(12) United States Patent

Hofstee et al.

US006751749B2

US 6,751,749 B2
Jun. 15, 2004

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND APPARATUS FOR
COMPUTER SYSTEM RELIABILITY

(75) Inventors: Harm Peter Hofstee, Austin, TX (US);
Ravi Nair, Briarcliff Manor, NY (US)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 491 days.

(21) Appl. No.: 09/791,143

(22) Filed: Feb. 22, 2001
(65) Prior Publication Data
US 2002/0116662 Al Aug. 22, 2002
(51) Inmt. CL7 e GO6F 11/16
(52) US.CL .., 714/11; 712/32; 712/228,;
714/12; 714/15
(58) Field of Search 712/32, 228; 714/11,
714/12, 15
(56) References Cited
U.S. PATENT DOCUMENTS
3,810,119 A * 5/1974 Zieve et al. 709/400
5,504,859 A 4/1996 Gustatson et al. 714/11
5,568,380 A * 10/1996 Brodnax et al. 700/79
5,586,278 A 12/1996 Papworth et al. 712/235
5,625,789 A 4/1997 Hesson et al. 712/217
5,794,024 A 8/1998 Golla et al. 712/228
5,860,014 A 1/1999 Cheong et al. 710/260
5,870,582 A 2/1999 Cheong et al. 712/218
5015110 A 6/1999 Witt et al. ..veevveeerennn.n. 712/239
6,058,491 A * 5/2000 Bossen et al. 714/15
6,571,363 B1 * 5/2003 Steiss ..ooevvvvivriniininnn.n. 7147732
2002/0073357 Al * 6/2002 Dhong et al. 714/19

OTHER PUBLICAITONS

Smith et al., “Implementing Precise Interrupts in Pipelined
Processors,” Proceedings of the 12th Annual Symposium on
Computer Architecture, pp. 36—44, Jun. 1985 (as reprinted in

“Readings in Computer Architecture,” pp. 202-213, Mark
D. Hill et al. ed., Morgan Kaufmann publ., San Frn. CA
2000).

Northrop et al, “MP 5.2 600MHz G5 5/390 Microproces-
sor,” 1999 IEEE International Solid State Circuits Confer-
ence, pp. 88—89.

* cited by examiner

Primary Fxaminer—Kenneth S Kim
(74) Attorney, Agent, or Firm—Anthony V.S. England;
Casimer K. Salys

(57) ABSTRACT

According to one embodiment, a multiprocessing system
includes a first processor, a second processor, and compare
logic. The first processor 1s operable to compute first results
responsive to 1nstructions, the second processor 1s operable
to compute second results responsive to the mstructions, and
the compare logic 1s operable to check at checkpoints for
matching of the results. Each of the processors has a first
register for storing one of the processor’s results, and the
register has a stack of shadow registers. The processor 1s
operable to shift a current one of the processor’s results from
the first register into the top shadow register, so that an
carlier one of the processor’s results can be restored from
one of the shadow registers to the first register responsive to
the compare logic determining that the first and second
results mismatch. It 1s advantageous that the shadow register
stack 1s closely coupled to its corresponding register, which
provides for fast restoration of results. In a further aspect of
an embodiment, each processor has a signature generator
and a signature storage unit. The signature generator and
storage units are operable to cooperatively compute a cumu-
lative signature for a sequence of the processor’s results, and
the processor 1s operable to store the cumulative signature in
the signature storage unit pending the match or mismatch
determination by the compare logic. The checking for
matching of the results includes the compare logic compar-
ing the cumulative signatures of each respective processor.
It 1s faster, and therefore advantageous, to check respective
cumulative signatures at intervals rather than to check each
individual result.

18 Claims, 7 Drawing Sheets

INSTRUCTIONS
510 Z
510.1
510.2
510.3
510.4
510.5
210 %E}DRE _ || Execs PROCESSOR PROCESSOR EXEC &
10.8 L/S LOGIC 410A 4108 L/S LOGIC
510.9 440A 4408
510.10 >
510.11
v v
520A.1 5208B.1
520A.2 520B.2
520A.3 5208.3
5204 4 52084
520A.5 SIGN. STORE COMPARE STORE SIGN. 520R.5
GEN. [—» LATCH [UNIT |[#] LATCH [&— GEN,
520A.7 444A 446A 420 4468 4448 520B.7
520A.8 520B.8
520A.9 520B.9
520A.10 520B.10
520A.11 < RESULTS 520A § 570B.11
RESULTS 520B

U.S. Patent Jun. 15, 2004 Sheet 1 of 7 US 6,751,749 B2

PROCESSOR

RENAME EXECUTION
REG'S UNIT A

ARCH. REG'S 192 10
120 RENAME EXECUTION

o REG'S UNIT B

134 135
I STORE Q.

117

COMPARE
125

BIU 155

BUS 160

FIG. 1
(PRIOR ART)

U.S. Patent Jun. 15, 2004 Sheet 2 of 7 US 6,751,749 B2

PROCESSOR PROCESSOR PROCESSOR

100A 1008 100C

COMPARE COMPARE
210AB 210BC
COMPARE
- —

BUS 160

FIG. 2
(PRIOR ART)

U.S. Patent Jun. 15, 2004 Sheet 3 of 7 US 6,751,749 B2

FIRST REGISTER FILE 310

WRITE PORT MEMORY CELL 322
324 g
,Jf/ READ PORT 326
L ~
REGISTER CELL 320 REGISTER 330

~——

SECOND REGISTER FILE 315

FIG. 3
(PRIOR ART)

US 6,751,749 B2

Sheet 4 of 7

Jun. 15, 2004

U.S. Patent

SMNLVLS
JONVHO

0Gy ¥344N9
I4OLS

ooy A

NJLSAS

d0l¥
d055390dd

0Zv LINN

p Ol

At14%
AHOVO-(

vory HOLV'

JdVdNOD

Jd01S

Vivr N4O
NOIS

VOl ¥
d0554004ad

Vepy 01001

1INIWOO

VoY

OID0 TS5/
ANV OdX4

v8Ey ANAN0
ANSSI

Avdd JANLYNDIS

dv3s
'93d HO\Y

vrSy LINJddNO

1'¥¥G7 SNOIATHd

¢ YPSy A3LINNOD

VOtY OIO0 |
3000430

Vrey 4HOVO
1SN

veey 190

HO 1=

¢l 90¢5
L 1 90¢5
01°80¢5
6 H0CY
8 90¢5

£ 90¢5
9'802G
G 80¢S
y 305
¢ 305
¢ 90¢5
1 90C5

US 6,751,749 B2

Sheet 5 of 7

d0vv
D015/
¥ 0dXd

Jun. 15, 2004

U.S. Patent

d0¢G SL1NSdd

< 142%
N3
NOIS

g Ol

¢l V0CS
vV0cs S11NS54dd L1 V0CS

0}'V0ZS
6'Y02S
8'Y0ZS
Viry /'Y0ZS |
'NID - 9'V02S
NOIS G'V0ZS
v V02S
£'V0ZS
2 V025
| 'V0ZS

qohv 0cY
HOLYT LINN
JHOLS JHY4WOD

340.15)¢1 01§

VObYy

dolv VOl Q1007 5/1
d0553004d d055400dd CROE)E

44015) 901§
S0LS

0LS
SNOILINGLSN

US 6,751,749 B2

Sheet 6 of 7

Jun. 15, 2004

U.S. Patent

0¥9 ¥3LSIO3Y -

VPGP 43.1510dd 154

L VPSY 44151934
MOQVHS dOL1

9 Ol

e

H
GEOMOVYLS J‘ -

¥31S193
MOQYHS ~_————

019 3114 43151939 15414 —

0€9 S1130
MOQVYHS 40 MOV1S

STA
1130 MOAVYHS NOL1OS

029 1130 MOQVHS 401
¢¢9 134 TO0ELNOD

G19 1140 44151934

U.S. Patent Jun. 15, 2004 Sheet 7 of 7 US 6,751,749 B2

10
43

.~ e FIG. 7

CONTINUE l

EXECUTION

7/
715 A
CHECKPOINT ™| ¢ -
_ 740
|
Y

2
Y
\] STALL
, A
- MATCH?
725
SHADOW Y .
750 760 N
Ny | R A STACK FULL?
DELETE
DELETE
L TII
"COMMITED' S RE N
| — COPY "PREV."
755 765~ | o
Ny N | "CURRENT'
COPY
[CHANGE n "
HPREV." TO CO“_AI-%lTED |
"COMMITED" «CURRENT" Y
REFETCH | |

v _

US 6,751,749 B2

1

METHOD AND APPARATUS FOR
COMPUTER SYSTEM RELIABILITY

CROSS-REFERENCE TO RELATED
APPLICATTION

This patent application is related to co-pending applica-
tion “MULTIPROCESSOR WITH PAIR-WISE HIGH

RELIABILITY MODE, AND METHOD THEREFORE,”
Ser. No. 09/734,11°7 which 1s assigned to the same assignee
and 1s hereby incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present i1nvention relates to high reliability
processing, by hardware redundancy. More particularly, the
invention relates to a processing system with pair-wise
processors that operate 1n a high reliability mode to detect
computational errors, and operate independently 1n a high
performance mode.

2. Related Art

Various approaches exist for achieving high reliability
processing. FIG. 1 1llustrates one prior art processor 100 for
high reliability processing. The processor 100 includes two
execution units 130 and 135, which are both the same type
of arithmetic umit. For example, the two execution units
could both be floating point units, or integer units. The
processor 100 has architected registers 120 for holding
committed execution results. The two execution units 130
and 135 both execute the same instruction stream in parallel.
That 1s, for each 1nstruction an instance of the 1nstruction
executes 1n each respective execution unit 130 and 1385.
Then, when the two units are ready to commit the result for
an 1nstruction to the register file 120, the two versions of the
result are compared by compare unit 125. If the compare
unit 125 determines that the versions are the same, then the
unit 125 updates one or more of the registers 120 with the
result. If the versions do not match, then other actions are
taken. In one implementation, a counter records whether an
error 1s occurring repeatedly, and 1f 1t 1s, the error 1is
classified as a “hard” faillure. In the case of a hard failure, the
instruction 1ssue mechanism does not reissue the faulting
instruction, but instead executes a “trap” instruction. One
such trap leads to a micro code routine for reading out the
state of the defective processor and loading it 1into a spare
processor, which restarts execution at the instruction that
originally faulted. In an alternative, where no spare proces-
sor 1s available, the trap leads to the operating system
migrating the processes on the faulty processor to other
processors, which adds to the workload of the other proces-
SOrS.

While this arrangement provides a reliability advantage, 1t
1s disadvantageous in that the processor design i1s more
complex than a conventional processor and has greater
overhead. Moreover, 1t limits the processor 100 throughput
to have two execution units 130 m the processor 100 both
executing the same 1nstruction stream. Another variation of
a processor which 1s designed for exclusively high reliability
operation 1s shown 1n Richard N. Guistason, John S. Liptay,

and Charles F. Webb, “Data Processor with Enhanced Error
Recovery,” U.S. Pat. No. 5,504,859, 1ssued Apr. 2, 1996.

FIG. 2 illustrates another arrangement for high reliability
processing. In this voting arrangement, three processors 200
cach execute the same program 1n parallel and versions of a
result are compared at checkpoints 1n the program on a bus
160 external to the processors 100. If the versions do not

10

15

20

25

30

35

40

45

50

55

60

65

2

match, then other actions are taken, such as substituting a
different processor 100 for the one that produced the dis-
parate version. This arrangement 1s advantageous in that
complexity of the individual processors 200 1s reduced, and
an error producing processor can be identified. Also, the
throughput of one of the processors 200 may be greater than
that of the one processor 100 in FIG. 1, since the individual
processor 200 does not devote any of its execution units to
redundant processing. However, the arrangement of FIG. 2
1s redundant at the level of the processors 200, and uses three
whole processors 200 to recover from a single fault. Also,
the error checking i1s limited to results which are asserted
externally by the processors.

In the related application, a pair of processors use state-
of-the-art state recovery mechanisms that are already avail-
able for recovering from exceptions and apply these mecha-
nisms to operate 1n lockstep synchrony 1n a high reliability
mode. This 1s highly advantageous because 1t achieves the
high reliability without extensive modification to existing
processor design. However, it 1s somewhat limiting because
of the required synchrony. That 1s, in the high reliability
mode the processors 1n the related application must process
a stream of 1nstructions 1n the same sequence.

From the foregoing, it may be seen that a need exists for
improvements 1n high reliability processing.

SUMMARY

The foregoing need 1s addressed 1n the present invention.
According to the 1mnvention, 1n a first embodiment, a multi-
processing system 1ncludes a first processor, a second
processor, and compare logic. The first processor 1s operable
to compute first results responsive to instructions, the second
processor 1s operable to compute second results responsive
to the instructions, and the compare logic 1s operable to
check at checkpoints for matching of the results. Each of the
processors has a first register for storing one of the proces-
sor’s results, and the register has a stack of shadow registers.
The processor 1s operable to shift a current one of the
processor’s results from the first register into the top shadow
register, so that an earlier one of the processor’s results can
be restored from one of the shadow registers to the first
register responsive to the compare logic determining that the
first and second results mismatch. It 1s advantageous that the
shadow register stack 1s closely coupled to 1ts corresponding
register, which provides for fast restoration of results.

In a further aspect of an embodiment, each processor has
a signature generator and a signature storage unit. The
signature generator and storage unit are operable to coop-
eratively compute a cumulative signature for a sequence of
the processor’s results, and the processor 1s operable to store
the cumulative signature in the signature storage unit pend-
ing the match or mismatch determination by the compare
logic. The checking for matching of the results includes the
compare logic comparing the cumulative signatures of each
respective processor. It 1s faster, and therefore advantageous,
to check respective cumulative signatures at intervals rather
than to check each individual result.

Also, 1n one embodiment, the nstructions have a certain
instruction sequence and at least one of the processors may
execute 1nstructions 1n a sequence different than the program
sequence, but both of the processors execute store-type
instructions according to a sequence 1n which the store-type
instructions occur 1n the certain instruction sequence. The
checkpoints are responsive to store instructions, so that a
first sequence of results for the first processor ends at one of
the checkpoints with a result for one of the store instructions

US 6,751,749 B2

3

and a second sequence of results ends at the checkpoint for
the second processor with a result for the same one of the
store 1nstructions. It 1s advantageous to trigger checkpoints
responsive to store-type instructions so that while an inter-
mediate one of the results of the first sequence of results may
be different than a corresponding intermediate one of the
results of the second sequence of results, nevertheless the
first processor’s ending result for the first sequence and the
second processor’s ending result for the second sequence
tend to match unless one of the processors has malfunc-
fioned.

In an alternative embodiment, the second processor
executes the instructions 1n a sequence identical to a
sequence 1n which the first processor executes the
instructions, and the checkpoints are responsive to accumus-
lated number of execution cycles. In this embodiment the
checkpoints may also be responsive to store mstructions. In
one such embodiment, the checkpoints are responsive to
store 1nstructions and accumulated number of execution
cycles if there has been no store instruction since a last
checkpoint.

While the mvention 1s susceptible to various modifica-
fions and alternative forms, speciiic embodiments thereof
are shown by way of example 1n the drawings and will be
described herein 1n detail. It should be understood, however,
that the drawings and detailed description are not intended
to limit the invention to the particular form disclosed, but on
the contrary, the intention 1s to cover all modifications,
equivalents and alternatives falling within the spirit and
scope of the present mnvention as defined by the appended
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth 1in the appended claims. The 1nvention itself,
however, as well as a preferred mode of use, further objec-
fives and advantages thereof, will best be understood by
reference to the following detailed description of an 1llus-
frative embodiment when read i1n conjunction with the
accompanying drawings, wherein:

FIG. 1 1llustrates a prior art processor for high reliability
processing.

FIG. 2 1llustrates another prior art system for high reli-
ability processing.

FIG. 3 illustrates prior art register files for a processor.

FIG. 4 illustrates processors according to an embodiment
of the present invention.

FIG. 5 illustrates an instruction stream and respective
results computed by the processors of FIG. 4, according to
an embodiment of the present invention.

FIG. 6 illustrates a register file for the processors of FIG.
4, according to an embodiment of the present invention.

FIG. 7, illustrates method steps for handling registers for
the processors of FIG. 4, according to an embodiment of the
present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

In the following detailed description of the preferred
embodiments, reference 1s made to the accompanying draw-
ings 1llustrating embodiments 1n which the mmvention may be
practiced. It should be understood that other embodiments
may be utilized and changes may be made without departing
from the scope of the present invention.

Referring now to FIG. 4, a multiprocessing system 400 1s
shown according to an embodiment of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

4

The system 400 includes a first processor 410A, a second
processor 410B (which may or may not be identical to
processor 410A), and compare unit 420. Processor 410A has
the following elements connected to one another as shown:
fetch logic 432A, mstruction cache 434A, decode logic
436A, 1ssue queue 438A, execution and load/store unit
440A, commit logic 442 A, signature generator 444 A, store
latch 446A, data cache 448A and architected register 454A
for holding a current result. Architected register 454 A has a
shadow register 454A. 1 for holding a previous result, and
shadow register 454A.2 for holding a commutted result, as
will be further explained. Processor 410B includes at least
its own respective ones of the following elements (not
shown): signature generator 444B, store latch 446B, and
architected register 454B for holding a current result. Archi-
tected register 454B has shadow register 454B. 1 for holding
a previous result, and shadow register 454B.2 for holding a
committed result.

It should be understood that while the FIG’s and descrip-
tion herein focus on results stored 1n one exemplary register
and 1ts corresponding shadow registers, this 1s merely for the
sake of 1illustration, and the processors actually include
numerous such registers.

Referring now to FIG. §, The processors 410A and 4108
are shown with a sequence of 1nstructions 510 and respec-
five results, to 1llustrate aspects of the present invention,
according to an embodiment. The first processor 410A 1s
operable to compute first results 520A responsive to the
instructions 510, and the second processor 410B 1s operable
to compute second results S20B responsive to the instruc-
tions 510. More specifically, the instructions 510 represent
instructions for a program that are 1n a program sequence,
including instruction 510.1, followed by 510.2, followed by
510.3, etc. For mstruction 510.1 processor 410A computes
result 520A. 1 and processor 410B computes result 520B. 1,
whereas for mnstruction 510.2 processor 41 OA computes
result S20A.2 and processor 41 OB computes result 520B.2,
and so on. For each of the results signature generator 444A
(FIG. 4) computes an updated signature, which it outputs to

store latch 446A.

The compare unit 420 1s operable to check at checkpoints
for matching of the results. For example, according to the
illustrated embodiment, 1nstructions 510.6 and 510.12 are
cach mstances of a store-type instruction that triggers a
checkpoint. That 1s, responsive to computing a result S20A.6
for the instruction 510.6, for example, the signature genera-
tor 444 A for processor 41 OA updates the signature stored
in latch 446A, as 1t does for each of the results 520A. 1,
520A.2, etc. Likewise, responsive to computing a result
520B.6 for the instruction 510.6, the signature genecrator
444B for processor 410B updates the signature stored in
latch 446B, as 1t does for each of the results 520B. 1, 520B.2,
ctc. In addition, since instruction 510.6 triggers a
checkpoint, responsive to computing result 520A.6 the pro-
cessor 410A indicates to compare unit 420 that the signature
for result 520A.6 1s ready. Likewise, responsive to comput-
ing result 520B.6 the processor 410B indicates to compare
unit 420 that the signature for corresponding result 520B.6
1s ready. Once the corresponding signatures are ready, com-
pare unit 420 compares them to see 1f they match. It should
be noted that the signatures reflect the store wvalues
themselves, or else the store values are compared to one
another along with the signatures.

There are a variety of well-known compression schemes
which may be employed for generating the signatures of the
present 1nvention. For example, a linear feedback shift
register may be used, according to which a new input is

US 6,751,749 B2

S

XOR’ed with a bit that 1s shifted out. This 1s advantageous
because the resulting signature traverses a space 1n a very
random way so that 1t 1s unlikely to produce a small
excursion from a state the signature 1s supposed to have and
back. Signature generation as discussed in the related patent
application 1s also relevant to the present invention.

Referring now to FIG. 3, conventional register files 310
and 315 are 1llustrated for contrasting with aspects of an
embodiment of the present 1invention. In the example, the
first register file 310 and the second register file 315 are
essentially identical. Register file 310 has a number of
registers, including register 330 and 340 which are explicitly
illustrated. Each one of the registers has a number of register
cells. Details of register cell 320 of register 330 are explic-
itly 1llustrated. The exemplary register cell 320 1ncludes a
memory cell 322 coupled to an input (i.e., write) port 324
and an output (i.e., read) port 326.

Referring now to FIG. 6, a register file 610 1s 1llustrated,
according to an embodiment of the present invention. The
register file 610 shown 1s for processor 410A, but 1s repre-
sentative of register files 1n both processors 41 OA and 41
OB, and includes a number of registers. Explicitly illustrated
are registers 454 A, as was shown 1n FIG. 4, and register 640.
Other registers may also be included 1n the register file 610
as indicated by the ellipses between registers 454 A and 640.
Register 454 A includes a number of register cells 615, each
of which has a conventional memory cell, write port and
read port as 1n conventional register cells, such as cells 320
in register 330 (FIG. 3). In contrast to conventional registers,
the register cells 615 of register 454A FIG. 6), for example,
have corresponding shadow cells arranged 1n stacks of
shadow cells 630. Shadow cells shown explicitly for the
shadow cell stack 630 of register cell 615 include the top
shadow cell 620 and the last 1.e., bottom shadow cell 625.
There may be others therebetween as indicated by the
cllipses between cell 620 and cell 625, or shadow cell 625
may be the very next one below cell 620. The top shadow
cells 620 are connected to their respective register cells 615
by respective control FET’s 622 as shown. The contents of
the register cell 615 may be written 1nto the shadow cell 620
under control of the control FET 622. Likewise, the contents
of the shadow cell 620 may be written to the next shadow
cell under control of the FET interconnecting the shadow
cell 620 and the next shadow cell.

As may be seen 1 FIG. 6, the top shadow register 454 A.
1 (also shown 1n FIG. 4) for register 454 A includes the top
shadow cells 620 of the register 454 A register cells 615, and
correspondingly the contents of the register 454A may be
written to the top shadow register 454A.1, and the contents
of the top shadow register 454A.1 may be written to the next
shadow register under control of the respective FET s ther-
ebetween.

According to this arrangement, register 434 A holds one of
the processor 41 OA current results. The register 454A
includes a stack 635 of shadow registers, the stack 635 has
at least a top shadow register 454A. 1 and a next shadow
register, which may be the last, 1.e., bottom shadow register
(i.e., shadow register 454A.2 in FIG. 4) that includes bottom
shadow cells 625 (FIG. 6). The processor 410A is operable
to perform shifting of the results, including shifting a current
one of the processor’s results from the first register 454A
into the top shadow register 454A. 1, so that an earlier one
of the processor’s results can be restored from one of the
shadow registers to the first register 454 A responsive to the
compare unit 420 determining that the first and second
results mismatch.

Referring again to FIG. §, as stated above, for each of the
results S20A. 1, 520A.2, et. signature generator 444 A (FIG.

10

15

20

25

30

35

40

45

50

55

60

65

6

4) computes an updated signature, which it outputs to store
latch 446A. Likewise, for each of the results 520B.1,

520B.2, et. signature generator 444B (FIG. 4) computes an
updated signature, which 1t outputs to store latch 446B.
According to another aspect, the signature generator 444A
for the first processor 41 OA and the signature generator
4448 for the second processor 41 OB are each operable to
compute respective cumulative signatures for the sequences
of the processors’ results S20A and 520B. That is, 1n the
illustrated sequence of instructions 510 (and corresponding
sequence of results 520A and 520B) it is implied that a
checkpoint (not shown) immediately precedes the sequence
of instructions 510 so that the sequence 510 begins after the
checkpoint. Furthermore, the sequence 510 includes a
sequence of instructions beginning with imstruction 510.1
and ending with a checkpoint responsive to the aforemen-
tioned store instruction 510.6, after which a next sequence
begins with instruction 510.7. For the sequence of instruc-
tions 510.1 through 510.6, and corresponding results 520A.
1 through 3520A.6, for example, the processor 410A 1s
operable to initialize a new signature for the first result
520A. 1, and then update the signature, which is stored 1n the
signature storage unit, 1.e., store latch 446A, in such a
manner that the updated signature reflects the cumulative
cifect of the sequence of instructions 510.1 through 510.6
and corresponding results. Likewise the same 1s true for
processor 410B and 1its respective results and signatures.

According to one embodiment, the processors update
their signatures 1n the following manner. For each instruc-
tion that alters the value 1n a register, processor 41 OA, for
example, sends to its signature generator 444A new
information, including altered values and the identities of
registers holding those values. The signature generator 444 A
merges the new information with the already existing sig-
nature 1n the store latch 446A to form an updated signature.
Then, responsive to a checkpoint, such as store instruction
510.6, the store latch 446 A sends the store value for storage
in a cache and/or main store. The store latch 446 A includes
the cumulative signature with the store value. Meanwhile,
processor 410B has done the same, and the compare unit 420
compares the cumulative signatures from the respective
store latches 446A and 446B. If the signatures match this
tends to 1indicate that the results 520A. 1 through 520B.6 and
results 520B. 1 through 520B.6 were the same. If the
signatures do not match, then the store result 1s not for-
warded to the store butler 450. Instead the compare unit 420
resets the processors to the state they had for their last
matching checkpoint, and 1nitiates refetching of 1structions
and flushing of local caches 448A and 448B so that the

Processor can resume execution at that point.

For processors 410A and 410B operating as a pair-wise
system, the processors share one store buifer 450 as shown
in FIG. 4. Alternatively, the processors coordinate ones of
their own respective store buffers (not shown) to function as
the unified store buffer 450. When the processor’s operate
independently they each use ones of their own respective
store buffers.

It has been pointed out that the instructions 510 have a
certain program sequence, and that result 520A.1 1s for
corresponding instruction 510.1, result 520A.2 1s for mstruc-
tion 510.2, etc. As implied by the corresponding sequence of
results 520A and 520B, for the embodiment illustrated in
FIG. 5, the second processor 41 OB executes the instructions
510 1n the 1dentical sequence 1n which the first processor
executes the mnstructions 510. It has also been stated above
that checkpoints are responsive to store-type instructions,
according to an embodiment. It should be understood that

US 6,751,749 B2

7

for an embodiment where the processors execute the mstruc-
fions 1n 1dentical sequences, the checkpoints may alterna-
tively or additionally be responsive to an accumulated
number of execution cycles. According to one embodiment
checkpoints are triggered for every store-type instruction
result and also for every tenth instruction result if the ten
instruction results after a certain store instruction do not
include a result for another store instruction.

In an alternative embodiment, one or both of the proces-
sors 410A and 410B may have an architecture which permits
execution of the mstructions 1n a sequence different than the
program sequence. Therefore, the results 520A and 520B
may be produced i a different sequence than what 1is
illustrated 1n FIG. §. Consequently, in order to have a
common basis for comparison of the respective results,
according to an embodiment of the present invention both of
the processors are constrained to execute store-type mstruc-
fions according to a sequence 1n which the store-type
instructions occur in the certain instruction sequence. For
example, 1n FIG. 5 instructions 510.6 and 510.12 are store-
type 1nstructions, and while according to this embodiment
the processors 410A and 410B may execute instructions
510.1 through 510.6 out of sequence and instructions 510.7
through 510.12 out of sequence, results for nstruction 510.6
must be computed before results for any of the instructions
510.7 through 510.12. Furthermore, processor state must
also be updated 1n sequence, even though execution may be
out of order, and only registers being committed at a given
fime participate 1n updating the signature. Moreover, for out
of order execution the architected registers are supplemented
with a future file (a.k.a. rename registers) or a history file,
depending on architecture. Accordingly, register 454A 1s a
rename register 1n the future file architecture, or an archi-
tected register 1n the history file architecture.

In this manner, since the first sequence of results S20A. 1
through 520A.6 (not necessarily in that order) ends with a
result for the store 1nstruction 510.6 and the second sequence
of results 520B.1 through 520B.6 (not necessarily in that
order) both end with respective results for the same store
instruction 510.6, even though the results may differ in
sequence 1n some respects, the cumulative effect of the first
sequence of results and the second sequence of results will
be the same upon computing the respective results for the
store 1nstruction 510.6, for example, unless one of the
processors has malfunctioned. That 1s, 1t 1s advantageous to
trigger checkpoints responsive to store-type instructions so
that while an intermediate one of the results of the first
sequence of results may be different than a corresponding
intermediate one of the results of the second sequence of
results, nevertheless the first processor’s ending result for
the first sequence and the second processor’s ending result
for the second sequence tend to match unless one of the
processors has malfunctioned.

The preceding has concerned checkpoint issues arising,
from sequence of execution of instructions. Another 1ssue
that must be handled concerns stalling. That 1s, 1n order to
preserve throughput rates a method and structure must be
provided so that the processors are able to at least begin
executing a next sequence of 1nstructions before checking of
signatures 1s completed for a previous sequence. Otherwise,
the processors would have to stall while waiting for check-
ing to complete.

In the embodiment of FIG. 4, the register 454A 1s labeled

“current,” and has a shadow register stack with a top shadow

register 454 A. I labeled “previous” and a next, 1.e., bottom
shadow register 454A.2 labeled “committed.” The “current”

register 454A 1s for a current result, 1.e., 1t has a value

10

15

20

25

30

35

40

45

50

55

60

65

3

currently being read from or written into. The processor 41
OA needs to be able to continue to execute 1nstructions while
it compares 1ts signature with that of the other processor
410B for a sequence of 1nstructions immediately preceding
the sequence from which the current result arises. In order
to continue, the processor 410A needs to use the “current”
register 454A, and therefore “previous” shadow register
454A. 1 1s provided for temporarily holding a result from
that immediately preceding sequence. Once the comparison
1s completed, if the signatures match this tends to indicate
that the result in the “previous” shadow register 454A. 1 1s
oood, and the result may therefore be committed. On the
other hand 1if the signatures do not match, the processor
410A needs to be able to recover to an earlier state which 1s
a known good state, 1.€., a committed state. The “commit-
ted” shadow register 454A.2 1s therefore provided for hold-
ing a committed result, 1.¢., a result from register 454 A that

may have been computed even earlier than the result in
shadow register 454A. 1.

Referring now to FIG. 7, method steps relating to the
handling of the registers are 1illustrated according to an
embodiment. The processor begins execution at 710, and
checks for a checkpoint at 715. If the instruction does not
trigger a checkpoint, the processor continues executing at

720.

When the processor does encounter a checkpoint at 715
the processor needs to check the signature at 745 for the
sequence of mnstructions ending at the checkpoint trigeering
instruction to see 1f it matches the corresponding signature
from the other processor. The processor also needs to
continue executing at 720 if resources permit, so the pro-
cessor checks to see if the processor’s stack of shadow
registers 1s full at 725. If the stack 1s full, the processor stalls
at 740 until a shadow register 1s cleared.

Certainly for the first checkpoint the shadow stack will
not be full, and at step 735 the processor, processor 410A
(FIG. 4) for example, copies, 1.e., shifts, its result in the
architected register 454A (also referred to as “current”
register in FIG. 4) to the “previous” shadow register 454A.
1 to free up the architected register 454A to continue
executing instructions at 720. In this manner the processor
can at least begin executing a next instruction at 720 before
comparing at 745 can be completed for the signature that
reflects the result of the sequence of instructions that ended
in the checkpoint triggering instruction.

Meanwhile, one of the shadow registers, register 454A. 1
or 454A.2 (FIG. 4) for example, will be cleared subsequent
to comparing the signature of the processor 41 OA with that
of processor 410B at 745 as follows. If the signatures match,
this indicates the results for the signatures currently being
compared may be committed, so the “committed” register
454A.2 1s cleared, 1.e., “deleted,” at 750 to make room for
the result associated with the subject signature, the result in
“previous” register 454A. 1 1s moved to the “committed”
registers at 7585, and execution continues at 720. (It should
be understood that 1in an alternative embodiment the results
may not be actually moved from the “previous” register to
the “committed” register, but rather the function of the
registers may just be reassigned. That 1s, the “committed”
register may be marked invalid, and the “previous” register
may be now deemed to be the “committed” register.)

If the signatures do not match, then the “current” and
“previous” registers are cleared or marked invalid, 1.e.,
“deleted,” at 760, since the processor needs to be reset to the
committed state associated with the checkpoint immediately
preceding the instruction sequence for the signatures cur-

US 6,751,749 B2

9

rently bemng compared. The results 1 the “committed”
shadow register 454A.2 1s then copied to 1its architected
register 454A at 765, the cache 448A 1s flushed and 1nstruc-

tions are refetched at 770, and execution continues at 720.

It should be understood that as a result of one or the other
of the above logical paths subsequent to the comparing in
step 745, one of the shadow registers has been cleared, so
that if the processor had to stall at 740 due to the shadow
stack being full, this condition has been remedied.

Those of ordinary skill 1n the art will appreciate that the
hardware particularly 1n FIG. 4, but also 1n the other FIG’s
may vary depending on the implementation. For example,
the number of registers 1n the shadow register stack may be
increased so that there may be more than one signature
compare operation pending. The depicted example 1s not
meant to 1mply architectural limitations with respect to the
present invention.

It should be understood from the foregoing, that 1t 1s a
particular advantage of the mnvention that it permits operat-
ing processors 1n the high reliability mode described
hereinabove, wherein results are checked at checkpoints, or
the processors may be operated independently. It 1s also an
advantage that the processors that check each other in the
high reliability mode may differ in many aspects and yet still
remain compatible to the demands of the high reliability
processing mode. For example, one processor may be a
more complicated processor that executes mstructions out of
sequence while the other 1s a more simple processor that
executes instructions 1n order. It 1s also an advantage that the
processors do not have to operate at the same speed. Their
results may merely be checked at checkpoints while the
processors continue executing.

The description of the present embodiment has been
presented for purposes of 1llustration, but i1s not mntended to
be exhaustive or to limit the invention to the form disclosed.
Many modifications and variations will be apparent to those
of ordinary skill 1n the art. It should be noted that store-type
instructions are selected for triggering checkpoints to elimi-
nate the hazard of a malfunctioning processor computing an
erroncous result and changing the state of external memory
subsystem. That 1s, by checking for proper functioning
before committing a result to the external memory respon-
sive to a store-type instruction, the hazard 1s reduced. It
should be understood that it would be within the spirit and
scope of the i1nvention to encompass an embodiment
wherein checkpoints are triggered responsive to other types
of 1nstructions.

To reiterate, the embodiments were chosen and described
in order to best explain the principles of the invention, the
practical application, and to enable others of ordinary skill
in the art to understand the invention. Various other embodi-
ments having various modifications may be suited to a
particular use contemplated, but may be within the scope of
the present invention.

What 1s claimed 1s:

1. A method for multiprocessing comprising the steps of:

a) computing results by a first processor responsive to
instructions having a certain instruction sequence,
wherein the processor has first register for storing one
of the processor’s results, and wherein the first register
1s associated with a first stack of shadow registers with
at least a top shadow register and a next shadow
register;

b) computing results by a second processor responsive to
the instructions, wherein the second processor has a
second resister for storing one of the second proces-

10

15

20

25

30

35

40

45

50

55

60

65

10

sor’s results, and wherein the second register 1s asso-
clated with a second stack of shadow registers with at
least a top shadow register and a next shadow register,
wherein the first and second processors compute first
and second results and store the results 1 the first and
second registers, respectively;

c) shifting the first result from the first register into the
first register’s top shadow register responsive to a
checkpoint, wherein the first result that 1s shifted into
the first register’s top shadow register 1s for a first
sequence ending instruction at the end of a first
sequence of the instructions;

d) shifting the second result from the second register into
the second register’s top shadow register responsive to
the checkpoint, wherein the second result that 1s shifted

into the second reaister’s ton shadow register 1s for a
second sequence ending instruction at the end of a
second sequence of the instructions, the first and sec-
ond sequence ending instructions being a same one
instruction wherein the checkpoint arises in correspon-
dence with the first and second sequence ending
mnstructions;

¢) checking for matching of cumulative results for the first
sequence ol the instructions and the second second
sequence of the instructions, wherein the checking is
responsive to the checkpoint, wherein the first and
second results are shifted to the next shadow registers
of the respective first and second registers responsive to
a match indication from the checking; and

f) computing respective results by the first and second
processors for at least one of the instructions subse-
quent to the sequence ending instruction, wherein the
shifting of the results permits the computing of step f)
to proceed concurrently with the checking in step e).

2. The method of claim 1, comprising the step of:

computing a first cumulative signature for the first
sequence ol instructions; and

computing a second cumulative signature for the second
sequence of instructions, and wherein step €) comprises
comparing the first and second cumulative signatures.
3. The method of claim 2, wherein at least one of the
Processors may execute mstructions in a sequence different
than the 1nstruction sequence, and wherein the checkpoints
are responsive to store instructions, the method comprising
the step of:

executing store-type 1nstructions by both processors in a
same sequence 1n which the store-type instructions
occur 1n the certain instruction sequence.

4. The method of claim 3, wherein computing the first
cumulative signature comprises computing for the first pro-
cessor’s store nstruction result, and wherein computing the
second cumulative signature comprises computing for the
second processor’s store instruction result.

5. The method of claim 3, wherein step €) comprises
comparing the first processor’s result and the second pro-
cessor’s result for the store instruction.

6. The method of claim 2, wherein the second processor
executes the instructions 1n a sequence 1dentical to a
sequence 1n which the first processor executes the
instructions, and the checkpoints are responsive to accumus-
lated number of execution cycles.

7. The method of claim 6, wherein the checkpoints are
responsive to store instructions.

8. The method of claim 2, wherein the checkpoints are
responsive to store nstructions and to an accumulated
number of execution cycles 1f there has been no store
instruction since a last checkpoint.

US 6,751,749 B2

11

9. The method of claim 1, wherein the method comprises
the step of:

shifting the results from ones of the shadow registers back
into the first and second registers, respectively, 1n
response to a mismatch indication from the checking of
step ¢).

10. A multiprocessing system comprising:

a first processor;

a second processor; and

compare logic, wherein the processors are operable to
compute first and second results, respectively, 1n
response to 1nstructions having a certain instruction
sequence, 1ncluding the first processor computing
results responsive to a first sequence of the instructions,
and the second processor computing results responsive
to a second sequence of the instructions, wherein such

a first and second sequence end 1n respective sequence

ending instructions, the sequence ending instructions

being a same one of the 1nstructions for both sequences,
wherein a checkpoint arises 1n correspondence with the
first and second sequence ending mstructions, and
wherein the compare logic 1s operable to check, 1n
response to the checkpoint, for matching of cumulative
the results of the first and second sequences of mnstruc-
tions;

and wherein each processor comprises:

a first register for storing the processor’s results,
wherein the register 1s associated with shadow reg-
1sters with at least a top shadow register and a next
shadow register, wherein the processors are operable
to perform shifting of the results, including shifting
the first and second results from the first registers
into the respective top shadow registers of the stacks
responsive to the checkpoint and shifting the first and
second results to the next shadow registers of the
respective first and second registers responsive to a
match indication from the checking, and the proces-
sors are operable to compute respective results for at
least one of the instructions subsequent to the
sequence ending instruction, wherein the shifting of
the results permits the computing for the at least one
subsequent 1nstruction to proceed concurrently with
the checking.

11. The apparatus of claim 10, wherein the shifting that
the processors are operable to perform includes shifting the

5

10

15

20

25

30

35

40

45

12

results from ones of the shadow registers back into the first
and second registers, respectively, in response to a mismatch
indication from the checking.

12. The system of claim 10, wherein each processor
COMPriSEs:

a signature generator; and

a signature storage unit, wherein the signature generator
and storage units are operable to cooperatively compute
a cumulative signature for the processor’s respective
sequence of instructions, and the processor 1s operable
to store the cumulative signature in the signature stor-
age unit pending the determining by the compare logic,
and wherein the checking for matching of the results
includes the compare logic comparing the cumulative
signatures of each respective processor.

13. The system of claim 12, wherein at least one of the
Processors may execute mstructions in a sequence different
than the instruction sequence, but both of the processors
execute store-type 1nstructions in a same sequence in which
the store-type instructions occur i1n the certain instruction
sequence.

14. The system of claim 13, wherein the cumulative
signature for the {first processor’s sequence of results
includes a result for one of the store instructions, and
wherein the cumulative signature for the second processor’s
sequence of results includes a result for the same one of the
stare 1nstructions.

15. The system of claim 13, wherein the checking for
matching of the results includes comparing the first proces-
sor’s result and the second processor’s result for the store
instruction.

16. The system of claim 12, wherein the second processor
executes the instructions 1n a sequence identical to a
sequence 1n which the first processor executes the
instructions, and the checkpoints are responsive to accumu-
lated number of execution cycles.

17. The system of claim 16, wherein the checkpoints are
responsive to store instructions.

18. The system of claim 12, wherein the checkpoints are
responsive to store instructions and to an accumulated
number of execution cycles if there has been no store
instruction since a last checkpoint.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,751,749 B2 Page 1 of 1
DATED : June 15, 2004
INVENTOR(S) : Hofstee et al.

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Column 9,
Line 60, after “processor has” please insert -- a --;

Column 10,
Line 15, please replace “reaister’s ton” with -- register’s top --;
Line 18, please replace “same one instruction” with -- same one of the instructions --;

Column 11,
Line 25, please delete the first occurance of “the”;
Line 29, after “with” please insert -- a stack of --.

Signed and Sealed this

Third Day of May, 2005

JON W. DUDAS
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

