US006760816B1
a2 United States Patent (10) Patent No.: US 6,760,816 B1
Ju et al. 45) Date of Patent: Jul. 6, 2004
(54) CRITICAL LOADS GUIDED DATA 5,838,945 A * 11/1998 FEmbersoncc.......... 712/200
PREFETCHING 5,974,526 A 10/1999 Garg et al.
6,000,007 A * 12/1999 Leung et al. 365/230.03
(75) Inventors: Dz-ching Ju, Saratoga, CA (US); g?gg?gg i * ?gggg %1]37?@; DA Z&ﬁi;
: . U85, * atcher et al. 1
(S[?Sl;{zuglﬁrﬁtgrﬁl;:a;al%iﬁ)ﬁl;:;ﬁ’ NC 6,131,145 A * 10/2000 Matsubara et al. 711/122
? P] ’ 6,134,643 A * 10/2000 Kedem et al. 711/137
Portland, OR (US) 6.138212 A * 10/2000 Chiacchia et al. 711/137
_ _ 6,167,509 A * 12/2000 Sites et al.c.eev........ 712/237
(73) Assignee: Intel Corporation, Santa Clara, CA 6,195,735 B1 * 2/2001 Krueger et al. 711/137
(US) 6223256 Bl * 4/2001 Gaitheroocevvr.... 711/134
6,263,404 B1 * 7/2001 Borkenhagen et al. 711/137
(*) Notice: Subject to any disclaimer, the term of this 6,289,433 B1 9/2001 Garg et al.
patent 15 extended or adjusted under 35 6,360,297 B1 * 3/2002 Armmilli et al. 711/122
U.S.C. 154(b) by 104 days. 6,381,679 B1 * 4/2002 Matsubara et al. 711/122
2001/0027515 Al * 10/2001 Ukai et al.cvenven..on. 712/207
| 2002/0087794 Al * 7/2002 Jouppi et al. 711/126
(21) Appl. No.: 09/675,713 2002/0156962 Al * 10/2002 Chopra et al.o......... 711/3
(51) Int. CL7 ..o, GO6F 12/00 IBM Technical Disclosure Bulletin, Prefetching With
(52) US.CL ..o, 711/137; 711/213; 711/133; Invalid Cache Entries, Aug. 1, 1990, VOL: 33, Issue: 3B,
712/2007; 712/237 Page: 46.*
(58) Field of Searchccovvvivivii, 711/137, 204, Kumar, Sanjeev and Wilkerson, Chrig‘[opher; "‘Exploi‘[ing

7117118, 129, 133, 134, 213; 712/216, Spatial Locality in Data Caches using Spatial Footprints”;
237,207 Proceedings of 25 " Annual ACM/IEEE International Sym-

(56) Ref Cited posium on Computer Architecture;, (ISCA *98); pp. 1-12.
6 eferences Cite

U.S. PATENT DOCUMENTS

* cited by examiner

Primary Examiner—Hong Kim

4,888,679 A * 12/1989 Fossgm et al. ..ol 712/2 (74) Attorney, Agent, or Firm—Marger Johnson &
5,109498 A * 4/1992 Kamiya et al. 365/189.05 McCollom
5,146,578 A * 9/1992 Zangenehpour 711/122
5,214,766 A * 5/1993 Liu .cccevvvviniinnieninnnnnns 711/124 (57) ABSTRACT
5,261,053 A * 11/1993 Valenciaceuv.e... 711/133
5,317,718 A * 5/1994 Jouppiccevvvnnnnnnnnnnn. 711/122 A prefetch engine 1s responsible for prefetching critical data.
5,377,336 A * 12/1994 Eickemeyer et al. 7127207 The prefetch engine operates when a cache miss occurs
2,497,499 A . 3/1996 Garg et al. accessing critical data requested by a processor. The prefetch
?ggi}é;i i ?ﬁgg; g;éﬁ:zil """""""""" /117137 engine requests cache lines surrounding the cache line
5758119 A * 5/1998 Mayfield et al. 711/122 satisfying the data request be loaded into the cache.
5,761,706 A * 6/1998 Kessler et al. 711/118
5,822,764 A * 10/1998 Hardage, JIr. et al. 711/145 35 Claims, 15 Drawing Sheets
/ Candidate Load
305 /340
M A 30 Buffer
Dependency > Load Instr. 1| 5
Analyzer
335-1 — Load Instr. 2| 3 335-2
| AN Load Instr. 3| 8
Instruction B
Sequence 10
> Frocessor >
110”7
Target Issue Processor
Rate Issue Rate
315 310)
| _
P _ o/
320 325 N
Critical Phase o7/ “_ Critical Phase
Flag| 1 [» 12 ||ssue Deficit

US 6,760,816 B1

Sheet 1 of 15

Jul. 6, 2004

U.S. Patent

1ayng
N\

S

(J4y Jo11d)
L 'Ol

SuoloNASU|
PaINO9X3

0c

{ 10SS920.4
) GO

|

Obl

22uUanbag
UOI1oNJ)SU|

!

U.S. Patent Jul. 6, 2004 Sheet 2 of 15 US 6,760,816 B1

\ D

225

\fx____

210
—

205

Processor
Memory

AN

105
230

US 6,760,816 B1

Sheet 3 of 15

Jul. 6, 2004

U.S. Patent

L 40— sl -

~

e

|
|

yoyaq anss| |z, l« : - | |beld
9Seyd [eoND A F ~7—8seyd [BOD |
T4 0ct
iR
L 14 _ 8 N\
0L Sley onss| oy '
10SS300.d anss| 19bue | .
_ - sy
_ _ |
A _ 10S$S830.1d Aﬂ B %_ .
| | _ |
, Mol aousnbag
. L - UOI}ONJ)ISU]
g | € Jsu| peo L/ |
e | Z A1su| peo |— i-see - “
—— ——— lozAjeuy
5 | b ASUIPEOT ﬁ >ocmcc®n_mo_ "
1ung ree | —

ove , 08 ¢ 9Ol

¥ Old

US 6,760,816 B1

Sheet 4 of 15

4 .;wc_ Umo|_ <— 0ZY

X
%
%

}oaQ anss|
aseyd [eonD

Jul. 6, 2004

3
m | "J}SU]| _umO|_ <+ GlV
9, ¢ "l}Ssuj peO0l| <«—o0iv

GOV

G2t

U.S. Patent

g | ¢ Jisu| peo

¢ |z iisu| peo

G |} 5isu] peoT

layng
peo- a)epipued

0te

U.S. Patent Jul. 6, 2004 Sheet 5 of 15 US 6,760,816 B1

|
505 v 520,\J\ oy
When the PIR falls Update the CPID
|below the TIR, begin based on the PIR
the critical phase and TIR
kil N N Sl
510_fl v

525

Initialize the CPID |

s the current
instruction a load
instruction?

NO

— ——
515 l
Y
cmverst || e [
NSUTUCTI
930 \/
. ATAN

Y
Store the load
— instruction in the
candidate load

buffer

Y

(B,
FIG. 5A

U.S. Patent Jul. 6, 2004 Sheet 6 of 15 US 6,760,816 B1

B A
N
535 | 545 l
Yy NN Y

N~ N

i Update the . Order the load

dependence counts | instructions In the
of dependent | candidate load |

candidate loads buffer ‘
© 10c DUE
- — >
___+ |
990
A v _
Select candidate |
240 loads whose
dependence counts
s the critical \Y €S - exceed the CPID
phase over? | :
555 |
AN yv_ _ _ _ _ |
: Mark the selected
No candidate loads as l
| critical loads |
Y | |
C |

US 6,760,816 B1

Sheet 7 of 15

Jul. 6, 2004

U.S. Patent

"W

ure

0tc

ayoen

19N |

PYL

GlL9

ayoen

19N
1Sdl4

9 "0l
me/MO auibu3
coomu 1939
P S -2.1d _
ok

T =

029

G09

JOSS900.4-

GOl

US 6,760,816 B1

Sheet 8 of 15

Jul. 6, 2004

U.S. Patent

L Ol

Jlossaoold| <

GOL

pun |
buspiO

- peo

_mo;:o

|

J1SUJ

N\

G0.

U.S. Patent Jul. 6, 2004 Sheet 9 of 15 US 6,760,816 B1

(Start)

805 320
N Y AN Y

' Request the cache

' line satisfying the

data request from
main memory

Receive a data
| request and
criticality flag

825

Is the data
request flagged
as critical?

Satisty the data SN Y
request from the Prefetch the
cache surrounding cache
l —— lines from main
memory

Y

(" End)

FIG. 8

US 6,760,816 B1

Sheet 10 of 15

Jul. 6, 2004

U.S. Patent

GOL

¢0Lo

(1SS0

.

0E6

(¥) 9100g |

_._Ommmoohn__ < B

=~

I0UR]SU| | “
~=
GC6
6 | 39gvx0
6% vA4eX0 1-016

¢ 8649%0

9 osvix0 | <
21095 oUl"] 9ok
goqup | © Y

ayoeD [EOND

GO6

191)ISSE[D
pEOT]

N\

(Wa4exo)

0c6

JISUJ

G116

US 6,760,816 B1

Sheet 11 of 15

Jul. 6, 2004

U.S. Patent

AJOWB A ..
0tl . -

1 .m_©m<xo)

ﬁ\ €4 <Dn_m!xo

i — | € wi@u_@xo

10SS92014 0SH L X0

L _ 9J/00§

oy eonuy | 21 9UIEO

ayoeD [eanuy

G006

(2) 01008
‘doueBISU

_ ._m_u__wwm_u

<

Ov6

peo

N~

(9G12X0)

"JJSUJ

N\

026

GEO

US 6,760,816 B1

Sheet 12 of 15

Jul. 6, 2004

U.S. Patent

AJOWBN A V

0cc

SO

39G5VX0

¢ 046 —

10SS32014 A o

2N
GOl

il

(/) 81009
aoue]su|

96
28 | vadexo
IS X0
LE | 2349%0
c9 | 0ShLX0
9100G

aul ayoen
eonuo | " _

ayoe) [edND

1-056

0C6

<

Gv6

T

GO6

IETISS T
olcloy

2\

_A@mquov
*11SU|

A

0¢6

GE6

U.S. Patent Jul. 6, 2004 Sheet 13 of 15 US 6,760,816 B1

Start
1005 1015
AN _ v _
' Receive a data . |Increase the critical |
- request and an score of a cache line
associated instance by the instance
score | | sc?re
|
1020
M ¥
Satisfy the data
1010 . request from the
Can the cache line in the
data request be \'©S| | cache

satisfied from the

cache? | C
. NS

@ C

FIG. 10A

End

U.S. Patent

1025

Instance

score > some
critical score In

the cache”?

Jul. 6, 2004 Sheet

NO

1035

FIG. 10B

14 of 15 US 6,760,816 B1

Subtract the
instance score from

memory
1040
Do not allocate a

the critical score for

| every cache line

Satisfy the data
request directly from

new cache line in
the cache

:_

&

U.S. Patent

1045

1050

10985

Jul. 6, 2004

¥

Subtract the
smallest critical
score from all other
. critical scores

-

Remove the cache

critical score

line with the smallest |

v

Allocate the cache

line satisfying the
data request from
_memory

Sheet 15 of 15

FIG. 10C

1060

oy

US 6,760,816 B1

'Assign the instance '

1065

score to the newly

‘ allocated cache line

s

Y
atisfy the data

request from the
- newly allocated

| cache line

|

Y
C

NS

US 6,760,816 Bl

1

CRITICAL LOADS GUIDED DATA
PREFETCHING

RELATED APPLICATION DATA

This application i1s related to co-pending U.S. patent
application Ser. No. 09/675,983, titled “RUNTIME CRITI-
CAL LOAD/DATA ORDERING” and to co-pending U.S.
patent application Ser. No. 09/676,522, titled “LEAST
CRITICAL USED REPLACEMENT WITH CRITICAL
CACHE,” both filed simultaneously herewith and com-
monly assigned.

FIELD OF THE INVENTION

This invention pertains to prefetching data into a cache on
a computer, and more particularly to prefetching data that 1s
identified as critical.

BACKGROUND OF THE INVENTION

When computers first became available, they ran pro-
grams by executing instructions using in-order execution.
Before 1nstruction number two could be executed, instruc-
tion number one had to complete. Since clock speeds were
relatively slow, this was not a significant 1ssue. The proces-
sor could not execute complicated instructions much faster
than any other part of the computer could support the
instruction. But modern processors are much more efficient
than their ancestors were. Modern computers are capable of
running at very high clock rates and may perform compli-
cated 1nstructions 1n very few clock cycles.

But while processor clock speeds have increased
dramatically, improvements in other parts of the computer
have been less significant. Specifically, at the high clock
rates 1n modem processors, 1t may take thousands of clock
cycles to access data from memory. In an 1n-order instruc-
tion processor, the processor must wait for a memory access
to complete before 1t may continue with the next instruction.
This may cause significant delay in program execution. To
deal with this problem, processors began to run programs
using out-of-order execution. While one complicated
instruction is delayed (for example, due to a memory
access), other instructions that do not depend on the delayed
instruction may be executed. For out-of-order execution to
work, the processor needs to be able to do several things.
First, the processor determines whether a later instruction 1s
dependent on the delayed mnstruction. For example, consider
the situation where a value 1s loaded from memory 1nto a
register 1n the processor. If a later instruction adds the value
in that register to another value 1n another register, this later
instruction 1s dependent on the delayed instruction: 1t may
not execute until after the load 1nstruction completes. On the
other hand, an add instruction that adds two registers that are
totally unrelated to the load instruction may be executed
while the value 1s loaded from memory, even though the
exact 1nstruction order suggests that this add instruction
should not execute yet.

Second, the processor buifers any dependent instructions
for later execution. If the processor detects that a later
instruction 1s dependent on a delayed load instruction, the
later 1nstruction may not be executed out-of-order, and 1is
buffered until after the load instruction completes.

Third, the processor renames registers. A register may be
renamed when a later instruction that 1s not dependent on the
delayed load instruction uses a register that 1s used by the
delayed load instruction. In this case, the processor needs to
be able to rename the register used by the later instruction so

10

15

20

25

30

35

40

45

50

55

60

65

2

that the “parallel execution” of the load instruction and the
later 1nstruction does not create a conflict.

FIG. 1 shows how a processor 1n the prior art operates.
Processor 105 receives mstruction sequence 110. While a
load 1nstruction 1s pending, processor 105 examines later
instructions to see 1f they are dependent on the delayed load
instruction. If the later instruction i1s dependent on the
delayed load instruction, the later instruction 1s buffered in
buffer 115. Otherwise, the later instruction may be executed
out-of-order, and joins executed instructions 120.

Two concerns may arise that limit the effectiveness of
out-of-order execution. First, processor 105 may fill buffer
115 with dependent instructions. Once the buffer 1s full,
processor 105 may not add any more 1nstructions to bufler
115, and all later 1nstructions have to wait until the delayed
load 1instruction completes. Second, the program may
include a branch 1nstruction after the load instruction. Even
with branch prediction, processor 105 may not execute the
instructions without some way to reverse the process 1n case
the branch prediction was incorrect. Typically, processor
105 will simply buflfer the instructions rather than execute
and risk having to rewind the program execution.

The problems with out-of-order execution are exacer-
bated by the possibility of multiple load instructions within
a relatively small block of instructions. With multiple 1inde-
pendent load instructions, i1f the load instructions are
executed 1n their original order, the processor may be more
inefficient than it needs to be.

Other problems related to load instruction delays have to
do with caching. Cache lines containing data requested by
load mstructions may be removed from the cache even
though other nearby data will be requested shortly. And
cache lines containing data that may be loaded shortly may
not be fetched into the cache 1 advance of their need.

The present invention addresses these and other problems
assoclated with the prior art.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a prior art processor performing out-of-
order execution of instructions.

FIG. 2 shows a computer system that may 1dentify critical
loads, prefetch data for critical loads, and 1nclude a critical
cache using a least critical used cache line replacement
policy.

FIG. 3 shows a critical load ordering unit operable on the
computer system of FIG. 2.

FIG. 4 shows the critical load ordering unit of FIG. 3
ordering candidate loads and 1dentifying some of the can-
didate loads as critical loads.

FIGS. 5A and 5B show the procedure used by the critical

load ordering unmit of FIG. 3 to identify candidate loads,
order candidate loads, and identify critical loads.

FIG. 6 shows a cache hierarchy for the computer system
of FIG. 2 mcluding three levels of cache, with one level of
cache including a prefetch engine for prefetching critical
data.

FIG. 7 shows the prefetch engine of FIG. 6 being used to
prefetch critical data from main memory into the cache.

FIG. 8 shows the procedure used by the prefetch engine
of FIG. 6 to prefetch critical data from main memory into the
cache.

FIGS. 9A-9C show a critical cache implementing a least
critical used replacement policy operable on the computer
system of FIG. 2, performing update, bypass, and allocation
operations based on cache hits/misses.

US 6,760,816 Bl

3

FIGS. 10A-10C show the procedure used by the critical
cache of FIGS. 9A-9C to update and replace cache lines
according to a least critical used cache line replacement
policy.

DETAILED DESCRIPTION

FIG. 2 shows a computer system 2035 1n accordance with
the 1nvention. Computer system 205 includes a computer
210, a monitor 215, a keyboard 220, and a mouse 225.
Computer 210 includes hardware components, such as a
processor 105, a memory 230, and a cache (not shown).
Computer system 205 may also include other equipment not
shown 1n FIG. 2, for example, other input/output equipment
Or a printer.

Critical Load Ordering,

FIG. 3 shows a critical load ordering unit operable on the
computer system of FIG. 2. In FIG. 3, processor 105 1is
processing 1nstructions 110. When a load instruction 1s
reached which 1s delayed because the load accesses the main
memory, processor 105 begins to 1ssue instructions that are
ready to execute (i.e., all the operands of the instruction are
available). When processor issue rate 310 drops below target
issue rate 315, processor 105 begins using critical load
ordering unit 305. (Target issue rate 315 1s the target rate at
which processor 103 1ssues 1nstructions, whereas processor
issue rate 310 1s the actual rate at which the processor is
currently issuing instructions.) Critical load ordering unit
305 begins by setting critical phase flag 320 and 1nitializing
critical phase 1ssue deficit 325. Critical phase flag 320 1s a
flag 1indicating that processor 105 1s currently in a critical
phase. Critical phase 1ssue deficit 325 measures how many
instructions the processor has fallen short of the target
during the critical phase.

In an embodiment of the 1nvention, a critical phase, once
begun, lasts for a fixed number of cycles. But a person
skilled 1n the art will recognize that the critical phase may
terminate based on other conditions. For example, the criti-
cal phase may terminate when processor 1ssue rate 310
meets or exceeds target 1ssue rate 315.

Critical load ordering unit 305 includes candidate load
buffer 330. Candidate load buffer stores candidate loads
detected during a critical phase. Associated with each can-
didate load 1s a dependence count. The dependence count
represents the number of instructions that are dependent on
the value obtained by the load instruction. For example, 1n
FIG. 3, load 1instruction 2 335-1 has a dependence count
335-2 of 3, indicating that three instructions depend on load
instruction 2.

During a critical phase, critical load ordering unit 3035
considers each 1nstruction examined by the processor. If the
mnstruction 1s a load instruction, critical load ordering unit
305 adds the load instruction to candidate load butfer 330
and assigns the load instruction a dependence count of O.
Otherwise, critical load ordering unit 305 uses dependency
analyzer 340 to analyze the instruction to determine which,
if any, candidate loads in candidate load buffer 330 the
instruction depends on. Note that a single 1nstruction might
not depend on any candidate loads (in which case the
instruction may be executed out of order), might depend on
only one candidate load (for example, the instruction might
perform a shift on the register storing the loaded value), or
might depend on any number of candidate loads (for
example, a summation of loaded values). Critical load
ordering unit 305 then increments the dependence count
associated with each candidate load in candidate load buffer
330 on which the instruction depends.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 4 shows the critical load ordering unit of FIG. 3
ordering candidate loads and 1dentifying some of the can-
didate loads as critical loads. In FIG. 4, the critical phase has
completed, and candidate load buifer 330 1s set. Candidate
load buffer 330 i1s then sorted by dependence count to
identify the load instructions with the highest dependency
counts. These are the instructions that cause the greatest
“ripple effect,” delaying later instructions. Once candidate

load buffer 330 is sorted (as shown in sorted buffer 405),
candidate load instructions are marked as critical, so that

they can be given preferential processing. In an embodiment
of the invention, 1nstructions are marked as critical until the
sum of their dependency counts exceeds critical phase 1ssue
deficit 325. But a person skilled in the art will recognize
other techniques that can be used to select candidate loads as
critical loads. For example, in FIG. 4, candidate load mnstruc-
tions 410 and 415 are selected as critical loads, because the
sum of their dependency counts exceeds critical phase 1ssue
deficit 325, whereas candidate load instruction 420 1s not
marked as crifical.

FIGS. 5A and 5B show the procedure used by the critical
load ordering unmit of FIG. 3 to identify candidate loads,
order candidate loads, and identify critical loads. At block
505, the critical phase 1s begun when the processor 1ssue rate
(PIR) falls below the target issue rate (TIR). At block 510,
the critical phase issue deficit (CPID) is initialized, and at
block 515 the next mstruction 1s received. At block 520, the
critical phase 1ssue deficit 1s updated based on the processor
1ssue rate and the target 1ssue rate. In an embodiment of the
invention, the critical phase 1ssue deficit 1s increased by the
difference between the target i1ssue rate and the processor
1ssue rate, but a person skilled in the art will recognize that
other techniques can be used to update the critical phase
1ssue deficit.

At decision point 525, the current instruction 1s examined
to see 1f 1t 1s a load instruction or not. If the current
mstruction 1s a load instruction, then at block 530 the load
mstruction 1s stored 1n the candidate load buffer. Otherwise,
at block 535 the dependence counts of candidate loads 1n the
candidate load buffer are updated based on whether or not
the current instruction depends on the candid ate load. At
decision point 540, the critical load ordering unit checks to
see 11 the critical phase 1s complete. As discussed above, 1n
an embodiment of the invention, the critical phase lasts for
a fixed number of cycles. If the critical phase 1s not over, the
procedure returns to block 515. Otherwise, at block 5435 the
candidate load instructions are ordered by their dependence
counts. At block 550, a minimal set of candidate loads 1s
selected. As discussed above, 1n an embodiment of the

mvention, the selected candidate loads are those for which
the sum of their dependence counts exceeds the critical
phase 1ssue deficit. Finally, at block 5355, the selected can-
didate loads are marked as critical loads.

Although 1n an embodiment of the mmvention, the candi-
date loads in the candidate load builer are ordered and some
marked as critical, a person skilled in the art will recognize
that both ordering the instructions and marking loads as
critical are optional. For example, the candidate load buifer
may be ordered as in block 545, but no loads marked as
critical. Alternatively, candidate loads may be marked as
critical as 1n blocks 550 and 555, but without ordering the
candidate loads.

A person skilled 1n the art will recognize that, when
instructions are processed out of order, executing critical
loads earlier improves processor performance. Since more
instructions are dependent on critical loads than on non-
critical loads, completing critical loads earlier allows for
more 1nstructions to be executed out-of-order without buft-
ering.

US 6,760,816 Bl

S

The reader may question the purpose of critical load
ordering, as load instructions are not marked as critical until
after they are executed. The purpose lies 1n future execution
of the instructions. It may happen that the program includes
a loop. The next time the loop 1s executed, information about
the load mstructions within the loop enables the processor to
more elliciently order the instructions for out-of-order
execuftion.

Critical Loads Guided Data Prefetching

FIG. 6 shows a cache hierarchy for the computer system
of FIG. 2 mncluding three levels of cache, with one level of
cache including a prefetch engine for prefetching critical
data. In FIG. 6, first level cache 6035 1s coupled to processor
105. Second level cache 610 1s coupled to first level cache
605. Third level cache 615 1s coupled to second level cache
610. And memory 230 1s coupled to third level cache 6135.
In a cache hierarchy as shown in FIG. 6, first level cache 605
typically 1s the fastest cache available, but 1s also the most
expensive and therefore smallest cache. Second level cache
610 1s less expensive than first level cache 605 and therefore
1s larger, but 1s also typically slower than first level cache
605. Third level cache 615 1s larger but slower than second
level cache 610, and memory 230 1s the largest but slowest
data source. A person skilled in the art will recognize that the
cache hierarchy of FIG. 6 1s for example purposes only:
there may be more or fewer caches in the hierarchy between
processor 105 and memory 230.

When processor 105 requires data from memory, proces-
sor 105 1ssues a data request to first level cache 605. If first
level cache 605 can satisfy the request (a cache hit), first
level cache 605 returns the requested data. Otherwise, first
level cache 605 generates a cache miss, and requests the data
from second level cache 610. Second and third level caches
610 and 615 behave similarly, returning the requested data
to the cache higher 1n the hierarchy.

Coupled to first level cache 605 1n FIG. 6 1s prefetch
engine 620. Prefetch engine 620 1s responsible for request-
ing cache lines from second level cache 610 through
memory 230 before processor 105 requests the data (hence
the name “prefetch engine”). But unlike most prefetch
engines, prefetch engine 620 only prefetches cache lines it
expects to contain critical data.

Prefetch engine 620 operates under the principle of tem-
poral and spatial locality. Temporal locality 1s the concept
that requests for data tend to occur at approximately the
same time (i.€., point of execution in the program). Spatial
locality dictates that loads tend to request data from memory
addresses near other referenced data. Under the observation
that temporal and spatial locality can be generalized to
critical data, when one critical load instruction 1s
encountered, 1t 1s reasonable to conclude that there will be
other critical load instructions coming up shortly (temporal
locality), which will request data from memory addresses
near the first critical load (spatial locality).

FIG. 7 shows the prefetch engine of FIG. 6 being used to
prefetch critical data from main memory 1nto the cache. In
FIG. 7, instruction 703 1s mnput to processor 1035. Instruction
705 1s also processed at some point by critical load ordering
unit 305 to determine whether instruction 705 1s a critical
load 1nstruction. A person skilled in the art will also recog-
nize that any mechanism that identifies a load instruction as
critical or non-critical can be used 1n place of critical load
ordering unit 305 1 FIG. 7. Processor 105 then requests the
data from cache 6035. Processor 105 also marks the data
request as critical if 1t comes from a critical load instruction.

10

15

20

25

30

35

40

45

50

55

60

65

6

If cache 605 can satisfy the data request (1.e., a cache hit
occurs), the requested data is returned to processor 105
without prefetch engine 620 prefetching any data. But if
cache 605 cannot satisfy the data request (i.c., a cache miss
occurs), cache 605 requests the cache line satisfying the data
request from memory 230.

Prefetch engine 620 detects the cache miss, and checks to
sec 1 the data request was flagged as critical by the proces-
sor. If the data request was non-critical, then prefetch engine
620 does nothing. As a result, only the cache line that
satisiies the data request 1s retrieved from memory 230: for
example, cache line 710. But 1f the data request was critical,
then prefetch engine 620 requests cache lines surrounding
cache line 710. For example, prefetch engine 620 may
request surrounding cache lines 715-1 and 715-2. Although
four cache lines on either side of the cache line satistying the
data request are prefetched in FIG. 7, a person skilled m the
art will recognize that any number of surrounding cache
lines may be retrieved. In an embodiment of the invention,
the number of surrounding cache lines retrieved 1s a tunable
parameter.

FIG. 8 shows the procedure used by the prefetch engine
of FIG. 6 to prefetch critical data from main memory 1mto the
cache. At block 803, the cache receives a data request and
criticality flag from the processor. At decision point 810, the
cache checks to see 1f there 1s a cache hit. If there 1s, then at
block 815, the data request 1s returned from the cache.
Otherwise, at block 820, the cache line that may satisfy the
data request 1s requested from the main memory. At decision
point 825, the prefetch engine checks to see if the data
request was flagged as critical. If the data request was
marked as critical, then at block 830, surrounding cache
lines are prefetched from memory. Then, regardless of
whether surrounding cache lines are prefetched, once the
cache line 1s loaded from main memory, the procedure
returns to block 815 to satisty the data request from the
cache.

Critical Cache and Least Critical Used Cache
Replacement Policy:

FIGS. 9A-9C show a critical cache implementing a least
critical used replacement policy operable on the computer
system of FIG. 2, performing update, bypass, and allocation
operations based on cache hits/misses. (A person skilled in
the art will recognize that the name “critical cache” 1s used
to 1dentity the cache, and that other names can be used to
identify the cache.) Critical cache 905 includes the cache
lines storing data, and also stores a critical score for each

cache line. For example, in FIG. 9A, cache line Ox3FDA
(910-1) was originally assigned a critical score of 5(910-2).

In FIG. 9A, mstruction 915 requires data from cache line
Ox3FDA. Instruction 915 is passed to load classifier 920,
which determines whether instruction 915 i1s a critical
instruction, and assigns instance score 925 to instruction
915. The request for data from memory address Ox3FDA 1s
provided to critical cache 903. Instance score 925 1s pro-
vided to critical score updater 930. Because cache line
0x3FDA (910-1) is currently in critical cache 905, a cache
hit occurs. Critical score updater 930 updates the critical
score for cache line 0x3FDA (910-1) by incrementing its
associated critical score (910-2) by instance score 925. The
data 1s then accessed and returned to processor 1035.

In FIG. 9B, instruction 935 requires data from cache line
0x2456. Instruction 935 1s passed to load classifier 920,
which determines whether instruction 935 1s a critical

instruction, and assigns instance score 940 to instruction

US 6,760,816 Bl

7

935. The request for data from memory address 0x2456 1s
provided to critical cache 903. Instance score 940 1s pro-
vided to critical score updater 930. Because least critical
used cache 905 does not currently include cache line
0x2456, a cache miss occurs. Instance score 940 1s then
accessed and compared to the critical scores of all cache
lines 1n critical cache 905. Because instance score 940 1s less
than all critical scores assigned to cache lines in critical
cache 905, a bypass operation 1s performed. Critical score
updater 930 updates the critical scores for all of the cache
lines by deducting instance score 940 from each cache line’s
critical score. This effectively ages the cache lines in critical
cache 905. The data 1s then directly accessed from memory
230 without allocating a new cache line 1n critical cache 905,
and 1s delivered to processor 105.

In FIG. 9C, mstruction 935 requires data from cache line
0x2456. Instruction 935 1s passed to load classifier 920,
which determines whether instruction 935 1s a critical
instruction, and assigns instance score 945 to instruction
935. The request for data from memory address 0x2456 1s
provided to least critical used cache 905. Instance score 945
1s provided to critical score updater 930. Because critical
cache 905 does not currently include cache line 0x2456, a
cache miss occurs. Instance score 945 1s then accessed and
compared to the critical scores of all cache lines 1n crifical
cache 905. Because instance score 945 1s larger than the
minimal critical score 1n critical cache 905, an allocation
operation 1s performed. Critical score updater 930 updates
the critical scores for all of the cache lines by subtracting the
smallest critical score in critical cache 905 (in this case,
critical score 950-2) from the critical scores of all other
cache lines. The data 1s accessed from memory 230 and new
cache line 950-1 1s allocated, replacing the existing cache
line. Critical score updater 930 then assigns instance score
945 to the newly allocated cache line 950-1 as critical score
950-2, and the requested data 1s delivered to processor 1035.

FIGS. 10A—10C show the procedure used by the critical
cache of FIGS. 9A-9C to update and replace cache lines
according to a least critical used cache line replacement
policy. At block 1005, the critical cache receives a data
request and an 1nstance score associated with the data
request. At decision point 1010, the critical cache checks to
see 1f it can satisfy the data request (i.e., a cache hit). If a
cache hit occurs, then at block 1015 the critical cache
updates the critical score of the cache line satisfying the data
request by adding the data request’s instance score to the
critical score. At block 1020, the critical cache returns the
requested data to the processor.

If 1nstead at decision point 1010 a cache miss occurred,
then at decision point 1025, the critical cache compares the
instance score assoclated with the data request with the
critical scores of cache lines in the critical cache. If the
instance score 1S less than all of the critical scores in the
critical cache, a bypass operation 1s performed. At block
1030, the critical cache subtracts the instance score from the
critical score for each cache line in the critical cache. This
ages the cache lines. Then at block 1035, the data request 1s
satisfied directly from memory. As indicated at block 1040,
no new cache line 1s allocated for the critical cache, despite
a cache miss having occurred.

If 1nstead at decision point 1025 the instance score 1s at
least as large as one of the critical scores 1n the critical cache,
an allocation operation 1s performed. At block 1045, the
smallest critical score 1n the critical cache 1s subtracted from
all other critical score. This ages the other cache lines. At
block 1050, the cache line with the smallest critical score
(selected earlier at block 1045) is removed from the critical

10

15

20

25

30

35

40

45

50

55

60

65

3

cache. At block 10585, a new cache line 1s allocated contain-
ing the data requested by the processor. At block 1060, the
instance score 1s assigned to the newly allocated cache line
as 1ts critical score. Finally, at block 1065, the data request
1s satisfied from the newly allocated cache line.

Having 1illustrated and described the principles of our
invention in an embodiment thereof, it should be readily
apparent to those skilled 1n the art that the invention can be
modified 1n arrangement and detail without departing from
such principles. We claim all modifications coming within
the spirit and scope of the accompanying claims.

We claim:

1. A method for prefetching data, the method comprising:

processing a load instruction for data from a memory
address;

accessing a cache to see if the memory address causes a
cache miss;

checking whether the load instruction 1s critical; and

if the memory address causes a cache miss, requesting
from a memory at least one cache line, and 1if the load
instruction 1s critical, requesting from the memory at
least one cache line on each side of the cache line
containing the memory address.

2. A method according to claim 1, the method further
comprising, 1f the memory address does not cause a cache
m1ss, accessing the memory address from a cache line 1n the
cache.

3. A method according to claim 1, wherein requesting
from a memory at least one cache line includes, 1f the load
instruction 1s not critical, requesting from the memory only
the cache line containing the memory address.

4. A method according to claim 1, wherein requesting
from the memory at least one cache line surrounding the
cache line containing the memory address includes request-
ing from the memory at least one cache line adjacent to the
cache line containing the memory address.

5. A method according to claim 1, wherein requesting,
from the memory at least one cache line on each side of the
cache line containing the memory address includes leaving
the load instruction annotated as critical.

6. An article comprising;:

a storage medium, said storage medium having stored
thereon instructions, that, when executed by a comput-
ing device, result 1n:
receiving a load instruction for data from a memory
address;

accessing a cache to see if the memory address causes
a cache miss;

checking whether the load instruction is critical; and

if the memory address causes a cache miss, requesting
from a memory at least one cache line, and 1f the load
instruction 1s critical, requesting from the memory at
least one cache line on each side of the cache line
containing the memory address.

7. An article according to claim 6, the storage medium
having stored thereon further instructions, that, when
executed by the computing device result 1n, 1f the memory
address does not cause a cache miss, accessing the memory
address from a cache line 1n the cache.

8. An article according to claim 6, wherein requesting
from a memory at least one cache line includes, 1f the load
instruction 1s not critical, requesting from the memory only
the cache line containing the memory address.

9. An article according to claim 6, wherein requesting
from the memory at least one cache line surrounding the
cache line containing the memory address includes request-

US 6,760,816 Bl

9

ing from the memory at least one cache line adjacent to the
cache line containing the memory address.

10. An article according to claim 6, wherein requesting
from the memory at least one cache line on each side of the
cache line containing the memory address includes leaving
the load 1nstruction annotated as critical.

11. A critical data prefetch engine apparatus, the apparatus
comprising:

a computer including a processor and a memory, the

memory including a plurality of cache lines, each cache
line including at least one memory address;

a cache 1 the computer, the cache designed to hold at
least one cache line from the memory and to request a
cache line contamning a memory address from the
memory upon a cache miss responsive to a load instruc-
tion; and

a prefetch engine coupled to the cache designed to
prefetch at least one cache line on each side of the
cache line requested by the cache from the memory 1if
the load instruction includes a criticality annotation
identifying the load instruction as critical.

12. An apparatus according to claim 11, wherein:

the apparatus further comprises a second cache;

the cache 1s designed to request the cache line from the
second cache upon a cache miss; and

the prefetch engine 1s designed to prefetch the surround-

ing cache lines from the second cache.

13. An apparatus according to claim 11, wherein the
prefetch engine 1s designed to request at least one cache line
adjacent to the cache line requested by the cache.

14. An apparatus according to claim 11, wherein the
prefetch engine 1s operative to leave the criticality annota-
tion 1dentifying the load instruction as critical.

15. An apparatus comprising:

a computer including a processor, a cache, and a memory,
the memory including a plurality of cache lines, each
cache line including at least one memory address;

a critical load ordering unit designed to i1dentily critical
load 1nstructions executed by the processor; and

a prefetch engine coupled to the cache and designed to
prefetch at least one cache line on each side of a cache
line containing a memory address requested by a criti-
cal load instruction on a cache miss.

16. An apparatus according to claim 15, wherein the

critical load ordering unit includes:

a candidate load buffer stored in the memory designed to
buffer at least one candidate load;

a dependence counter associated with each candidate load
in the candidate load buffer; and

a flag setter designed to set a critical phase flag stored 1n

the computer when a critical phase begins.

17. An apparatus according to claim 15, wherein the
prefetch engine 1s designed to request at least one cache line
adjacent to the cache line requested by the cache.

18. An apparatus according to claim 15, wherein the
prefetch engine 1s operative to leave the load instruction
identified as critical.

19. An apparatus comprising:

a computer including a processor and a memory, the
memory including a plurality of cache lines, each cache
line mcluding at least one memory address;

a critical load ordering unit designed to i1dentily critical
load 1nstructions executed by the processor;

a cache designed to satisty load instructions from the
processor; and

10

15

20

25

30

35

40

45

50

55

60

65

10

a prefetch engine coupled to the cache and designed to
prefetch at least one cache line on each side of a cache
line containing a memory address requested by a criti-
cal load instruction on a cache miss.

20. An apparatus according to claim 19, wherein the

critical load ordering unit includes:

a candidate load buffer stored 1n the memory designed to
buffer at least one candidate load,

a dependence counter associated with each candidate load
1n the candidate load buffer; and

a flag setter designed to set a critical phase flag stored 1n

the computer when a critical phase begins.

21. An apparatus according to claim 19, wherein the
prefetch engine 1s designed to request at least one cache line
adjacent to the cache line requested by the cache.

22. An apparatus according to claim 19, wherein the
critical load ordering unit 1s designed to identify a load
instruction as a critical load and to assign a high instance
score to the cache line containing the memory address
requested by the load instruction based on whether the load
instruction 1s a critical load.

23. An apparatus according to claim 22, wherein:

the cache icludes at least one cache line, the cache line
including an associated critical score; and

the cache 1s designed to update the critical score associ-
ated with the cache line in the cache based on the
instance score assigned to the cache line containing the
memory address requested by the load 1nstruction from
the processor.

24. An apparatus according to claim 19, wherein:

the critical load ordering unit 1s designed to 1dentify a load
instruction executed by the processor as a critical
mstruction;

the processor 1s designed to 1ssue a load 1nstruction to the
cache;

the cache 1s designed to generate a cache miss based on
the load 1nstruction and request a cache line from the
prefetch engine; and

the prefetch engine i1s designed to request at least one
cache line adjacent to the cache line requested by the
cache.

25. An apparatus according to claim 19, wherein:

the cache mcludes at least one cache line, the cache line
including an associated critical score; and

the cache 1s designed to update the critical score associ-
ated with the cache line i1n the cache based on an
instance score assigned to the load mstruction from the
ProCessor.

26. An apparatus according to claim 19, wherein the
prefetch engine 1s operative to leave the load instruction
identified as critical.

27. An apparatus comprising:

a computer mcluding a processor and a memory, the
memory including a plurality of cache lines, each cache
line including at least one memory address;

a cache designed to satisty load instructions from the
processor; and

a prefetch engine coupled to the cache and designed to
prefetch at least one cache line on each side of a cache
line containing a memory address requested by a criti-
cal load instruction on a cache miss.

28. An apparatus according to claim 27, wherein the
prefetch engine 1s designed to request at least one cache line
adjacent to the cache line requested by the cache.

29. An apparatus according to claim 27, wherein the cache
includes a load classifier designed to identity a load mnstruc-

US 6,760,816 Bl

11

fion as a critical load and to assign a high 1nstance score to
the cache line containing the memory address requested by
the load instruction based on whether the load 1nstruction 1s
a critical load.

30. An apparatus according to claim 29, wherein:

the cache 1ncludes at least one cache line, the cache line
including an associated critical score; and

the cache 1s designed to update the critical score associ-
ated with the cache line i1n the cache based on the
instance score assigned to the cache line containing the
memory address requested by the load instruction from
the processor.

31. An apparatus according to claim 27, wherein:

the processor 1s designed to 1ssue a load mnstruction to the
cache;

the cache 1s designed to generate a cache miss based on
the load instruction and request a cache line from the
prefetch engine; and

the prefetch engine 1s designed to request at least one
cache line adjacent to the cache line requested by the
cache.

32. An apparatus according to claim 27, wherein:

the cache 1ncludes at least one cache line, the cache line
including an associated critical score; and

the cache 1s designed to update the critical score associ-
ated with the cache line in the cache based on an
instance score assigned to a cache line containing the
memory address requested by the load instruction from
the processor.
33. An apparatus according to claim 27, wherein the
prefetch engine 1s operative to leave the load instruction
identified as critical.

10

15

20

25

30

12

34. An apparatus comprising:

a computer including a processor, a cache, and a memory,
the memory including a plurality of cache lines, each
cache line mncluding at least one memory address;

a crifical load ordering unit designed to i1dentify critical

load 1nstructions executed by the processor, including:
a candidate load buifer stored 1n the memory designed
to buffer at least one candidate load;
a dependence counter associated with each candidate
load 1n the candidate load buffer; and
a flag setter designed to set a critical phase flag stored
in the computer when a critical phase begins; and
a prefetch engine coupled to the cache and designed to
prefetch at least one cache line on each side of a cache
line containing a memory address requested by a criti-
cal load instruction on a cache miss.
35. An apparatus comprising:

a computer mcluding a processor and a memory, the
memory 1ncluding a plurality of cache lines, each cache
line including at least one memory address;

a critical load ordering unit designed to idenftify critical

load 1nstructions executed by the processor, including:

a candidate load buifer stored 1n the memory designed
to buffer at least one candidate load;

a dependence counter associated with each candidate
load 1n the candidate load buffer; and

a flag setter designed to set a critical phase flag stored
in the computer when a critical phase begins;

a cache designed to satisty load instructions from the
processor; and

a prefetch engine coupled to the cache and designed to
prefetch at least one cache line on each side of a cache
line containing a memory address requested by a criti-
cal load instruction on a cache miss.

	Front Page
	Drawings
	Specification
	Claims

