US006738866B2

a2 United States Patent (10) Patent No.: US 6,738,866 B2
Ting 45) Date of Patent: May 18, 2004

(54) MEMORY MANAGEMENT OF DATA 5,881,266 A * 3/1999 Matsumoto 711/134
BUFFERS INCORPORATING 6,012,126 A * 1/2000 Aggarwal et al. 711/133
HIERARCHICAL VICTIM SELECTION 6,098,152 A * 8/2000 Mounes-Toussi 711/134
6,128,713 A * 10/2000 Eisler et al. 711/159

(75) Inventor: Edison L. Ting, San Jose, CA (US) 6,449,695 B1 * 0/2002 Bereznyi et al. 711/134

* cited by examiner
73) AsSI . Int ti I Busi Machi
(73) SIgNCC (;loiggialt{i):li Arl:]:i:anneljf N‘? ((:Ulél)es Primary FExaminer—Mano Padmanabhan

Assistant Examiner—Paul A Baker

(*) Notice: Subject to any disclaimer, the term of this (74)_1‘1“50?’ ney, Agent, or Fir -’_?’IALYHH L. Augspurger, Esq,
patent 1s extended or adjusted under 35 Kevin P. Radigan, Esq.; Heslin Rothenberg Farley & Mesiti

U.S.C. 154(b) by 373 days. P.C.

(57) ABSTRACT
(21) Appl. No.: 09/850,897

A data buffer memory management method and system 1s

(22) Filed: May 8, 2001 provided for increasing the effectiveness and efficiency of
: s buffer replacement selection. Hierarchical Victim Selection

(65) Prior Publication Data (HVS) identifies hot buffer pages, warm buffer pages and
US 2002/0013887 Al Jan. 31, 2002 cold bufler pages through weights, reference counts, reas-

signment of levels and ageing of levels, and then explicitly
avolds victimizing hot pages while favoring cold pages 1n
Jun. 20, 2000 (CA) woveeeeeeeeeeeeeeeee oo 2312444 the hierarchy. Unlike LRU, pages in the system are identified
by both a static manner (through weights) and in a dynamic

(30) Foreign Application Priority Data

(51) Int. CL7 .o, GO6F 12/00 manner (through reference counts, reassignment of levels
(52) US.CL ..., 711/133, 711/134, 711/136, and ageing of levels)_ HVS provides hlgher COnCurrency by
711/144 allowing pages to be victimized from different levels simul-
(58) Field of Search 711/133, 134, taneously. Unlike other approaches, Hierarchical Victim
711/136, 144 Selection provides the infrastructure for page cleaners to
ensure that the next candidate victims will be clean pages by
(50) References Cited segregating dirty pages in hierarchical levels having mul-
US PATENT DOCUMENTS tiple separate lists so that the dirty pages may be cleaned
asynchronously.
5,423,017 A * 6/1995 Parikhcoooenenllll, 711/167
5,787,471 A * 7/1998 Inoue et al. 711/133 41 Claims, 4 Drawing Sheets
Maerarchical ~
Yictim Selection
Searash FSH Search FSH
REnaanEenE %’ it < .ﬁ
semcas | GG 8) MSRERARE o e
Control Block ‘79

73—-.. History

e sy QROQC 00 T
|Fr"ee Page LisE.J G\\\ EE F/X* L‘*-——x,_, o E

Level O

[1

/
:

E _ 1 o avm o o o o e
wy 2 Adjacere Page Map

|

(i
i

7 |Level l]__'—’m

oo Tl __ATT]
L—;—-—L—-—-—n—

&iji:t:m: Page H"E —A I

[T I 1 1 &

BRE22°)

_Evel Z

Level 3|

it

=

i

&
%y

i
N
¢
¥
b

=t : -
Em' taveli 1 2 / CLrm GO OO OO
Adjacent P Ma
0la —

US 6,738,866 B2

L 9Ol
N Jogng
- ¢ Jopng
-
-
Yo
E:
= ¢ lajjny
& 9
<t
m [12 Jny
@\
z o ZS
-
o~
>
-+
m ov ed ndo $931A9(T O/1
A_nla, 98810)Q BIe(]
= .
e 8 b A%
-

U.S. Patent May 18, 2004 Sheet 2 of 4 US 6,738,866 B2

1[2/11213(21]21712]3)

Mhaerarchical ~
Yictim Selection
:j o 7 4@

ololLllie 0 IE!!!E‘ISE
Hierasrchical ®[o{rlo]o] Rfofrjofo{& 0lo
Victim Selaction P4 T E A Page Cleamer
Control Block \7q

-73-.. Hizstory

e o Qoo

oo
== e Level 0j_
» 5} : d menmjusasjonananaw _—\
wy 2 ihdju!m Page Hap I |
MRY AT
~ 09 . 1D L L s
—-- e @1 T
| | Recently Used e N O D A I I I T e
Page List § O O 0 O __ awes
; I —
e
Amae
i / T
T ..---""-- — bl ' T
_m . 11
o 0 0 0 0 O D R i —"—--_.__ —
ninininlninin e
- eea r . 11
I ------_'- feaa aé l T T
— 0 IO OO (O] I ens=
o 4
= D .
- - - - - - - l EED
) O 68 LT
‘e — R
—
om0 o o o [o o 0} 0 5 B O

Adjacent Page Map \ \-—\/__/
59

FIGC. &

U.S. Patent May 18, 2004 Sheet 3 of 4 US 6,738,866 B2

Hash Bucket

0ld Pages —I8R
Aged Pages

=86

Flo.3

U.S. Patent

May 18, 2004 Sheet 4 of 4

US 6,738,866 B2

Level

Lavel

Lewvel

Level
Level

Level

Lewvel
Lavel

LLavel

Level
Lavel

Level

Level

Level

Level

Level

Level

Level

Lavel

Level

Leval

Lavel
Lavel

Level

Level

Level

Level

Level

Level

Level

L 0 OO0 e

z (O
3 L1

Time 1

1 HREEE EE
2 NENEGEIGIN

3 (U

Time 2

L EHNNEEERE NN
z DAL

3 (OO0

Time 3

I HEENEN NN
2 RN

Il I ..

Time &

. HMEEEE BN
2 IERXEXKAXECE

3 (OOt

Time 5

. HNENENE =Bl
z HIENEEERCT)

SRSV AN AVANS,

Time 6

. HEENENE EE
A {1 | [| DD

3 NRARNL]

Tima 7

| HEENEE NE
z HENENENE

3 NRNANAUIC]

Time 8

1 HNEEN =l
z HEEENNNN

3 RPN
Time 9

I HNEENE ERE
2 HEEERNEER

3 HMEREERXON

Time 10

_ B EENNNN

EEENEN (|
CCC

T O I O IO O I
ANV AV Y AV AN ANES

HEEEEEENN
AN A AN .

N I I O O O
AVAN AN AN AN B IR

HMERNEEEN
IR

HENNERER
BNCJ: - 202 TN
HEDREN

T O I O I B
BE EH ECQN

ANAN ANV SN

HENEENEE
HE E OO

SNANAN

|Hierirchical Page Rging and Salection ProcessE

.

O]

[l

B | ImEmas
L

N Wl
0]

] Unfixed

I Victimised
X Qld Pages
] Aged Pages

' | Reassigned

- oy
ies Remowved

B ENENEN NERC(C]

SV ANEYANN

B ENNNEN WEmCOC

NEENEIN]

N EEEEEN B

AV ANV AN AN

N EEENEN EENENEC

AVANAY A% AN I

FIG. A

US 6,733,866 B2

1

MEMORY MANAGEMENT OF DATA
BUFFERS INCORPORATING
HIERARCHICAL VICTIM SELECTION

PRIOR FOREIGN APPLICATION

This application claims priority from Canadian patent
application number 2,312,444, filed Jun. 20, 2000, which 1s
hereby incorporated herein by reference 1n its entirety.

TECHNICAL FIELD

The i1nvention concerns generally memory management
and 1n particular a data buffer memory management method,
computer program product and system for increasing the
clfectiveness and efficiency of buffer replacement selection.

BACKGROUND OF THE INVENTION

The 1nvention concerns, by illustrative example, the
buffer memory of a database management system or DBMS.
In modern processing, a buffer memory provides a quick,
relatively small-capacity interface between a processor and
a generally slow, large- capacﬂy data storage memory. Buifer
memory typically comprise a set of buifers intended to store
extracts from the data memory such as a cache memory for
receiving blocks of data from the data memory. A DBMS
may be run by a computer having a processor, builer
memory (€.g. physical memory usually extended via virtual
memory techniques), I/0 devices such as a keyboard and a
video display terminal, and large capacity data storage. An
operating system provides the environment to run the
DBMS. Typically, database extracts from the slower, large-
capacity data memory are stored as pages in the buifer
memory for use by the Processor. Memory management of
the buifers in the buffer memory 1s accomplished via a buifer
manager operated by the processor.

If there are mnsuilicient free pages 1n the buffer memory to
read 1n new data, the bulfer manager employs page replace-
ment or victim selection policies to free pages. The most
commonly known replacement policy 1s generally referred
to as Least Recently Used (LRU). This policy orders a list
of the buffers 1n the cache memory according to the time of
their last use. When pages become candidates for page
replacement at the time they are unpinned, they are added to
the tail of the list. When the buffer manager does not find a
page 1n the cache memory, an event known as a cache miss,
it requests the page from the database for loading into the
buffer memory, while the LRU policy picks which buifer
was least recently used, choosing the buffer at the head of the
list 1n order to record the new page. Pages 1n the list that are
referenced (i.e. cache hit) before being replaced are removed
from the list and added to the tail when unpinned.

This optimization procedure suifers from the fact that it
doesn’t account for pages that are accessed more frequently,
making them less favorable victims. The policy assumes that
the nth page 1n the LRU page list 1s less likely to be reused
than the nth+1 page. It may be that the nth page has a higher
access rate than the nth+1 page and 1s therefore less favor-
able as a victim for replacement.

There are similarities between data base buifer manage-

ment and operating system virtual memory management.
U.S. Pat. No. 5,423,017 of Parikh entitled “Method of and

Apparatus for Increasing Efficiency of Ager”, i1ssued Jun. 6,
1995, discusses a novel way for operating systems to swap/
page out processes from physical memory in a page based
virtual memory management system. It classifies processes

10

15

20

25

30

35

40

45

50

55

60

65

2

into four classes based on the amount of run time each has
accumulated, and then chooses to swap/page out processes
that have been running the least. The method and system
disclosed therein handle process data, which 1s made of code
and data segments, and does not distinguish between the
clean and dirty data pages 1n data segments during swap/
page outs. Further, processes are assigned to classes for
aging based upon their most recent perceived use only as

measured by counting CPU time slices.

The method disclosed in U.S. Pat. No. 5,423,017 takes
into account run time information, 1n this case, a count of
CPU time slices, as a measure of recent activity level or
perceived use to predict the need to retain a processes’ pages
in the memory.

U.S. Pat. No. 5,870,551 of Ozden et al. entitled “Looka-
head Bufifer Replacement Method Using Ratio of Clients
Access Order Offsets and Buifer Data Block Offsets” 1ssued
Feb. 9, 1999 introduces two manners of estimating antici-
pated use by measuring current use conditions in this
continuous multimedia data distribution environment. In the
first manner, for each data buffer in the cache, a future i1s
determined by examining the requirements for each client
that will access the buifer. The buffer with the lowest
anticipated future 1s allocated for early replacement. In the
second method, an estimate 1s made of the next time a buffer
will be accessed by a client by analyzing the relative position
or distance of the clients to the buifer. Buifers associated
with a client having higher distances are allocated for release
before those having lower distances.

Neither method disclosed in the respective patents
employs estimates of future use that may be independent of
current use conditions.

As an alternative to LRU, clock based algorithms provide
a variable to point to a page considered for replacement. To
approximate LRU behavior and to handle hot pages, each
page has an associated weight count, which 1s set on page
unpin, and decremented whenever the clock 1s pointing to
the page. If the weight becomes zero, the page 1s chosen for
replacement, otherwise, the clock 1s made to point to the
next page to be evaluated. Access to the clock 1s serialized.

What 1s needed 1n the art 1s a more effective and ethicient
memory management using page buifers.

SUMMARY OF THE INVENTION

It 1s an object of the invention to provide a memory
management and in particular a data buffer memory man-
agement method, computer program product and system for
increasing the effectiveness and efficiency of bufler replace-
ment selection.

The invention provides, 1n a first aspect, a method for
managing memory using page buflers. The method com-
prises a step for determining, for each bufler, a measure of
the favorability for victimizing the bufler; a step for assign-
ing each buffer 1n an order to one of a plurality of levels, said
one level selected according to the measure of the favorabil-
ity for victimizing the buffer, the plurality of levels denoting
a buffer hierarchy for prioritizing the victimization of buif-
ers; and a step for victimizing the builers based on the butfer
hierarchy and the order of the buffers 1n the levels. The
method may further place the buffers 1n cold, warm or hot
levels. The method may further comprise a step for deter-
mining if the bufler has previously been assigned to a level
and, 1f so, a step for determining a further measure of
favorability for victimization for the buffer previously
assigned. In such a case, the step for assigning 1s based
additionally on the further measure of favorability for vic-
timization.

US 6,733,866 B2

3

Additionally, the method may further comprise a step for
determining a buffer content characteristic for each buffer,
typically a clean/dirty status of the buffer; the step for
assigning 1s based additionally on the buifer content char-
acteristic and, typically, the buffer hierarchy dlstmgulshes
clean buffers 1n the plurality of levels from dirty buffers in
the plurality of levels. Further a step for transforming the
dirty buifers in the buil ers 1n the

er hierarchy to clean buf
buffer hierarchy may be present.

A step for aging the buffers in the levels to identify butifers
as eligible for victimization according to the buifer hierarchy
and the order of the buffers in the levels may also be
provided.

According to the invention, the step for victimizing com-
prises a step for determining a preferred level from the
plurality of levels from which to release a butfer according
to a preferred victimization scheme; a step for locating the
bufifer for releasing upon examination of the preferred level;
and a step for releasing the bufler. If the preferred level has
no buffer for releasing, there 1s provided a step for exam-
ining one or more additional levels accordmg to the bufler
hierarchy and the order of the buffers 1n the levels to locate
the buffer for releasing.

The measure of the favorability for victimizing the buffer
may be indicated by either a perceived use measure of the
buffer, a future use measure of the buffer or both such
measures.

Further according to one method, the order by which the
buflfer 1s assigned to the level 1s a least recently used order.

The 1mnvention also has the subsidiary purpose of a com-
puter program product comprising a recording medium
having means recorded on the medium for instructing a
computer to perform the method. As a corollary, the inven-
fion also has as its purpose a memory management system
for a computer system having a memory using page buifers.
Hierarchical Victim Selection (HVS) identifies hot pages
and cold pages through weights, reference counts, reassign-
ment of levels and ageing of levels, and then explicitly
avolds victimizing hot pages while favoring cold pages 1n
the hierarchy. Unlike LRU, hot and cold pages 1n the system
are 1dentified by both a static manner (through weights) and
in a dynamic manner (through reference counts, reassign-
ment of levels and ageing of levels). HVS provides higher
concurrency by allowing pages to be victimized from dif-
ferent levels simultaneously. Unlike other approaches, Hier-
archical Victim Selection provides the infrastructure for
page cleaners to ensure that the next candidate victims will
be clean pages by segregating dirty pages in hierarchical
levels having multiple separate lists so that the dirty pages
may be cleaned asynchronously.

BRIEF DESCRIPTION OF THE DRAWINGS

The characteristics and advantages of the invention are
brought out 1n the following descriptions, given by way of
example and 1llustrated in the attached drawings where:

FIG. 1 1s a schematic view of a computer system accord-
ing to the 1nvention including a memory management sys-
tem for a data base and including a set of buffers operated
according to the method of the invention;

FIG. 2 illustrates a method for managing a set of but
represented 1n FIG. 1;

FIG. 3 1llustrates a recently used page list according to the
invention; and

FIG. 4 illustrates, by means of a time slice chart, the
operation of the method for managing a set of buifers
represented in FIG. 2.

ers

10

15

20

25

30

35

40

45

50

55

60

65

4

BEST MODE FOR CARRYING OUT THE
INVENTION

FIG. 1 1llustrates a schematic view of a computer system
40 including a central processor (CPU) 42 connected to 1/0
devices 44, a bulfler memory 46 and to a data storage
MEemory 48 housing a data base 49. The buffer memory 46
includes a bufferpool 50 of N page buifers 52 and a buifer
manager 54 of the pool 50. The N buffers 52 are each
suitable for storing an extract from the data base 49, for
example, of one page of 4 kilobytes.

With reference to FIG. 2 and FIG. 3, according to the
invention, hierarchical victim selection assigns pages buifers
52 to one level of a set 59 of hierarchical levels 60, 62, 64

and 68. An individual level of the set §9 1s a collection of
free pages or recently unpinned pages arranged in least
recently used (unpinned) order. Pages in a level are chained
together via pointers 69 from a head (or least recently used

page) to a tail (or most recently used page) The pages in a
level share similar characteristics in terms of their favorabil-
ity as victim pages. For example, free pages are assigned to
level 0 (60), cold pages to level 1 (62), warm pages to level
2 (64), and hot pages to level 3 (66). In the preferred
embodiment clean pages (i.e pages that have been accessed
but are unmodified at the time of unpinning) and dirty pages
(i.e. modified pages at the time of unpinning) are segregated.
Dirty pages are assigned to level 4 (68) where they are
further subdivided into level 1, level 2 and level 3 dirty
pages (collectively 70). A dirty page cannot be replaced from
memory without having to write the dirty page out the
contents to the database 49 1n a slow long term data storage
48. Replacing a dirty page incurs the cost of writing out the
dirty page and reading 1n the new page whereas replacing a
clean page requires only a reading 1n of the new page. It 1s
preferable to clean the dirty pages mn advance of their
selection for victimization, preferably asynchronously, to
avold unnecessary delays.

For clean or dirty pages, the decision as to which of clean
levels 1, 2 or 3 (62, 64, or 66) or dirty levels 1, 2 or 3 (70)
respectively to assign a page 52 1s based on a measure of the
favorability of victimizing the buffer. Such a measure may
be determined, as 1n the preferred embodiment, by the unpin
welght and the reference count of the page 52 as well as its
clean/dirty status. The unpin weight is a future use measure,
being a rating such as a number indicating how likely the
buffer manager 54 thinks the page 52 1s going to be
referenced 1n the future. In database systems, 1t 1s known, for
example, that certain control pages will be accessed more
often that other types of pages. In this way the anticipated
use of that page may be taken into account when predicting
the likelihood of early re-use of the page.

The reference count 1s a perceived use measure, being a
rating such as a number indicating how many times the page
52 has been fixed since 1t came in the bufferpool 50. The
more likely the page 52 1s needed 1n the future, the higher
will be the level to which the page 52 1s assigned and the less
likely 1t will be that the page 52 is selected next for page
replacement. Thus hot pages having high reference counts
are assigned to level 3 and cold pages having a low reference
count are assigned to levell.

It 1s understood that the measure of the favorability of
victimizing the bulfer may be determined by either the future
use measure, the perceived used measure or both measures.
Other factors such as the number of time slices assigned to
a particular buffer may be calculated as a perceived use
measure.

After a page 52 1s assigned to a level of the set 59 1t may
be fixed and then unpinned with different future or perceived

US 6,733,866 B2

S

use measure values. If the page has previously been assigned
to a level, HVS looks at the current future and perceived use
values to determine the appropriate level for the unpinned
page. If the level 1s unchanged from the previous
assignment, a further perceived use measure 1s examined to
determine whether to move the page from that previously
assigned level. A further perceived use measure may be the
length of time since the last unpinning which caused the
page 52 to be assigned to 1its present level. If this length of
fime 1s within a further perceived use measure threshold, the
page 52 may be moved to the tail end of a level and
otherwise not moved from the level to which it was previ-
ously assigned.

In the preferred embodiment, each level of the set 52 1s
comprised of a recently used page list 80 as shown 1n FIG.
3. Arecently used page list 80 1s a double linked list structure
that 1s used to keep unpinned pages 52 in LRU order. The list
80 uses a Latch to protect the Head (LRU) 82 and Tail
(MRU) 84 pointers when a page 52 is being added to the list
80. In some 1nstances, the Latch also protects the Aged
Pages 86 pointer and Old Pages 88 pointer.

To 1ncrease concurrency in maintaining the LRU lists,
preferably, each level comprises more than one least recently
used page list. For example, the pages in levell, levell, and
level2 may be managed by four lists while pages 1n level3
may be managed by two lists. In this way, multiple software
Agents 72, as discussed below, may maintain the lists
concurrently with enhanced efficiency by avoiding exces-
sive lock-outs when competing for the same page buifer
rESOUrces.

With reference to FIG. 2 and FIG. 3, victim selection may
be accomplished by one, or preferably more, software
Agents 72 that look 1n the set 59 of hierarchical levels for
pages to release as directed by a Search Finite State Machine
74 according to a preferred victimization scheme. In the
preferred embodiment, an Agent 72 starts by looking for free
pages in level 0 (60). If there are no free pages in level 0
(60), the Agent 72 indexes into the Search Finite State
Machine 74 (FSM) to retrieve a preferred level to look for
pages and the type of the page 1t should look for in that level.
The entries in the FSM 74 will cause Agents 72 to look for
either any pages in level 1 (62), or just old pages in level 2
(64) or level 3 (66). If there are no pages of the specified type
in the specified level, the Agent 72 will just search for any
page in all levels starting from level 1 (62) and up to level
4 (68).

When the number pages released from level 1 (62)
reaches a threshold count, pages currently assigned to level
2 (64) are aged. The process of ageing a level updates two
pointers 1n that level. The Old Pages 88 pointer 1s assigned
the last value of the Aged Pages 86 pointer, and the Aged
Pages 86 pointer 1s assigned the value of the current Tail 84
pointer. After a level has been aged more than once, pages
between the Head 82 and the Old Pages 88 pointer are
considered old pages and can be victimized, because they
have stayed within the old pages range without being moved
out of the range as a result of additional page fixes.
Similarly, after a threshold number of level 2 (64) pages are
victimized, level 3 (66) pages may be aged.

In the preferred embodiment, when level 0 1s empty, the
FSM enforces the rule that 40% of the time, level 1 (62) is
used to search for pages; 40% of the time, level 2 (64) is used
to search for pages, and the remaining 20% of the time, level
3 (66) 1s used. If there are no pages in level 1 or aged pages
in levels 2 (64) or level 3 (66) ready for victimization, each
level 1s examined 1n turn from lowest to highest to find any

10

15

20

25

30

35

40

45

50

55

60

65

6

victim. As a result, level 4 (68) is searched only when there
are no clean pages to victimize.

When a page 52 1s victimized, 1its identity and reference
count 1s copied to a history table 78. If the page 52 1s ever
brought back, its last reference count can be used to decide
more appropriately, what level should be assigned to the
page 52 on page unpin.

Victim selection and aging are explained in the following
paragraphs with reference to FIG. 4 and pseudo-code.

All free pages in the bufferpool are linked to level 0 (60).
As pages are taken out of level 0 (60) and unpinned, they are
assigned and distributed to the different levels in the hier-

archy as described in the addMRU() pseudo-code below. As

shown by FIG. 4, unpinned pages are added to different
levels from Time 1 to Time 10.

Just before Time 1, there were 16 unpinned pages 1n level
1 (62), 3 unpinned pages in level 2 (64), and 2 unpinned
pages in level 3 (66). The 6th page in level 1 (66) was
re-fixed, after the last time it was unpinned, so 1t 1s removed
from its last position in the level 1 (62) LRU chain and
reassigned to the Tail of level 1 (62) on page unpinning.

In Time 1, 4 pages are victimized from level 1 (62),
leaving 12 pages chained in level 1 (62). At Time 2, 4 more
pages are victimized from level 1 (62), making a total of 8
pages victimized since Time 1. In this example, after every
8 pages that are victimized from level 1 (62), the next higher
non-empty level 1s aged. The process of ageimng a level
advances the Old Pages 88 pointer to the last Aged Pages 86
pointer, then advances the Aged Pages 86 pointer to the
current Tail 84 pointer. Pages between the Head 82 pointer
and the Old Pages 88 pointer become eligible for page
replacement as described in the getvictim() pseudo-code

For example, in Time 4, 6 pages in level 2 (64) become
cligible for victim selection, just as are the 3 remaining
unpinned pages in level 1 (62). The 6 pages in level 2 (64)
became eligible because they were seen the first time 8 pages
were taken out of level 1 (62) and then seen again the second
time another 8 pages were taken out of level 1 (62). Time 7
shows a similar scenario where 8 more pages become
eligible for victim selection in level 2. (66) If any of the
pages 1n the old pages range between the Head 82 and Old
Pages 88 pointers were hot pages that got fixed and
unpinned, it would have been moved further down the LRU
chain of a level and out of the old pages range. This can be
seen 1n Time 8, where 2 pages were taken out of the old

pages range of level 2 (64) and moved to the Tail 84 of level
1 (62) and level 3 (66).

As shown 1n FIG. 4, for every 6 pages victimized 1n level
2 (64), level 3 (66) pages get aged. This can be seen in Time
6 and 1n Time 9. Simultaneous victim selection occurs 1n
Time 5, 6, 8, and 10, where one Agent 72 1s victimizing
pages in level 1 (62), while another is victimizing pages in

either level 2 (64) or level 3 (66).

Simultaneous victim selection 1s occurring because dif-
ferent Agents 72 can be 1n different states of a Search Finite
State Machine 74. For example, after indexing into the
Scarch FSM 74, one Agent 72 may be asked to get regular
unpinned pages in level 1 (62) while another Agent 72 may
be directed to get a page from the old pages range 1n level
2 (64). Simultaneous victim selection may also occur on the
same level because each level 1s using more than one LRU
list.

US 6,733,866 B2

getVictim ()

1
loop:

ptr removeLRU(OldPagesOnly, level, listinLevel)

if level O not empty

1
h

get victim from level 0O;

if (no victim returned)

1

;

locallndex = Agentl.ocallndex;
Agentlocallndex ++;
if (AgentLocallndex == 10)

Agentlocallndex = 0;
preferredlLevel = fsm.Level[locallndex]; // = {1, 2,1, 2, ...]
OldPagesOnly = fsm.Kind[locallndex]; // = {R, 0, R, 0, ... }
NthListInlevel = fsm.ListN[locallndex]; /= {0, 0,1, 1, ...}
if (OldPagesonly)

1
if(preferredLevel OldPtr != NULL)
remove LRU(OldPagesOnly, preferredlevel,
NthListInLevel);
h
else
1
if (preferredlevel is not empty)
remove LRU(AnyPage, preferredlevel,
NthListInLevel);
h

if(no victim returned)
// use first level that 1s not empty starting from
level 1
and up to 4;
removeLRU(AnyPage, 1 to 4, 0 to n);

if (victim returned)

1

h

else

1

conditional page latch

if conditional page latch fail, loop again;

if conditional page latch work, get bucket latch then

if (ptr->fixcount > 0 || ptr->level != NO LEVEL) then
loop again;

else ptr->fixcount++ and return victim;

loop a couple of times before suggesting bufferpool 1s full;

// Called by

getVictim()
1
if(OldPagesOnly & & OldPtr = = NULL)
refurn;
ptr = NULL;
LATCH list
ptr = Head;
if (Head != Tail)
1
Head = Head->next;
Head->prev = NULL;
h
else
Head = Tail = NULL;
if (ptr)
1
ptr->level = NO-LEVEL;
ptr->next = NULL;
list-=count++;
list-=count &= list->AgeCount; // AgeCount
equals:
// levell = 128-1, level2 = 32-1;
h
UNLATCH list
if (ptr)
1

if (ptr == OIldPtr)
OldPtr = NULL:

10

15

20

25

30

35

40

45

50

55

60

65

3

-continued

if (ptr == AgedPtr)
AgedPtr = NULL;
if (list->count == 0)

{
listToAge = first non-empty level that 1s > than
current
level,;
agelist (listToAge);
h

agelist(level, listinlevel) // Called by removeLRU ()

{
LATCH list
OldPtr = AgedPtr;
AgedPtr = Tail;
UNLATCH list
;

The operation of the allocation of an unpinned page 52 to
a level from the set §9 of hierarchical levels according to the
present mnvention may be understood with reference to the
following pseudo-code listing.

addMRU(ptr, level, listinLevel)
Unlatched after call.

// Page Latched before call and

1
curlime = GLOBAL_ Time++;
level = ptr-level;
if (level ! = NO-LEVEL)
{
AddPage = decideWhetherToReorder(ptr, level, curTime);
if(AddPage
remove (ptr, level, ptr->listinLevel);
y
else
AddPage = TRUE;
if{ AddPage)
1
LATCH list;
if (Tail != NULL)
1
Tail->next= ptr;
ptr->prev= Tail;
Tail = ptr;
y
else
Head = Tail = ptr;
ptr->level = list->level;
ptr->listinLevel = listInLevel;
ptr->lastUnpinnedTime = GLOBAL-Time;
UNLATCH list
h
;

// Called by addMRU ()
decideWbetherToReorder(ptr, newLevel, currentUnpinnTime)

{

reorder = FALSE;
if (ptr->lastUnpinnedTime > currentUnpinnTime)

1
timeDiff = MAXUINT - ptr-=>lastUnpinnedTime +
currentUnpinnTime;
;
else
{
timeDiff = currentUnpinnTime — ptr->lastUnpinnedTime;
;

if currentlevel 1s lower than newlevel

US 6,733,866 B2

9

-continued
{
it timeDiff > promotionThreshold; // say 10;
reorder = TRUE;
h
else currentlevel 1s higher than newlevel
{
if ttmeDiff > demotionThreshold; // say 5;
reorder = TRUE;
h
clse
1
if timeDiff > samelListThreshold; // say 7;
reorder = TRUE;
h

return reorder;

// Called by addMRU ()

remove(ptr, level, listinlevel)

1
LATCH list
if (ptr->level == level)
1
if (ptr == Head)
1
if (Head != Tail)
1
Head = Head->next;
Head->prev = NULL;
h
else
{
Head = Tail = NULL;
h
h
else if (ptr == Tail)
1
Tail = Tail->prev;
Tail-»next = NULL;
h
else
1
plr->prev->next = pitr->next;
pir->next->prev = plr->prev;
h
ptr->level = NO LEVEL;
if (ptr == OldPtr)
OldPtr = ptr->prev;
If (ptr == AgedPtr)
AgedPtr = ptr->prev;
UNLATCH list
ptr->next = NULL
h

As set out 1n FIG. 2, the following additional structures
arc maintained by the buffer manager:

*Hierarchical Page Replacement Control Block 76—This
structure houses an array of Recently Used Page List
structures that represent the different hierarchical levels
of bufferpool pages.

*History Table 78—This 1s an array of hash entries where
cach entry contains the poollD, pool page number, and

reference count of a page that was unchained from the

bufferpool. There 1s a history table for each butferpool
hash bucket.

The purpose of the reference counts and history table 78

1s for the system to be able to remember the hot pages 1n the

database. When a page 52 1s fixed, the fixcount 1s 1ncre-

mented to tell the system the page 1s to be pinned. Every
time the fixcount 1s incremented, the reference count is
incremented. Decrementing the fixcount does not atfect the
reference count.

When a page 52 1s unchained because of victim selection,
its poollD 1s used to hash into the history table 78 pointed

10

15

20

25

30

35

40

45

50

55

60

65

10

to by the hash bucket where the page 1s currently chained to.
The history table 78 entry 1s used to remember the poollD,
pool page number and reference count of the page 52. If the
current history table 78 entry 1s already used by another page
52, that entry may be replaced. When a page 52 1s read back
into the bufferpool 50, the history table 78 1s examined by
hashing to see i1f the page was previously 1n the buiferpool
50. If the page history 1s located, the prior reference count
1s associated with the page 52 and incremented. Preferably,
the hash function 1s a mask operation on the poollD of the
page 52.

As discussed, the level a page 52 1s assigned to 1s based
on the unpin weight and reference count of the page. Table
1 shows a preferred manner of how these levels may be
assigned:

TABLE 1
Weight v.s. dirty
Reference weight 0 weight 0 weight 1 weight 2 pages with
Count (r#) unchained chained chained chained weight N
1# <=2 level O level 1 level 1 level 2 dirtyN+O
1# > 2 <=10 level 0 level 1 level 2 level 3 dlrtyN+1
> 10 level O level 2 level 3 level 3 dirtyN+1

According to the mvention and with reference to FIG. 2,
Hierarchical Victim Selection provides the infrastructure for

page cleaners 79 to transform dirty buflfers to clean buifers
to ensure that the next candidate pages for victimization will
be clean pages. To accomplish this, dirty pages are segre-
cgated from clean pages mto different levels in separate lists
so that they can be cleaned asynchronously. On dirty steal
triggers, page cleaners 79 access hierarchy level 4 (68),
where dirty pages are linked on page unpinning, to write out
the dirty pages to the database 49 1n LRU order. The thus
cleaned pages are then individually unpinned and moved to
appropriate levels namely levell, level2 or level3 (62, 64 or
66) in the clean pages hierarchy. As a last resort, when
getvictim() must search for dirty victims in the hierarchy
levels of level 4 (68) that comprises only dirty pages, it first
looks at the dirty list for level 1, then the dirty list for level
2, then the dirty list for level 3.

HVS guides processes to use different lists when adding,
pages based on the perceived use measure and future use
measure. HVS guides victimizing Agents to use different
lists 1n the various levels when removing pages through a
Finite State Machine. Thus HVS promotes simultaneous
page management by various processes because they can act
on different levels concurrently. However, 1t 1s feasible to
use other methods for enabling concurrency but likely at the
expense of enhanced efficiency. For example, different pro-
cesses may randomly pick pages from a set of page lists. One
process may pick list 1 while another randomly picks list 4.
In a sufficiently random system, each list should be
adequately serviced. While such a scheme may provide
reasonable concurrency, it 1s not particularly effective 1n
discriminating between hot and cold pages. Moreover, there
1s apparently no meaningtul manner to age pages because
pages are randomly assigned.

It 1s apparent to one skilled in the art that such a page
management system for database buffers may be extended to
other memory management systems such as for maintaining
virtual memory.

The present invention can be included 1n an article of
manufacture (€.g., one or more computer program products)
having, for instance, computer usable media. The media has
embodied therein, for instance, computer readable program
code means for providing and facilitating the capabilities of

US 6,733,866 B2

11

the present invention. The article of manufacture can be
included as a part of a computer system or sold separately.

Additionally, at least one program storage device readable
by a machine, tangibly embodying at least one program of
instructions executable by the machine to perform the capa-
bilities of the present invention can be provided.

Although the present invention has been described with
reference to preferred embodiments, those skilled 1n the art
will recognize that changes may be made 1n form and detail
without departing from the spirit and scope of the invention.
As such, 1t 1s intended that the foregoing detailed description
be regarded as 1llustrative rather than limiting and that it 1s
the appended claims, including all equivalents thereof,
which are intended to define the scope of the mvention.

The embodiment of the imnvention 1n which an exclusive
property or privilege are claimed are defined as follow:

1. A method of managing database system memory using
page buflers comprising:

determining, for each bufler, a measure of the favorability

for victimizing the bufler;

assigning cach buifer in an order to one of a plurality of
list levels, said one list level selected according to the
measure of the favorability for victimizing the bulifer,

the plurality of list levels denoting a buffer hierarchy
for prioritizing the victimization of buifers, 1n part, by
welghting the list levels differently; and

VlCtlII]lZlIlg page bullers from different list levels based on
the buifer hierarchy of the plurality of list levels and the
order of the buffers in the list levels.

2. The method of claim 1 wherein the assigning com-

PI1SEs:

placing the buffer 1n a first level 1f the buf
the favorability for victimizing the buf
buffer 1s cold;

placing the buffer 1n a second level if the bufler’s measure
of the favorability for victimizing the buffer indicates
the buffer 1s warm;

placing the buifer in a third level if the buf
of the favorability for victimizing the buf
the bufler 1s hot.

3. The method of claim 1 further comprising;:

determining 1if the buffer has previously been assigned to
a level and, if so, determining a further measure of
favorability for victimization for the buffer previously
assigned; and

wherein said assigning based additionally on the further

measure ol favorability for victimization.

4. The method of claim 3 wherein the determining a
further measure of favorability for victimization for the
buffer comprises calculating the amount of time since the
buffer was last assigned to a level.

5. The method of claim 1 further comprising:

determining a buffer content characteristic for each buifer;
and

wherein the assigning based additionally on the buffer
content characteristic.
6. The method of claim § wherein the buffer content
characteristic comprises a clean/dirty data status, the butfer
hierarchy distinguishing clean buifers 1n the plurality levels
from dirty buffers 1n the plurality of levels.
7. The method of claim 6 further comprising transforming,
the dirty buffers in the bufier hierarchy to clean buffers in the
buffer hierarchy.

8. The method of claim 1 further comprising:

aging the buflers in the levels to identily bullers as
cligible for victimization according to the buffer hier-
archy and the order of the buffers in the levels.

‘er’s measure of
‘er indicates the

‘er’s measure
‘er 1indicates

10

15

20

25

30

35

40

45

50

55

60

65

12

9. The method of claim 1 wherein the victimizing com-
Prises:
determining a preferred level from the plurality of levels

from which to release a bufler according to a preferred
victimization scheme;

locating the buifer for releasing upon examination of the
preferred level; and

releasing the buffer.

10. The method of claim 9 wherein the locating further
COmMPrises:

if the preferred level has no buifer for releasing, exam-
111111g one or more additional levels according to the
buffer hierarchy and the order of the buffers in the
levels to locate the buffer for releasing.

11. The method of claim 1 wherein the determining a
measure of the favorability for victimizing the bufler com-
prises determining a perceived use measure of the bulifer.

12. The method of claim 1 wherein the determining a
measure of the favorability for victimizing the bufler com-
prises determining a future use measure of the buffer.

13. The method of claim 11 wherein the determining a
measure of the favorability for victimizing the buffer further
comprises determining a future use measure of the buifer.

14. The method of claim 13 wheremn the victimizing
COMPIISES:

storing the perceived use measure for each buffer and
wherein the determmmg a future use measure of the
buifer comprlses retrieving said perceived use measure
for use 1n determining the future use measure.
15. The method of claim 1 wherein the order by which the
buffer 1s assigned to the level 1s a least recently used order.
16. The method of claam 1, wherein the victimizing
comprises victimizing in parallel multiple page buflers from
different levels using the buffer hierarchy of the plurality of
list levels and the order of the buffers in the levels.
17. A computer program product for use on a database
system computer having a memory, said memory managed
using page buflers, the computer product comprising:

a recording medium,;

means recorded on said medium for instructing the com-
puter to perform:
determining, for ecach buffer, a measure of the
| avorablhty for Vlctlmlzmg the buffer;
assigning each buffer in an order to one of a plurality
of list levels, said one list level selected according to
the measure of the favorability for victimizing the
buffer, the plurality of list levels denoting a buifer
ﬁlierarchy for prioritizing the victimization of buifers,
in part, by welghtmg the list levels differently; and
victimizing page buffers from the different list levels
based on the buffer hierarchy of the plurality of list
levels and the order of the buffers 1n the list levels.
18. The computer program product of claim 17 wherein
sald means recorded on said medium further instructing the
computer to perform:

determining if the buifer has previously been assigned to
a level and, if so, determining a further measure of
favorability for victimization for the buffer previously
assigned; and

wherein said assigning based additionally on the further
measure of favorability for victimization.
19. The computer program product of claim 17 wherein
said means recorded on said medium further instructing the
computer to perform:

determining a buifer content characteristic for each buifer;
and

US 6,733,866 B2

13

wherein the assigning based additionally on the buffer

content characteristic.

20. The computer program product of claim 19 wherein
the buffer content characteristic comprises a clean/dirty data
status, the buffer hierarchy distinguishing clean buffers in
the plurality levels from dirty buffers in the plurality of
levels.

21. The computer program product of claim 20 wherein
said means recorded on said medium further instructing the
computer to perform transforming the dirty buffers in the
buffer hierarchy to clean buffers 1n the buffer hierarchy.

22. The computer program product of claim 17 wherein
sald means recorded on said medium further instructing the

[

computer to perrorm:

™

aging the buflfers 1n the levels to identify buffers as
cligible for victimization according to the buffer hier-
archy and the order of the buffers in the levels.
23. The computer program product of claim 17 wherein
the victimizing comprises:

determining a preferred level from the plurality of levels

from which to release a bufler according to a preferred
victimization scheme;

locating the buffer for releasing upon examination of the
preferred level; and

[

releasing the buffer.
24. The computer program product of claim 23 wherein
the locating further comprises:

if the preferred level has no buffer for releasing, exam-
ining one or more additional levels according to the
buffer hierarchy and the order of the buffers in the
levels to locate the buffer for releasing.

25. The computer program product of claim 17 wherein
the determining a measure of the favorability for victimizing
the buifer comprises determining a perceived use measure of
the buffer.

26. The computer program product of claim 17 wherein
the determining a measure of the favorability for victimizing
the buifer comprises determining a future use measure of the
buffer.

27. The computer program product of claim 25 wherein
the determining a measure of the favorability for victimizing
the buffer further comprises determining a future use mea-
sure of the buffer.

28. The computer program product of claim 27 wherein
the victimizing comprises storing the perceived use measure
for each buffer and wherein the determining a future use
measure of the bufler comprises retrieving said perceived
use measure for use 1n determining the future use measure.

29. The computer program product of claim 17 wherein
the order by which the buffer 1s assigned to the level 1s a least
recently used order.

30. The computer program product of claim 17, wherein
the victimizing comprises victimizing 1n parallel multiple
page bullers from different levels using the buifer hierarchy
of the plurality of list levels and the order of the bulfers in
the levels.

31. A memory management system for a database system
having a memory using page builers, said memory manage-
ment system comprising:

a means for determining, for each buffer, a measure of the
favorability for victimizing the buffer;

a means for storing the buffers in an order 1n a plurality
of list levels;

a means for assigning each bufler 1n the order to one of the
plurality of list levels, said means for assigning opera-
tive 1n response to the measure of the favorability for

™

10

15

20

25

30

35

40

45

50

55

60

65

14

victimizing the buffer, the plurality of list levels denot-
ing a buifer hierarchy for prioritizing the victimization
of buffers, in part, by weighting the list levels differ-
ently; and

a means for victimizing page buflers from different list

levels based on the buffer hierarchy of the plurality of
list levels and the order of the buifers 1n the list levels.

32. The memory management system of claim 31 wherein
the means for assigning comprises:

a means for placing the buffer in a first level if the buffer’s
measure of the favorability for victimizing the buifer
indicates the buffer 1s cold;

a means for placing the buffer in a second level if the
buffer’s measure of the favorability for victimizing the
buffer indicates the buffer 1s warm;

a means for placing the buffer in a third level 1t the
buffer’s measure of the favorability for victimizing the
buffer indicates the buifer 1s hot.

33. The memory management system of claim 31 further

comprising;

a means for determining if the buffer has previously been
assigned to a level; and

™

™

™

a means for determining a further measure of favorability
for victimization for the buffer previously assigned;

saild means for assigning operative additionally on the
further measure of favorability for victimization 1if the
buffer has previously been assigned to the level.
34. The memory management system of claim 1 further
comprising:
a means for storing a buffer content characteristic com-

[

prising a clean/dirty status for each bulifer;

™

‘er content characteristic

a means for determining the bu
for each buffer; and

wherein the means for assigning operative additionally on
the buifer content characteristic, the buifer hierarchy
distinguishing clean buflers in the plurality levels from
dirty buifers in the plurality of levels.

35. The memory management system of claim 34 further
comprising a means for transforming the dirty buffers in the
buffer hierarchy to clean buffers 1n the buffer hierarchy.

36. The memory management system of claim 31 further
comprising:

a means for aging the buflers 1n the levels to identily
buffers as eligible for victimization according to the
buffer hierarchy and the order of the buifers in the
levels.

37. The memory management system of claim 31 wherein

the means for victimizing comprises:

a means for determining a preferred level from the plu-
rality of levels from which to release a buifer according
to a preferred victimization scheme;

a means for locating the buffer for releasing upon exami-
nation of the preferred level; and

™

a means for releasing the bulifer.
38. The memory management system claim 37 wherein
the means for locating further comprises:

a means for examining one or more additional levels
according to the buffer hierarchy and the order of the
buffers 1n the levels to locate the bufler for releasing
operative 1f the preferred level has no buliler for releas-
Ing.

39. The memory management system of claim 31 wherein

the measure of the favorability for victimizing the buifer
comprises one or more measure selected from the group of

[

perceived use measure and future use measure of the buffer.

™

US 6,733,866 B2

15

40. The memory management system of claim 31 wherein
the order by which the buffer 1s assigned to the level 1s a least
recently used order.

41. The memory management system of claim 31,
wherein the means for victimizing comprises means for

16

victimizing 1n parallel multiple page buifers from different
levels using the buffer hierarchy of the plurality of list levels
and the order of the buifers 1n the levels.

	Front Page
	Drawings
	Specification
	Claims

