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METHOD AND SYSTEM FOR USING
PROCESS IDENTIFIER IN OUTPUT FILE
NAMES FOR ASSOCIATING PROFILING

DATA WITH MULTIPLE SOURCES OF
PROFILING DATA

CROSS-REFERENCE TO RELATED
APPLICATTONS

This application 1s a continuation-in-part of the following
copending and commonly assigned applications entitled

“SYSTEM AND METHOD FOR PROVIDING TRACE
INFORMATION REDUCTION?”, U.S. application Ser. No.
08/989.,725, filed on Dec. 12, 1997, now U.S. Pat. No.
6,055,492, “A METHOD AND APPARATUS FOR
STRUCTURED PROFILING OF DATA PROCESSING
SYSTEMS AND APPLICATIONS”, U.S. application Ser.
No. 09/052,329, now U.S. Pat. No. 6,002,872, filed on Mar.
31, 1998; “A METHOD AND APPARATUS FOR STRUC-
TURED MEMORY ANALYSIS OF DATA PROCESSING
SYSTEMS AND APPLICATIONS”, U.S. application Ser.
No. 09/052,331, now U.S. Pat. No. 6,158,024, filed on Mar.
31, 1998; “METHOD AND APPARATUS FOR PROFIL-
ING PROCESSES IN A DATA PROCESSING SYSTEM”,
U.S. application Ser. No. 09/177,031, now U.S. Pat. No.
6,311,325 filed on Oct. 22, 1998; “PROCESS AND SYS-
TEM FOR MERGING TRACE DATA FOR PRIMARILY
INTERPRETED METHODS”, U.S. application Ser. No.
09/343,439, now U.S. Pat. No. 6,553,564, filed on Jun. 30,
1999; and “METHOD AND SYSTEM FOR MERGING
EVENT-BASED DATA AND SAMPLED DATA INTO
POSTPROCESSED TRACE OUTPUT”, U.S. application
Ser. No. 09/343,438, now U.S. Pat. 6,513,155, filed on Jun.
30, 1999,

BACKGROUND OF THE INVENTION

1. Technical Field

The present mvention relates to an improved data pro-
cessing system and, 1n particular, to a method and apparatus
for optimizing performance in a data processing system.
Still more particularly, the present invention provides a
method and apparatus for a software program development
tool for enhancing performance of a software program
through software profiling.

2. Description of Related Art

In analyzing and enhancing performance of a data pro-
cessing system and the applications executing within the
data processing system, 1t 1s helpful to know which software
modules within a data processing system are using system
resources. Effective management and enhancement of data
processing systems requires knowing how and when various
system resources are being used. Performance tools are used
to monitor and examine a data processing system to deter-
mine resource consumption as various software applications
are executing within the data processing system. For
example, a performance tool may identify the most fre-
quently executed modules and instructions in a data pro-
cessing system, or may 1denftily those modules which allo-
cate the largest amount of memory or perform the most I/0O
requests. Hardware performance tools may be built into the
system or added at a later point in time. Software perfor-
mance tools also are useful in data processing systems, such
as personal computer systems, which typically do not con-
tain many, if any, built-in hardware performance tools.

One known software performance tool 1s a trace tool. A
trace tool may use more than one technique to provide trace
information that indicates execution flows for an executing
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program. One technique keeps track of particular sequences
of istructions by logging certain events as they occur,
so-called event-based profiling technique. For example, a
trace tool may log every entry into, and every exit from, a
module, subroutine, method, function, or system compo-
nent. Alternately, a trace tool may log the requester and the
amounts of memory allocated for each memory allocation
request. Typically, a time-stamped record 1s produced for
cach such event. Corresponding pairs of records similar to
entry-exit records also are used to trace execution of arbi-
trary code segments, starting and completing I/O or data
transmission, and for many other events of interest.

In order to improve performance of code generated by
various families of computers, 1t 1s often necessary to
determine where time 1s being spent by the processor in
executing code, such efforts being commonly known 1n the
computer processing arts as locating “hot spots.” Ideally,
onc would like to 1solate such hot spots at the instruction
and/or source line of code level in order to focus attention on
arcas which might benefit most from 1mprovements to the
code.

Another trace technique involves periodically sampling a
program’s execution flows to identify certain locations in the
program 1n which the program appears to spend large
amounts of time. This technique 1s based on the idea of
periodically interrupting the application or data processing,
system execution at regular intervals, so-called sample-
based profiling. At each interruption, information 1s recorded
for a predetermined length of time or for a predetermined
number of events of interest. For example, the program
counter of the currently executing thread, which 1s a process
that 1s part of the larger program being profiled, may be
recorded during the 1ntervals. These values may be resolved
against a load map and symbol table information for the data
processing system at post-processing time, and a profile of
where the time 1s being spent may be obtained from this
analysis.

For example, 1solating such hot spots to the instruction
level permits compiler writers to find significant areas of
suboptimal code generation at which they may thus focus
their efforts to improve code generation efficiency. Another
potential use of mstruction level detail 1s to provide guid-
ance to the designer of future systems. Such designers
employ profiling tools to find characteristic code sequences
and/or single mstructions that require optimization for the
available software for a given type of hardware.

In an execution environment 1n which there are multiple
proiiling sessions occurring simultaneously, the trace output
ogenerated by each of the profiling sessions must be main-
tained separately. Trace records from one application pro-
gram must not be allowed to corrupt the execution flows
represented 1n the trace records of the second application
program. In the case 1 which the application programs
being profiled are multiple instances of the same program,
the origin of the trace records from each application may be
quite easily confused.

Therefore, 1t would be advantageous to provide a system
that separately maintains profile or trace information for
multiple, simultancous profiling sessions.

SUMMARY OF THE INVENTION

A method of monitoring execution performance of a
program 1s provided. A process 1dentifier associated with a
process within a program 1s determined, and a trace output
file 1s created for the process such that the file name of the
trace output file contains the process 1dentifier. Trace records
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are generated 1n response to events within the process. The
trace records associated with the process are then written to
the trace output file associated with the process. Multiple
processes may then be associated with unique trace output
files simultaneously. Using this methodology, multiple
instances of JVMs may be executing simultancously, and
cach JVM may be generating trace records through a pro-

filer. However, the origin of the trace records, as identified
by the process identifier of the JVM, 1s used to place the
trace information into a file that 1s 1identified through the use
of the same process 1dentifier.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth 1in the appended claims. The 1nvention itself,
however, as well as a preferred mode of use, further objec-
fives and advantages thereof, will best be understood by
reference to the following detailed description of an 1llus-
frative embodiment when read i1n conjunction with the
accompanying drawings, wherein:

FIG. 1 1s an 1llustration depicting a distributed data

processing system in which the present invention may be
implemented;

FIGS. 2A-B are block diagrams depicting a data process-
ing system 1n which the present invention may be 1mple-
mented;

FIG. 3A 1s a block diagram depicting the relationship of
software components operating within a computer system
that may implement the present invention;

FIG. 3B 1s a block diagram depicting a Java virtual
machine 1n accordance with a preferred embodiment of the
present mvention;

FIG. 4 1s a block diagram depicting components used to
proiile processes 1n a data processing system;

FIG. 5 1s an 1llustration depicting various phases in
proiiling the active processes 1n an operating system,;

FIG. 6 1s a flowchart depicting a process used by a trace
program for generating trace records from processes execut-
ing on a data processing system;

FIG. 7 1s a flowchart depicting a process used 1n a system
mterrupt handler trace hook;

FIG. 8 1s a diagram depicting the call stack containing
stack frames;

FIG. 9 1s an 1illustration depicting a call stack sample;

FIG. 10A 1s a diagram depicting a program execution
sequence along with the state of the call stack at each
function entry/exitpoint;

FIG. 10B 1s a diagram depicting a particular timer based
sampling of the execution tlow depicted 1n FIG. 10A;

FIGS. 10C-D are time charts providing an example of the
types of time for which the profiling tool accounts;

FIG. 11A 1s a diagram depicting a tree structure generated
from sampling a call stack;

FIG. 11B 1s a diagram depicting an event tree which
reflects call stacks observed during system execution;

FIG. 12 1s a table depicting a call stack tree;

FIG. 13 1s a flow chart depicting a method for building a
call stack tree using a trace text file as input;

FIG. 14 1s a flow chart depicting a method for building a
call stack tree dynamically as tracing 1s taking place during
system execution;

FIG. 15 1s a diagram depicting a structured profile
obtained using the processes of the present invention;
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FIG. 16 1s a diagram depicting a record generated using,
the processes of present invention;

FIG. 17 1s a diagram depicting another type of report that
may be produced to show the calling structure between
routines shown 1n FIG. 12;

FIG. 18 1s a table depicting a report generated from a trace
file containing both event-based profiling information
(method entry/exits) and sample-based profiling information
(stack unwinds);

FIG. 19 15 a table depicting major codes and minor codes
that may be employed to instrument modules for profiling;

FIG. 20 1s a block diagram depicting an organization of
system components for tracing an application program
executing within a JVM using a profiiler;

FIG. 21A 1s a block diagram depicting the relationships
between a profiler and a single JVM 1n a data processing
system capable of generating trace data to profile an execut-
Ing program;

FIG. 21B 1s a block diagram depicting the relationships
between a profiler and multiple JVMSs 1n a data processing
system capable of generating trace data to profile an execut-
ing program; and

FIG. 22 1s a flowchart depicting a process for creating
unique file names for storing trace output data generated for
multiple applications being profiled simultaneously;

FIG. 23 1s a diagram depicting the manner 1n which trace
records for a particular process generated at the application
layer and the system layer may be merged; and

FIG. 24 1s a flowchart depicting a process for using trace
records from different sorces 1n which the trace records may
be merged based on a process identifier.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

With reference now to the figures, and 1n particular with
reference to FIG. 1, a pictorial representation of a distributed
data processing system 1n which the present invention may
be 1mplemented 1s depicted.

Distributed data processing system 100 1s a network of
computers 1n which the present mmvention may be 1mple-
mented. Distributed data processing system 100 contains a
network 102, which 1s the medium used to provide commu-
nications links between various devices and computers
connected together within distributed data processing sys-
tem 100. Network 102 may include permanent connections,
such as wire or fiber optic cables, or temporary connections
made through telephone connections.

In the depicted example, a server 104 1s connected to
network 102 along with storage unit 106. In addition, clients
108, 110, and 112 also are connected to a network 102.
These clients 108, 110, and 112 may be, for example,
personal computers or network computers. For purposes of
this application, a network computer 1S any computer,
coupled to a network, which receives a program or other
application from another computer coupled to the network.
In the depicted example, server 104 provides data, such as
boot {iles, operating system i1mages, and applications to
clients 108—112. Clients 108, 110, and 112 are clients to
server 104. Daistributed data processing system 100 may
imnclude additional servers, clients, and other devices not
shown. In the depicted example, distributed data processing
system 100 1s the Internet with network 102 representing a
worldwide collection of networks and gateways that use the
TCP/IP suite of protocols to communicate with one another.
At the heart of the Internet 1s a backbone of high-speed data



US 6,754,890 B1

S

communication lines between major nodes or host
computers, consisting of thousands of commercial,
government, educational, and other computer systems, that
route data and messages. Of course, distributed data pro-
cessing system 100 also may be implemented as a number

of different types of networks, such as, for example, an
Intranet or a local area network.

FIG. 1 1s mntended as an example, and not as an architec-
tural limitation for the processes of the present invention.

With reference now to FIG. 2A, a block diagram of a data
processing system which may be implemented as a server,
such as server 104 1n FIG. 1, 1s depicted 1 accordance to the
present invention. Data processing system 200 may be a
symmetric multiprocessor (SMP) system including a plural-
ity of processors 202 and 204 connected to system bus 206.
Alternatively, a single processor system may be employed.
Also connected to system bus 206 1s memory controller/
cache 208, which provides an interface to local memory 209.
[/0 Bus Bridge 210 1s connected to system bus 206 and
provides an interface to I/O bus 212. Memory controller/

cache 208 and I/O Bus Bridge 210 may be integrated as
depicted.

Peripheral component interconnect (PCI) bus bridge 214
connected to I/0 bus 212 provides an interface to PCI local
bus 216. A modem 218 may be connected to PCI local bus
216. Typical PCI bus implementations will support four PCI
expansion slots or add-1n connectors. Communications links
to network computers 108—112 1n FIG. 1 may be provided

through modem 218 and network adapter 220 connected to
PCI local bus 216 through add-in boards.

Additional PCI bus bridges 222 and 224 provide imter-
faces for additional PCI buses 226 and 228, from which
additional modems or network adapters may be supported.
In this manner, server 200 allows connections to multiple
network computers. A memory mapped graphics adapter

230 and hard disk 232 may also be connected to 1/0 bus 212

as depicted, either directly or indirectly.

Those of ordinary skill in the art will appreciate that the
hardware depicted in FIG. 2A may vary. For example, other
peripheral devices, such as optical disk drive and the like
also may be used in addition or 1n place of the hardware
depicted. The depicted example 1s not meant to 1mply
architectural limitations with respect to the present mven-
tion.

The data processing system depicted 1in FIG. 2A may be,
for example, an IBM RISC/System 6000 system, a product
of International Business Machines Corporation in Armonk,
N.Y., running the Advanced Interactive Executive (AIX)
operating system.

With reference now to FIG. 2B, a block diagram of a data
processing system 1n which the present invention may be
implemented is illustrated. Data processing system 250 1s an
example of a client computer. Data processing system 250
employs a peripheral component interconnect (PCI) local
bus architecture. Although the depicted example employs a
PCI bus, other bus architectures such as Micro Channel and
ISA may be used. Processor 252 and main memory 254 are
connected to PCI local bus 256 through PCI Bridge 258. PCI
Bridge 258 also may include an integrated memory control-
ler and cache memory for processor 252. Additional con-
nections to PCI local bus 256 may be made through direct
component interconnection or through add-in boards. In the
depicted example, local area network (LLAN) adapter 260,
SCSI host bus adapter 262, and expansion bus interface 264
are connected to PCI local bus 256 by direct component
connection. In contrast, audio adapter 266, graphics adapter
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268, and audio/video adapter (A/V) 269 are connected to
PCI local bus 266 by add-in boards inserted into expansion
slots. Expansion bus interface 264 provides a connection for
a keyboard and mouse adapter 270, modem 272, and addi-
tional memory 274. SCSI host bus adapter 262 provides a
connection for hard disk drive 276, tape drive 278, and
CD-ROM 280 1n the depicted example. Typical PCI local
bus 1implementations will support three or four PCI expan-
sion slots or add-in connectors.

An operating system runs on processor 252 and 1s used to
coordinate and provide control of various components
within data processing system 250 1in FIG. 2B. The operating
system may be a commercially available operating system
such as JavaOS For Business™ or OS/2™_ which are
available from International Business Machines Corpora-
tion™, JavaOS 1s loaded from a server on a network to a
network client and supports Java programs and applets. A
couple of characteristics of JavaOS that are favorable for
performing traces with stack unwinds, as described below,
are that JavaOS does not support paging or virtual memory.
An object oriented programming system such as Java may
run in conjunction with the operating system and may
provide calls to the operating system from Java programs or
applications executing on data processing system 250.
Instructions for the operating system, the object-oriented
operating system, and applications or programs are located
on storage devices, such as hard disk drive 276 and may be
loaded mto main memory 254 for execution by processor
252. Hard disk drives are often absent and memory 1s
constrained when data processing system 250 1s used as a
network client.

Those of ordinary skill in the art will appreciate that the
hardware 1n FIG. 2B may vary depending on the implemen-
tation. For example, other peripheral devices, such as optical
disk drives and the like may be used 1 addition to or 1n place
of the hardware depicted in FIG. 2B. The depicted example
1s not meant to 1imply architectural limitations with respect
to the present invention. For example, the processes of the
present invention may be applied to a multiprocessor data
processing system.

The present mvention provides a process and system for
proiiling software applications. Although the present imnven-
fion may operate on a variety of computer platforms and
operating systems, 1t may also operate within a Java runtime
environment. Hence, the present invention may operate in
conjunction with a Java virtual machine (JVM) yet within
the boundaries of a JVM as defined by Java standard
specifications. In order to provide a context for the present
invention, portions of the operation of a JVM according to
Java specifications are herein described.

With reference now to FIG. 3A, a block diagram 1llus-
trates the relationship of software components operating
within a computer system that may implement the present
invention. Java-based system 300 contains platform speciiic
operating system 302 that provides hardware and system
support to software executing on a specific hardware plat-
form. JVM 304 1s one software application that may execute
in conjunction with the operating system. JVM 304 provides
a Java run-time environment with the ability to execute Java
application or applet 306, which 1s a program, servlet, or
software component written in the Java programming lan-
cuage. The computer system in which JVM 304 operates
may be similar to data processing system 200 or computer
100 described above. However, JVM 304 may be imple-
mented 1n dedicated hardware on a so-called Java chip,
Java-on-silicon, or Java processor with an embedded pico-
Java core.
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At the center of a Java run-time environment 18 the JVM,
which supports all aspects of Java’s environment, including
its architecture, security features, mobility across networks,
and platform independence.

The JVM 1s a virtual computer, 1.e. a computer that 1s
specified abstractly. The specification defines certain fea-
tures that every JVM must implement, with some range of
design choices that may depend upon the platform on which
the JVM 1s designed to execute. For example, all JIVMs must
execute Java bytecodes and may use a range of techniques
to execute the instructions represented by the bytecodes. A
JVM may be implemented completely in software or some-
what 1n hardware. This flexibility allows different JVMs to
be designed for mainframe computers and PDAs.

The JVM 1s the name of a virtual computer component
that actually executes Java programs. Java programs are not
run directly by the central processor but instead by the JVM,
which 1s itself a piece of software running on the processor.
The JVM allows Java programs to be executed on a different
platform as opposed to only the one platform for which the
code was compiled. Java programs are compiled for the
JVM. In this manner, Java 1s able to support applications for
many types of data processing systems, which may contain
a variety of central processing units and operating systems
architectures. To enable a Java application to execute on
different types of data processing systems, a compiler typi-
cally generates an architecture-neutral file format—the com-
piled code 1s executable on many processors, given the
presence of the Java run-time system. The Java compiler
generates bytecode instructions that are nonspecific to a
particular computer architecture. A bytecode 1s a machine
independent code generated by the Java compiler and
executed by a Java interpreter. A Java interpreter 1s part of
the JVM that alternately decodes and interprets a bytecode
or bytecodes. These bytecode instructions are designed to be
casy to interpret on any computer and easily translated on
the fly into native machine code. Byte codes are may be
translated into native code by a just-in-time compiler or JIT.

A JVM must load class files and execute the bytecodes
within them. The JVM contains a class loader, which loads
class-files from an application and the class files from the
Java application programming interfaces (APIs) which are
nceded by the application. The execution engine that
executes the bytecodes may vary across platforms and
implementations.

One type of software-based execution engine 1s a just-in-
time compiler. With this type of execution, the bytecodes of
a method are compiled to native machine code upon suc-
cessful fulfillment of some type of criteria for jitting a
method. The native machine code for the method 1s then
cached and reused upon the next invocation of the method.
The execution engine may also be implemented in hardware
and embedded on a chip so that the Java bytecodes are
executed natively. JVMs usually interpret bytecodes, but
JVMs may also use other techniques, such as just-in-time
compiling, to execute bytecodes.

Interpreting code provides an additional benefit. Rather
than 1instrumenting the Java source code, the interpreter may
be mstrumented. Trace data may be generated via selected
events and timers through the instrumented mterpreter with-

out modifying the source code. Profile instrumentation is
discussed 1n more detail further below.

When an application 1s executed on a JVM that 1s imple-
mented 1n software on a platform-specific operating system,
a Java application may interact with the host operating
system by 1nvoking native methods. A Java method 1is
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written 1n the Java language, compiled to bytecodes, and
stored 1n class files. A native method 1s written 1n some other
language and compiled to the native machine code of a
particular processor. Native methods are stored 1n a dynami-
cally linked library whose exact form 1s platform specific.

With reference now to FIG. 3B, a block diagram of a JVM
1s depicted 1n accordance with a preferred embodiment of
the present mvention. JVM 350 1ncludes a class loader
subsystem 352, which 1s a mechanmism for loading types,
such as classes and interfaces, given fully qualified names.
JVM 350 also contains runtime data arecas 354, execution
engine 356, native method interface 358, and memory
management 374. Execution engine 356 1s a mechanism for
executing instructions contained in the methods of classes
loaded by class loader subsystem 352. Execution engine 356
may be, for example, Java interpreter 362 or just-in-time
compiler 360. Native method interface 358 allows access to
resources 1n the underlying operating system. Native method
interface 358 may be, for example, a Java native interface.

Runtime data areas 354 contain native method stacks 364,
Java stacks 366, PC registers 368, method area 370, and
heap 372. These different data areas represent the organiza-
tion of memory needed by JVM 350 to execute a program.

Java stacks 366 arc used to store the state of Java method
mvocations. When a new thread 1s launched, the JVM
creates a new Java stack for the thread. The JVM performs
only two operations directly on Java stacks: it pushes and
pops frames. A thread’s Java stack stores the state of Java
method 1nvocations for the thread. The state of a Java
method invocation includes its local variables, the param-
cters with which it was invoked, 1ts return value, if any, and
intermediate calculations. Java stacks are composed of stack
frames. A stack frame contains the state of a single Java
method invocation. When a thread invokes a method, the
JVM pushes a new frame onto the Java stack of the thread.
When the method completes, the JVM pops the frame for
that method and discards it. The JVM does not have any
registers for holding intermediate values; any Java instruc-
tion that requires or produces an mtermediate value uses the
stack for holding the intermediate values. In this manner, the
Java mstruction set 1s well-defined for a variety of platform
architectures.

PC registers 368 arc used to mndicate the next instruction
to be executed. Each instantiated thread gets its own pc
register (program counter) and Java stack. If the thread is
executing a JVM method, the value of the pc register
indicates the next instruction to execute. If the thread 1is
executing a native method, then the contents of the pc
register are undefined.

Native method stacks 364 store the state of invocations of
native methods. The state of native method invocations 1s
stored 1n an 1mplementation-dependent way 1n native
method stacks, registers, or other implementation-dependent

memory areas. In some JVM implementations, native
method stacks 364 and Java stacks 366 are combined.

Method area 370 contains class data while heap 372
contamns all instantiated objects. The JVM specification
strictly defines data types and operations. Most JVMs
choose to have one method area and one heap, each of which
are shared by all threads running inside the JVM. When the
JVM loads a class file, 1t parses information about a type
from the binary data contained in the class file. It places this
type information into the method area. Each time a class
instance or array 1s created, the memory for the new object
1s allocated from heap 372. JVM 350 includes an instruction
that allocates memory space within the memory for heap
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372 but includes no 1nstruction for freeing that space within
the memory. Memory management 374 i the depicted
example manages memory space within the memory allo-
cated to heap 370. Memory management 374 may include a
garbage collector which automatically reclaims memory
used by objects that are no longer referenced. Additionally,
a garbage collector also may move objects to reduce heap
fragmentation.

The processes within the following figures provide an
overall perspective of the many processes employed within
the present invention: processes that generate event-based
proiiling information in the form of speciiic types of records
1n a trace file; processes that generate sample-based profiling
information in the form of specific types of records 1n a trace
file; processes that read the trace records to generate more
useful information to be placed into profile reports; and
processes that generate the profile reports for the user of the
profiling utility.

With reference now to FIG. 4, a block diagram depicts
components used to profile processes 1 a data processing
system. A trace program 400 1s used to profile processes 402.
Trace program 400 may be used to record data upon the
execution of a hook, which 1s a specialized piece of code at
a specific location in a routine or program in which other
routines may be connected. Trace hooks are typically
inserted for the purpose of debugging, performance analysis,
or enhancing functionality. These trace hooks are employed
to send trace data to trace program 400, which stores the
trace data in bufler 404. The trace data in buffer 404 may be
stored 1n a file for post-processing. With Java operating
systems, the present invention employs trace hooks that aid
in 1dentifying methods that may be used 1n processes 402. In
addition, since classes may be loaded and unloaded, these
changes may also be identified using trace data. This 1is
especially relevant with “network client” data processing
systems, such as those that may operate under JavaOS, since
classes and jitted methods may be loaded and unloaded more
frequently due to the constrained memory and role as a
network client.

With reference now to FIG. 5, a diagram depicts various
phases 1n profiling the processes active in an operating,
system. Subject to memory constraints, the generated trace
output may be as long and as detailed as the analyst requires
for the purpose of profiling a particular program.

An 1nitialization phase 500 1s used to capture the state of
the client machine at the time tracing 1s mitiated. This trace
mnitialization data includes trace records that identify all
existing threads, all loaded classes, and all methods for the
loaded classes. Records from trace data captured from hooks
are written to indicate thread switches, interrupts, and load-
ing and unloading of classes and jitted methods. Any class
which 1s loaded has trace records that indicate the name of
the class and 1ts methods. In the depicted example, four byte
IDs are used as 1dentifiers for threads, classes, and methods.
These IDs are associated with names output in the records.

A record 1s written to indicate when all of the start up
information has been written.

Next, during the profiling phase 502, trace records are
written to a trace bufler or file. Trace records may originate
from two types of profiling actions—event-based profiling
and sample-based profiling. In the present invention, the
trace flle may have a combination of event-based records,
such as those that may originate from a trace hook executed
1n response to a particular type of event, e.g., a method entry
or method exit, and sample-based records, such as those that
may originate from a stack walking function executed in
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response to a timer interrupt, €.g., a stack unwind record,
also called a call stack record.

For example, the following process may occur during the
profiling phase 1f the user of the profiling utility has
requested sample-based profiling information. Each time a
particular type of timer iterrupt occurs, a trace record 1s
written, which i1ndicates the system program counter. This
system program counter may be used to 1dentity the routine
that 1s interrupted. In the depicted example, a timer 1nterrupt
1s used to initiate gathering of trace data. Of course, other
types of mterrupts may be used other than timer interrupts.
Interrupts based on a programmed performance monitor
event or other types of periodic events may be employed.

In the post-processing phase 504, the data collected in the
buffer 1s sent to a file for post-processing. In one
confliguration, the file may be sent to a server, which
determines the profile for the processes on the client
machine. Of course, depending on available resources, the
post-processing also may be performed on the client
machine. In post-processing phase 504, B-trees and/or hash
tables may be employed to maintain names assoclated the
records 1n the trace file to be processed. A hash table
employs hashing to convert an i1denfifier or a key, meaning-
ful to a user, 1nto a value for the location of the correspond-
ing data 1n the table. While processing trace records, the
B-trees and/or hash tables are updated to reflect the current
state of the client machine, including newly loaded jitted
code or unloaded code. Also, 1n the post-processing phase
504, cach trace record 1s processed 1n a serial manner. As
soon as the indicator 1s encountered that all of the startup
information has been processed, event-based trace records
from trace hooks and sample-based trace records from timer
mterrupts are then processed. Timer interrupt mnformation
from the timer interrupt records are resolved with existing
hash tables. In addition, this information identifies the thread
and function being executed. The data i1s stored in hash
tables with a count identifying the number of timer tick
occurrences associated with each way of looking at the data.
After all of the trace records are processed, the information
1s formatted for output 1n the form of a report.

Alternatively, trace information may be processed on-the-
fly so that trace data structures are maintained during the
proiiling phase. In other words, while a profiling function,
such as a timer interrupt, is executing, rather than (or in
addition to) writing trace records to a buffer or file, the trace
record 1nformation 1s processed to construct and maintain
any appropriate data structures.

For example, during the processing of a timer interrupt
during the profiling phase, a determination could be made as
to whether the code being interrupted 1s being interpreted by
the Java interpreter. If the code being interrupted 1is
interpreted, the method ID of the method being interpreted
may be placed in the trace record. In addition, the name of
the method may be obtained and placed 1n the appropriate
B-tree. Once the profiling phase has completed, the data
structures may contain all the information necessary for
generating a profile report without the need for post-
processing of the trace {ile.

With reference now to FIG. 6, a flowchart depicts a
process used by a trace program for generating trace records
from processes executing on a data processing system. FIG.
6 provides further detail concerning the generation of trace
records that were not described with respect to FIG. §.

Trace records may be produced by the execution of small
pieces of code called “hooks”. Hooks may be inserted in
various ways 1nto the code executed by processes, including
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statically (source code) and dynamically (through modifi-
cation of a loaded executable). This process is employed
after trace hooks have already been 1nserted into the process
or processes of 1nterest. The process begins by allocating a
buffer (step 600), such as buffer 404 in FIG. 4. Next, in the
depicted example, trace hooks are turned on (step 602), and
tracing of the processes on the system begins (step 604).
Trace data is received from the processes of interest (step
606). This type of tracing may be performed during phases
500 and/or 502. This trace data 1s stored as trace records in
the buffer (step 608). A determination is made as to whether
tracing has finished (step 610). Tracing finishes when the
trace bufiler has been filled or the user stops tracing via a
command and requests that the buifer contents be sent to file.
If tracing has not finished, the process returns to step 606 as
described above.

Otherwise, when tracing is finished, the buffer contents
are sent to a file for post-processing (step 612). A report is
then generated in post-processing (step 614) with the pro-
cess terminating thereafter.

Although the depicted example uses post-processing to
analyze the trace records, the processes of the present
invention may be used to process trace information in
real-time depending on the 1implementation.

With reference now to FIG. 7, a flowchart depicts a

process that may be used during an interrupt handler trace
hook.

The process begins by obtaining a program counter (step
700). Typically, the program counter 1s available in one of
the saved program stack areas. Thereafter, a determination 1s
made as to whether the code being mterrupted 1s interpreted
code (step 702). This determination may be made by deter-
mining whether the program counter 1s within an address
range for the interpreter used to interpret bytecodes. If the
code being interrupted 1s interpreted, a method block
address 1s obtained for the code being interpreted. A trace
record 1s then written (step 706). The trace record 1s written
by sending the trace information to a trace program, such as
trace program 400, which generates trace records for post-
processing 1n the depicted example. This trace record 1s
referred to as an interrupt record, or an interrupt hook.

This type of trace may be performed during phase 502.
Alternatively, a similar process, 1.e. determining whether
code that was interrupted 1s interpreted code, may occur
during post-processing of a trace file.

In addition to event-based profiling, a set of processes
may be employed to obtain sample-based profiling informa-
fion. As applications execute, the applications may be peri-
odically interrupted 1n order to obtain information about the
current runtime environment. This information may be writ-
ten to a bufler or file for post-processing, or the information
may be processed on-the-ly into data structures representing
an ongoing history of the runtime environment. FIGS. 8 and
9 describe sample-based profiling in more detail.

A sample-based profiler obtains information from the
stack of an interrupted thread. The thread 1s interrupted by
a timer interrupt presently available in many operating
systems. The user of the trace facility selects either the
program counter option or the stack unwind option, which
may be accomplished by enabling one major code or another
major code, as described further below. This timer 1nterrupt
1s employed to sample information from a call stack. By
walking back up the call stack, a complete call stack can be
obtained for analysis. A “stack walk” may also be described
as a “stack unwind”, and the process of “walking the stack™
may also be described as “unwinding the stack.” Each of
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these terms 1llustrates a different metaphor for the process.
The process can be described as “walking” as the process
must obtain and process the stack frames step-by-step. The
process may also be described as “unwinding” as the process
must obtain and process the stack frames that point to one
another, and these pointers and their information must be
“unwound” through many pointer dereferences.

The stack unwind follows the sequence of functions/
method calls at the time of the mterrupt. A call stack 1s an
ordered list of routines plus offsets within routines (i.e.
modules, functions, methods, etc.) that have been entered
during execution of a program. For example, 1f routine A
calls routine B, and then routine B calls routine C, while the
processor 1s executing instructions in routine C, the call
stack 1s ABC. When control returns from routine C back to
routine B, the call stack 1s AB. For more compact presen-
tation and ease of interpretation within a generated report,
the names of the routines are presented without any infor-
mation about offsets. Otfsets could be used for more detailed
analysis of the execution of a program, however, olfsets are
not considered further herein.

Thus, during timer interrupt processing or at post-
processing, the generated sample-based profile information
reflects a sampling of call stacks, not just leaves of the
possible call stacks, as 1n some program counter sampling
techniques. A leaf 1s a node at the end of a branch, 1.e. a node
that has no descendants. A descendant 1s a child of a parent
node, and a leaf 1s a node that has no children.

With reference now FIG. 8, a diagram depicts the call
stack containing stack frames. A “stack” 1s a region of
reserved memory 1n which a program or programs store
status data, such as procedure and function call addresses,
passed parameters, and sometimes local variables. A “stack
frame” 1s a portion of a thread’s stack that represents local
storage (arguments, return addresses, return values, and
local variables) for a single function invocation. Every
active thread of execution has a portion of system memory
allocated for its stack space. A thread’s stack consists of
sequences of stack frames. The set of frames on a thread’s
stack represent the state of execution of that thread at any
time. Since stack frames are typically interlinked (e.g., each
stack frame points to the previous stack frame), it is often
possible to trace back up the sequence of stack frames and
develop the “call stack™. A call stack represents all not-yet-
completed function calls—in other words, 1t reflects the
function invocation sequence at any point 1n time.

Call stack 800 includes mformation identifying the rou-
tine that 1s currently running, the routine that invoked 1t, and
so on all the way up to the main program. Call stack 800
includes a number of stack frames 802, 804, 806, and 808.
In the depicted example, stack frame 802 1s at the top of call
stack 800, while stack frame 808 1s located at the bottom of
call stack 800. The top of the call stack 1s also referred to as
the “root”. The timer interrupt (found in most operating
systems) 1s modified to obtain the program counter value
(pcv) of the interrupted thread, together with the pointer to
the currently active stack frame for that thread. In the Intel
architecture, this is typically represented by the contents of
registers: EIP (program counter) and EBP (pointer to stack
frame). By accessing the currently active stack frame, it is
possible to take advantage of the (typical) stack frame
linkage convention in order to chain all of the frames
together. Part of the standard linkage convention also dic-
tates that the function return address be placed just above the
imnvoked-function’s stack frame; this can be used to ascertain
the address for the mmvoked function. While this discussion
employs an Intel-based architecture, this example 1s not a

™
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restriction. Most architectures employ linkage conventions
that can be similarly navigated by a modified profiling
mterrupt handler.

When a timer interrupt occurs, the first parameter
acquired 1s the program counter value. The next value 1s the
pointer to the top of the current stack frame for the inter-
rupted thread. In the depicted example, this value would
point to EBP 808a in stack frame 808. In turn, EBP 808
points to EBP 8064 1n stack frame 806, which in turn points
to EBP 8044 1n stack frame 804. In turn, this EBP points to
EBP 8024 1n stack frame 802. Within stack frames 802-808
arc EIPs 802b—808b, which identity the calling routine’s
return address. The routines may be identified from these
addresses. Thus, routines are defined by collecting all of the
return addresses by walking up or backwards through the
stack.

With reference now to the FIG. 9, an 1llustration of a call
stack 1s depicted. A call stack, such as call stack 900 is
obtained by walking the call stack. A call stack 1s obtained
cach time a periodic event, such as, for example, a timer
interrupt occurs. These call stacks may be stored as call stack
unwind trace records within the trace file for post-processing,
or may be processed on-the-ily while the program continues
to execute.

In the depicted example, call stack 900 contains a pid 902,
which 1s the process identifier, and a tid 904, which is the
thread 1dentifier. Call stack 900 also contains addresses
addrl 906, addr2 908 . . . addrN 910. In this example, addrl
906 represents the value of the program counter at the time
of the interrupt. This address occurs somewhere within the
scope of the interrupted function. addr2 908 represents an
address within the process that called the function that was
interrupted. For Intel-processor-based data processing
systems, 1t represents the return address for that call; dec-
rementing that value by 4 results 1n the address of the actual

call, also known as the call-site. This corresponds with EIP
8086 in FIG. 8; addrN 910 is the top of the call stack (EIP

802b). The call stack that would be returned if the timer
mterrupt interrupted the thread whose call stack state is
depicted 1n FIG. 8 would consist of: a pid, which 1s the
process 1d of the interrupted thread; a tid, which 1s the thread
1d for the interrupted thread; a pcv, which 1s a program

counter value (not shown on FIG. 8) for the interrupted
thread; EIP 808b; EIP 806b, EIP 804H; and EIP 802). In

terms of FIG. 9, pcv=addrl, EIP 808b=addr2, EIP 806)H=
addr3, EIP 804b=addrd, EIP 802b=addr5.

With reference now to FIG. 10A, a diagram of a program
execution sequence along with the state of the call stack at
cach function entry/exit point 1s provided. The illustration
shows entries and exits occurring at regular time intervals,
but this 1s only a simplification for the illustration. If each
function (A, B, C, and X 1n the figure) were instrumented
with entry/exit event hooks, then complete accounting of the
time spent within and below each function would be readily
obtained. Note 1n FIG. 10A that at time 0, the executing
thread 1s 1n routine C. The call stack at time 0 1s C. At time
1, routine C calls routine A, and the call stack becomes CA
and so on. It should be noted that the call stack i1n FIG. 10A
1s a reconstructed call stack that 1s generated by processing
the event-based trace records 1n a trace file to follow such
events as method entries and method exits.

The accounting technique and data structure are described
in more detail further below. Unfortunately, this type of
instrumentation can be expensive, can introduce bias, and in
some cases, can be hard to apply. Sample-based profiling, by
sampling the program’s call stack, helps to alleviate the
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performance bias (and other complications) that entry/exit
hooks produce.

Consider FIG. 10B, in which the same program 1s
executed but is being sampled on a regular basis (in the
example, the mterrupt occurs at a frequency equivalent to
two timestamp values). Each sample includes a snapshot of
the mterrupted thread’s call stack. Not all call stack com-
binations are seen with this technique (note that routine X
does not show up at all 1in the set of call stack samples in
FIG. 10B). This is an acceptable limitation of sampling. The
idea 1s that with an appropriate sampling rate (e.g., 30—-1000
times per second), the call stacks in which most of the time
1s spent will be 1dentified. Although some call stacks are
omitted, 1t 1s a minor 1ssue provided these call stacks are
combinations for which little time 1s consumed.

In the event-based traces, there 1s a fundamental assump-
tion that the traces contain information about routine entries
and matching routine exits. Often, entry-exit pairs are nested
in the traces because routines call other routines. Time spent
(or memory consumed) between entry into a routine and exit
from the same routine 1s attributed to that routine, but a user
of a profiling tool may want to distinguish between time
spent directly 1n a routine and time spent 1n other routines
that 1t calls.

FIG. 10C shows an example of the manner in which time
may be expended by two routines: a program’s “main” calls
routine A at time “t” equal to zero; routine A computes for
1 ms and then calls routine B; routine B computes for 8 ms
and then returns to routine A; routine A computes for 1 ms
and then returns to “main”. From the point of view of
“main”, routine A took 10 ms to execute, but most of that
fime was spent executing instructions in routine B and was
not spent executing instructions within routine A. This 1s a
useful piece of information for a person attempting to
optimize the example program. In addition, if routine B 1is
called from many places in the program, i1t might be useful
to know how much of the time spent 1n routine B was on
behalf of (or when called by) routine A and how much of the

time was on behalf of other routines.

A Tundamental concept in the output provided by the
methods described herein 1s the call stack. The call stack
consists of the routine that 1s currently running, the routine
that invoked it, and so on all the way up to main. A profiler
may add a higher, thread level with the pid/tid (the process
IDs and thread IDs). In any case, an attempt is made to
follow the trace event records, such as method entries and
exits, as shown 1n FIG. 10A, to reconstruct the structure of
the call stack frames while the program was executing at
various times during the trace.

The post-processing of a trace file may result 1n a report
consisting of three kinds of time spent 1n a routine, such as
routine A: (1) base time—the time spent executing code in
routine A itself; (2) cumulative time (or “cum time” for
short)}—the time spent executing in routine A plus all the
time spent executing every routine that routine A calls (and
all the routines they call, etc.); and (3) wall-clock time or
clapsed time. This type of timing information may be
obtained from event-based trace records as these records
have timestamp information for each record.

A routine’s cum time 1s the sum of all the time spent
executing the routine plus the time spent executing any other
routine while that routine 1s below 1t on the call stack. In the
example above 1n FIG. 10C, routine A’s base time 1s 2 ms,
and 1ts cum time 1s 10 ms. Routine B’s base time 18 8 ms, and
its cum time 15 also 8 ms because 1t does not call any other
routines. It should be noted that cum time may not be
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ogenerated if a call stack tree 1s being generated on-the-fly—
cum time may only be computed after the fact during the
post-processing phase of a profile utility.

For wall-clock or elapsed time, i1f while routine B was
running, the system fielded an interrupt or suspended this
thread to run another thread, or if routine B blocked waiting
on a lock or I/O, then routine B and all the entries above
routine B on the call stack accumulate elapsed time but not
base or cum time. Base and cum time are unaifected by
interrupts, dispatching, or blocking. Base time only
increases while a routine i1s running, and cum time only
increases while the routine or a routine below 1t on the call
stack 1s running.

In the example 1n FIG. 10C, routine A’s elapsed time 1s
the same as its cum time—10 ms. Changing the example
slightly, suppose there was a 1 ms interrupt in the middle of
B, as shown 1n FIG. 10D. Routine A’s base and cum time are
unchanged at 2 ms and 10 ms, but its elapsed time 1s now 11
ms.

Although base time, cum time and elapsed time were
defined 1n terms of processor time spent 1n routines, sample
based profiling 1s usetul for attributing consumption of
almost any system resource to a set of routines, as described
in more detail below with respect to FIG. 11B. Referring to
FIG. 10C again, if routine A 1nitiated two disk I/O’s, and
then routine B 1nitiated three more I/O’s when called by
routine A, routine A’s “base I/O’s” are two and routine A’s
“cum [/O’s” are five. “Elapsed I/O’s” would be all 1/O’s,
including those by other threads and processes, that occurred
between entry to routine A and exit from routine A. More
ogeneral definitions for the accounting concepts during pro-
filing would be the following: base—the amount of the
tracked system resource consumed directly by this routine;
cum—the amount of the tracked system resource consumed
by this routine and all routines below 1t on the call stack;
clapsed—the total amount of the tracked system resource
consumed (by any routine) between entry to this routine and
exit from the routine.

As noted above, FIGS. 10A—-10D describe the process by
which a reconstructed call stack may be generated by
processing the event-based trace records 1n a trace file by
following such events as method entries and method exits.
Hence, although FIGS. 11A—-14 describe call stack trees that
may be applicable to processing sample-based trace records,
the description below for generating or reconstructing call
stacks and call stack trees in FIGS. 11A-14 1s mainly
directed to the processing of event-based trace records.

With reference now to FIG. 11A, a diagram depicts a tree
structure generated from trace data. This figure 1llustrates a
call stack tree 1100 1n which each node 1n tree structure 1100
represents a function entry point.

Additionally, 1n each node 1n tree structure 1100, a num-
ber of statistics are recorded. In the depicted example, each
node, nodes 1102-1108, contains an address (addr), a base
time (BASE), cumulative time (CUM) and parent and chil-
dren pointers. As noted above, this type of timing 1nforma-
tion may be obtained from event-based trace records as these
records have timestamp information for each record. The
address represents a function entry point. The base time
represents the amount of time consumed directly by this
thread executing this function. The cumulative time 1s the
amount of time consumed by this thread executing this
function and all functions below 1t on the call stack. In the
depicted example, pointers are included for each node. One
pointer 1s a parent pointer, a pointer to the node’s parent.
Each node also contains a pointer to each child of the node.
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Those of ordinary skill in the art will appreciate that tree
structure 1100 may be implemented 1n a variety of ways and
that many different types of statistics may be maintained at
the nodes other than those 1n the depicted example.

The call stack 1s developed from looking back at all return
addresses. These return addresses will resolve within the
bodies of those functions. This 1nformation allows for
accounting discrimination between distinct invocations of
the same function. In other words, if function X has 2
distinct calls to function A, the time associated with those
calls can be accounted for separately. However, most reports
would not make this distinction.

With reference now to FIG. 11B, a call stack tree which
reflects call stacks observed during a specific example of
system execution will now be described. At each node 1n the
tree, several statistics are recorded. In the example shown 1n
FIG. 11B, the statistics are time-based statistics. The par-
ticular statistics shown include the number of distinct times
the call stack 1s produced, the sum of the time spent 1n the
call stack, the total time spent 1n the call stack plus the time
in those call stacks invoked from this call stack (referred to
as cumulative time), and the number of instances of this
routine above this instance (indicating depth of recursion).

For example, at node 1152 in FIG. 11B, the call stack 1s
CAB, and the statistics kept for this node are 2:3:4:1. Note
that call stack CAB 1s first produced at time 2 1n FIG. 10A,
and 1s exited at time 3. Call stack CAB 1s produced again at
time 4, and 1s exited at time 7. Thus, the first statistic
indicates that this particular call stack, CAB, 1s produced
twice 1n the trace. The second statistic indicates that call
stack CAB exists for three units of time (at time 2, time 4,
and time 6). The third statistic indicates the cumulative
amount of time spent 1n call stack CAB and those call stacks
invoked from call stack CAB (i.e., those call stacks having
CAB as a prefix, in this case CABB). The cumulative time
in the example shown 1n FIG. 11B 1s four units of time.
Finally, the recursion depth of call stack CAB 1s one, as none
of the three routines present 1n the call stack have been
recursively entered.

Those skilled 1n the art will appreciate that the tree
structure depicted mn FIG. 11B may be implemented in a
variety of ways, and a variety of different types of statistics
may be maintained at each node. In the described
embodiment, each node 1n the tree contains data and point-
ers. The data include the name of the routine at that node,
and the four statistics discussed above. Of course, many
other types of statistical information may be stored at each
node. In the described embodiment, the pointers for each
node include a pointer to the node’s parent, a pointer to the
first child of the node (i.e. the left-most child), a pointer to
the next sibling of the node, and a pointer to the next
instance of a given routine 1n the tree. For example, in FIG.
11B, node 1154 would contain a parent pointer to node 1156,
a first child pointer to node 1158, a next sibling pointer equal
to NULL (note that node 1154 does not have a next sibling),
and a next instance pointer to node 1162. Those skilled in the
art will appreciate that other pointers may be stored to make
subsequent analysis more efficient. In addition, other struc-
tural elements, such as tables for the properties of a routine
that are 1nvariant across instances (¢.g., the routine’s name),
may also be stored.

The type of performance information and statistics main-
tained at each node are not constrained to time-based
performance statistics. The present invention may be used to
present many types of trace information in a compact
manner which supports performance queries. For example,
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rather than keeping statistics regarding time, tracing may be
used to track the number of Java bytecodes executed 1 each
method (i.e., routine) called. The tree structure of the present
invention would then contain statistics regarding bytecodes
executed rather than time. In particular, the quanfities
recorded 1n the second and third categories would reflect the
number of bytecodes executed rather than the amount of
fime spent 1n each method.

Tracing may also be used to track memory allocation and
deallocation. Every time a routine creates an object, a trace
record could be generated. The tree structure of the present
invention would then be used to efficiently store and retrieve
information regarding memory allocation. Each node would
represent the number of method calls, the amount of
memory allocated within a method, the amount of memory
allocated by methods called by the method, and the number
of methods above this instance (i.e., the measure of
recursion). Those skilled in the art will appreciate that the
tree structure of the present invention may be used to
represent a variety of performance data in a manner which
1s very compact, and allows a wide variety of performance
queries to be performed.

The tree structure shown 1n FIG. 11B depicts one way in
which data may be pictorially presented to a user. The same
data may also be presented to a user 1n tabular form as shown

in FIG. 12.

With reference now to FIG. 12, a call stack tree presented
as a table will now be described. Note that FIG. 12 contains
a routine, pt__pidtid, which is the main process/thread which
calls routine C. Table 12 includes columns of data for Level
1230, RL 1232, Calls 1234, Base 1236, Cum 1238, and
Indent 1240. Level 1230 is the tree level (counting from the
root as level 0) of the node. RL 1232 is the recursion level.
Calls 1234 1s the number of occurrences of this particular
call stack, 1.e., the number of times this distinct call stack
conilguration occurs. Base 1236 1s the total observed time 1n
the particular call stack, 1.e., the total time that the stack had
exactly these routines on the stack. Cum 1238 1s the total
time 1n the particular call stack plus deeper levels below 1it.
Indent 1240 depicts the level of the tree 1 an indented
manner. From this type of call stack configuration
information, it 1s possible to infer each umque call stack
conflguration, how many times the call stack configuration
occurred, and how long 1t persisted on the stack. This type
of information also provides the dynamic structure of a
program, as 1t 1S possible to see which routine called which
other routine. However, there 1s no notion of time-order in
the call stack tree. It cannot be inferred that routines at a
certain level were called before or after other routines on the
same level.

The pictorial view of the call stack tree, as 1llustrated in
FIG. 11B, may be built dynamically or built statically using
a trace text file or binary file as input. FIG. 13 depicts a flow
chart of a method for building a call stack tree using a trace
text file as input. In FIG. 13, the call stack tree 1s built to
illustrate module entry and exit points.

With reference now to FIG. 13, 1t 1s first determined 1f
there are more trace records in the trace text file (step 1350).
If so, several pieces of data are obtained from the trace
record, including the time, whether the event 1s an enter or
an exit, and the module name (step 1352). Next, the last time
increment is attributed to the current node in the tree (step
1354). A check is made to determine if the trace record is an
enter or an exit record (step 1356). If it is an exit record, the
tree is traversed to the parent (using the parent pointer), and
the current tree node is set equal to the parent node (step
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1358). If the trace record is an enter record, a check 1s made
to determine 1f the module 1s already a child node of the
current tree node (step 1360). If not, a new node 1s created
for the module and 1t 1s attached to the tree below the current
tree node (step 1362). The tree i1s then traversed to the
module’s node, and the current tree node 1s set equal to the
module node (step 1364). The number of calls to the current
tree node is then incremented (step 1366). This process is
repeated for each trace record in the trace output file, until

there are no more trace records to parse (step 1368).

With reference now to FIG. 14, a flow chart depicts a
method for building a call stack tree dynamically as tracing
1s taking place during system execution. In FIG. 14, as an
event 1s logged, 1t 1s added to the tree 1 real time. Preferably,
a call stack tree 1s maintained for each thread. The call stack
tree reflects the call stacks recorded to date, and a current
tree node field indicates the current location 1n a particular
tree. When an event occurs (step 1470), the thread ID is
obtained (step 1471). The time, type of event (i.e., in this
case, whether the event is a method entry or exit), the name
of the module (i.e., method), location of the thread’s call
stack, and location of the thread’s “current tree node” are
then obtained (step 1472). The last time increment is attrib-
uted to the current tree node (step 1474). A check is made to
determine if the trace event is an enter or an exit event (step
1476). If it 1s an exit event, the tree is traversed to the parent
(using the parent pointer), and the current tree node is set
equal to the parent node (step 1478). At this point, the tree
can be dynamically pruned 1n order to reduce the amount of
memory dedicated to its maintenance (step 1479). Pruning is
discussed 1n more detail below. If the trace event 1s an enter
event, a check 1s made to determine 1f the module 1s already
a child node of the current tree node (step 1480). If not, a
new node 1s created for the module, and 1t 1s attached to the
tree below the current tree node (step 1482). The tree is then
traversed to the module’s node, and the current tree node 1s
set equal to the module node (step 1484). The number of
calls to the current tree node is then incremented (step 1486).
Control 1s then passed back to the executing module, and the

dynamic tracing/reduction program waits for the next event
to occur (step 1488).

One of the advantages of using the dynamic tracing/
reduction technique described 1n FIG. 14 1s its enablement
of long-term system trace collection with a finite memory
buffer. Very detailed performance profiles may be obtained
without the expense of an “infinite” trace buffer. Coupled
with dynamic pruning, the method depicted 1n FIG. 14 can
support a fixed-bufler-size trace mechanism.

The use of dynamic tracing and reduction (and dynamic
pruning in some cases) is especially useful in profiling the
performance characteristics of long running programs. In the
case of long running programs, a finite trace bufler can
severely impact the amount of useful trace information that
may be collected and analyzed. By using dynamic tracing
and reduction (and perhaps dynamic pruning), an accurate
and informative performance profile may be obtained for a
long running program.

Many long-running applications reach a type of steady-
state, where every possible routine and call stack 1s present
in the tree and updating statistics. Thus, trace data can be
recorded and stored for such applications indefinitely within
the constraints of a bounded memory requirement using
dynamic pruning. Pruning has value 1n reducing the memory
requirement for those situations in which the call stacks are
actually unbounded. For example, unbounded call stacks are
produced by applications that load and run other applica-
tions.
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Pruning can be performed in many ways, and a variety of
pruning criteria 1s possible. For example, pruning decisions
may be based on the amount of cumulative time attributed
to a subtree. Note that pruning may be disabled unless the
amount of memory dedicated to maintaining the call stack
exceeds some limit. As an exit event is encountered (such as
step 1478 in FIG. 14), the cumulative time associated with
the current node 1s compared with the cumulative time
associated with the parent node. If the ratio of these two
cumulative times does not exceed a pruning threshold (e.g.,
0.1), then the current node and all of its descendants are
removed from the tree. The algorithm to build the tree
proceeds as before by traversing to the parent, and changing
the current node to the parent.

Many variations of the above pruning mechanism are
possible. For example, the pruning threshold can be raised or
lowered to regulate the level of pruning from very aggres-
sive to none. More global techniques are also possible,
including a periodic sweep of the entire call stack tree,
removing all subtrees whose 1individual cumulative times are
not a significant fraction of their parent node’s cumulative
fimes.

Data reduction allows analysis programs to easily and
quickly answer many questions regarding how computing
time was spent within the traced program. This information
may be gathered by “walking the tree” and accumulating the
data stored at various nodes within the call stack tree, from
which it can be determined the amount of time spent strictly
within routine A, the total amount of time spent in routine A
and 1n the routines called by routine A either directly or
indirectly, etc.

With reference now to the FIG. 15, a diagram of a
structured profile obtained using the processes of the present
invention 1s illustrated. Profile 1500 shows sample numbers
in column 1502. Column 1504 shows the call stack with an
identification of the functions present within the call stack at
different sample times.

With reference now to FIG. 16, a diagram of a record
generated using the processes of present invention 1s
depicted. Each routine m record 1600 1s listed separately,
along with information regarding the routine in FIG. 16. For
example, calls column 1604 lists the number of times each
routine has been called. BASE column 1606 contains the
total time spent 1n the routine, while CUM column 1608
includes the cumulative time spent 1n the routine and all

routines called by the routine. Name column 1612 contains
the name of the routine.

With reference now to FIG. 17, a diagram of another type
of report that may be produced 1s depicted. The report
depicted in FIG. 17 illustrates much of the same information
found 1n FIG. 16, but 1n a slightly different format. As with
FIG. 16, diagram 1700 includes information on calls, base
time, and cumulative time.

FIG. 17 shows a sample-based trace output containing
fimes spent within various routines as measured 1n micro-
seconds. FIG. 17 contains one stanza (delimited by horizon-
tal lines) for each routine that appears in the sample-based
frace output. The stanza contains information about the
routine itself on the line labeled “Self”, about who called it
on lines labeled “Parent”, and about who the routine called
on lines labeled “Child”. The stanzas are in order of cum
time. The third stanza 1s about routine A, as indicated by the
line beginning with “Self.” The numbers on the “Self” line
of this stanza show that routine A was called three times 1n
this trace, once by routine C and twice by routine B. In the
profile terminology, routines C and B are (immediate) par-
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ents of routine A. Routine A 1s a child of routines C and B.
All the numbers on the “Parent” rows of the second stanza
arc breakdowns of routine A’s corresponding numbers.
Three microseconds of the seven microsecond total base
fime spent 1n A was when 1t was called by routine C, and
three microseconds when 1t was first called by routine B, and
another one microsecond when 1t was called by routine B for
a second time. Likewise, 1n this example, half of routine A’s
fourteen microsecond cum time was spent on behalf of each
parent.

Looking now at the second stanza, we see that routine C
called routine B and routine A once each. All the numbers on

“Child” rows are subsets of numbers from the child’s profile.
For example, of the three calls to routine A in this trace, one

was by routine C; of routine A’s seven microsecond total
base time, three microseconds were while 1t was called

directly by routine C; of routine A’s fourteen microsecond
cum time, seven microseconds was on behalf of routine C.
Notice that these same numbers are the first row of the third
stanza, where routine C 1s listed as one of routine A’s
parents.

The four relationships that are true of each stanza are
summarized at the top of FIG. 17. First, the sum of the
numbers 1n the Calls column for parents equals the number
of calls on the self row. Second, the sum of the numbers 1n
the Base column for parents equals Self’s base. Third, the
sum of the numbers 1n the Cum column for parents equals
Self’s Cum. These first three invariants are true because
these characteristics are the definition of Parent; collectively
they are supposed to account for all of Self’s activities.
Fourth, the Cum 1n the Child rows accounts for all of Self’s
Cum except for 1ts own Base.

Program sampling contains information from the call
stack and provides a profile, reflecting the sampling of an
entire call stack, not just the leaves. Furthermore, the
sample-based profiling technique may also be applied to
other types of stacks. For example, with Java programs, a
larce amount of time 1s spent 1n a routine called the
“interpreter”. If only the call stack was examined, the profile
would not reveal much useful information. Since the inter-
preter also tracks information in 1ts own stack, e.g., a Java
stack (with its own linkage conventions), the process can be
used to walk up the Java stack to obtain the calling sequence
from the perspective of the interpreted Java program.

With reference now to FIG. 18, a figure depicts a report
generated from a trace file containing both event-based
profiling information (method entry/exits) and sample-based
profiling information (stack unwinds). FIG. 18 is similar to
FIG. 12, 1in which a call stack tree 1s presented as a report,
except that FIG. 18 contains embedded stack walking infor-
mation. Call stack tree 1800 contains two stack unwinds
generated within the time period represented by the total of
342 ticks. Stack unwind 1dentifier 1802 denotes the begin-
ning of stack unwind information 1806, with the names of
routines that are indented to the right containing the stack
information that the stack walking process was able to
discern. Stack unwind 1dentifier 1804 denotes the beginning
of stack unwind information 1808. In this example, “J.”
identifies an interpreted Java method and “F:” identifies a
native function, such as a native function within JavaOS. A
call from a Java method to a native method 1s via “Execute-
Java.” Hence, at the point at which the stack walking process
reaches a stack frame for an “ExecuteJava,” 1t cannot
proceed any further up the stack as the stack frames are
discontinued. The process for creating a tree containing both
event-based nodes and sample-based nodes 1s described in
more detail further below. In this case, identifiers 1802 and
1804 also denote the major code associated with the stack
unwind.
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With reference now to FIG. 19, a table depicts major
codes and minor codes that may be employed to instrument
software modules for profiling. In order to facilitate the
merging of event-based profiling information and sample-
based profiling information, a set of codes may be used to
turn on and off various types of profiling functions.

For example, as shown 1n FIG. 19, the minor code for a
stack unwind 1s designated as Ox71Iililt, which may be used
for two different purposes. The first purpose, denoted with a
major code of 0x40, 1s for a stack unwind during a timer
mterrupt. When this information 1s output into a trace file,
the stack information that appears within the file will have
been coded so that the stack information i1s analyzed as
sample-based profiling information. The second purpose,
denoted with a major code of 0x41, 1s for a stack unwind in
an 1nstrumented routine. This stack information could then
be post-processed as event-based profiling information.

Other examples 1n the table show a profile or major code
purpose of tracing jitted methods with a major code value of
0x50. Tracing of jitted methods may be distinguished based
on the minor code that indicates method invocation or
method exit. In contrast, a major code of 0x30 indicates a
profiling purpose of instrumenting interpreted methods,
while the minor code again indicates, with the same values,
method mnvocation or method exit.

Referring back to FIG. 18, the connection can be made
between the use of major and minor codes, the 1nstrumen-
tation of code, and the post-processing of profile informa-
tion. In the generated report shown in FIG. 18, the stack
unwind 1dentifiers can be seen to be equal to 0x40, which,
according to the table in FIG. 19, 1s a stack unwind gener-
ated 1n response to a timer interrupt. This type of stack
unwind may have occurred 1n response to a regular interrupt
that was created 1n order to generate a sampled profiile of the
executing software.

As noted 1n the last column of the table 1n FIG. 19, by
using a utility that places a hook into a software module to
be profiled, a stack unwind may be instrumented into a
routine. If so, the output for this type of stack unwind will
be designated with a major code of 0x41.

In order to support tracing within multiple i1nstances of
JVMs executing simultaneously on a single computer
platform, one requires the ability to separate the output from
cach of the multiple JVMs, especially 1n a software con-
figuration 1 which a single profiler dynamic link library
(DLL) 1s used to generate the trace records from the different
applications being profiled. Otherwise, additional work
would be required to determine the origin of the trace data
so that the trace data may be attributed to the proper
application program being profiled.

Each instance of a JVM executes as a separate process
within the profiling environment. By recognizing this fact,
the process 1dentifier, or PID, of each JVM may be used as
a unique 1dentifier to be associated with the trace data from
the different application programs. When a thread 1s dis-
patched by a JVM, the thread 1s associated with the process
of the JVM—all threads dispatched by a particular JVM are
associated with the PID of the dispatching JVM. Hence, any
frace events or other trace data generated by a thread may be
maintained, separated, or stored based on the PID of its
JVM. By using a JVM’s PID 1n the name of each trace
output file and then eventually storing the trace records from
a particular JVM 1nto 1ts own trace output file, the names of
the trace output files may be made unique while simulta-
neously associating a trace output file with a corresponding
application being profiled and executing within a JVM.
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When a user 1s proiiling an application, the desired final
result 1s some type of profile report showing the execution
flows within the application. In order to attribute trace events
to the appropriate routines, the post-processing phase
requires knowledge of the thread in which a trace record was
originated. Hence, 1n addition to maintaining, separating,
and storing trace records based on the PID of the associated
JVM, trace records must be tracked 1n some manner so that
they can be associated with a particular thread. For example,
as noted previously with respect to FIG. 8, when generating,
a trace record for a call stack unwind, a PID of the inter-
rupted thread and a TID, 1.e., the thread identifier for the
interrupted thread, are output into a trace record. Other types

of trace records may also record so-called pid_ tid pairs.

The association of trace records with threads 1s explained
in more detail further below. Briefly, trace records are
generally associated with a particular thread by generating a
trace record when a thread is dispatched and when a thread
switch 1s detected to have occurred. The information about
the originating process and thread for a trace record 1s then
used to attribute execution flow mformation to the appro-
priate routines. The present invention 1s directed to the
ability to support tracing within multiple instances of JVMs
executing simultaneously on a single computer platform by
maintaining the ability of a post-processor to sort or filter
trace records by their originating process 1dentifier informa-
fion and originating thread identifier information.

As noted above, a single profiler DLL 1s used to generate
the trace records from the different applications being pro-
filed. There are several ways 1n which a profiler DLL may
be associated with a JVM. When a user invokes a Java
program through a command line interface, the user may
also specity through command line arguments or parameters
that the program 1s to be profiled using the available trace
tools. For each invocation of a JVM with tracing enabled,
the profiler may be notified of the PID for the newly loaded

JVM, at which point the profiler may create a trace output
file associated with the JVM.

Alternatively, if a “dispatching” application 1s used to
batch or invoke the application to be profiled, then an
environment variable associated with the dispatching appli-
cation may be read to determine the parameters to be
assoclated with the dispatched application, such as a param-
cter to 1ndicate that the application should be profiled while
executing.

Environment variables generally reside in configuration
files on a client machine. In the most common case, a user
may set an environment variable within the configuration
file 1n order to pass configuration values to an application
program. For example, 1n the DOS operating system, a user
may set environment variables within the “autoexec.bat”
file, or the .profile or .dtprofile on AIX, and environment
variables within the file are then available in the runtime
environment for various applications. The operating system
may read the values i1n the configuration file 1n order to
initialize the environment variables upon startup, or an
application program may access the configuration file to
dynamically read a value for an environment variable.

In the Java runtime environments, values may be stored 1n
property files that are associated with Java applications. In
another example, the Microsoit Windows operating system
provides registry files that may be used to set environment
variables for wvarious applications. In some Unix
implementations, an environment variable may be stored in
a user’s .Jogin file or .profile file.

With reference now to FIG. 20, a block diagram depicts
an organization of system components for tracing an appli-
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cation program executing within a JVM using a profiler.
System 2000 contains instrumented application code 2002
that, upon the occurrence of selected events, invoke methods
or routines within profiling code, such as profiler dynamic
link library (DLL) 2004. Profiler 2004 may contain the
functionality necessary for generating trace records that are
output to a trace buifer or trace {ile, such as trace file 2005.
For example, to detect the occurrence of a method entry,
when the method 1s entered, a routine within the profiler
DLL 1s executed, and this routine generates a trace record
that records the occurrence of the method entry event.

Profiler 2004 may request and receive certain types of
system 1nformation from device driver or kernel 2006. The
kernel may mdependently generate process-relative records
for events known only at the system layer, such as thread
switches, and kernel 2006 may write the trace records to a
trace file or a pinned buifer, such as pinned buffer 2007.
When the kernel 1s generating trace information, the trace
records are preferably written to a pinned buifer such that the
system does not swap out the memory containing the trace
records. A process may be executing 1n the background at
low priority to transfer the trace records from the pinned
buffer to a permanent file.

The kernel may also keep thread-relative information,
such as thread-relative metrics, in a variety of data
structures, such as trees, linked lists, hash tables, etc. As a
thread 1s dispatched, a data structure entry may be created
for a newly dispatched thread, and when the thread
terminates, the entry may be either deleted or kept in
memory for diagnostic or profiling purposes. This informa-
fion may include a thread-relative elapsed time to be sub-
sequently used as an amount of base time to be attributed, as
a statistic 1 a call stack tree data structure, to a routine or
module executing within mstrumented application code

2002.

With reference now to FIG. 21A, a block diagram depicts
the relationships between a profiler and a single JVM 1n a
data processing system capable of generating trace data to
proiile an executing program. Operating system kernel 2100
provides native support for the execution of programs and
applications, such as JVM 2102, 1in a data processing system,
and JVM 2102 executes Java programs. Profiler 2108
accepts events from JVM 2102 from instrumented hooks,
interrupt events, etc., through JVM Profiling Interface
(JVMPI) 2110, and returns information as required.
Preferably, profiler 2108 1s a set of native runtime DLLs
(dynamic link libraries) supported by kernel 2100. Profiler
2108 generates call stack trees, trace output file “trace.out”
2112, etc. as necessary to provide a runtime profile to an
application developer monitoring the execution of a profiled
program. Concurrently, kernel 2100 may generate trace
records which are eventually written (via a pinned buffer) to
a trace output file, such as profile.out 2114. The type of trace
records generated by profiler 2108 are related to event or
sample data generated at the application layer. The type of
trace records generated by kernel 2100 are related to events
or sample data generated at the system layer. All of the trace
output files may then be processed together or separately
during the post-processing phase.

In the example shown in FIG. 21A, the profiler may
output all of the generated trace records into a single file
because the environment only supports a single JVM, and
the trace output file does not have any particular name
assoclated with 1t.

Since most computer systems are interruptable, multi-
tasking systems, the operating system kernel may perform
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certain actions underneath the profiling processes, unbe-
knownst to the profiling processes. In this context, the most
important of these actions 1s a thread switch. While an
application that 1s being profiled 1s executing, the operating,
system may perform a thread switch between threads of the
application program or may switch to a thread associated
with another application program.

In order to properly associate a trace record with 1its
originating thread, other trace records associated with
thread-related events are generated by the originating JVM,
by the profiler DLL, and by the kernel. When a JVM
requests a new thread from the kernel, the JVM generates a
trace record, via the profiler DLL, for the new thread. When
the kernel dispatches a thread, the kernel generates a trace
record for the thread dispatch.

When the JVM creates a new thread, the JVM assigns a
unique thread identifier. When the kernel actually creates the
thread, the kernel assigns a unique, system-level thread
identifier, and the TIDs may not be 1dentical. Hence, the two
TIDs must be correlated.

Although the trace records from the kernel are eventually
placed, via a pinned buffer, into a trace output file that 1s
different from the trace output file into which the profiler
DLL writes 1its trace records, since the trace record generated
by the JVM contains a timestamp and the trace record
generated by the kernel contains a timestamp, then the two
timestamps can be correlated by the trace post-processor to
determine the thread-relative operations performed for par-
ticular threads. In other words, the different TIDs can be
matched so that subsequent trace records within different
trace liles can be associated with a single particular thread.

In order to fully associate subsequent trace records with
particular threads, 1n addition to the JVM and the kernel
generating trace records when a thread is dispatched, the
kernel will generate a trace record when a thread switch
occurs, and the profiler DLL will generate a trace record
cach time that 1t detects that a thread switch must have
occurred. The profiler keeps a TID variable that tracks the
JVM’s TID associated with the most currently generated
trace record. Each time that the profiler DLL 1s invoked to
generate a trace record, 1.e. each time that the profiler DLL
“recerves” an event from a method 1n a particular thread, the
profiler DLL checks whether the TID of the currently
executing thread 1s the same as the TID of the previously
executing thread as recorded 1n the TID variable. If the TIDs
differ, then the profiler DLL has detected that a thread switch
has occurred, and the profiler generates a trace record
indicating that a thread switch has occurred and giving the
TID of the newly executing thread.

Hence, through the correlation of trace records for kernel-
level, thread-related events and application-level, thread-
related events, a trace post-processor may then distinguish
which trace records should be associated with particular
threads.

With reference now to FIG. 21B, a block diagram depicts
the relationships between a profiler and multiple JVMs 1n a
data processing system capable of generating trace data to
proiile an executing program. Operating system kernel 2150
provides native support for the execution of programs and
applications, such as JVMs 2152-2158, which execute Java
programs. Profiler 2160 accepts events from JVMs
21522158 from instrumented hooks, interrupt events, etc.,
through JVM Profiling Interface (JVMPI) 2162, and returns
information as required. Preferably, profiler 2160 1s a set of
native runtime DLLs (dynamic link libraries) supported by
kernel 2150. Profiler 2160 generates call stack trees, trace
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output files 21702173, etc., as necessary to provide a
runtime profile to an application developer monitoring the
execution of a profiled program.

In the example shown 1n FIG. 21B: JVM 2152 has an
assoclated PID #127; JVM 2154 has an associated PID
#315; JVM 2156 has an associated PID #257; and JVM 2158
has an associated PID #117. In a corresponding manner,
profiler 2160 generates trace records for the events within
cach JVM and outputs the trace records into corresponding
output files in which the output files have names that
incorporate the PIDs of their corresponding JVMs. In the
example, the file names have the PID appended at the end of
the file name. JVM 2152 has an associated trace output file
named “trace.out(127)”; JVM 2154 has an associated trace
output file named “trace.out(315)”; JVM 2156 has an asso-
ciated trace output file named “trace.out(257)”; and JVM
2158 has an associated trace output file named “trace.out
(117).”

Concurrently, kernel 2150 may generate trace records
which are eventually written (via a pinned buffer) to a trace
output file, such as profile.out 2180. The type of trace
records generated by profiler 2160 are related to event or
sample data generated at the application layer. The type of
trace records generated by kernel 2150 are related to events
or sample data generated at the system layer. All of the trace
output files may then be processed together or separately
during the post-processing phase.

With reference now to FIG. 22, a flowchart depicts a
process for creating unique file names for storing trace
output data generated for multiple applications being pro-

filed simultaneously. The process begins with the invocation
of a JVM with tracing enabled (step 2202). The profiler

determines the PID associated with the JVM (step 2204) and
creates a trace output file to be associated with the JVM with
a file name containing the correlated PID of the JVM (step
2206). As one of possibly multiple simultaneously executing
application programs executes, trace events are sent to the
profiler (step 2208), which generates trace records to be
written 1nto the appropriate trace output file as determinable
by the PID of the source application (step 2210). The process
1s then complete with respect to directing the trace output
associlated with an application into the appropriate trace
output file.

Referring agamn to FIG. 20, 1t can be seen that trace
records may be generated at the application layer by code
within a profiler DLL while trace records may also be
generated at the system layer by code within a device driver
or kernel. Each of these sources of trace records may
concern 1tself with different types of trace information.

For example, routines within the application program
being profiled may have been mstrumented with entry and
exit trace hooks. As these trace hooks “fire” or are executed,
a trace record may be generated that contains information
for 1ts associated event, 1.e. the entry into or exit from the
routine.

If necessary, the system may be implemented such that
certain events that are detected at the application layer
prompt the profiling code to pass information to the system
layer. Once the kernel or device driver receives the data, then
a trace record 1s generated by the kernel or device driver.
This type of implementation may be necessary to include
system-level 1nformation within the trace record. This
system-level information 1s unknown to the code at the
application layer and would not otherwise be able to be
output 1n the trace records by the profiling code. The event
must, therefore, be passed to the system layer, or the system
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layer otherwise notified, in order to obtain the desired
trace-related data at the time that the trace record 1s gener-
ated.

In contrast, there may be events, such as process switches
or thread switches or dispatches for threads within a process,
that occur within a kernel or device driver that are unknown
at the application layer. In order to obtain a complete profile
of the executing application program, these events should
prompt the generation of trace records.

One advantage of the present invention 1s that a trace
record generated at the application layer for a particular
process 1s separated from other trace records for other
processes based on an inclusion property of the trace record
in a particular trace output file. In other words, a trace record
for a particular process 1s written 1nto a trace output file, and
the trace output file name, which comprises a PID, identifies
the owning process of the contained trace records.

When combined with the fact that the kernel or device
driver at the system layer can generate trace records for
system-related events that include a PID as part of the data
in the trace record, trace records for process-related events
from both the application layer and system layer may be
merged relatively easily with the present invention. A sig-
nificant advantage of this methodology 1s that the applica-
tion layer does not need to send certain events or notily the
system layer of certain events 1n order to get system-level
information 1nto the trace record associated with the event.
For example, 1f the system layer has information related to
a process that 1s unknown to the application layer, such as
process-related information, then without the present
invention, the application layer must somehow send data to
the system layer for inclusion in a trace record generated by
the system layer for the process.

With the present invention, however, the application layer
can place trace records from separate processes 1nto separate
trace output files, and the system layer can place trace
records containing process-related information, icluding
PIDs, from separate processes into a single trace output file.
During a post-processing phase, the trace output file from
the system layer may then be filtered by PID to obtain trace
records containing a particular PID, and those trace records
may then be merged with the trace records from the process-
specific trace output file to obtain a process-speciiic execu-
fion profiile.

With reference now to FIG. 23, a diagram shows the
manner 1n which trace records for a particular process
generated at the application layer and the system layer may
be merged. In a manner similar to FIG. 21A and FIG. 21B,
operating system kernel 2300 provides native support for the
execution of programs and applications, such as JVM 2302,
in a data processing system, and JVM 2302 executes Java
programs. Profiler 2304 accepts events from JVM 2302
from instrumented hooks, interrupt events, etc., through
JVMPI 2306, and returns information as required.
Preferably, profiler 2304 1s a set of native runtime DLLs

supported by kernel 2300. Profiler 2304 generates process-
specific trace output file “trace.out(315)” 2308 for JVM

2303 running as PID “315” under kernel 2300.
Concurrently, kernel 2300 may generate trace records which
are eventually written to general trace output file 2310, such
as “profile.out”. Trace output file 2310 contains trace records
2312 from various processes, and the originating source for
cach of the trace records may be 1dentified by the PID stored
in the trace record.

Post-processor 2314 reads both general trace output file
2312 and process-specific trace output file 2308 to generate
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profile report 2316, which may contain such data objects as
call stack tree diagram 2318. Although post-processor 2314
1s shown as a non-Java program executing outside of a JVM,
post-processor 2314 may alternatively be a Java program
executing within a JVM. Post-processor 2314 filters the
process-specific trace records 1n general trace output 2312
using the PID of the profiled application program for which
post-processor 2314 1s generating profile report 2316. In this
manner, trace records may be easily merged from more than
one source.

With reference now to FIG. 24, a flowchart depicts a
process for using trace records from different sources in
which the trace records may be merged based on a process
identifier. The process begins when an application program
is executed during a profiling phase (step 2402). Events or
timer ticks are then detected and processed (step 2404), and
trace records are generated (step 2406).

Trace records are then written to the appropriate location
(step 2408), either a trace output file identified by PID (as
explained with respect to FIG. 21 and FIG. 22 above) or a
ogeneral trace output file, depending upon whether the appli-
cation layer or system layer 1s generated the trace record,
respectively. It should be noted that the manner 1in which the
trace records are written to the output files may wvary
significantly depending upon the desired implementation.
Instrumented code at the application level may write trace
records to a mapped file 1n memory, thereby avoiding
significant I/O overhead. The system layer may write trace
records to a pinned buffer, and a concurrently running
process may eventually write the data in the pinned buffer to
a permanent file.

By placing the trace records 1n a pinned buifer, the system
does not swap out the memory containing the trace records;
otherwise, the timestamps that are recorded within the event
record would capture the execution time required for the
data to be rolled back into memory in addition to the
execution time for processing the event. However, depend-
ing upon the desire of the user for profiling the executing
program or system, e€.g., 1if the user was interested 1in
analyzing the performance characteristics of the entire pro-
filing system 1ncluding memory performance, the user may
desire to capture execution flows that include the captured
fimestamps that contain time periods with memory swap-
ping. Another example 1n which a pinned buffer may be
uselul 1s for events that are placed in sensitive areas, €.g.
system dispatch logic—a pinned buffer might be used
because 1t may be unsafe for a page fault to occur during the
execution of such code.

Alternatively, the trace records may be written by a
specialized piece of hardware which accepts data and pro-
vides its own timestamps. This hardware, or trace card,
could be implemented as a PCI card. With this approach, the
system can send the type of trace record and the trace record
data to the card, and the card generates the trace record
including the timestamps and relevant control information.

The trace records for a particular process are then pro-
cessed during a post-processing phase by reading the trace
records from a process-specific trace output file and trace
records that have been filtered from the general trace output
file using the pid_ tid information for the particular process
and the pid_ tid information in the trace records of the
general trace output file(step 2410). The process is then
complete with respect to merging the trace records from a
particular process.

The advantages of the present invention are apparent in
view of the detailed description of the invention provided
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above. Multiple mstances of JVMs may be executing
simultaneously, and each JVM may be generating trace
records through the profiler DLL. However, the origin of the
trace records, as 1dentified by the process 1dentifier, or PID,

of the JVM 1s used to place the trace information into a file
that 1s 1dentified through the use of the same PID.

It 1s important to note that while the present invention has
been described 1n the context of a fully functioning data
processing system, those of ordinary skill in the art waill
appreciate that the processes of the present invention are
capable of being distributed in the form of a computer
readable medium of instructions and a variety of forms and
that the present invention applies equally regardless of the
particular type of signal bearing media actually used to carry
out the distribution. Examples of computer readable media
include recordable-type media such a floppy disc, a hard

disk drive, a RAM, and CD-ROMs and transmission-type
media such as digital and analog communications links.

The description of the present invention has been pre-
sented for purposes of illustration and description, but 1s not
intended to be exhaustive or limited to the invention 1n the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodi-
ment was chosen and described 1n order to best explain the
principles of the mvention, the practical application, and to
enable others of ordinary skill 1in the art to understand the
invention for various embodiments with various modifica-
tions as are suited to the particular use contemplated.

What 1s claimed 1s:
1. A method of monitoring execution performance of a
program, the method comprising the steps of:

determining a first process 1dentifier associated with a first
process within the program;

creating a first trace output file, wherein a file name of the
first trace output file comprises the first process 1den-
tifier;

writing first trace records associated with the first process
to the first trace output {ile,

creating a second trace output file, wherein the second
trace output file 1s associated with an operating system
kernel;

generating second trace records 1n response to events
within the operating system kernel; and

writing the second trace records associated with the
operating system kernel to the second trace output file.
2. The method of claim 1 wherein the first trace records

are generated 1n response to events within the first process.
3. The method of claim 1 further comprising:

creating a third trace output file, wherein the third trace
output file 1s associated with a second process, and
wherein a file name of the third trace output file
comprises the second process 1dentifier;

generating third trace records 1n response to events within
the second process; and

writing the third trace records associated with the second
process to the third trace output file.
4. The method of claim 3 wherein the first process and the
second process execute concurrently.

5. The method of claim 1 wherein the second process 1s
a Java virtual machine.

6. The method of claim 1 wherein the first trace records
comprise the first process i1dentifier.

7. The method of claim 1 wherein the first process 1s a
Java virtual machine.
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8. The method of claim 1, further comprising:

merging execution statistics derived from the first trace
records associated with the first process with execution
statistics derived from the second trace records asso-
clated with the operating system kernel.

9. A data processing system of monitoring execution
performance of a program, the data processing system
comprising;

determining means for determining a first process iden-

tifier associated with a first process within the program;

first creating means for creating a first trace output file,
wherein a fille name of the first trace output file com-
prises the first process identifier;

writing means for writing first trace records associated
with the first process to the first trace output file;

second creating means for creating a second trace output
file, wherein the second trace output file 1s associated
with an operating system kernel;

generating means for generating second trace records in
response to events within the operating system kernel;
and

second writing means for writing the second trace records
assoclated with the operating system kernel to the
second trace output file.

10. The data processing system of claim 9, wherein the
first trace records are generated 1n response to events within
the first process.

11. The data processing system of claim 9, further com-
prising:

third creating means for creating a third trace output file,

wherein the third trace output file 1s associated with a
second process, and wherein a file name of the third
trace output file comprises the second process identi-
fier;

second generating means for generating third trace
records 1n response to events within the second process;
and

third writing means for writing the bird trace records
assoclated with the second process to the third trace
output file.
12. The data processing system of claim 11 wherein the
first process and the second process execute concurrently.
13. The data processing system of claim 9 wherein the
second process 1s a Java virtual machine.
14. The data processing system of claim 9, wherein the
first trace records comprise the first process identifier.
15. The data processing system of claim 9 wherein the
first process 1s a Java virtual machine.
16. The data processing system of claim 9 further com-
prising:
merging means for merging execution statistics derived
from the first trace records associated with the first
process with execution statistics derived from the sec-
ond trace records associated with the operating system
kernel.
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17. A computer program product in a computer-readable
medium for use in a data processing system for monitoring
execution performance of an application, the computer pro-
gram product comprising:

first 1nstructions for determining a first process identifier
assoclated with a first process within the application;

second 1nstructions for creating a first trace output file,
wherein a file name of the first trace output file com-
prises the first process 1dentifier;

third instructions for writing first trace records associated
with the first process to the first trace output file;

fourth instructions for creating a second trace output {ile,
wherein the second trace output file 1s associated with
an operating system Kkernel;

fifth instructions for generating second trace records 1n
response to events within the operating system kernel;
and

sixth instructions for writing the second trace records
assoclated with the operating system kernel to the
second trace output {ile.

18. The computer program product of claim 17, wherein
the first trace records are generated 1n response to events
within the first process.

19. The computer program product of claim 17 further
comprising:

seventh instructions for creating a third trace output file,

wherein the third trace output file 1s associated with a

second process, and wherein a file name of the third
trace output file comprises the second process identi-

fier;

cighth 1nstructions for generating third trace records in
response to events within the second process; and

ninth instructions for writing the third trace records asso-
cilated with the second process to the third trace output
file.

20. The computer program product of claim 19 wherein
the first process and the second process execute concur-
rently.

21. The computer program product of claim 17 wherein
the second process 1s a Java virtual machine.

22. The computer program product of claim 17, wherein
the first trace records comprise the first process i1dentidier.

23. The computer program product of claim 17 wherein
the first process 1s a Java virtual machine.

24. The computer program product of claim 17 further
comprising:

seventh 1nstructions for merging execution statistics

derived from the trace records associated with the first

process with execution statistics dertved from the sec-

ond trace records associated with the operating system
kernel.
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