US006738872B2
a2 United States Patent (10) Patent No.: US 6,738,872 B2
Van Huben et al. 45) Date of Patent: May 18, 2004
(54) CLUSTERED COMPUTER SYSTEM WITH FOREIGN PATENT DOCUMENTS
DEADLOCK AVOIDANCE
EP 945798 A2 * 9/1999 ... GUoE/9/46
(75) Inventors: Gary A. Van Huben, Poughkeepsie,
NY (US); Michael A. Blake, OTHER PUBLICATIONS
Wappingers Falls, NY (US); Pak-Kin
Mf_lk, P?ughkeepsie, NY (US); Adrian William Stallings, Operating Systems: Internals and Design
Eric Seigler, Poughkeepsie, NY (US) Principles, 1998 Prentice—Hall, pp 253-256.*
(73) Assignee: International Business Machines v cited b _
Corporation, Armonk, NY (US) cited by examiner
(*) Notice: Sub]ect. to any dlsclalmer,: the term of this Primary Examiner—Mano Padmanabhan
patent 15 extended or adjusted under 35 _ _
U.S.C. 154(b) by 571 days Assistant Examiner—John M Ross
o | (74) Attorney, Agent, or Firm—Lynn L. Augspurger
(21) Appl. No.: 09/746,686 (57) ABSTRACT
(22) Filed: Dec. 22, 2000 A remote resource management system for managing
(65) Prior Publication Data resources 1n a symmetrical multiprocessing environment
having a plurality of clusters of symmetric multiprocessors
US 20020083243 Al Jun. 27,2002 cach of which provides interfaces between cluster nodes of
(51) Int. CL7 oo, GO6F 12/00 the symmetric multiprocessor system with a local interface
(52) US.CL ... 711/150; 711/124; 711/130; and an 1nterface controller. One or more remote storage
711/147; 711/148 controllers each has a local interface controller and a local-
(58) Field of Searchccocovvvveveuae. 711/124, 130, to-remote data bus. A remote fetch controller is responsible
711/148, 147, 150; 709/214 for processing data accesses across the clusters and a remote
store controller 1s responsible for processing data accesses
(56) References Cited across the clusters. These controllers work 1 conjunction to

U.S. PATENT DOCUMENTS

5,875,462 A * 2/1999 Bauman et al. 711/119

ou on
Nis T T o]

CENTRAL PRIORITY I

1 14

REMOTE
FETCH/
STORE
CONTROLS

N\

1
RSC IN
CONTROLS
0

TF
oL
\1

2

LOCAL
FETCH/
STORE
CONTROLS

provide a deadlock avoidance system for preventing hangs.

5 Claims, 16 Drawing Sheets

[T1

REMOTE
FETCH/
STORE
CONTROLS

RSC INTF
CONTROLS

LOCAL
FETCH/
STORE

19 CONTROLS

US 6,738,872 B2

Sheet 1 of 16

May 183, 2004

U.S. Patent

1
ot 0L

ST10HLNOD
34015
[/ HO134

voO01|™ ' STOHINOD SIOYHINOD
—t 41NI OSH 41NI OSH

ST0HLNQO
=ta (@2 RS

[HO13d
VOO

STOHLNOD STOHLNOD
3H01S
/ HO134

410W4dd

JHOLS
[/ HOL134
31 0N3d

ALIHOIHd TVHINIO

q | | ﬂ PRI

zo_...ro_E...E zo_...Po_E...E

L AHNDI

U.S. Patent May 18, 2004 Sheet 2 of 16 US 6,738,872 B2

O
O <« ©
O Ql
) o
‘
C
<
N
T
~
)
O
T
E o
EL_-\ L0
<t
Al
<
v < :
'I\N co/
N Al
o
F\Q DID
—)
O _,\
mle
\ \oo N
-

U.S. Patent May 18, 2004 Sheet 3 of 16 US 6,738,872 B2

19b

FIGURE 2B

U.S. Patent May 18, 2004 Sheet 4 of 16 US 6,738,872 B2

FIGURE 2C

U.S. Patent May 18, 2004 Sheet 5 of 16 US 6,738,872 B2

FIGURE 2D

U.S. Patent May 18, 2004 Sheet 6 of 16 US 6,738,872 B2

fo
o
h
LL]
o
11
-
g N\
- x
&\ ICQ/
<
— Al
m
®)
e o

U.S. Patent May 18, 2004 Sheet 7 of 16 US 6,738,872 B2

19b

FIGURE 2F

U.S. Patent May 18, 2004 Sheet 8 of 16 US 6,738,872 B2

FIGURE 2G

U.S. Patent May 18, 2004 Sheet 9 of 16 US 6,738,872 B2

19b

“ 4

FIGURE 2H

19a
7
22
3
\

U.S. Patent May 18, 2004 Sheet 10 of 16 US 6,738,872 B2

19b

FIGURE 2|

US 6,738,872 B2

Sheet 11 of 16

May 183, 2004

U.S. Patent

_l_llmu

davsd

H

bl
Ol Ol
y 4%
4 -- 4
1 1
N N
0 0 &
AL
O O
V v/
v ¥ 28
= -3
JEERNS
N N
_ _
" A 1€
S S
d d

Ve d4dNOld

1508V

US 6,738,872 B2

1408V

1408V

1d0Ogv

Sheet 12 of 16

JHONDI

FHONDI

JHOLS
30Vd SAON

May 183, 2004

U.S. Patent

JHONDI

JHONDOI

FHONDI

FHONDOI

JHONDI

JHONDI

3H01S O/l

ONISS3004dd St ’dVS'1 NOILYHddO

1408V

1508V

14048V

1504V

JHONDI

AHONDI

advd 34015

d¢ Junold

1IVM

1IVM

LIVM

1IVM

JHONDI

JHONDI

1N0 1SVO Nyl

JH01S
39OVd IAON

(Aienb Buipnjoui)
J4HO1S O/l

A1VAITVANI
SAISTOXS

Avd JHO1S

31N1058V
TVOISAHd JHOLS

1NO LSVO Nd'1

NOILvHdd0O
HVSH

N

Gt

US 6,738,872 B2

Sheet 13 of 16

May 183, 2004

U.S. Patent

G

340.1S O/l TvOO'l

1747

34OLS O/l ANJS dvSH 13844

A%

97 ON
/ —
HYSH Q10H SaA é

A%
3ISNOJS3H \

87

SS300V \
HiQ HvSY
017

yd

Ad3N0 O/l
SANJS HVYS'

P ddNOl

US 6,738,872 B2

Sheet 14 of 16

May 183, 2004

U.S. Patent

124°

g8
MOOTYdINl —m40- —
d4aqay
\ Cl
3did
TVH1LINGD

b e
@ ALIHOldd ddid

/ NOILYHLIEHY |« | 3NIHOVI
AHOWIN 31V1S HONAS

valS /00 NYT

G dHNDI

US 6,738,872 B2

Sheet 15 of 16

May 183, 2004

U.S. Patent

S 104LNOD STOHLNOD
34015 JHOLS
/ HO134 [/ HOL144d

VOO0 STOHLNOD STOHINOD VOO
41NI OSH 41NI OSH

S10HLNOD S10d1NOD
4401S 34018

/ HO1d4 / HO1l34
410N44d 31 0Nd4

NOILNGIHLSId @ NOILO3T10D O3d OHA4

L Nd

dOLvd3INIDO 3571Nd OHA HOLVHINGDO 3571Nd OHA

9 44Nl

19

US 6,738,872 B2

Sheet 16 of 16

May 183, 2004

U.S. Patent

dO 1X3N
10434

N

H31S1934
| 3ISNOJS3d

d3AOONd

1S3N034
4SNOdS34

Q30OON3 /

LL

dO

1IN3HHNO
104134

47135 Ol
3Nd 1034d

o100
NOILVHINID

1S3N03dY
dSNOdS3Y

S351Md
OH4
TVNYH4LNI

L 3dNOI-

N

i

SHIH10 Ol
3Nd 104134

IANIHOVIA
31V1S
JHOLS

/f HO1d4

3410Nd4d

US 6,738,872 B2

1

CLUSTERED COMPUTER SYSTEM WITH
DEADLOCK AVOIDANCE

RELATED APPLICATIONS

This application entitled “Clustered Computer System
with Deadlock Avoidance™ 1s related to

U.S. Ser. No. 09/745,830, filed Dec. 22, 2000, and entitled

“Method for deadlock avoidance 1n a cluster environ-
ment”’; and also

to U.S. Ser. No. 09/745,593, filed Dec. 22, 2000, and
entitled “High Speed Remote Storage Controller”™.

FIELD OF THE INVENTION

This mvention 1s related to computer systems and par-
ticularly one having a remote resource management system
whose activity causes deadlock avoidance among a plurality
of clusters of symmetric multiprocessors (SMPs).

These co-pending applications and the present application
arc owned by one and the same assignee, International
Business Machines Corporation of Armonk, N.Y.

The descriptions set forth in these co-pending applications
are hereby incorporated into the present application by this
reference.

Trademarks: S/390 and IBM are registered trademarks of
International Business Machines Corporation, Armonk,
N.Y., U.S.A. Other names such as z900, e(logo)Server may
be registered trademarks or product names of International
Business Machines Corporation or other companies.

BACKGROUND OF THE INVENTION

Today’s e-business environment places great demands on
the computer systems that drive their infrastructure. This 1s
especially true 1n the areas of system performance and
availability due 1n large part to the increasing amount of data
sharing and transaction processing inherent 1n large system
applications. Another aspect of the e-business infrastructure
1s the unpredictability of the workloads which mandate the
underlying computer systems to be highly scaleable.
However, the importance of additional performance and
scalability must always be tempered by the cost of the
systems.

Historically system architects have used various means to
achieve high performance in large tightly coupled symmetri-
cal multiprocessor (SMP) computer systems. They range
from coupling mdividual processors or processor clusters
via a single shared system bus, to coupling processors
together 1n a cluster, whereby the clusters communicate
using a cluster-to-cluster interface, to a centrally intercon-
nected network where parallel systems built around a large
number (i.¢. 32 to 1024) of processors are interconnected via
a central switch (i.e. a crossbar switch).

The shared bus method usually provides the most cost
eficient system design since a single bus protocol can
service multiple types of resources. Furthermore, additional
processors, clusters or peripheral devices can be attached
cconomically to the bus to grow the system. However, 1n
large systems the congestion on the system bus coupled with
the arbitration overhead tends to degrade overall system
performance and yield low SMP etficiency. These problems
can be formidable for symmetric multiprocessor systems
employing numerous processors, especially if they are run-
ning at frequencies that are two to four times faster than the
supporting memory subsystem.

The centrally interconnected system usually offers the
advantage of equal latency to shared resources for all

10

15

20

25

30

35

40

45

50

55

60

65

2

processors 1n the system. In an 1deal system, equal latency
allows multiple applications, or parallel threads within an
application, to be distributed among the available processors
without any foreknowledge of the system structure or
memory hierarchy. These types of systems are generally
implemented using one or more large crossbar switches to
route data between the processors and memory. The under-
lying design often translates into large pin packaging
requirements and the need for expensive component pack-
aging. In addition, 1t can be difficult to 1mplement an

effective shared cache structure.

The tightly coupled clustering method serves as the
compromise solution. In this application, the term cluster
refers to a collection of processors sharing a single main
memory, and whereby any processor 1n the system can
access any portion of the main memory, regardless of 1its
athinity to a particular cluster. Unlike Non-Uniform Memory
Access (NUMA) architectures, the clusters referred to in our
examples utilize dedicated hardware to maintain data coher-
ency between the memory and the hierarchical caches
located within each cluster, thus presenting a unified single
image to the software, void of any memory hierarchy or
physical partitions such as memory bank interleaves. One
advantage of these systems 1s that the tightly coupled nature
of the processors within a cluster provides excellent perfor-
mance when the data remains in close proximity to the
processors that need 1t such as the case when data resides in
a cluster’s shared cache or the memory bank interleaves
attached to that cluster. In addition, it usually leads to more
cost-eflicient packaging when compared to the large N-way
crossbar switches found in the central interconnection sys-
tems. However, the clustering method can lead to poor
performance if processors frequently require data from other
clusters, and the ensuing latency 1s significant, or the band-
width 1s mmadequate.

The other important aspect of today’s large systems 1s
reliability and availability which 1s paramount 1in a web-
based e-business. Thus, 1t’s not uncommon for such systems
to 1ncorporate mechanisms to transfer workloads from a
failing processor to another processor, take failing memory
off line, and balance workloads among the clusters to ensure
the systems are available 24 hours per day 7 days per week.
However, in a multi-node system structure, the potential
exists for multiple processors or I/O devices to simulta-
neously request the same block of data to be transferred
between the clusters, which can lead to situations where
resources on different clusters deadlock against each other,
thereby hanging the system.

The use of clusters of microprocessors 1s a rapidly grow-
ing approach to providing unprecedented overall system
performance. However, 1n symmetric multiprocessing
(SMP) computer systems, where each processor has equal
access to a single shared main memory, many techniques are
used to 1mprove system performance by reducing or hiding
memory access latencies or maintaining a high degree of
concurrent operations. Many times, these techniques create
conditions which can result 1n a cross-cluster deadlock.
Because this area 1s still relatively immature with respect to
other areas of computer hardware design, most of the prior
art fails to comparably address the same aspects taught by
the present mvention.

U.S. Pat. No. 6,073,182 entitled Method of Resolving
Deadlocks Between Competing Requests in a Multiproces-
sor Using Global Hang Pulse Logic describes a method of
deadlock avoidance using a single technique known as Fast
Hang Quiesce. The method taught by the invention primarily
targets the processor and I/O controllers within a single

US 6,738,872 B2

3

cluster (or node) of a the System Controller (SC) described
in the preferred embodiment of the present invention. Our
invention teaches several improvements regarding deadlock
avoldance employing a plurality of techniques, one of which
contemplates the embodiment of the art within our invention
to expand its capability to cover cross-cluster deadlocks.

U.S. Pat. No. 5,224,100, entitled Routing Technique for a
Hierarchical Interprocessor-Communication Network
Between Massively-Parallel Processors, describes a routing
technique for a massively parallel single instruction-
multiple data (SIMD) multilevel hierarchical nodes arranged
in clusters. Although this invention teaches a method of
deadlock avoidance, it 1s achieved within a special purpose
apparatus designed to perform the single task of transferring
data packets from a source processor to a receiving proces-
sor. On the other hand, the present invention provides a
means of deadlock avoidance 1in a complex SMP computer
system which entails performing many type of operations
such as concurrent data accesses from main memory, shared
caches, I/0 devices, etc. as well as memory storage accesses
and cache coherency operations.

U.S. Pat. No. 4,754,398, entitled System for Multiproces-
sor Communication Using Local and Common Semaphore
and Information Registers also teaches a method of deadlock
detection, but 1t 1s limited to a single operation analogous to
an I/O Test and Set operation in the present invention. The
method described herein i1s achieved through the use of
dedicated signaling among all the processors in the system.
Such an 1mplementation 1s not practical 1n the present
invention since it employs a large system with 16 or more
processors arranged 1n packages that preclude dedicated
signaling between all of them. Furthermore, our mvention
employs deadlock methods to cover all types of fetch and
store operations from processors and I/O devices.

SUMMARY OF THE INVENTION

The present invention describes various methods
designed to avoid cross-cluster deadlocks. By utilizing a
combination of design advances, including an optimized
cache coherency scheme and the principles described in U.S.
Pat. No. 6,038,651 entitled SMP Clusters with Remote
Resource Management for Distributing Work to Other Clus-
ters while Reducing Bus Traffic to a Minimum, our inven-
fion teaches various methods to proactively avoid deadlock
situations as opposed to detecting the deadlock and employ-
ing some type of recovery scheme with a remote resource
management system. These deadlocks become more fre-
quent as the size and complexity of large systems increases,
and often they require restarting the system, thereby decreas-
ing productivity and/or availability.

The preferred embodiment 1s incorporated into an Sym-
metric Multiprocessing System comprising a plurality of
Central Processors, each having a private L1 cache, a
plurality of I/O Adapters, and a main memory wherein any
Processor or I/O Adapter can access any portion of the
memory. The total number of Processors and I/O Adapters
are divided equally into two clusters. In addition, the main
memory 1s comprised of banks or interleaves, half of which
are attached to each cluster.

Within each cluster there exists a System Controller
which consists of a system coherency management unit,
cluster shared cache, various controllers, and discrete inter-
faces (or ports) to every Processor, I/O Adapter, and the
main memory. The cache represented 1n the present embodi-
ment 1s comprised of a plurality of banks or interleaves and
the contents are managed by a 16-way associative directory.

10

15

20

25

30

35

40

45

50

55

60

65

4

The System Controller depicted 1n FIG. 1 1illustrates the
major functional elements and will be described further in
the detailed description of the preferred embodiment.
However, a brief overview of the System Controller within
a single cluster 1s beneficial 1n understanding the aspects of
the present mvention.

The primary function of the System Controller 1s to
process data fetch and store requests coherently between the
Processors and I/O Adapters and the system’s main memory.

Since the System Controller contains a shared cache, which
1s architecturally invisible to the software and operating
system, the System Controller 1s also responsible for per-
forming directory and cache accesses. All incoming requests
enter a port on the System Controller, where they are
received by a Central Processor (CFAR) or I/O Controller.
These controllers generate requests into a Central Priority
unit which arbitrates among them and chooses one of the
requesters to enter mto one of two multistage Pipelines
based on the address. During each stage of the pipeline the
requester accesses and/or reserves various resources such as
the cache, the LLocal Cache Fetch/Store Controllers, the data
path controls, data path FIFO buifers, the Remote Fetch/
Store Controllers, etc.

Directory accesses are made to determine the state of the
requested block of data. Requests exiting the pipeline that
miss the local cache become the responsibility of one of the
Local Fetch/Store Controllers. These controllers manage the
subsequent fetch and store operations that must be dis-
patched to the remote nodes and/or main memory. Often this
requires additional passes through the pipeline, therefore a
Local Fetch/Store Controller must also participate 1n Central
Priority arbitration, and is also considered a requester. In the
present embodiment, we include the Cache Controller and
the Main Memory Controller, as part of the Local Fetch/
Store Controllers, Between them they contain all the
resources (including data path elements such as FIFO buff-
ers and cross point switches) necessary to access data from
the cache interleaves, process data accesses to main memory
when cache misses occur, perform store operations into the
cache interleaves, and cast out aged data (using a Least
Recently Used method) from the cache into main memory in
order to make room for mncoming data from main memory
aCCESSES.

As stated above, the main memory banks are physically
distributed between the two clusters of the BI-nodal system.
However, the main memory appears as a single unified entity
to any of the Processors or I/O Adapters located anywhere
in the SMP system. Therefore, the present embodiment
incorporates an additional set of controllers, known as
Remote Fetch/Store Controllers. The System Controller
keeps track of which main memory addresses are assigned
to the memory banks on each cluster. Whenever data
accesses (fetch requests) miss the cache on the local cluster,
(where the term local refers to the cluster to which the
originating Processor or I/0 Adapter is attached), the Local
Fetch/Store Controller must interrogate the remote (or
“other”) cluster to see if the data resides in that cache. These
remote 1nterrogations are processed by the Remote Fetch
Controllers, which make requests into Central Priority and
access resources 1n a similar fashion to the Local Fetch/Store
Controllers.

In addition, 1f the data access misses the remote cache, but
the address denotes that 1t belongs to a memory bank
attached to the remote cluster, the Remote Fetch/Store
Controller also interacts with the Main Memory Controller
to 1nitiate main memory accesses. For operations which
necessitate storing data into memory (such as casting aged

US 6,738,872 B2

S

data out of the cache), the address once again determines
whether the Local Fetch/Store Controller can process the
entire operation or 1 a remote store operation must be
mitiated across the BlI-nodal interface. In this situation, the
remote store operations are processed by the Remote Store
Controller who also interacts with the Main Memory Con-
troller to store the data into the memory interleaves. As with
the Local Fetch/Store Controllers, their remote counterparts
also contain all the resources (including data paths, FIFO
buffers, and cross point switches) necessary to process
inter-cluster operations.

The present invention also interacts with a remote man-
agement system for managing the resources comprising the
aforementioned Remote Fetch/Store Controllers, and to dis-
tribute work to these Remote Fetch/Store Controllers, who
in turn, act as agents to perform the desired operation
without requiring knowledge of the requester who 1nitiated
the work request. Work 1s distributed only when a remote
resource 1s available for processing the work, without a need
for constant communication between multiple clusters of
symmetric multiprocessors. These operations are 1nitiated
via a command 1nterface and completion or error conditions
are reported back on a response bus. Also 1n the preferred
embodiment, the Local and Remote Fetch Controllers rely
on a special synchronous XI response bus to indicate
whether data hits or misses 1n the remote cache on a fixed
number of cycles after the command 1s sent across the
interface.

The present mvention focuses on cross cluster deadlock
avoldance while maintaining system level data coherency
and a high level of system performance. The techniques
described herein enable a multitude of operations to occur in
a concurrent and high speed manner using a minimal num-
ber of external control signals.

In a non blocking switch design, such as the IBM eServer
Z-Series, where multiple concurrent operations are allowed
for improved system throughput, special care must be taken
to maintain data coherency. Data integrity 1s compromised
when operations to the same storage data are allowed to
overrun, resulting 1n misplacement of true data and also bad
ownership assignments. Prior generations of S/390 Enter-
prise Server designs have avoided this problem by employ-
ing a series of varied address comparators that are observed
by each operation as 1t processes through the centralized
multistage pipeline. Specifically, these address compares
protect against concurrent conflicting data access by mul-
tiple requesters. They also protect data in transit between
clusters and between cache and main memory.

In Bi1-Nodal SMP designs, such as the S/390 enterprise
server generation 5 design, some of the requesters are
attached to one node and begin processing on this node
while the remaining requesters are attached to the other
node. When a request from one node requires an operation
to be sent to the other node (such as a Main Storage data
fetch or store), the operation is loaded into a Remote Fetch
(a.k.a. RFAR) or Remote Store (a.k.a. RSAR) resource on
the other node. This operation may conflict with an opera-
fion started by a requester local to the same node.

Therefore a special set of address comparators involving
these RFAR and RSAR resources needs to be implemented
to prevent concurrent operation of a Remote operation with
a Local operation.

These set of address comparators may result in the
creation of system deadlock scenarios where multiple opera-
tions are all stuck waiting for each other to complete.
Contributing to this problem 1s a local operation 1n one node

10

15

20

25

30

35

40

45

50

55

60

65

6

may require a corresponding remote operation in the other
node to complete before 1t 1s able to complete. For example,
a local operation on cluster A could be stuck waiting for a
remote operation 1n cluster B to complete an operation on
it’s behalf, but the remote operation 1n cluster B 1s stuck
waiting for a local operation 1n cluster B to complete due to
an address compare 1nterlock. The cluster B local operation
could be stuck waiting for a cluster A remote operation to
complete on 1t’s behalf, but the cluster A remote operation
1s stuck waiting for the cluster A local operation to complete
due to an address compare interlock. The result 1s a deadlock
where neither of the local operations can complete, eventu-
ally resulting in a system hang.

This disclosure 1dentifies techniques 1mplemented to
avold specific cross-nodal deadlock cases caused by the
existence of these address compare interlocks while still
maintaining the required data consistency.

The present invention employs a combination of address
compare 1nterlocks and cache management methods to
detect potential cross-cluster deadlocks and circumvent
them, while maintaining data integrity across a plurality of
processor clusters. AS previously described, a deadlock
occurs when a resource 1s stuck waiting for another resource,
which 1s waiting for another resource, and so on. Typically
these resources can’t progress through their operational
sequences because they’ve encountered an address compare
interlock agamst another resource. One would surmise that
the easiest way to circumvent deadlocks 1s to simply 1gnore
these 1nterlocks and allow the operation to proceed.
However, these interlocks are required to maintain coher-
ency. The following examples illustrate our method for
sately 1gnoring interlocks while still maintaining proper data
integrity.

In order to understand the following examples, one must
first understand that the preferred embodiment resides 1n a
computer processing system comprised of a plurality of
clusters, wherein each cluster contains connections to a
multitude of processors, connections to a multitude of I/0
processors, connections to a shared main memory, a shared
cache, one or more centralized pipelines for serializing
storage and resource accesses, and an interface between the
clusters known as the Remote Storage Cluster (RSC) inter-
face. Also contained within a storage cluster 1s a plurality of
requesters with the following functions:

LFAR: Used to manage fetch requests to main memory on
the local cluster and initiate fetch requests to the remote
cluster

LSAR: Used to manage store requests to main memory on
the local cluster and 1nitiate store requests to the remote
cluster

RFAR: Used to manage fetch requests initiated by a
corresponding LFAR from the other cluster. RFAR
performs the fetch operation on behalf of the remote

[.FAR and returns the data to said LFAR across the
RSC interface.

RSAR: Used to manage store requests initiated by a
corresponding LSAR from the other cluster. RSAR
performs the store operation on behalf of the remote
LSAR and accepts the data from said LSAR across the
RSC interface.

Note: In addition to data fetches and stores, all of these
resources also perform various directory update operations.

A explanation of the following operations may be ben-

eficial 1n understanding the mechanics behind the present
invention’s deadlock avoidance methods. The LFAR,

LSAR, RFAR and RSAR controllers typically process:

US 6,738,872 B2

7

Data Fetches from main memory or a cache.

Directory Invalidations which invalidate the block of
storage 1n the cache and can be

the Read-Only type (RO INV) that broadcasts to the

central processor to invalidate their read-only copies

of the block of data. These are typically the result of

a processor requesting exclusive ownership of the
block of data.

the Exclusive type (EX INV) that broadcasts to the
central processor to relinquish ownership of their
copy of the data and write any modifications to the
data back into the cache

LLRU Cast Outs to store “aged” modified cache data into
main memory

Store Physical Absolute to store data sent from a central
processor directly mto a main memory location,
bypassing the cache hierarchy

Store Pad to replicate a data pattern dictated by a central
processor 1nto a main memory location.

Move Page Operations which consist of a Fetch and Store
designed to relocate a page of storage from a source
main memory (fetch) address to a target main memory
(store) address

I/O Store to store 128 or 256 bytes of I/O data into a main
memory location or directly mto the shared L2 cache 1f
the data 1s already resident 1 the cache.

The present invention classifies system operations 1nto
three types of potential deadlocks, and employs a different
method for avoiding each type. In all three cases, it 1s
presumed that the requesters are vying for the same block of
data, thus triggering an address compare situation. In
addition, our invention also incorporates a fourth method of
deadlock avoidance known as Fast Hang Quiesce which 1s
not based on address compares, and 1s designed to recover
from any hang situations which could result from either
unresolved deadlocks or hardware failures.

RFAR vs. RFAR

These situations involve an LFAR on each cluster sending,
cither a data fetch request or read-only directory invalidation
to the corresponding RFAR on the other side. In addition,
both operations are vying for data belonging to the same
line. The potential for a deadlock exists because the LFAR
on cluster A 1s waiting for 1ts corresponding RFAR on cluster
B. The RFAR on cluster B encounters a compare against the
LFAR on cluster B, who 1s waiting for i1ts RFAR on cluster
A. The RFAR on cluster A sees a compare against the LEAR
on cluster A. Thus, neither of the four resources can
progress. In this case, our 1nvention employs an address-
based mechanism which indicates whether the request 1s
targeting main memory (PMA) on a local or remote node.
This bit, also known as the local PMA bit, ultimately
determines which of the remote fetches will be permitted to
continue.

The aforementioned scenario assumes complete overlap
of the two fetch requests. One can appreciate how these
requests can be skewed 1n such a way that data 1s already
being transierred, or a main memory request has already
been 1ssued, before the second request 1s loaded into the
RFAR. Our invention contemplates this situation and
employs a signaling technique between the LFARs and
RFARSs on the same cluster to indicate when a data return 1s
eminent. If an RFAR compares against an LFAR whose data
return 1s eminent, 1t must honor its compare, regardless of
the local PMA bit.

Another aspect of our invention 1s revealed when one or
more of the RFARs on each node are processing a read-only

10

15

20

25

30

35

40

45

50

55

60

65

3

directory invalidation. The operation results from a proces-
sor on the remote node requesting the data exclusively, with
the data potentially existing read-only 1n both caches. The
end result of this operation 1s for read-only XlIs to be
broadcast to all the CPs on the remote side, the remote cache
to be mvalidated, and the processor on the local side to own
the data exclusively. In order to ensure the cache coherency
1s maintained, the RFAR which has to honor its compare
always completes the operation by returning a reject
response to the other side. This ensures the LFAR on the
other side will return the request to be recycled through the
central pipeline, thereby ensuring the initial requester will
sec the correct directory state.

RFAR vs. RSAR

These situations involve an LFAR on one cluster sending,
either a data fetch request or read-only directory invalidation
to the corresponding RFAR on the other side. Meanwhile an
LSAR on the other cluster initiates an operation to its
corresponding RSAR on the first cluster. In addition, both
operations are vying for data belonging to the same line. The
potential for a deadlock exists because the LFAR on cluster
A 1s waiting for its corresponding RFAR on cluster B. The
RFAR on cluster B encounters a compare against the LSAR
on cluster B, who 1s waiting for its RSAR on cluster A. The
RSAR on cluster A sees a compare against the LFAR on
cluster A. Thus, none of the four requesters can progress. In
the general case, our invention requires an RFAR that
encounters a compare against an LSAR to honor the com-
pare and wait for the LSAR to complete. Additionally, the
RSAR on the other side will 1ignore its compare against the
LFAR and complete the operation. Upon returning its
response to the corresponding LSAR on the other side, the
RFAR on the other side will be able to proceed with its
operation. Unlike the RFAR vs. RFAR scenarios, the RFAR
in this situation can encounter a directory miss during a
subsequent pipe pass after detecting the LSAR compare.
This can occur due to the LSAR performing a directory
invalidation as part of an operation such as a Store Pad or
[LLRU Cast Out. Normally, 1f the LSAR operation targets the
remote side, the RFAR will terminate by sending back a
“miss” final response.

Just as 1 the previous category, the same exception
applies concerning returning data. The LSARs and RSARS
within a cluster employ the same signaling technique pre-
viously described to indicate when a data return 1s eminent.
If an RSAR encounters a compare and a data return 1s
eminent, 1t must honor the compare and wait for the LFAR
to complete. Also, just as described 1n the previous category,
if the RFAR 1s processing a read-only invalidate, 1t will
return a reject response to force the imitial requester to
recycle the request.

RSAR vs. RSAR

These situations mnvolve an LSAR on each cluster 1niti-
ating an operation to the corresponding RSAR on the other
side. In addition, both operations are vying for data belong-
ing to the same line. The potential for a deadlock exists
because the LSAR on cluster A 1s waiting for its correspond-
ing RSAR on cluster B. The RSAR on cluster B encounters
a compare against the LSAR on cluster B, who 1s waiting for
its RSAR on cluster A. The RSAR on cluster A sees a
compare against the LSAR on cluster A. Thus, none of the
four resources can progress. Due to the number of different
operations the RSAR in the preferred embodiment can
process, the method used to avoid the deadlock 1s command
dependent.

To begin with, the preferred embodiment contemplates
the use of a cache management scheme which guarantees

US 6,738,872 B2

9

that remote LRU cast outs will always miss the remote
cache. Therefore, to improve performance, RSAR processes
LLRU cast outs in an asynchronous fashion and bypasses the
centralized pipeline. Since these LRU operations don’t
require RSAR to perform any cache coherency tasks, our
invention allows any RSAR processing them commands to
automatically 1gnore any interlocks 1t encounters.

Secondly, an RSAR 1n the present invention will ignore a
compare against an LSAR if the LSAR 1s processing an I/0O
Store or I/O Query operation targeting that cluster. This is
permitted because architecturally I/O Stores are not guar-
anteed 1n any specific order or relationship to other opera-
tions 1n the system. For example, 1if RSAR 1s processing a
Store Pad, 1t 1s allowed to proceed with the main memory
store operation while the local LSAR 1s also processing an
I/O Store. Cache coherency 1s maintained in the following
manner. For a compare to occur, the RSAR operation must
be targeting the same cluster as the I/O Store. Furthermore,
LSAR 1s only loaded with an I/O Store if it misses the local
cache. In order to maintain coherency, the local LSAR must
query the remote cache to see if the line exists there. If the
query 1s sent after the remote side has initiated the RSAR
operation, the query will encounter a compare against the
L.SAR on the other cluster and wait. This ensures the RSAR
operation on the local cluster completes first and performs
all necessary directory updates prior to allowing the I/0
Store to continue. On the other hand, if the query completes
before the RSAR operation initiates, or if the query indicates
a miss 1n the remote cache, then the I/O Store proceeds out
to the local main memory and an architecturally permissible
race condition ensues.

In addition to the aforementioned case, RSAR can also
sately 1gnore compares when the local LSAR 1s processing
a Store Pad or Move Page Storage op and RSAR 1is pro-
cessing any operation. Furthermore, if RSAR 1s processing
something other than a remote LRU cast out, our invention
employs an additional performance enhancement by actu-
ally aborting the operation. Thus, rather than spend time
transferring data to main memory or making directory
update pipe passes, RSAR simply returns a completion
response as 1f the operation occurred. This results 1n sig-
nificant performance improvements 1n systems comprising
extensive memory latency or constricted memory bandwidth
In comparison to processor performance. Once again, this 1s
permissible since S/390 system architecture allows Store
Pads and Move Page Store operations to be processed
without order.

The final case dictates the conditions requiring RSAR to
honor any compare it encounters. These cases occur when
the local LSAR 1s processing an LRU cast out and RSAR 1s
processing any operation other than a remote LRU cast out.
Since the LSAR 1s processing a cast out, it must either target
the local or remote side. If it targets the local side, a deadlock
1s not possible because the RSAR will simply honor the
compare and wait for the cast out to complete. On the other
hand, if the LSAR cast out targets the remote side, 1t will
load the RSAR on the other side. However, our mnvention
avolds any potential deadlock by allowing the remote cast
out to complete asynchronously, thereby bypassing any
interlocks.

Generation of Rejects Responses by REAR or RSAR

The present invention further improves upon prior art by
enlisting a form of active and passive hang detection within
the Remote Fetch and Store Controllers. The RFAR and
RSAR controllers work 1n a passive manner to achieve
deadlock avoidance by forcing a reject response when the
existence of a fast hang quiesce (fhq) condition emanating

10

15

20

25

30

35

40

45

50

55

60

65

10

from elsewhere 1n the SC has been detected. Additionally,
the present invention also permits the RFAR and RSAR
controllers to actively participate 1n the generation of a fast
hang quiesce condition to be broadcast to other controllers
in the SC. This 1s achieved through the use of a Global Hang
Counter 1n the SC which generates the thq pulses that are
used to monitor progress through the SC. Each SC controller
(including RFAR and RSAR) activates its own internal hang
pulse when the number of thq pulses 1t receives reaches a
predetermined count known as the mternal hang limiat. If two
consecutive internal hang pulses are generated, 1t’s 1ndica-
five of a potential hang condition. The controller responds
by activating 1its fhq request latch which results in the
broadcast of the fhq condition to all SC controllers. The
newly activated fhqg condition results 1n all subsequent
requests being forced temporarily inactive (i.e. quiesced) in
order to allow all currently active operations to complete. If
RFAR or RSAR detects the thqg active condition during a
valid operation, then that RFAR or RSAR operation will be
rejected. This 1mproves the probability of completing all
currently active SC operations since the RFAR or RSAR
reject results in the removal of any possible interlock
conditions than any other SC requester may have had with
RFAR or RSAR.

Although the internal functionality of the central SC Fast
Hang Quiesce mechanism 1s largely unchanged from that
cited 1n the Prior Art as U.S. Pat. No. 6,073,182, the present
invention expands the use of this mechanism to include the
remote facilities. In doing so, some care must be exercised
to ensure that the REAR/RSAR reject due to thqg mechanism
itself does not result 1n any hardware loop or deadlock
conditions. For this reason, activation of this mechanism i1s
dynamically blocked if any of the following conditions are
true;

1. The RFAR or RSAR 1s already 1n the process of gener-
ating a response.

2. A reject response for this RFAR or RSAR has already
been 1ssued during this quiesce period.

3. The RFAR or RSAR 1s 1n one of the following states:

a. The internal state machine 1s not i1n the i1nitial state

b. The 1nternal state machine 1s 1n the 1nitial state, 1t hasn’t
encountered any compare and 1t’s not currently waiting,
for any resources.

In addition, the following mode and disable switches are
implemented for maximum flexibility:

1. Reject current op: Results 1n reject response for current
RFAR or RSAR op assuming none of the blocking
conditions described above are active.

2. Reject next fetch: Results in reject response for next
RFAR op (instead of current RFAR op) assuming none of
the blocking conditions described above are active.

3. Disable reject due to self: Blocks forcing of reject
response 1f this RFAR or RSAR initiates thq request.

4. Disable reject due to others: Blocks forcing of reject
response 1f a requester other than this REAR or RSAR
initiated the thg request.

The present invention improves upon prior implementa-

tions of S/390 Enterprise Servers 1n several aspects. To
begin with, the S/390 G5 and G6 Enterprise Servers contain
more Local Fetch/Store Address Registers (LFAR/LSAR)
than Remote Fetch/Store Address Registers (RFAR/RSAR).
In addition, the REAR/RSARs are floating and can service
any LFAR/LSAR on the remote cluster. This imbalance

US 6,738,872 B2

11

increases the likelihood of a cross-cluster deadlock due to
the 1nability of the RFAR/RSAR resources to service all the

LFAR/LSARs simultancously. Our invention utilizes an
equal number of LFAR/RFAR and LSAR/RSAR pairs, and

also incorporates a fixed aflinity between each LFAR/RFAR
and LSAR/RSAR. This ensures that each LFAR/LSAR

operation 1n need of a remote resource, will be guaranteed
to have one available, thus reducing the chances of encoun-
tering deadlocks while 1improving performance.

Another mnnovation of our mvention 1s the use of an 1/0
Query followed by an remote 1I/O Store, if necessary. Pre-
vious binodal systems required all I/O Stores to be per-

formed to the local side. Therefore, a special remote force
cast out command was 1ssued to the remote cluster to test if
the line existed 1n that cache. If so, the RSAR on the remote
side would enlist an LSAR on the remote side to perform a
cast out of the data back to the local side. The entire
operation utilized four resources:

the local LSAR 1nitiating the force cast out

the remote RSAR servicing the force cast out
the remote LSAR which the remote RSAR enlisted to
perform the cast out

the local RSAR which received and processed the force

cast out data.

The present invention always only utilizes a single LSAR/
RSAR pair to perform any remote operation, further elimi-
nating the potential for cross-cluster deadlocks.

A further improvement over prior S/390 systems 1s the use
of an abort mechanism within RSAR to detect when an

RSAR operation can be architecturally thrown away. This
feature not only aids 1n deadlock avoidance, but improves
performance as well since costly memory accesses are
spared.

In comparison to non-S/390 systems, one common
approach 1n other systems 1s to reject operations back to the
requester 1f resource or address conilicts arise. In addition to
degrading overall system performance this approach often
incites additional cross interrogation or “bus snooping”
tratfic. The present mmvention minimizes rejections to only
those cases where the line has changed global state in the
cache.

Lastly, our invention employs a fast hang quiesce mecha-
nism within both RFAR and RSAR to detect system hangs
and reject their current operation. This differs from prior
systems 1n two respects. First, systems such as the G5 & G6
relied on the other SC resources (CFAR, CSAR, MAR,
LFAR, LSAR, etc.) to detect system hangs and recycle their
operation, whereas our invention embeds the detection logic
within the remote controllers. Second and most importantly,
fast hang quiesce was the only means of deadlock preven-
fion 1n prior systems, whereas our invention uses it as a last
resort 1n the event a deadlock occurs. In other words, the
present mvention takes a proactive approach in an effort to
avold deadlocks altogether while prior art tends to focus on
resolving the deadlock m a reactionary manner.

Although the present invention 1s being described in
association with the present preferred embodiment, one
skilled 1in the art will appreciate that the concepts disclosed
herein are applicable to systems comprlsmg more than two
clusters, and utilizing Storage Clusters differing from our
present embodiment. Additionally, the present invention
contemplates alternate System Controller embodiments with
a different number and configuration of functional unaits,
including, but not limited to, the cache structure, the main
memory organization, the number and size of data path
resources (such as buffers, control busses, etc.), the COmPO-
sition of the various controllers, and the number and size of
the Pipelines.

10

15

20

25

30

35

40

45

50

55

60

65

12

These and other improvements are set forth in the fol-
lowing detailed description. For a better understanding of
the 1nvention with advantages and features, refer to the
description and to the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a Bl-nodal System Controller in a sym-
metric multiprocessor system.

FIGS. 2A through 2I illustrate the various combinations
of cross cluster operations than can lead to deadlocks.

FIG. 3A show the affinity between the local and remote
controllers.

FIG. 3B depicts the store operation abort mechanism.

FIG. 4 1llustrates the flowchart for processing Remote 1/0
Store operations.

FIG. 5 depicts the coexistence of Asynchronous and
Synchronous operations which can be exploited to avoid

deadlocks.

FIG. 6 illustrates the Fast Hang Quiesce mechanism.

FIG. 7 1llustrates the internal Fast Hang Quiesce logic
with the Remote Fetch and Store Controllers.

Our detailed description explains the preferred embodi-
ments of our invention, together with advantages and

features, by way of example with reference to the drawings.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 depicts two clusters in a Bl-nodal symmetric
multiprocessor system, each of which contains a System

Controller. The Remote Storage Cluster Interface Controller
(RSC IC 10) interacts with a plurality of Local Fetch/Store

Controllers (11), Remote Fetch Controller (12A), the
Remote Store Controller (the present invention 12B), and
Centralized Multistage Pipelines (13). These Pipelines are
fed by a Central Priority (14) Station which prioritizes
asynchronous work requests emanating from N Central
Processing Unit Controllers (15) or N I/O Adapters Con-
trollers (16). Each CPU Controller has an affinity to a
particular Central Processor (CPU) in the SMP system. The
Pipelines comprise a shared Level 2 store-1n cache to which
all Central Processing Units, I/O adapters and Local and
Remote Fetch/Store Controllers have read and write access.
The cache coherency operation employed 1n the preferred
embodiment permits data to reside in the cache 1n a read-
only state which permits all processors and 1/O adapters on
both clusters to access copies of the data, or an exclusive
ownership state whereby a single processor can exclusively
own the data at any time. Any processor on any cluster may
request ownership of data at any time, even 1f another
processor currently owns that data.

Within the Local (11) and Remote (12A and 12B) Fetch/

Store Controllers are dedicated controllers for managing
fetch and store operations. The Local Fetch Controller works
in conjunction with the Remote Fetch Controller (12A) to
initiate and manage data fetches from anywhere in the
system. Conversely, the Local Store Controller initiates store
requests to any memory location 1 the system. In cases
where the request targets the memory or cache on the local
cluster, the Local Store Controller manages the entire opera-
tion. However, when the request targets a memory location
on a remote cluster, the Local Store Controller initiates a
request to the present invention (12B) which acts on behalf
of the Local Store Controller to store the data in a most
cfficient manner.

The preferred embodiment utilizes a dual pipeline design
in which the Central Pipelines (13), Remote Fetch/Store

US 6,738,872 B2

13

Controllers (12A and 12B) and Local Fetch/Store Control-
lers (11) are all duplicated. The concepts disclosed in the
present invention are independent of the surrounding struc-
ture of the System Controller (SC) and can be just as
ciiectively implemented 1n a more traditional single pipeline
SC design or a less traditional SC design employing three or
more pipelines. One skilled 1n the art will appreciate how the
Remote Fetch/Store Controller interfaces and internal func-
tional blocks can be easily scaled to adapt to almost any SC
structure.

Like much of the existing art, the present invention relies
on address mnterlocks to determine whether multiple request-
ers are contending for the same block of storage. The
primary purpose of these interlocks 1s to sequentialize the
requesters to ensure only one operates on the storage block
at a time. Each controller shown in FIG. 1 employs a
compare station to monitor the Central Pipeline (13) and
upon detecting a compare, classifies it as one of the follow-
Ing types:

those which can be recycled back into the Centralized

Pipeline once the compare clears

those which can be safely 1gnored
those 1n which the associated operation can be aborted

those 1n which the operation 1s rejected to the originating,

cluster.

By classifying each type of address compare i1n this
manner, the present invention not only permits certain
operations to continue processing, or at least waiting a
reduced amount of time, but it, plays a key role in the
methods for cross-cluster deadlock avoidance.

The Remote Storage Controller (12B) has several sub-
units which interact with various SC functional units. Since
there 1s only a single Remote Storage Cluster interface to
service requests from twin sets of Pipelines (13) and Fetch/
Store Controllers (11,12), the solitary RSC IC has to accom-
modate a multitude of local interfaces as well as the cluster-
to-cluster interface. In addition, 1t has to manage traffic
flowing from the local cluster to the remote cluster as well
as trafhic flowing from the remote cluster.

FIGS. 2A through 2F depict six operational scenarios that
can result 1n cross cluster deadlocks. The present invention
teaches deadlock avoidance by implementing logic which 1s
designed to detect these scenarios and take proactive mea-
sures to prevent the deadlock from ensuing. Before explain-
ing how the present invention handles each scenario, 1t may
be beneficial to 1llustrate how a cross cluster deadlock forms.

Turning our attention to FIG. 2A, two System Controller
clusters (19a and 19b) are shown. For purposes of this
discussion, the left cluster (19a) will be referred to as the
“local” cluster and the right (19b) as the “remote” cluster.
Within each cluster there exists a plurality of processor

controllers (15), I/O controllers (16), a multistage Central-
ized Pipeline (13), Local Store Controllers (LSAR 21),

Remote Store Controllers (RSAR 22), Local Fetch Control-
lers (LFAR 23) and Remote Fetch Controllers (RFAR 24). It
should be noted that just because one cluster 1s denoted the
“local” cluster and one 1s the “remote” cluster, all clusters 1n
the preferred embodiment always contain a set of Local
Controllers for handling operations initiated on that cluster
and a set of Remote Controllers for processing operations on
behalf of the associated Local Controllers.

Also included in FIG. 2A are a Local Command (25) and
Remote Command (26). These represent the various opera-
tions that can be processed by RFAR and RSAR on behalt
of a corresponding LFAR and LSAR. The LFARSs operations

typically mvolve read-only or exclusive data fetches and

10

15

20

25

30

35

40

45

50

55

60

65

14

Read Only Directory Invalidations which are a result of the
processor on that LEAR’s cluster requesting a block of data
in an exclusive state. The LSAR operations are LRU Cast
Outs, Store Pads (which replicate processor initiated data
patterns directly into main memory), Exclusive Directory
Invalidations, Move Page Stores (which store data fetched
from one portion of main memory 1nto a target main
memory address), I/O Stores and Store Physical Absolutes
(which update main memory with a block of data storage
while omitting any cache coherency operations).

An example of a cross cluster deadlock occurs 1f the local
LFAR 1nitiates an operation which requires the correspond-
ing RFAR on the remote cluster. Simultaneously, the remote
LFAR 1nitiates an operation which requires the correspond
RFAR on the local cluster. If both operations pertain to the
same block of storage, then the address interlocking within
cach of the four controllers would activate and pause that
controller’s progress until the compare clears. However,
since each controller 1s dependent on one of the other three
to progress, none will progress so the address compares will
never release. Hence a deadlock forms since all four request-
ers are stuck waiting for each other.

Returning to FIG. 2A, the Local Command (25) being
mnitiated 1s some type of data fetch while the Remote
Command (26) being initiated is also a data fetch. The
present invention avoids the deadlock by using an arbitrary
address bit known as the “local memory” bit to break the
impending deadlock. Essentially this bit 1s examined by the
RFARs on each cluster. Since both sides are targeting the
same memory location, the memory can only be “local” to
one of the RFARSs. In this example, we will presume that the
memory address targets the “local” cluster (19a). By
definition, the RFAR considered to be “remote”, (the RFAR
on cluster 19b5) is allowed to ignore the compare, and
proceed. The directory 1s mterrogated and if data resides in
the cache it 1s returned, otherwise an XI “miss” response 1s
returned. Meanwhile, the RFAR on local cluster 194 must
honor 1ts compare so 1t returns an automatic “hit” interro-
gation response. This serves the purpose of “freezing” the
LFAR on the cluster 196 and preventing 1t from making a
fetch request to main memory. The RFAR on cluster 194
then waits for the local LFAR to receive the data 1t requested
from cluster 19b. In the event that the remote RFAR missed
the cache, the local LFAR on cluster 194 will forward a fetch
request to the local maimn memory and acquire the data.
Regardless of the data source, as soon as the LFAR on
cluster 194 loads the data into the local cache, the local
RFEAR’s compare will release, its request will recycle back
into the Central Pipeline (13) and it will fetch its data from
the local cache.

The aforementioned scenario assumes complete overlap
of the two fetch requests. One can appreciate how these
requests can be skewed 1n such a way that data 1s already
being transferred, or a main memory request has already
been 1ssued, before the second request loaded into the
RFAR. Our i1nvention contemplates this situation and
employs a signaling technique between the LFARs and
RFEARSs on the same cluster to indicate when a data return 1s
eminent. If an RFAR compares against an LEFAR whose data
return 1s eminent, the present invention asserts that 1t must
honor 1ts compare, regardless of the local memory bit. Once
the data 1s returned and loaded into the cache, the LFAR
completes, and the address interlock releases, thus allowing
the neighboring RFAR to proceed. Since the data can only
be sourced from one main memory location, this eminent
data return can only occur on one cluster at any given time.

FIG. 2B 1illustrates cluster 194 1ssuing a data fetch as the
[ocal Command (25) while the Remote Command (26) is a

US 6,738,872 B2

15

Read-Only Invalidate. Once again, the “local memory”™ bit
determines which RFAR will honor 1ts interlock and which
will be allowed to proceed. In this example, the target
memory address is on cluster 194, so the RFAR (24) on
cluster 194 must wait. Meanwhile the RFAR (24) on cluster
1956 may proceed with 1ts data fetch and return the data to
cluster 19a. Upon completing the data fetch, the RFAR on
cluster 19a proceeds with the Read-Only Invalidate and after
invalidating the directory, returns a reject response. The
reject response 1s necessary because the data fetch on cluster
1956 may have updated the directory state to reflect an invalid
entry or a read-only state to a different processor(s). The
reject response forces the originating processor controller to
reexamine the directory state and perform all the necessary
cache coherency activities to ensure the requesting processor
on cluster A acquires proper exclusive ownership.

If the target memory address 1s on the remote cluster the
deadlock avoidance technique 1s nearly identical. In this
situation, the data fetch would have to honor the compare
and the Read-Only Invalidate would be allowed to proceed.
The one exception 1s 1f the data fetch has already begun
transferring the data back to cluster 194, then the same
signal described earlier to 1ndicate an eminent data return 1s
again used to pause the Read-Only Invalidate until the data
return 1s complete. However, 1f the data has not yet arrived
on cluster 194, then the Read-Only Invalidate would con-

tinue and the data fetch would wait.
In FIG. 2C the Local Command (25) is some type of data

fetch and the Remote Command (26) is an LRU Cast Out.
Since the LRU Cast Out can only target the memory on one
node (in this case the memory attached to local cluster 19a)
our invention prevents the deadlock by always allowing the
LRU operation to complete while cluster 19a 1gnores the
compare against LFAR and completes the data transfer to
memory. On the remote cluster RFAR (24) returns a “false
hit” over the synchronous XI response bus. The purpose of
this false hit is to freeze the local LFAR on cluster 19a by
indicating the fetch data may be coming from the remote
cache. This prevents the LFAR from initiating a data fetch
to the local memory. Meanwhile, REAR on cluster 1956 waits
until the LSAR on cluster 195 1s finished with the LRU, at
which time the storage block will be mnvalidated out of the
remote cache. Upon resuming, RFAR will report a cache
miss back to the LFAR (23) on cluster 19a. This results in
LFAR on the local cluster fetching the data locally and
obtaining the most recent copy of the data.

A key improvement 1n this scenario 1s the use of a final
miss response after the LRU completes. An alternate imple-
mentation would have the RFAR generate a reject response,
which would result in the LFAR rejecting the operation back
to the original requester (CP or I/0). Although this maintains
the proper cache coherency by guaranteeing subsequent
requests will see a cache miss and fetch the data from the
memory, 1t slows system performance and requires addi-
fional pipe passes. Our mvention circumvents the need by
detecting this situation and ensuring RFAR returns the miss
response at the appropriate time to permit LFAR to directly
access the data.

In FIG. 2D the Local Command (25) is again some type
of data fetch while the Remote Command (26) is a Store Pad
or Exclusive Invalidate. In this scenario, the Remote Com-
mand is generated by the remote LSAR (21) on cluster 195
processing a Store Pad. If the address 1s targeting a memory
location on the remote cluster (196) then the Remote Com-
mand (26) would be an Exclusive Invalidate because the
data 1s being transferred from the LSAR to its own memory
on cluster 19b. Therefore LSAR only needs to send an

10

15

20

25

30

35

40

45

50

55

60

65

16

Exclusive Invalidate to invalidate the copy of the data that
may be cached on cluster 194. In this situation, the RSAR
(22) on cluster 19a will detect an address compare against
the LFAR (23) on cluster 19a.

The degree to which LFAR has progressed determines
whether RSAR honors or 1gnores the interlock. The present
invention contemplates the use of a data_ in_ buffer signal
between LEAR and RSAR to indicate whether pending fetch
data has arrived into the LFAR fetch buffer. If it hasn’t yet
arrived, RSAR 1s permitted to ignore the compare and
continue with the invalidation. Meanwhile, the RFAR on
cluster 1956 must wait for the LSAR to complete the Store
Pad. After mvalidating the cache on cluster 194, RSAR
returns a final response to LSAR thus allowing 1t to complete
the Store Pad to the memory on cluster 195. The RFAR 1n
cluster 196 will then be permitted to continue the fetch and
obtain the data from memory. Once the data does arrive on
cluster 19a, LFAR will simply load 1t into the cache and
revalidate the directory. On the other hand, if the data has
already arrived, when RSAR begin processing, it must honor
the mterlock and wait for LFAR to complete. Once the fetch
data 1s loaded into the cache, RSAR will be permitted to
invalidate the copy in cluster 194 and return a completion
response to LSAR on cluster 19b. That, in turn, will allow
LSAR to send the Store Pad data out to the memory.

A similar situation exists if the LSAR on cluster 19b 1s
Initiating a Store Pad to a target memory address on cluster
19a. In this case, the Remote Command (26) 1s the Store Pad
operation and RSAR on cluster 192 must store the data into
memory. The RSAR behaves exactly the same as the afore-
mentioned Exclusive Invalidate case, with the only ditfer-
ence being a data store to memory 1s performed along with
a potential directory invalidation. The other difference 1s the
RFAR (24) on cluster 195 will return a “false hit” response
over the XI response bus to freeze the LFAR 1n cluster 194
and prevent 1t from 1nitiating a memory data fetch, and since
L.SAR 1s guaranteed to have invalidated the directory prior
to RFAR resuming, our invention permits it to return a miss
response as explained in the FIG. 2C scenario.

FIG. 2E shows a scenario nearly identical to FIG. 2D,
except the Local Command (25) 1s a Read-Only Invalidate
instead of a data fetch. Our invention exploits the fact that
data 1s only transferred (at most) in one direction and both
caches will eventually be 1invalidated. Therefore, 1n order to
prevent a deadlock, the present invention permits the RSAR
(22) on cluster 19a to ignore the address interlock and
continue processing the Store Pad or Exclusive Invalidate.
Meanwhile, the Read-Only Invalidate on cluster 195 must
honor 1ts compare and wait for the Remote Command to
complete. Once complete, the RFAR (24) on cluster 195
sends back a reject response. The purpose of this 1s to ensure
proper cache coherency by forcing the original requester to
recycle back through the Central Pipeline (13) on the local
cluster and update the local directory with the proper state.
If the REFAR (24) in cluster 196 were allowed to simply
continue, then the potential would exist for a local processor
(on cluster 19a) to continue processing a fetch under the
pretense of an initial directory state, when in fact the
directory state was changed as a result of the Store Pad or
Exclusive Invalidate issued from the remote cluster (195).

FIG. 2F shows a case where both the Local (25) and
Remote (26) Commands are Read-Only Invalidates. In a
similar fashion to FIG. 2A where both commands are data
fetches, the “local memory” bit determines which RFAR
(24) must honor the address interlock and which can pro-
ceed. In our examples, the address 1s always targeting the
memory attached to the “local cluster” (19a) so our inven-

US 6,738,872 B2

17

tion dictates that the RFAR (24) on cluster 194 must honor
the compare and wait. Meanwhile, the remote RFAR on
cluster 1956 proceeds with mvalidating the remote cache.
Upon completion, the local REAR on cluster 194 resumes by
returning a reject response and forcing the original requester

to retry the operation from the beginning. The reason 1s the
same as for FIG. 2E.

FIG. 2G 1llustrates a Read-Only Invalidate Local Com-
mand (25) processing at the same time as an LRU Cast Out
being issued as the Remote Command (26). This situation 1s
a simpler derivative of the previous scenario involving two
Read-Only Invalidate commands. In this case, the RSAR
processing the LRU Cast Out 1s always permitted to proceed
while the other operation must honor the compare and wait
for the LRU to complete. Therefore the RSAR (22) on
cluster 19a will complete the LRU data transfer and return
a completion response, which 1n turn releases the interlock
on cluster 195, and permits the RFAR (24) to proceed with
the Read-Only Invalidate. Unlike the earlier Read-Only
Invalidate scenarios, an LRU 1s a special case wherein the
RFAR can assume that the directory state can’t be changed
on the remote cluster performing the LRU, therefore the
initial state queried by the processor controller 1s still valid
after the Read-Only Invalidate completes.

FIG. 2H depicts a case mnvolving only store operations. In
this situation, the Local Command (25) 1s an Exclusive
Invalidate which 1n the preferred embodiment 1s the result of
a Move Page Store or Store Pad operation being performed
to a block of storage on the local cluster (19a). Meanwhile,
the Remote Command being 1ssued 1s an LRU Cast Out
which 1s targeting the same block of storage on cluster 19a.
As previously mentioned, our mvention permits an RSAR
processing a remote LRU to always proceed and complete
the storage operation. Therefore, the RSAR (22) on cluster
19a will complete the cast out. Similarly, our invention
dictates that an RSAR processing any cache coherent opera-
fion which interlocks with an LSAR processing an LRU
must always wait for LSAR to complete. This 1s depicted in
FIG. 3B and explained 1in more detail later in the detailed
description. In this situation, the RSAR (22) on cluster 195
encounters the LSAR (21) on cluster 195 performing an
LRU Cast Out and thus waits for 1t to finish. Upon
completion, the RSAR proceeds with the Exclusive Invali-
date. Not only does this method avoid any cross cluster
deadlock, but 1t ensures the LRU Cast Out goes first and the
Move Page or Store Pad data winds up overlaying the LRU
data 1n storage. In the case of a Move Page operation, this
1s significant since the architecture of the preferred embodi-
ment dictates that the data transferred as part of the Move
Page fetch must be the data that winds up 1n the main store
location upon completion of the operation.

FIG. 21 illustrates one of the “flexible architecture™ situ-
ations that the present invention exploits to enhance system
performance. These are cases where an LSAR processing a
Store Pad or Move Page Store interlocks against an RSAR
processing a Move Page Store, Store Pad, Exclusive
Invalidate, or I/O Store. In these situations, simultaneous
maln memory storage operations are being processed and
the architecture of the preferred embodiment does not pre-
scribe an order of completion for these types of stores.
Therefore, our 1nvention elects to have the RSAR automati-
cally abort 1its operation 1 favor of allowing the LSAR to
complete its store. This provides the same result as the
RSAR performing and completing its store, only to have the
LSAR follow up with 1ts store and overlay the RSAR data
with the LSAR data. In the example shown 1n FIG. 2I, Store

Pads are mitiated on both clusters. Since the target memory

10

15

20

25

30

35

40

45

50

55

60

65

138

address 1s on cluster 19a, the Remote Command (26) 1s a
Store Pad while the Local Command (25) is the Exclusive
Invalidate that 1s associated with the LSAR Store Command
on cluster 19a.

According the abort rules set forth in the present
invention, both RSARs will interlock against LSARs pro-
cessing Store Pads, therefore both RSARs will abort their
respective operations. The abort simply means the data
transfer or directory update portion of the operation 1is
omitted, but the RSAR still returns a normal completion
response. This permits the corresponding LSAR on the other
cluster to proceed. In this scenario when the RSAR (22) on
cluster 194 returns a completion response, the LSAR (21) on
cluster 195 finishes the operation by invalidating the cache
on cluster 195, without knowing the Store Pad data was
never actually stored into main memory. Meanwhile, the
RSAR (22) on cluster 195 aborts its Exclusive Invalidate
and returns a response back to the LSAR (21) on cluster 19a.
This enables the LSAR (21) on cluster 19a to continue with
transferring its Store Pad data out to the memory on cluster
19a. Architecturally, this 1s no different than the RSAR on
cluster 19a performing the store for the Remote Store Pad
data, only to have that data overlaid by the subsequent store
from the LSAR on cluster 194. Our invention recognizes this
flexibility 1n the architecture and uses it to omit a wasteful
data transfer thereby 1improving overall memory throughput.

The aforementioned figures depict on a case-by-case basis
the methods our invention employs to recognize all the
potential combinations of store and fetch operations that can
induce a cross cluster deadlock when they are being pro-
cessed simultaneously. The methods described herein are
applicable to many combinations of store and fetch opera-
tions which extend beyond the traditional data transfers to
also 1nclude cache management operations such as Read-
Only and Exclusive Invalidate. Although every possible
operational combination 1s not 1llustrated 1n this application,
one skilled 1n the art can appreciate how these methods can
be applied to architectures beyond that described in the
preferred embodiment.

FIG. 3A depicts the multitude of controllers with their
prescribed affinity. Every remote operation 1s initiated by a
local Fetch or Store Controller. In the preferred embodiment,
these controllers are arranged 1n groups of four per central-
ized pipe (13). The group of four Local Store Controllers
(LSAR 31) initiate all remote store operations by transmit-
ting the store command through the RSC Interface Control-
ler (10). On the remote cluster there exists a matching set of
four Remote Store Controllers (RSAR 32) who service the
store operations on behalf of the local controller. The present
invention utilizes a dedicated 1-to-1 affinity between the
local LSAR and remote RSAR controllers to assist in
preventing cross-cluster deadlocks as well as 1mproving
overall system throughput by permitting four concurrent
operations per pipeline to be 1 progress on either cluster
(19). Although the present invention doesn’t describe the
Fetch Controllers 1n detail, FIG. 3A also depicts the same
relationship between the group of four Local Fetch Control-
lers (33) and their affinity to the four Remote Fetch Con-
trollers (34) on the other cluster. The important aspect of the
preferred embodiment 1s that the present system structure
permits a total of 8 Fetch and Store operations to be 1n
progress 1n a cluster at any time. The present invention
represents a single “instantiation” of the four RSAR con-
trollers and thereby must contend with the other seven
requesters to vie for priority into the Central Pipeline (13).

The present invention provides several rules governing,
address compares and what actions should be taken. If the

US 6,738,872 B2

19

current operation compares against any CP fetch or I/O
operation which entered the pipeline 1, 2 or 3 cycles ahead
of the current RSAR operation, then the Remote Store
Controller must wait for the compare to clear and recycle 1ts
request. This 1s also true for Store Pads, Move Page or Cache
Purge operations 1 cycle ahead of the current RSAR opera-
tion. Once an operation 1s loaded 1nto an LFAR, the present
invention will honor any address compare and wait for 1t to
clear unless one of two conditions 1s true:

1. LFAR 1s processing a read-only invalidate command
which simply invalidates the current copy of the data 1n
the cache. In this case, our invention can 1gnore the
compare because all store operations except for I/O Stores
will either invalidate the directory or store directly to
main memory bypassing cache coherency. I/0 Stores that
hit the cache will process 1n their normal fashion and
complete with a final directory state of valid. The pre-
ferred embodiment uses an interlocking mechanism
between LFAR and RSAR which guarantees the read-
only 1nvalidate will happen before the I/O Store com-
pletes.

2. LFAR 1s processing a data fetch but the data has not yet
been returned. In this case, the interlocking mechanism
between LFAR and RSAR guarantees that LFAR can’t
change the cache state until after the RSAR operation
completes.

For operations that compare against operations being,
processed by a Local Store Controller (LSAR), the LSAR
Compare Chart (35) in FIG. 3B is used to determine the
resultant action. Regardless of what operation LSAR 1s
processing, 1if RSAR 1s processing an LRU Cast Out or Store
Physical Absolute, then the Remote Storage Controller can
sately 1ignore the compare since these operations bypass
cache coherency. Additionally, 1f LSAR 1s processing an I/0
Store, the architecture 1n the preferred embodiment permits
RS AR to safely ignore the compare because an I/0O Store can
be processed 1n any order relative to other memory store
operations. If LSAR 1s processing an LRU, the Remote
Store Controller must always wait for the compare to clear.

In cases where LSAR 1s processing a Store Pad or Move
Page Store, and RSAR 1s processing any cache coherent
operation, the present invention employs a novel feature
called an operational abort. In these situations, the Remote
Store Controller simply aborts the current store operation.
This 1s permissible since the final cache state for Move Page
Store and Store Pads 1s always an invalid state with the data
being sent to main memory. Therefore, the abort gives the
appearance that the RSAR performed 1ts operation, only to
have the LSAR operation succeed 1t and invalidate the cache
entry and overlay the data in main memory. Thus our
invention doesn’t bother to tie up the main memory data path
or take the time to transfer the data, and instead lets LSAR
always win and complete 1t’s operation. This also frees up
the Remote Store Controller sooner so it can accept a new
command.

Another aspect of the present 1nvention 1nvolves a new
method for performing I/O Store operations which mini-
mizes the number of local and remote resources required to
perform the operation. In the architecture pertaining to the
preferred embodiment, an I/O device can perform a store
operation asynchronously to any storage address in the
system, even 1if that address 1s currently owned by a pro-
cessor. The cache management protocol ensures that any
owning processor relinquishes its ownership and stores any
modifications prior to processing the I/0 store. However, the

10

15

20

25

30

35

40

45

50

55

60

65

20

final location of the I/O Store data 1s not dictated by the
architecture or the cache management protocol. The follow-
ing method 1s used to 1llustrate how an I/O Store 1nitiated
from an I/O adapter on the “local” node 1s processed.

1. I/O Store targets the memory attached to the “remote”™
cluster and misses the local cache. In this situation,
LSAR unconditionally transmits the data to the RSAR
on the remote cluster and the Remote Storage Control-
ler follows the appropriate sequence 1 FIG. 3B
depending on the remote cache state. The data 1s either
stored 1nto the remote cache or the remote main
memory.

11. I/O Store targets the memory attached to any cluster
and hits the local cache. In this case, the store 1s
performed 1nto the local cache, thus eliminating the
need to busy the cross-cluster data bus. If the data hits
exclusive then, by definition, this can be the only copy
of the data. However, if the data hits read-only, with
another read-only copy in the remote cache, then LFAR
sends a read-only 1invalidate command to the RFAR on
the remote cluster, thus invalidating the remote copy.

111. I/O Store targets the memory attached to the “local”
cluster and misses the local cache. Our invention
improves upon previous designs of large SMP systems
where a special force cast out command would be sent
across the mterface to interrogate the remote cache, and
if present, LSAR would 1nitiate a cast out operation to
return the data to the local cluster. This involved the use
of four resources; the local LSAR 1nitiating the force
cast out 1interrogation, the remote RSAR processing the
force cast out, the remote LSAR performing the cast
out, and the local RSAR receiving the cast out. FIG. 4
illustrates the method used by the present invention.
First, the local LSAR sends a I/O Query Command (40)
to the Remote Storage Controller. RSAR accesses the
directory to determine whether the data resides 1n the
remote cache (41). The Response Logic (25) is used to

send an interrogate response indicating hit or miss (42).
If the directory result indicates a miss (43), then the
Remote Storage Controller resets itself (44) and the I/0
Store 1s performed to the local memory. However, if the

directory results indicate a hit (43), then our invention
retains the RSAR resource (46), and the local LSAR

follows up with an [/O Store command (47). The
Remote Store Controller then processes this as if 1t
were case (1) and store the data into the remote cache.
This method ensures data 1s only transferred once using

a single LSAR/RSAR pair just like all other remote
store operations.

Our 1nvention further contemplates the use of a Remote
Storage Controller capable of processing synchronous and
asynchronous store operations, and further exploiting the
asynchronous operations to achieve deadlock avoidance. In
the preferred embodiment a synchronous store operation 1s
onc which must maintain cache coherency throughout the
System Controller. In order to do so, each operation 1is
processed through the multistage Central Pipeline (13) to
permit other controllers to perform address compares and set
the appropriate address interlocks. These address interlocks
are themselves a form of deadlock avoidance since they
ensure that one requester fimishes processing a block of
storage before another requester can process the same block
of storage. However, these interlocks fall short of avoiding
deadlocks that are created as a result of resource contention
such as a controller requiring an LSAR (and associated
buffer) to become available. If the LSAR is currently work-
Ing on a remote store operation, 1t must wait until the
corresponding RSAR on the remote cluster completes the
operation.

US 6,738,872 B2

21

In the preferred embodiment, certain operations such as
[LLRU Cast Outs don’t require cache management. In the case
of LRU Cast Outs, data 1s only stored to main memory 1f 1t
has been modified by a processor that has previously
acquired the data with exclusive ownership. Therefore, by
the definition of the cache management scheme employed 1n
the present invention, the line of data can’t exist in any
remote cache 1n a valid state.

FIG. 5 depicts the high level block diagram illustrating the
architecture of the Remote Storage Controller in the pre-
ferred embodiment. The incoming RSC Command i1s
received into RSAR and enters a Command Decoder (50). If
the command decodes to a synchronous operation such as an
I/0 Store, Move Page Store, Exclusive Invalidate, etc., then
it enters the Synchronous State Machine (51). This logic is
responsible for performing all state (or Mode) transitions
that are required to not only perform the store operation into
main memory or the shared cache, but also perform an
necessary directory updates to maintain cache coherency. As
the command progresses through the various modes (states),
requests are sent to the Pipe Pre-Priority Station (52) which
1s responsible for arbitrating between the plurality of
Remote Fetch, Store and Millicode Controllers 1n the pre-
ferred embodiment. The request eventually enters the Cen-
tral Pipeline (13) where the Address Interlocks (83) are
performed to ensure no other requester 1s processing the
same storage block. If an interlock exists, the Remote Store
Controller must wait until the interlock clears then recycle
its request into the Pipe Pre-Priority Station (52). Once there
arc no further address compares, the pipe operation
progresses until eventual completion.

In the case where the Command Decoder (50) detects an
LRU Cast Out or Store Physical Absolute, 1t 1s immediately
forwarded to the Memory Arbitration Unit (54) which
selects one of the four possible RSAR memory requests.
Once selected, the memory request 1s forwarded to the
memory 1nterface priority station for processing. Bypassing
the Synchronous State Machine (51) and Central Pipeline
(13) offer two advantages. First, no address interlocks are
performed, thus guaranteeing the operation will be sent to
the memory 1nterface as fast as the arbitration unit can select
it. Secondly, the throughput of these operations 1s limited
only by the bandwidth of the memory interface and memory
subsystem. Even if the System Controller 1s extremely busy
processing requests through the pipeline, the asynchronous
operations are unalfected by any queues forming at the
entrance to the pipe. The resulting effect 1s not only
improved system performance for store operations, but an
additional form of deadlock avoidance since another
requester 1s permitted to access that storage block and begin
processing 1mmediately without the need to wait for RSAR
to complete the store operation. This feature also enables
RSAR to complete these operations sooner, thereby freeing
up the corresponding LSAR on the local cluster to also
become available sooner and either release any requesters
currently interlocked against i1t or get loaded with a new
operation that may be required to break a pending deadlock.

By incorporating the Command Decoder (50), Synchro-
nous State Machine (51) and Memory Arbitration Unit (54),
our mvention 1s capable of handling any combination of
synchronous and asynchronous operations among the four
Remote Store Controllers. One skilled 1n the art could
appreciate how the present invention 1s also applicable to
operations other than those described in the preferred
embodiment and 1s 1n no way limited to four controllers. For
instance, the apparatus disclosed herein could be imple-
mented using a large number of Remote Store Controllers to

10

15

20

25

30

35

40

45

50

55

60

65

22

permit a great degree of concurrent processing as long as
sufficient data paths and resources could be implemented to
support the resulting system traffic.

In addition to providing several means for improving
performance and maximizing system throughput, our inven-
tion also affords a high degree of reliability and availability.
In a large SMP system with many resources, 1t’s often
possible for several controllers to deadlock against each
other because one 1s holding a resource that the other needs
to complete 1t’s operation. This situation can be aggravated
if new operations can continually enter the pipeline and
possibly tie up further resources. Therefore, the present
invention utilizes Fast Hang Quiesce logic embedded in the
controllers of the preferred embodiment which serve two
purposes. First and foremost 1t works 1n an active capacity
to detect 1f the current operation 1s hung and not making
forward progress. In this case 1t broadcasts a signal which
suppresses any new operations from entering the Centralized
Pipeline (13). The other aspect of the Fast Hang Quiesce
logic 1s to act 1n a passive mode and monitor the other
controllers to see 1f they are hung. If so, the monitoring
controller, under certain conditions, will reject its current
operation.

FIG. 6 illustrates the fast hang quiesce (fhq) pulse gen-
eration and distribution scheme within a binodal symmetri-
cal MP system. A fhq pulse generator (60) sends periodic
pulses to each of the PU controllers (15), IO controllers (16),
and Remote Fetch and Remote Store controllers (12). If the
number of thqg pulses received by a controller reaches a
predetermined count known as the mternal hang limit, that
controller will generate its own internal hang pulse and
sends it to the fhq collection and distribution logic (61)
which 1n turn broadcasts this pulse to all other controllers.
Receipt of a thg pulse by a PU or 10 controller results 1n all
subsequent requests to that controller being forced inactive
until all currently active operations are completed. Receipt
of the thg condition by a Remote Fetch or Remote Store
controller results 1n a reject response being generated by said
controller 1f the thq pulse i1s received while processing a
valid remote operation.

FIG. 7 illustrates the response generation scheme that 1s
used to activate the response request latch (77) and encoded
response request register (78) within a Remote Fetch or
Remote Store controller. The response request generation

logic (71) 1s driven by the Remote Fetch or Remote Store
internal state machine (70). The response request generation
logic also receives internal fthg pulses generated by the
Remote Fetch or Remote Store controller itself along with
external thg pulses that are sent to the Remote Fetch or
Remote Store controller via the thq collection and distribu-
tion logic shown 1n FIG. 6. The response request generation
logic mncludes logic to block activation of reject responses
due to an internal or external thqg pulse if the state of the
internal state machine 1s such that activation of a reject
response could lead to a loop or deadlock condition. These
blocking conditions are:

1. The RFAR or RSAR 1s already 1n the process of gener-
ating a response.
2. The RFAR or RSAR 1s 1n one of the following states:

a. The internal state machine 1s not 1n the 1nitial state

b. The internal state machine 1s 1n the initial state, 1t hasn’t
encountered any compare and
it’s not currently waiting for any resources.

US 6,738,872 B2

23

3. A reject response for this RFAR or RSAR has already
been 1ssued during this quiesce period.

In the first two cases, the current operation has progressed
beyond the point where 1t 1s safe to terminate 1t, and the
preferred embodiment advocates permitting the operation to
complete on 1ts own accord 1n order to free up resources
potentially required to break any pending deadlock. In the
third case, the restriction exists to prevent the present
invention from entering into a synchronous loop whereby
the same operation 1s retried indefinitely with each attempt
friggering a reject response, which in turn results in another
retry attempt.

The response generation logic 1s also controlled by four
programmable disable switches (72,73,74,75) which pro-
vide additional flexibility since these switches alter the
behavior of the Remote Fetch and Store Controllers during,
Fast Hang Quiesce activity. Our mnvention contemplates the
use of scan-only latches which can be set or reset through
firmware thus permitting unknown deadlock scenarios 1n the
field to be resolved.

1. Reject current op: Results 1n reject response for current
RFAR or RSAR op assuming none of the blocking
conditions described above are active.

2. Reject next fetch: Results in reject response for next
RFAR op (instead of current RFAR op) assuming none of
the blocking conditions described above are active.

3. Disable reject due to self: Blocks forcing of reject
response 1f this RFAR or RSAR 1nitiates thq request.

4. Disable reject due to others: Blocks forcing of reject
response 1f a requester other than this REFAR or RSAR
initiated the thqg request.

Any combination of settings of these four disable
switches 1s allowed with the restriction that the “reject
current op” disable switch (74) and the “reject next op”
disable switch (75) must not both be active at the same time.

While the preferred embodiment to the invention has been
described, 1t will be understood that those skilled in the art,
both now and 1n the future, may make various improvements
and enhancements which fall within the scope of the claims
which follow. These claims should be construed to maintain
the proper protection for the imvention first described.

What 1s claimed 1s:

1. A remote resource management system for managing
resources 1n a symmetrical multiprocessing environment
having a plurality of clusters of symmetric multiprocessors
having interfaces between cluster nodes of the symmetric
multiprocessor system, comprising:

a plurality of clusters each cluster having:

(a) a local fetch interface controller, and

(b) a local store interface controller, and

(c) one or more remote fetch controllers, and

(d) one or more remote storage controllers, and

(e) a local-to-remote data bus and

(f) an interface controller,

(2) a plurality of processors,

(h) a shared cache memory,

(1) a plurality of I/O adapters, and

(1) a main memory accessible from the cluster,

a remote resource manager for managing said interface
controller and data flowing over said local-to-remote
data bus and an interface between a plurality of
clusters,

cach of said remote fetch controllers being responsible
for processing data accesses across the interface
between clusters,

10

15

20

25

30

35

40

45

50

55

60

65

24

cach of said remote storage controllers being respon-
sible for processing data stores across the interface
between clusters,

wherein said remote fetch controller and remote storage
controller in each cluster act in conjunction with one
another to cause a deadlock avoidance activity
within said cluster for preventing hangs across said
clusters which normally result from one resource on
the local cluster waiting for a second resource on a
remote cluster which 1s deadlocked against a third
resource on said remote cluster waiting for a fourth
resource on the local cluster which 1s deadlocked
against said first resource on the local cluster,

whereby deadlock avoidance 1s achieved through the
use of asynchronous cast outs which are permitted
direct access to shared memory without the need to
perform address compare interlocks against other
simultaneous operations, and ensuring the cast out
will complete without interruption from said simul-
taneous operations.

2. A remote resource management system for managing
resources 1n a symmetrical multiprocessing environment

having a plurality of clusters of symmetric multiprocessors
having interfaces between cluster nodes of the symmetric

multiprocessor system, comprising:

a plurality of clusters each cluster having:
(a) a local fetch interface controller, and
(b) a local store interface controller, and
(c) one or more remote fetch controllers, and
(d) one or more remote storage controllers, and
(e) a local-to-remote data bus and
(f) an interface controller,
(2) a plurality of processors,
(h) a shared cache memory,
(1) a plurality of I/O adapters, and
(j) a main memory accessible from the cluster,
a remote resource manager for managing said interface
controller and data flowing over said local-to-remote
data bus and an interface between a plurality of
clusters,
cach of said remote fetch controllers being responsible
for processing data accesses across the interface
between clusters,
cach of said remote storage controllers being respon-
sible for processing data stores across the interface
between clusters,
wherein said remote fetch controller and remote storage
controller 1in each cluster act in conjunction with one
another to cause a deadlock avoidance activity
within said cluster for preventing hangs across said
clusters which normally result from one resource on
the local cluster waiting for a second resource on a
remote cluster which 1s deadlocked against a third
resource on said remote cluster waiting for a fourth
resource on the local cluster which 1s deadlocked
against said first resource on the local cluster,
whereby memory operations utilize an abort mecha-
nism which allows the move page operation to cease
prior to performing any memory access and permit
other operations to continue and wherein said
memory operations include any combination of
a. said page move store operations mvolving move-
ment of data from one memory location to a target
memory location and

b. cache coherency operations mnvolving invalidation
of remote shared caches and

c. I/0 store operations involving storage of I/O data
into main memory or a shared cache and

US 6,738,872 B2

25

d. store pad operations 1mnvolving replication of data
patterns into main memory.

3. A remote resource management system for managing
resources 1n a symmetrical multiprocessing environment
having a plurality of clusters of symmetric multiprocessors
having interfaces between cluster nodes of the symmetric

multiprocessor system, comprising:
a plurality of clusters each cluster having:

(a) a local fetch interface controller, and

(b) a local store interface controller, and

(¢) one or more remote fetch controllers, and

(d) one or more remote storage controllers, and

(e) a local-to-remote data bus and

(f) an interface controller,

(g) a plurality of processors,

(h) a shared cache memory,

(1) a plurality of I/O adapters, and

(j) a main memory accessible from the cluster,

a remote resource manager for managing said interface
controller and data flowing over said local-to-remote
data bus and an interface between a plurality of
clusters,

cach of said remote fetch controllers being responsible
for processing data accesses across the interface
between clusters,

cach of said remote storage controllers being respon-
sible for processing data stores across the interface
between clusters,

wherein said remote fetch controller and remote storage
controller 1n each cluster act 1n conjunction with one
another to cause a deadlock avoidance activity
within said cluster for preventing hangs across said
clusters which normally result from one resource on
the local cluster waiting for a second resource on a
remote cluster which 1s deadlocked against a third
resource on said remote cluster waiting for a fourth
resource on the local cluster which 1s deadlocked
against said first resource on the local cluster,

whereby a remote fetch controller processing a fetch
request on behalf of a local memory controller
utilizes a miss response in place of a reject response
which permits the operation to complete without the
need to recycle the operation back to the initiating
Processor.

4. A remote resource management system for managing,
resources 1n a symmetrical multiprocessing environment
having a plurality of clusters of symmetric multiprocessors
having interfaces between cluster nodes of the symmetric
multiprocessor system, comprising:

a plurality of clusters each cluster having:

(a) a local fetch interface controller, and

(b) a local store interface controller, and

(c) one or more remote fetch controllers, and

(d) one or more remote storage controllers, and

(e) a local-to-remote data bus and

(f) an interface controller,

(2) a plurality of processors,

(h) a shared cache memory,

(1) a plurality of I/O adapters, and

(1) a main memory accessible from the cluster,

a remote resource manager for managing said interface
controller and data flowing over said local-to-remote
data bus and an interface between a plurality of
clusters,

cach of said remote fetch controllers being responsible
for processing data accesses across the interface
between clusters,

5

10

15

20

25

30

35

40

45

50

55

60

65

26

cach of said remote storage controllers being respon-
sible for processing data stores across the interface
between clusters,

wherein said remote fetch controller and remote storage
controller 1n each cluster act in conjunction with one
another to cause a deadlock avoidance activity
within said cluster for preventing hangs across said
clusters which normally result from one resource on
the local cluster waiting for a second resource on a
remote cluster which 1s deadlocked against a third
resource on sald remote cluster waiting for a fourth
resource on the local cluster which 1s deadlocked
against said first resource on the local cluster,

further comprising a fast hang quiesce mechanism
embedded 1n the remote fetch and store controllers
which prevents deadlocks by detecting system hangs
and causing the controllers to reject their current
operations 1n an effort to permit the system operation
to complete.

5. A remote resource management system for managing,
resources 1n a symmetrical multiprocessing environment
having a plurality of clusters of symmetric multiprocessors
having interfaces between cluster nodes of the symmetric
multiprocessor system, comprising:

a plurality of clusters each cluster having:

(a) a local fetch interface controller, and

(b) a local store interface controller, and

(¢) one or more remote fetch controllers, and

(d) one or more remote storage controllers, and

(e) a local-to-remote data bus and

(f) an interface controller,

(2) a plurality of processors,

(h) a shared cache memory,

(1) a plurality of I/O adapters, and

(j) a main memory accessible from the cluster,

a remote resource manager for managing said interface
controller and data flowing over said local-to-remote
data bus and an interface between a plurality of
clusters,

cach of said remote fetch controllers being responsible
for processing data accesses across the interface
between clusters,

cach of said remote storage controllers being respon-
sible for processing data stores across the interface
between clusters,

wherein said remote fetch controller and remote storage
controller in each cluster act in conjunction with one
another to cause a deadlock avoidance activity
within said cluster for preventing hangs across said
clusters which normally result from one resource on
the local cluster waiting for a second resource on a
remote cluster which 1s deadlocked against a third
resource on said remote cluster waiting for a fourth
resource on the local cluster which 1s deadlocked
against said first resource on the local cluster,

further comprising a fast hang quiesce mechanism
embedded 1n the remote fetch and store controllers
which prevents deadlocks caused by the controllers’
own operations by detecting an internally generated
hang period and using this hang period to signal the
other controllers to quiesce their pending operations
to permit the current remote fetch and/or store opera-
tion to complete.

	Front Page
	Drawings
	Specification
	Claims

