating on a local computer a function of a distant data
object on a computer communication network includes the
following steps:

receiving, on the local computer, a copy of said distant
data object marshalled to a communication language
which can be used by the communication protocol of
the communication network;

extracting from said data object received, at least one
computer address referencing an interface of said
object;

sending, to a distant computer, a request to get said
interface including the computer address; and

receiving 1n response said interface comprising one or
more functions associated respectively with the execu-
tion code for said functions.
The activation method thus makes 1t possible to copy on
a local computer both a distant data object and at least one
assoclated interface, so that the functions of the object can
be applied directly to the local computer, on a copy of the
object.

10

15

20

25

30

35

40

45

50

55

60

65

6

The execution of this function 1s then no longer dependent
on the bandwidth available on the network, which consti-
tutes the bottleneck 1n such a communication system.

In addition the activation of this function can also be
implemented when the local computer 1s connected only
intermittently to the network.

It should be noted that the execution code associated with
cach function of the interface can be directly included 1n the
response, being marshalled 1n a communication language
which can be used by the network, or only included by
reference by means of a computer address referencing this
execution code on the network. In the latter case, the local
computer can require the transfer of this execution code 1n
a deferred manner, only when the associated function 1s to
be executed.

According to an advantageous characteristic, the activa-
tion method also includes a step of creating a class 1n a
programming language used by a data processing applica-
fion of said local computer, said class comprising the func-
tion or functions of said interface received and the execution
code of these functions.

In this way a standard class 1s obtained, similar to that
which would have been obtained by compiling a class on the
local computer from an associated source code.

According to a sixth aspect of the invention, a method of
transferring an 1nterface on a computer communication
network, 1n response to a get request sent at the sending step
of the activation method according to the invention, com-
prises the following steps:

receiving said get request;

extracting the computer address referencing said inter-

face;

1dentifying said interface 1n a table of associations storing
said computer address 1n association with an interface;
and

transterring said iterface marshalled to a communication
language which can be used by the communication
protocol of the network, comprising one or more func-
tions assoclated respectively with the execution code
for said functions.

This method of transferring an interface thus makes it
possible, 1n a practical manner, to find, by virtue of a table
of associations, the interface associated with a data object,
and to transfer this interface to another computer in the
network, 1n order to permit the execution at a distance of this
function on a copy of the data object.

According to a seventh aspect of the invention, a method
of producing a computer request for activating a function of
a data object on a distant computer 1n the computer com-
munication network, includes the following steps:

entering a computer address referencing said data object;
entering an identifier of the function; and

adding the execution code associated with said function.

By virtue of the production of this computer request, 1n
which, 1n addition to the function to be executed, the
execution code associated with this function 1s also
introduced, 1t 1s possible to execute this function at a
distance on a data object stored 1n a distant computer in the
network.

Thus the functionalities of the distant computer are not
fixed, but can be increased through the reception of such
computer requests for remote activation, which make 1t
possible to 1dentily both the function and its execution code.

According to an eighth aspect of the invention, a method
of activating on a computer communication network a
function of a data object on a distant computer includes the
following steps:

US 6,766,350 Bl

7

receiving an activation request produced 1n accordance
with the producing method in accordance with the
mvention;

extracting, from this activation request, the computer
address referencing the data object;

extracting the identifier of said function;

extracting the execution code associated with said func-
tion; and

executing said code extracted on the data object.

It 1s thus possible to invoke and activate at a distance a
function on a data object of the communication network

Correlatively, the present invention concerns a device for
marshalling a data object on a computer communication
network, from a programming language used by a data
processing application to a communication language which

can be used by a communication protocol of said computer
communication network, having:

means of reading a data field included 1n said data object;

means of substituting, for said data field, a computer
address associated with said data field when the struc-
ture of said data field 1s complex; and

means of storing said computer address associated with
said data field in a table of associations.
According to the second aspect of the mnvention, a device
for transferring a data object on a computer communication
network has:

means of receiving a computer request for transfer;

means of extracting a computer address from said com-
puter request;

means of identifying a data object associated with said
computer address 1n a table of associations;

means of marshalling said identified data object to a
communication language which can be used by a
communication protocol of said communication net-
work; and

means ol transferring said marshalled data object.

According to the third aspect of the invention, a device for
the updating remote of a data object on a site 1n a computer
communication network has:

means of receiving a computer request to update;

means of extracting a computer address from said com-
puter request;

means of extracting from said computer request a data
object marshalled to a communication language which
can be used by a communication protocol of said
computer communication network; and

means of associating, in a table of associations of said site,
said computer address and computer object extracted.
According to the fourth aspect of the invention, a device
for executing remotely, on a computer communication
network, a function on a data object, comprises transfer
means according to a communication protocol of the com-
munication network, adapted to transfer said function asso-
ciated with an execution code of said function.
According to the fifth aspect of the invention, a device for
activating on a local computer a function of a distant data
object on a computer communication network comprises:

means of receiving, on the local computer, a copy of said
distant data object marshalled to a communication
language which can be used by the communication
protocol of the communication network;

means of extracting from said data object received, at
least one computer address referencing an interface of
said object;

10

15

20

25

30

35

40

45

50

55

60

65

3

means of sending, to a distant computer, a request to get
said interface including the computer address; and

means of receiving 1n response said interface comprising
one or more functions associated respectively with the
execution code for said functions.

According to the sixth aspect of the invention, a device for
transferring an interface on a computer communication
network, 1n response to a get request sent by the sending
means of said activation device according to the invention,
COMPIISES:

means of receiving said get request;

means of extracting the computer address referencing said
interface;

means of 1dentifying said interface in a table of associa-
tions storing said computer address 1n association with
an 1nterface; and

means of transferring said interface marshalled to a com-
munication language which can be used by the com-
munication protocol of the network, comprising one or
more functions associated respectively with the execu-
tion code for said functions.

According to the seventh aspect of the invention, a device
for producing a computer request for activating a function of
a data object on a distant computer 1n the computer com-
munication network comprises:

means of entering a computer address referencing said
data object;
means of entering an 1dentifier of said function; and

means of adding the execution code associated with said
function.
According to the eighth aspect of the invention, a device
for activating on a computer communication network a
function of a data object on a distant computer comprises:

means of receiving an activation request produced 1n
accordance with the producing method 1n accordance
with the invention;

means of extracting, from said activation request, the
computer address referencing the data object;

means of extracting the identifier of said function;

means ol extracting the execution code associated with
said function; and

means of executing said code extracted on the data object.

The characteristics and advantages of these different
devices are similar to those described previously, respec-
fively for the methods according to the invention which they
implement.

The present invention also concerns a computer compris-
ing a device for marshalling a data object and/or a device for
transferring a data object and/or a device for remote
updating, and/or a device for remote execution, and/or a
device for activation of a function on a local computer
and/or an interface transfer device, and/or a device for
producing an activation computer request and/or a device for
activating a function on a distant computer, all 1n accordance
with the mvention.

It also relates to a computer communication network
including a device for marshalling a data object and/or a
device for transterring a data object and/or a remote updat-
ing device and/or a remote execution device and/or a device
for activating a function on a local computer and/or an
interface transfer device and/or a device for producing an
activation computer request and/or a device for activating a
function on a distant computer, all 1n accordance with the
invention.

This computer and this computer communication network
have advantages similar to those described previously in
relation to the methods according to the 1nvention.

US 6,766,350 Bl

9

The present 1nvention also relates to a computer program
stored on a storage means or an Information carrier, possibly
removable, incorporated or not 1into a computer, comprising
portions of software code or program instructions adapted to
implement the steps of the marshalling method according to
the mvention and/or the steps of the transfer method accord-
ing to the invention and/or the steps of the remote updating
method according to the invention and/or the steps of the
remote execution method and/or the steps of the method of
activating a function on a local computer and/or the steps of
the 1nterface transfer method and/or the steps of the method
of producing an activation computer request and/or the steps
of the method of activating a function on a distant computer,
all 1n accordance with the mvention, when said computer
program 1S run 1nto a computer.

Other particularities and advantages of the invention will
also appear 1n the following description.

In the accompanying drawings, given by way of non-
limitative examples:

FIG. 1 illustrates schematically communication networks
adapted to implement the present invention;

FIG. 2 1s a graph 1llustrating schematically a distributed
objects system;

FIG. 3 1s a block diagram 1llustrating a computer adapted
to implement the 1nvention;

FIG. 4 1s a diagram 1illustrating the direct and reverse
marshalling of a data object, from a programming language
to a communication language;

FIG. 5 1s a block diagram 1illustrating two computers
adapted to implement the present invention;

FIG. 6 1s a schematic representation of a memory space
adapted to store a table of associations;

FIG. 7 1s an algorithm 1llustrating a method of marshalling
a data object according to a first aspect of the invention;

FIG. 8 1s an algorithm 1illustrating a method of transferring,
a data object according to a second aspect of the invention;

FIG. 9 1s an algorithm 1llustrating a method for the remote
updating of a data object according to a third aspect of the
mvention;

FIG. 10 1s an algorithm 1illustrating a method of eliminat-
ing a data object;

FIG. 11 1s a schematic representation of a memory space
adapted to store a table of associations of interfaces;

FIG. 12 1s an algorithm 1llustrating a method of activating,
a function on a local computer according to a fifth aspect of
the 1nvention;

FIG. 13 1s an algorithm illustrating an interface transier
method according to a sixth aspect of the invention;

FIG. 14 1s an algorithm 1llustrating a method of producing,
an activation computer request according to a seventh aspect
of the invention; and

FIG. 15 1s an algorithm 1llustrating a method of activating,
a function on a distant computer according to an eighth
aspect of the mvention.

The present invention, one embodiment of which will be
described below, applies 1n general to computer communi-
cation networks.

It applies particularly well to wide area communication
networks 1n which a very large number of computer servers
are connected together.

Such a network can by way of example be the worldwide
communication network, such as the Internet, built on top of
a communication protocol which enables the computers
connected to the communication network to exchange docu-
ments.

Such an Internet network 1s illustrated for example 1 FIG.

1.

10

15

20

25

30

35

40

45

50

55

60

65

10

In this example, and non-limitatively, three computer
networks R1, R2 and R3 are networks of the Ethernet type,
connected together, for example. by means of an Internet
network.

Each network R1, R2 and R3 has one or more computers.
Here, by way of example, the network R1 has two computers
C1, C2; the network R2 has a single computer C3; and the
network R3 has three computers C4, CS§ and C6.

Each of these computers C1, C2, C3, C4, C5, C6 1s
therefore capable of sending and receiving data to and from
any one of the other computers.

In such a network, it 1s normal for an information system,
where the information 1s stored 1n documents, to be built on
top of the communication network.

Such an information system can be a hypertext system so
that the documents stored include hypertext links, also
referred to as pointers, linking certain documents together.
In other words, documents include pointers pointing to other
documents, and a user of the network can request the
transmission of these other documents by activating the
pointers 1n an 1nitial document.

By way of example, the conventional hypertext system
built on top of the Internet communication network 1s the
WWW (World Wide Web) system, where the communica-
tion protocol used can be the Hyper Text Transfer Protocol
HTTP.

In such a communication network, all the documents
ogrouped 1n the memory of a computer server form a data
processing site, so that the communication network makes it
possible to connect a very large number of sites together. It
will be easily be understood that each of the computers C1
to C6 1llustrated in FIG. 1 can 1n turn be a computer server
adapted to serve documents 1n response to requests sent over
the network, or a user of the communication network (also
referred to as a client), adapted to send requests for request-
ing documents on this network.

In addition to these documents forming a conventional
information system on a communication network, the com-
puters C1 to C6 can also store and create data objects by
virtue of data processing applications.

A data object 1s defined as an element comprising at the
same time different attributes, and a set of functions which
make 1t possible to manipulate the data of the object. This set
of functions and attributes forms an interface of the data
object.

Each data object can be created in a programming lan-
cguage used by a data processing application. Such program-
ming languages are known, for example, under the name of
JAVA or C++.

It 1s conventional, 1in such a distributed objects system, for
these data objects to point to each other, that 1s to say certain
data fields of an object are themselves data objects.

FIG. 2 1llustrates notably objects which point to each
other by means of links illustrated by arrows.

Thus a first object O1, resident on the computer C1, points
both to an object O2 resident on a computer C3 and to an
object O3 resident on a computer CS.

This object O3 1n its turn points to an object O4 resident
on the first computer C1.

Here the object O4 points 1n its turn to the object O1, these
two objects O1 and O4 residing on the same computer C1.

The graph 1 FIG. 2 1s only one example amongst others
of a system of objects pointing to each other. In general
terms, 1t suflices to specily that certain objects, such as O1
and O3, can be both pointing objects and pointed-to objects
and that the objects pointing to each other can belong to the
same computer, such as the objects O1 and O4, or to
different computers, such as the objects O1 and O2.

US 6,766,350 Bl

11

A computer adapted to implement the 1vention 1s also
illustrated 1n FIG. 3, for example the computer C1 1n the
communication network R1.

This computer has a microprocessor 500, a read only
memory 501 comprising a program for implementing the
invention, and a random access memory 502 containing
registers adapted to record the variables modified during the
running of the program.

This computer C1, for example, can be connected to
different peripherals, such as a digital camera 800, micro-
phone 601, headphones 602 or loud-speaker 600 by means
of an 1nput/output card 511 in order to receive and store
documents.

This computer C1 has a communication interface 510
connected to a communication network 4, such as the
Ethernet network R1.

The computer C1 also has document storage means, such
as a hard disk 506, or 1s adapted to cooperate, by means of
a disk drive 507, a compact disk drive 508 or a computer
card reader 509, with removable document storage means,
respectively diskettes 700, compact discs (CDs) 701 or
computer cards (PC cards) 702).

These fixed or removable storage means can also contain
the code of the method according to the invention which,
once read by the microprocessor 500, will be stored 1n the
hard disk 506.

By way of variant, the program adapted to implement the
invention could be stored in the read only memory 501.

As a second variant, the program could be received and
then stored as described previously by means of the com-
munication network R1.

The computer C1 also has a screen 503 for serving, for
example, as an mnterface with the operator by means of the
keyboard 504 or the mouse 505 or any other means.

The central unit 500 will execute the mstructions relating
to the implementation of the invention. When the computer
C1 1s powered up, the programs and methods relating to the
invention stored 1n a non-volatile memory, for example the
read only memory 501, are transferred into the random
access memory 502, which will then contain the executable
code of the invention as well as the variables necessary for
implementing the invention.

The communication bus 512 allows communication
between the different sub-elements of the computer C1 or
connected to 1t. This representation of the communication
bus 512 1s not limitative, and 1n particular the microproces-
sor 500 1s able to communicate instructions to any sub-
clement directly or by means of another sub-element.

The computer C1 has a marshalling device 10 as depicted
schematically in FIG. 4.

Naturally, each computer C1 to C6 1n the communication
network can include such a marshalling device.

The marshaller makes 1t possible to marshall a data object
11 created 1n a computer language, here an object C++, to a
communication language such as the XML language which
can be used 1n the HTTP communication protocol of an
Internet network.

The same computer also has a reverse marshalling device
13 which makes 1t possible to effect the reverse conversion
in order to transform an object 12 depicted 1n a communi-
cation language into an object 11 1n a data processing
language.

The marshalling operation performed by the marshaller
10 thus makes it possible, on a computer, to make visible the
objects created by an application of this computer, or in
other words to publish them on the network.

An example of a communication language which can be
used on the Internet network 1s given below, with the

10

15

20

25

30

35

40

45

50

55

60

65

12

description of the different data fields which 1t 1s necessary
to marshall 1n order to share data objects between the
different sites connected to the communication network

This communication language 1s an 1improved version of
the XML language.

Field: Objects

This enables several objects to be sent to a distant
application. This distant application has no need to wait for
all the objects to have been received 1n order to begin their
reverse marshalling 1n the data processing language used by
the distant application, by the marshaller 13.

<objects>
<object>...</object>
<int.../>
<exception.../>
<ordered-sequence>...</ordered-sequence>

</objects>

Field: Object

This makes 1t possible to code an object which 1s neither
a literal object, such as an integer, a decimal number, a
Boolean element, a character or a short character chain, nor
a container object such as a chain, an interval or a table of
diverse objects.

<object
hret="http://oceania/web-obj/obj/personl.xml”>
<int name="age” value="33"/>
<object-ref
name="spouse”
href="http://oceania/web-obj/obj/person2.xml”/>

</object>

The object can have its URI computer address as an
attribute. It can include other data objects, container objects,
literal objects and references to objects. The objects can also
include one or more references to mterfaces and thus support
all the operations or functions comprised in this interface.

In accordance with the marshalling method of the
invention, although the data objects and container objects
can be mcluded directly 1n the data objects marshalled to this
communication language, 1t 1s preferable that only the literal
objects be marshalled and that the other objects be 1included
only by reference.

Field: Interfaces

In accordance with one aspect of the mmvention, 1t makes
it possible to send several interfaces to distant applications.
As betore, the distant application has no need to await the
reception of all the interfaces in order to effect their reverse
marshalling to the language used by the application and to
use them.

<interfaces>
<interfaces...</interface>
</interfaces>

Field: Interface

This corresponds to the generic concept of “Type” or a
“Class” of object, as defined in the JAVA or C++ languages.

An 1nterface describes the operations which are supported
by an object. These operations generally use imput argu-
ments and possibly supply a result.

US 6,766,350 Bl

13

An 1nterface also describes the attributes or data fields
which all the objects supporting this interface contain when
they are marshalled to the communication language.

An 1nterface can also contain a reference to other
interfaces, whether 1t extends to these other interfaces or
only supplies a shorthand for using these other interfaces.
The object then supports all these other interfaces refer-
enced.

There also exist predefined interfaces for literal objects
and complex objects.

<interface
name=“Employee”
href="http://oceania/web-obi/class/Employee.xml*>
<attributes>...<attributes>
<functions>...</functions>

</interface>

Field: Attribute
This contains the list of the attributes which an object
supporting the iterface contains when it 1s marshalled to the

communication language. This list can contain literal
objects, container objects, data objects themselves and ref-
erences to objects. It can also be empty.

Preferably the data objects and container objects are
replaced at the time of marshalling by references to these
objects using a URI computer address.

<attributes>
<int.../>
<object>...</object>
<keyed-sequence-ref.../>

</attributes>

Field: functions
This contains a list of the functions or operations associ-
ated with the data object supporting this interface.

<tunctions>
<function=...</function>
</functions>

Field: function

This corresponds to the generic concept of “function” or
“method”. A function 1s identified by 1ts signature, for
example a name, the type of input argument used and the
type of object obtaimned when this function i1s executed.

In accordance with the fourth aspect of the invention, a
function can contain its execution code such as the source
code, the bytecode or the compiled code. In this case, the
function can be implemented by a distant application.

<function
name="square”
type="“int">

<arguments>...</arguments:
<codex>...</code>
</function>

Field: argcuments
This contains the list of input arcuments which a function
needs for its implementation.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

<arguments>

<args>..</arg>

</arguments>

Field: argument

This corresponds to an mput arecument of a function and
can be a literal object, a container object, a data object or a
reference to one of these objects by means of a URI
computer address.

<arg
name="x"
type="“int"/>

Field: Code

This contains the execution code for a function and
possibly the computer language 1n which the code 1s sup-
plied. The type of code can be specified, for example source
code such as JavaScript, bytecode such as Java or compiled
code such as C++.

It should be noted that, when a data object 1s marshalled,
a function might not specify i1ts execution code. In addition,
if this code 1s too large, it may be 1ncluded by reference by
means of the attribute “href”.

<code
language="“JavaScript”
type="source”
href="*http://oceania/web-obj/code/Integer/square.1s>

</code>

A non-limitative list of fields for representing literal
objects 1s also given below.

Field: Integer
<int
name="age”
value=“33"/>
Field: Decimal point
<float
name=“p1’
value=“3.14159"/>
Field: Boolean element
<bool
name="1sRoot”
value=“true”’/>
Field: Character
<char
name="key”
charset="150-8859-1"
value="“"C"/>
Field: Chain

It should be noted that this field 1s preferably used, in
accordance with the first aspect of the invention, only for
short character chains, the other chains preferably being
included by reference by means of the attribute “ref”.

US 6,766,350 Bl

15
<string
name="title”
charset="1s0-8859-1">The complete Shakespeare’s work. 5
</string:
Field: Time
<time

name="“now’
value=*13:13:57 GMT"/I>
Field: Date
<date
name="“today”
value="Fr1, 05 Mar 1999/>
Field: URI address
<uri

name="CRF”
value="http://www.crf.canon.fr/”’/>

10

15

Field: Exception

This corresponds to the generic concept of exception,
which makes it possible to indicate that an error has
occurred.

20

<exception
value=*“index not found” 25
hret="http://oceania/web-obj/ex/IndexNotFound.xml*“>
An non-limitative list of fields for representing container
objects 1s also given below. 0

Field: Interval
This corresponds to the generic concept of interval, with
an upper limit and a lower limait, of the same type and whose

order 1s 1mportant

35

</interval>
<int name=“lower” value=“1" />
<int name=“upper” value=“10" />
<int name="“step” value="2" />

</interval> 40
Field: Unordered set
This corresponds to the generic concept of a set contain-
ing various objects whose order 1s unimportant. 45

<unordered-sequence>
<int.../>
<int.../>

50

</unordered-sequence>

Field: Ordered set

This corresponds to the generic concept of an array
containing various objects whose order 1s significant.

55

<ordered-sequences

<object-ref.../> 60
<object-ref.../>
</ordered-sequence>

The references by means of a URI computer address 65

should be used for including data objects or container
objects 1n these sets.

16

Field: Coded sequence

This corresponds to the generic concept of an array or a
dictionary 1n which objects are accessible not directly but by
means of keys. These keys can themselves be various
objects. The order of the objects 1s unimportant.

<keyed-sequence>
<key>...</key=<value>...</value>

f;./keyed—sequence}
Field: Key

This 1s used for differentiating one key 1n a collection of
keys.

<key>

</key>

Field: Value

This 1s used for differentiating the value of one key 1n a
collection of keys.

<value>

</value>

Fields are also defined 1n order to include another field by
reference.

Field: Interface reference

This makes it possible to reference an interface by means
of a name and a URI computer address.

<interface-ref
name="Person”
href=*http://oceania/web-obj/class/Person.xml”>

Field: Object reference
This makes 1t possible to reference an object by means of
a name and a URI computer address.

<object-ret
name="child”

href=*http://oceania/web-obj/obj/child1.xml”/>

Field: Chain reference

This makes it possible to reference a chain by means of a
name and a URI computer address

Preferably short character chains are marshalled as
objects and long chains are marshalled by reference, in order
to reduce the occupation of the communication network. The
threshold value chosen for sorting long chains and short
chains may be dependent on the data processing application.

<string-ref
name="“speech”
href="http://oceania/web-obj/obj/speechl.xml”/>

US 6,766,350 Bl

17

Field: Unordered set reference
This makes it possible to reference an unordered set by
means of a name and a URI computer address.

<unordered-seqref
name="“childrens”
href="http://oceania/web-obj/obj/setl.xml”/>

Field: Ordered set reference
This makes 1t possible to reference an ordered set by
means of a name and a URI computer address.

<unordered-seqref
name="childrens”
href=“http://oceania/web-obj/obj/arrayl.xml”/>

Field: Coded set reference
This makes it possible to reference an unordered coded set
by means of a name and a URI computer address.

<unordered-seqref
name="“childrens”

href="http://oceania/web-obj/obj/dictionaryl.xml”/>

Field: Null
This makes 1t possible to reference a non-existent object.

<null/>

Field: Functions

This makes it possible to contain a list of functions which
must be applied to a distant object, 1n deferred mode, for
example 1f the application i1s connected intermittently to the
network. The application can prepare the request in advance,
send 1t subsequently and receive 1n response a set of objects.

<functions>
<functions...
<function>...
<functions...
<function>...

</function>
</function>
</function>
</function>

</functions>

The response 1s a set of various objects, 1n the order of
execution of the functions enumerated in the request.

<objects>
<object>...</object>
<int.../>
<exception.../>
<object-ref.../>

</object>

Field: Function

This makes 1t possible to mvoke a function on a distant
object. It 1s necessary to specily the target object and the
parameters of the function as described previously. The
target object can be omitted when the request 1s addressed
directly to the URI computer address of the object. The
response consists of an object or an exception 1n the case of
eITOT.

10

15

20

25

30

35

40

45

50

55

60

65

138

<function
name="square”
href="http://oceania/web-obj/obj/calculator]l.xml?square™>

<target
href="http://oceania/web-obj/obj/calculatorl.xml”/>
<arguments>
<int value=*5""/>
<farguments:>
</function>

In accordance with one aspect of the invention, if an
application wishes to execute a code on a distant object, it
1s necessary to supply the execution code instead of the
function itself. An exception will be sent in return if the
distant application does not have the capacity to dynamically
evaluate the functions.

<function>
<target
href="http://oceania/web-obj/obj/calculatorl.xml”/>

<arguments>

<int value=“5"/>
</farguments>
<code

language=“JavaScript”>

</code>
</functon>

This communication language makes it possible to
exchange on the network not only the data objects and their
attributes but also the interfaces of these objects.

Thus the functions associated with the objects are easily
shared on the network and can be executed on distant
objects.

As 1llustrated in FIG. §, the same computer C1 can use
two applications 20, 21 which cooperate with each other.
These two applications 20, 21 can share the data via the
same object server 22. Each of the applications 20, 21 uses
on the one hand internal data 23 and on the other hand
external data 24 which are made visible to the other appli-
cations by the use of a marshaller as described previously 1n
FIG. 4.

The external data 24 are 1n fact internal data 23 created or
used by each of the applications 20, 21, which have been
marshalled by a marshaller 10 1n a communication language
common to the two applications and which can thus be
transmitted to one or other of the applications via the object
server 22.

Interfaces 25 make it possible to list the functions and the
attributes linked to the data objects.

Naturally, a similar function 1s obtained between two
computers C1, C3 connected by a network 4 of the Internet
type.

As 1llustrated 1n FIG. §, the computer C3 has a third
application 26 which also uses internal data 23 and external
data 24. These external data 24 are also obtained by mar-
shalling certain internal data 23 created by a data processing
application 26 of the computer C3.

These external data 24 are thus made visible for the
applications 20 and 21 of the computer C1 by means of the
communication network 4, via an object server 22 similar to
the object server 22 of the computer C1.

A description will now be given, with references to FIGS.
6,7 and 11, of a marshalling method which makes it possible
to publish on the network 4 a data object and 1ts interface.

US 6,766,350 Bl

19

Non-limitatively, in this example, the marshalling of an
object O1 on a computer C1 as illustrated n FIG. 2 1s
considered.

Naturally, the marshalling can be carried out on any
computer C1 to C6 1n the network 4.

This object O1 may have been created 1n a programming,
language used by the data processing application 20 imple-
mented on the computer C1, for example 1n C++ language.

This data object O1 1s marshalled to a communication
language which can be used by the HI'TP communication
protocol of the computer communication network 4.

It 1includes first of all a step E1 of reading a data field
included 1n the data object O1. For this, a first data field
included 1n the object O1 1s selected.

A series of test steps E2, E3 and E4 determines whether
the structure of this data field 1s a complex or simple
structure.

Typically, complex data structures are for example an
array, a chain of characters of minimum length or a data
object itself. Other examples of data fields with a complex
structure have been given previously, with reference to the
communication language used by way of example.

In practice, the structure of each data field 1s compared
with a pre-established list L of complex data structures. This
pre-established list L can be stored in the read only memory
501 of the computer C1, as 1llustrated 1n FIG. 3.

Thus 1t 1s possible to first of all check 1n a test step E2
whether the data structure 1s 1tself a data object.

In the atfirmative, a step ES of marshalling by reference
1s implemented as described below.

Otherwise a second test step E2 checks whether the
structure of the data field 1s an array.

In the affirmative, a step of marshalling by reference E6
1s also implemented as described below.

Otherwise a last test step E4 1s implemented to check
whether the data field 1s a chain of characters of minimum
length T.

In the affirmative, a third step of marshalling by reference
E7 1s implemented as described below. Otherwise 1t 1s
considered that the structure of the data field 1s simple and
a step E8 of marshalling by value 1s implemented, making
it possible to marshall all the data field to the communication
language.

The steps ES, E6 and E7 of marshalling by reference
constitute a step of substituting a URI (“Uniform Resource
I[dentifier”) computer address for the data field.

This substitution step ES, E6 and E7 consists 1n reality of
not directly marshalling the entire complex data field, but
substituting for i1t a computer address making 1t possible to
find this data field if necessary.

These same steps of marshalling by reference ES, E6 and
E7 also comprise a step of storing this URI computer address
assoclated with the data field in tables of associations T and
T' as 1llustrated in FIGS. 6 and 11.

These tables of associations T and T' are set up, for
example, 1n the random access memory 502 and then stored
in a non-volatile memory, such as in the hard disk 506 of the
computer C1 1llustrated 1n FIG. 3 These tables of associa-
tions T and T' thus make 1t possible to store associations of
a complex data field with a URI computer address.

By way of example, here, in the marshalling of the data
object O1, two other data objects O2 and O3, included 1n the
data fields of the data object O1, are stored 1n the first table
T 1n association respectively with a computer address URI1
and URI3.

The data object O1 can also include a data structure 1n the
form of an array Al, stored 1n association with a computer

address URI2.

10

15

20

25

30

35

40

45

50

55

60

65

20

It can also include a chain S1 with a length greater than
a predetermined threshold value, 1n association with another
computer address URI4.

This marshalling method avoids marshalling all the data
fields of a computer object O1.

Moreover, the second table of associations T' makes it

possible to store interfaces I1, 12, . . . , Ip 1n association
respectively with a computer address URI1', URI2', . . .
URIp'.

Preferably, 1n these tables T and T', the data fields O2, Al,
03, S1 ... Om and the mterfaces I1, 12, . . . , Ip are stored
in the programming language, that 1s to say here 1 a
computer language C++.

Thus the interfaces can be used directly by the data
processing application of the computer C1, 1 the form of a
standard class.

The marshalling 1s deferred, in order to be performed only
if necessary, when the data field or the interface 1s requested

by another data processing application and must be trans-
ferred over the communication network.

The second table T' of interfaces makes 1t possible, given
a computer address URI', to find the corresponding interface.
It enables a server to manage the interfaces of the objects
which it supports.

It should also be noted that another table could be stored
on the server, making it possible to associate, with a type of
data object, the address URI' of the corresponding interface.

For implementing the marshalling method according to
the first aspect of the invention, means of reading data fields,
substitution and storage are incorporated 1n the micropro-
cessor 500 of the computer C1, the read only memory 501
storing the program instructions for implementing the
method and the random access memory storing, 1n registers,
the wvariables modified during the execution of the
marshalling, and 1n particular the tables of associations T, T".

Moreover, the present invention also concerns a method
of transferring a data object over a computer communication
network as 1illustrated mm FIG. 8. This computer object
transfer method makes 1t possible to call for data objects on
the communication network, as soon as these objects have
been made visible by the marshalling method as described
previously and are referenced 1n a table of associations T by
means of their URI computer address.

This transfer method includes essentially a step E11 of
receiving a computer request to transfer.

This computer request to transfer can have a conventional
HTTP request format defined by the communication proto-
col of the Internet.

It can include notably a field 1n which the computer
address of the required object 1s entered.

An example of a transfer request GET for an object 1s
ogrven below:

Let the data object be as follows:

<object
href="http://oceania/web-obj/obj/personl.xml”>
<int name="“age” value="33"/>
<object-ref
name="spouse”
href="http://oceania/web-obj/obj/person2.xml”/>

</object>

This object (“personl”) is situated at the following com-
puter address:

http://oceania/web-obj/obj/employeel.xml

It can be transferred using a transfer request GET 1n
accordance with the HT'TP communication protocol:

US 6,766,350 Bl

21
GET /web-obj/obj/personl.xml HTP/1.1

The objects included 1n the other objects have a name
such that they can be obtained by concatenating the address
of the object with the name of the object included. For
example, the object “age” of the previous example can be
obtained directly using the following URI computer address:

http://oceania/web-obj/obj/employeel.xml#age
This literal object can also have 1ts own URI address:

http:/oceania/web-obj/obj/intergerl . xml

A function can also be referenced by concatenating the
address of the interface which defines 1t with the name of the
function:

http://oceania/web-obj/class/Calculator.xml#square

An extraction step E12 1s then implemented 1n order to
extract a computer address, for example URI1, of the
computer request to transfer.

An 1dentification step E13 next makes 1t possible, on the
computer which receives the request, to find the data object
02 associated with the computer address URI1 1n the table
of associations T.

More precisely, a test step E4 makes 1t possible to check
whether a data object 1s indeed associated with the computer
address URI1 extracted from the table of associations T.

In the negative, 1n a conventional manner on a commu-
nication network, the computer sends back, by way of
response, an exception, with a message of the type “object
absent”.

On the other hand, if the object O2 1s found 1n the table
of associations T, a marshalling step E16 1s implemented to
marshall this identified data object O2 to the XML commu-
nication language defined by the communication network.

A step E17 of transferring this marshalled data object O2
1s then 1mplemented 1n response to the transfer request sent.

The reception, extraction, 1dentification, marshalling and
transfer means of the transfer device are incorporated 1n the
microprocessor 300 of the computer C1, the read only
memory 301 storing the program instructions for transfer-
ring an object and the random access memory containing
registers for storing the variables modified during the execu-
tfion of the transfer method.

There 1s thus obtained, by virtue of the marshalling
method according to the ivention, a distributed objects
system on the communication network similar to the Web
formed by all the documents accessible on this network.

In comparison with the existing distributed objects
systems, the mnvention makes it possible to introduce advan-
tages related to the communication network to a system of
shared data objects on the network, and 1n particular:

to hide objects 1n proxy servers of the Web;

to transport these objects 1n a secure manner according to

the SSL (Secure Socket Layer) or SHTTP (secure
HTTP) protocol;

to sign these objects numerically;

to include these objects 1 electronic messages of the
c-mail type;

to represent these objects visually using style sheets, for
example written in the XSL language (Extended Style

Sheet);

to access objects by means of standard XML/DOM
(Extended Markup Language/Document Object
Management) applications;

to discover these objects by means of conventional tools
of the Web and to reference them 1n directories of the

Web:;

10

15

20

25

30

35

40

45

50

55

60

65

22

to integrate these objects with a source code of the
JavaScript type;

to name these objects by means of a URI computer
address which 1s conventional on the Web; and

to code these objects according to the conventional meth-

ods of the Web.

According to a third aspect of the invention, a method of
remote updating of data objects on a site can also be
implemented 1 accordance with the example embodiment
illustrated in FIG. 9.

For this purpose, a computer request to update 1s sent
from a computer, for example to all the computers 1n the
network. Such a request can be a general request, referred to
as a “broadcast request”.

It 1s also possible to store the data objects which have
been sent to other sites, 1n association with the address of
these sites, and to send the request to update only to the sites
concerned.

This request to update can also be written 1in a format 1n
accordance with the HI'TP communication protocol on the
Internet, and can contain in particular fields for including a
computer address of an object to be updated, as well as the
object 1tself marshalled to an XML language.

An example of a request to update PUT 1is illustrated
below, making it possible to create an object “Person”,
accessible at the address http://oceania/web-obj/oby/
person2.xml, assuming that the request 1s sent to a computer
called “oceania”.

PUT fweb-obj/oby/person2.xml HITP/1.1

<objects>
<object>
<interface
name="Person”
href="http://oceania/web-obj/class/Person.xml”/>
<int name="age” value=*33"/>
<float name=“size”” value=“1.82""/>
<object-ref
name="spouse”’
href=“http://tasmania/web-obj/obj/personl.xml”/>
</object>
</objects>

This request to update PUT also makes 1t possible to
modily existing objects at a distance.

PUT /web-obj/obj/person2.xml HI'TP/1.1

<objects>
<object>
<interface
name=“Employee”
href=“http://oceania/web-obj/class/Employee.xml”/>
<int name=*age” value=“33"/>
<string name="“email”’>moreau@crf.canon.fr</string>
<string name="“phone”’>00.100.200.300</string>
</object>
</objects>

The data object itself can be sent in a deferred manner, at
the request of the network computers concerned.

Each distant computer then first of all implements a step
E20 of receiving the computer request to update.

An extraction step E21 then makes 1t possible to extract
the computer address of this computer request, for example
URI3.

An extraction step E22 makes 1t possible in parallel to
extract from this same computer request the data object O3
marshalled in the XML communication language, which 1is
to be updated.

US 6,766,350 Bl

23

Preferably, although this is not necessary, a step E23 of
marshalling this data object O3 makes it possible to unmar-
shall the data object O3 1n a programming language used by
the data processing application used on the distant site.

Naturally, this marshalling step E23 could be deferred in
time until the data processing application of the distant site
needs this object O3.

An 1dentification step E24 makes 1t possible to check
whether the extracted computer address URI3 1s present in
the table of associations T of the distant site.

At the end of the test step E25, in the affirmative, the
extracted data object O3 1s substituted for the prior data
object stored 1n association with the extracted computer
address URI3 1n the table of associations T.

Preferably, at this update step E26, the object itself 1s not
directly substituted, but the data fields of the extracted data
object O3 are copied to the prior data object stored 1n the
table of associations T of the site This precaution makes it
possible to keep unchanged the links, or pointers, directed to
this updated object O3.

On the other hand, if at the test step E25 no object
corresponding to the extracted computer address URI3 has
been found 1n the table of associations T, an addition step
E27 1s implemented so as to add this new association of the
extracted data object and the extracted computer address to
the table of associations T of the site.

Thus 1t 1s possible to imncrease at a distance the table of
associations T of a site in the network.

In all cases, this remote updating method consists of
associating, 1 the table of associations T of the distant site,
a computer address and a data object extracted from the
request to update.

If necessary a response step E28 can be addressed to the
computer which sent the update request 1n order to attest that
this updating has indeed been carried out.

Means of recelving a request, extracting an address and an
object, associating this address and object 1n the table T by
substitution or addition, and marshalling this object, are
incorporated 1n the microprocessor 500 of the computer C1.
The read only memory 501 stores the program instructions
adapted to implement the updating method and the random
access memory stores the updated table of associations T.

Likewise, a request to delete a data object in a table of
associations T could also be sent over the communication
network, 1 order to delete some data objects from the
network.

In this case, a delete request including the computer
address of the object to be deleted 1s addressed to all the sites
in the network or to the sites concerned.

An example of a request DELETE to delete an object 1s
ogrven below:

The object to be deleted 1n this example 1s situated at the
address http://oceania/web-obj/obj/person2.xml, assuming
that the request DELETE 1s addressed to the computer called
“oceania’.

DELETE /web-obj/obj/person2.xml HTTP/1.1

The object 1s no longer accessible from the previous URI
address but does, however, remain 1n memory, usable by the
data processing application of the computer. In addition, the
object could also be still accessible via another computer
address.

On reception E30 of this elimination request, as 1llustrated
in FIG. 10, the association of this computer address and the
data object, 1f 1t exists, 1s eliminated from the table of
associations T.

In practice, an extraction step E31 extracts the URI
computer address of the data object to be eliminated.

[

10

15

20

25

30

35

40

45

50

55

60

65

24

An 1dentification step E32 1s implemented to seek this
URI address 1n the table T.

At the end of the test step E33, if the extracted URI
address has not been identified, an exception 1s sent 1n a
response step E34.

On the other hand, if the extracted address has been
identified, the association of this address and the data object
which 1s associated with it 1s deleted from the table T 1n an

climination step E335.

A response of the type “OK” can be sent 1n a final step
E36 in order to indicate that the required elimination has
been carried out correctly.

By virtue of the communication language described
previously, and the marshalling of a data object, 1t becomes
possible also to execute at a distance, on a computer
communication network 4, a function on this data object.

In general terms, a transfer step according to the commu-
nication protocol defined by the communication network 4
transiers the function associated with an execution code of
this function.

The execution code can, as described previously, be either
the source code or a bytecode or a compiled code.

In addition to the execution code, during this transfer step,
the function 1s associated with the parameters necessary for
its execution, which are also marshalled to the communica-
tion language which can be used by the communication
protocol of the network 4.

When 1t 1s wished to execute at a distance a function on
a data object from 1ts interface, the transfer step transfers all
the 1nterface of this object, comprising one or even more
functions associated respectively with the execution code of
these functions.

A description will now be given of two practical embodi-
ments of the invention, with reference to FIGS. 12 to 185.

In order to facilitate this description, and 1n no way
limitatively, it 1s considered 1n the remainder of the descrip-
tion that the computer C1 in the network R1 1s a local
computer, and the computer C3 in the network R2, con-
nected to the computer C1 via the Internet 4, 1s a distant
computer.

Naturally all the computers 1n the communication net-
work 4 can 1n turn be local or distant computers.

A description will be given first of all, with reference to
FIGS. 12 and 13, of a method which makes 1t possible to
activate, on the local computer C1, a function on a distant
data object, for example the data object O2 created by the
distant computer C3, on the computer communication net-
work 4.

As 1llustrated 1n FIG. 12, this activation method 1ncludes
first of all a step E40 of receiving on the local computer C1
a copy of the distant data object O2, marshalled 1n an XML
communication language which can be used by the com-
munication protocol of the communication network 4.

This reception of a distant data object O2 1s effected for
example using a transfer computer request, such as a transfer
request GET described previously, and the transfer method
as 1llustrated 1 FIG. 8.

On reception of the object O2 on the local computer C1,
a step E41 of extracting from this data object a computer
address URI' referencing an interface of the object 1s imple-
mented.

Naturally the object O2 can include several interfaces
cach referenced by a computer address on the communica-
fion network.

A step E42 of sending to the distant computer C3 a get
request GET for this mterface 1s implemented, the request
GET interface including the extracted computer address, for
example the computer address URI1'.

US 6,766,350 Bl

25

A method of transferring the interface on the computer
communication network 4, in response to this get request
sent, 15 then 1implemented on the distant computer C3.

As 1llustrated 1n FIG. 13, this transfer method includes
first of all a step E51 of receiving a request GET 1nterface.

Then an extraction step E52 extracts this get request, the
computer address URI1' referencing the interface requested.

An 1dentification step E53 1s then implemented 1n order to
find the interface in the table of associations T of the
interfaces.

Here, by way of example, the reading of the interface
table of associations T' makes it possible find the interface
I1 1n association with the computer address URI1".

A test step ES4 checks that such an interface 11 has indeed
been found.

In the negative, a response 1s sent 1n a step ESS by sending,
an exception mndicating the error.

On the other hand, when the interface 11 has been
identified, a marshalling step E56 1s implemented if neces-
sary 1n order to marshall this interface to the XML language.

This marshalling step E56 1s obviously implemented only
if the interface I1 stored 1n the table of associations T' 1s 1n
a programming language and not already marshalled.

A step E57 of transferring this interface marshalled to the
XML communication language 1s then implemented 1n order
to send the interface to the local computer C1.

This marshalled interface comprises, as described previ-
ously with reference to the XML communication language,
one or more functions associated respectively with the
execution code of these functions.

A step E43 of receiving the result of the request GET
interface 1s then performed on the local computer C1.

An extraction step E44 then extracts the interface I1

comprising one or more functions associated respectively
with their execution code.

Preferably, in this embodiment, steps E45 to E50 make it
possible to create a class 1 the programming language used
by the data processing application of the local computer C1.

This class comprises the functions of the received inter-
face I1 and the execution code of these functions directly
executable thus by the data processing application of the
local computer C1.

For this purpose, a corresponding class 1s created in a
creation step E45 and a first function of the interface 1is
selected at the selection step E46.

A test step E47 checks whether or not there exist unproc-
essed functions 1n this interface. If functions remain, a step
E48 obtains the name and execution code of the function and
an addition step E49 enters this code in the corresponding
class.

A following function of the interface I1 1s next considered
in a step ES0 and steps E47 to E49 are performed iteratively
in order to add the code of each of the functions in the
corresponding class.

When all the functions have been processed, it 1s possible
to execute a function directly on the copied data object O2
on the local computer C1 from codes recorded in the class

By virtue of the invention, in this embodiment, it 1s
possible to activate a function on the copy of a distant object
02, directly on a local computer C1.

It will be understood that, 1n this embodiment, the dis-
tance execution device according to the mnvention and the
distance execution method implemented by this device are
incorporated 1n the distant computer C3.

More precisely, means of receiving a get request, means
of extracting a computer address, means of i1dentifying an
interface and means of transferring this interface are incor-

10

15

20

25

30

35

40

45

50

55

60

65

26

porated 1n a microprocessor S00 of the computer C3, the
read only memory 501 being adapted to store a program for
transferring an interface of a data object on the computer
communication network, and a random access memory 502
comprising registers adapted to store variables modified
during the running of the program, and 1n particular storing
the table of associations T' as illustrated in FIG. 8.

In a similar manner, a device for activating, on the local
computer C1, a function of a distant data object O2 has
means of receiving a copy of this data object O2, means of
extracting a computer address associated with the interface
of this object, means of sending a request to get this
interface, means of receiving this interface and means of
creating a class 1n a programming language used by the local
computer C1.

These means of the activation device are incorporated 1n
the microprocessor 500 of the local computer C1, a read
only memory being adapted to store a program {for
activating, on this local computer C1, a function of a distant
data object O2, and a random access memory being adapted
o store 1n registers the variables modified during the run-
ning of this program.

A description will now be given, with reference to FIGS.
14 and 15, of a second embodiment of the invention, which
makes 1t possible to activate on a computer communication
network a function of a data object O2 stored on a distant
computer C3.

In this embodiment, a method of producing a computer
request 1s 1mplemented on the local computer C1 as 1llus-
trated 1n FIG. 14.

An mitialisation step E60 creates an empty invocation
request POST, 1n order to invoke remotely a function.

A recording step E61 1s then performed 1n order to record
the computer address referencing the distant data object O2.

In this example, the computer address of the distant object
02 1s the URIL.

A recording step E62 next adds, 1n this request POST, an
identifier for the mmvoked function.

Typically this function can be 1dentified by 1ts name

Preferably, in this embodiment, a test step E63 checks
whether input arguments are necessary for executing this
function.

In the afirmative, a marshalling step E64 1s performed 1n
order to marshall these mput arguments from the program-
ming language, here C++, to an XML communication
language, according to the marshalling method described

previously.

A step E65 adds these mput arcuments to the mvocation
request POST.

Next, 1n a step E66, the following mput arcument asso-
ciated with the function i1s considered and steps E63 to E66
are reiterated on all the mput arguments.

When all the mput arcuments of the function have been
processed and added to the invocation request POST, a test
step E67 checks whether an execution code 1s associated
with this function.

In the affirmative, an addition step E68 associates this
execution code with the function i1n the mvocation request
POST.

This request POST 1s next sent 1n a transier step E69 to
the distant computer C3.

An example of an mnvocation request POST for a distance
function 1s given below. The address to which the request
POST 1s sent should be that of the object to which the
function applies.

US 6,766,350 Bl

27

POST /web-obj/obj/calculator]l . xml HI'TP/1.1

<functions>

<function name="“square” type-“int”>
<arguments>
<int value=“5"/>
<farguments>
<code

language: “Java Script”
type: “source”
href: http://oceania/web-obj/code/integer/square.js>

</code
</function>
</functions>

As 1llustrated 1n FIG. 15, the method of activating the
function on the data object O2 1s then 1implemented on the
distant computer C3.

A reception step E70 makes 1t possible to receive the
invocation request POST produced as described previously.

An extraction step E71 1s then performed in order to
extract the computer address referencing the data object O2
on which the function 1s invoked.

An extraction step E72 1s also performed in order to
extract from the request the i1dentifier of the function.

Preferably a test step E73 checks whether input arguments
are necessary for executing this function. In the affirmative,
a step E74 of extracting these mput arguments 1s performed,
and then a reverse marshalling step E75 marshals all these
input areuments from the XML communication language to
a programming language such as C++.

In a step E76 the following mput argcument 1s then

considered, and all these mput arecuments are thus analysed
by reiterating steps E73 to E76.

When all the input argcuments have been extracted from
the request POST and marshalled, a step E77 checks
whether an execution code 1s 1nserted 1n the request POST

In the affirmative, the activation method includes a step
E78 of extracting this execution code associated with the
function, and a step E79 of executing this code on the distant
data object O2.

Naturally, 1f no execution code 1s 1nserted 1 the mvoca-
tion request POST, a step E80 executes the local method
available on the distant computer C3.

A test step E81 checks whether the activation of this
function has been performed without error.

If an error has occurred, a response 1s sent 1n a step ES2
to the local computer C1, this response including, in a
known manner, an exception 1n order to indicate the error
produced.

If not, a test step E83 checks whether or not the executed
function supplies a result.

In the negative, the response addressed to the local
computer 1s sent 1n a step E84 and includes only the wording
“OK”.

On the other hand, 1f a result must be supplied, such as a
modified object, a marshalling step E85 1s then performed on
the data object O2 on which the function was performed, 1n
order to marshall this data object O2 from 1ts programming
language C++ to the XML communication language.

A sending step E86 1s then implemented 1n order to send
back the result, that is to say the marshalled data object O2,
to the local computer C1 which mmvoked the function at a
distance.

In this embodiment, the device for executing at a distance
and the associated method, both i accordance with the
invention, are 1mcorporated in the local computer C1.

10

15

20

25

30

35

40

45

50

55

60

65

23

More precisely, the device for producing the computer
request POST comprising means of recording a computer
address, means of recording an 1dentifier of the function to
be mnvoked and means of adding the execution code asso-
ciated with this function, 1s incorporated in the micropro-
cessor 500 of the local computer C1, the read only memory
501 being adapted to store the program for producing such
a POST computer request, and the random access memory
502 comprising registers adapted to store variables modified
during the running of this program.

In a stmilar manner, an activation device according to the
invention 1s mcorporated in the distant computer C3.

It has means of receiving an activation request POST,
means of extracting the computer address referencing the
distant computer object, means of extracting the 1dentifier of
the function to be 1nvoked, means of extracting the execu-
fion code of this function and means of executing this code,
incorporated 1n the microprocessor S00 of the computer C3

The read only memory 501 of this computer C3 1s adapted
fo store a program adapted to implement the activation
method on the computer communication network and the
random access memory 502 comprising registers adapted to
store variables modified during the running of this program.

Thus, by virtue of the mnvention, the data objects created
by each data processing application on the different sites of
a communication network can be shared easily by the
different sites connected to this network.

As soon as this object has been published, or made visible,
by virtue of its unique URI computer address, the other
applications 1n the network can access this object through 1ts
representation 1 a communication language common to the
network, using this computer address.

In particular, the functions associated with these objects
can be 1invoked at a distance on this communication network,
in order 1n particular to avoid any unnecessary transfer over
the communication network proper.

What 1s claimed 1s:

1. A method of transferring a data object on a computer
communication network, comprising the steps of:

recelving a computer request for a transfer;

extracting a computer address from the computer request;

identifying a data object associated with the computer

address;

marshalling the identified data object to a communication
language that conforms with a communication protocol
of the computer communication network; and

transferring the marshalled data object.

2. A method according to claim 1, wherein the i1dentified
data object associated with the computer address 1s stored in
a table of associations.

3. A method according to claim 2, wherein the table of
associations 1s updated each time a computer request for an
update 1s received.

4. A method according to claim 3, further comprising the
step of marshalling a data object extracted from the com-
puter request for an update to a programming language used
by a computer application of a site in the computer com-
munication network.

5. A method according to claim 4, further comprising the
steps of:

1dentifying whether the extracted computer address exists
in the table of associations, which corresponds to the

site; and

if atfirmative, substituting the extracted data object for a
prior data object stored 1n association with the extracted
computer address 1n the table of associations.

US 6,766,350 Bl

29

6. A method according to claim 5, wherein, 1 the step of
substituting, data fields of the extracted data object are
copied to the prior data object stored in the table of asso-
clations of the site.

7. A method according to claim 4, further comprising the
steps of:

identifying whether the extracted computer address exists
in the table of associations, which corresponds to the
site; and

if negative, adding an association of the extracted data
object and the extracted computer address to the table
of associations of the site.

8. A method according to claim 1, wherein the marshal-

ling step includes:

reading a data field included 1n the data object;

substituting, for the data field, a computer address asso-
ciated with the data field when a structure of the data
field 1s complex; and

storing the computer address associated with the data field

in a table of associations.

9. Amethod according to claim 8, wherein, 1n the step of
storing, the data field i1s stored 1n the communication lan-
guage.

10. A method according to claim 8, wherein a complex
structure of the data field may be at least one data object, an
array, or a chain of characters of minimum length.

11. A method according to claim 8, further comprising the
step of comparing the structure of the data field with a
pre-established list of complex data structures.

12. A storage medium storing a computer-readable pro-
oram of software codes for implementing a method accord-
ing to one of claims 1-7.

13. A method of transferring an interface on a computer
communication network 1n response to a get request, com-
prising the step of:

receiving a get request;

extracting a computer address referencing an interface;

identifying the interface 1n a table of associations, which
stores electronic addresses 1n association with inter-
faces; and

transferring the interface marshalled to a communication
language that conforms with a communication protocol
of the computer communication network, wherein the
interface 1s comprised of one or more functions and
respective execution codes associated with the one of
more functions.

14. A storage medium storing a computer-readable pro-
ogram of software codes for implementing a method accord-
ing to claim 13.

15. An apparatus for transferring a data object on a
computer communication network, comprising:

means for receiving a computer request for a transfer;

means for extracting a computer address from the com-
puter request;

means for identifying a data object associated with the
computer address;

means for marshalling the identified data object to a
communication language that conforms with a com-
munication protocol of the computer communication
network; and

means for transterring the marshalled data object.

16. An apparatus according to claim 15, wherein the
identified data object associated with the computer address
1s stored 1n a table of associations.

10

15

20

25

30

35

40

45

50

55

60

65

30

17. An apparatus according to claim 16, wherein the table
of associations 1s updated each time a computer request for
an update 1s received.

18. An apparatus according to claim 17, further compris-
ing means for marshalling a data object extracted from the
computer request for an update to a programming language

used by a computer application of a site in the computer
communication network.

19. An apparatus according to claim 18, further compris-
Ing:
means for identifying whether the extracted computer

address exists 1n the table of associations, which cor-
responds to the site; and

means for, if affirmative, substituting the extracted data
object for a prior data object stored 1n association with
the extracted computer address 1n the table of associa-
tions.

20. An apparatus according to claim 19, wherein the
means for substituting copies data fields of the extracted data
object to the prior data object stored 1n the table of asso-
ciations of the site.

21. An apparatus according to claim 18, further compris-
ng:

means for identifying whether the extracted computer

address exists 1n the table of associations, which cor-
responds to the site; and

means for, if negative, adding an association of the
extracted data object and the extracted computer
address to the table of associations of the site.

22. An apparatus according to claim 15, wherein the
means for marshalling includes:

means for reading a data field included 1n the data object;

means for substituting, for the data field, a computer
address associated with the data field when a structure

of the data field 1s complex; and

means for storing the computer address associated with

the data ficld 1n a table of associations.

23. An apparatus according to claim 22, wherein the
means for storing stores the data field in the communication
language.

24. An apparatus according to claim 22, wherein a com-
plex structure of the data field may be at least one data
object, an array, or a chain of characters of minimum length.

25. An apparatus according to claim 22, further compris-
ing means for comparing the structure of the data field with
a pre-established list of complex data structures.

26. An apparatus for transferring an interface on a com-
puter communication network in response to a get request,
comprising:

means for receiving a get request;

means for extracting a computer address referencing an
interface;

means for 1dentifying the interface in a table of
assoc1ations, which stores electronic addresses 1n asso-
clation with interfaces; and

means for transferring the interface marshalled to a com-
munication language that conforms with a communi-
cation protocol of the computer communication
network, wherein the interface 1s comprised of one or
more functions and respective execution codes associ-
ated with the one of more functions.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,766,350 B1 Page 1 of 1
DATED : July 20, 2004
INVENTOR(S) : Jean-Jacques Moreau

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Column 30,
Line 64, “of” should read -- or --.

Signed and Sealed this

Twenty-sixth Day ot October, 2004

o WD

JON W. DUDAS
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

