US006732053B1
a2 United States Patent (10) Patent No.: US 6,732,053 Bl
Aragona 45) Date of Patent: May 4, 2004
(54) METHOD AND APPARATUS FOR 5,726,920 A * 3/1998 Chen et al. 364/579
CONTROLLING A TEST CELL 5,828,674 A * 10/1998 Proskauer 371/22.1
5857,192 A * 1/1999 Fitting ..oovovevereeeernnn.e. 707/10
(75) TInventor: Daniel C. Aragona, Beaverton, OR 5865319 A * 2/1999 Okuda et al. 200/574
(US) 5035263 A * 8/1999 Keethet al. ..oooeven..... 714/718
6,028,439 A * 2/2000 Arkin et al. ...ooeoe....... 324/765
(73) Assignee: %{l}t;)l Corporation, Santa Clara, CA (List continued on next page.)
FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this _ .
patent 1s extended or adjusted under 35 H 10-275835 1071998
U.S.C. 154(b) by 0 days. Primary Examiner—Marc S. Hofl
Assistant Examiner—Carol S W Tsai
(21) Appl. No.: 09/164,073 (74) Attorney, Agent, or Firm—3Blakely, Sokoloff, Taylor &
_ Zatman LLP
(22) Filed: Sep. 30, 1998
. (57) ABSTRACT
(51) Imt. CL7 e, GO6F 17/30
(52) US.CL ...oooeviin, 702/22; 702/108; 702/116; In one aspect of the present invention, an apparatus 1s
702/117; 702/118; 702/121; 702/122 provided for testing a plurality of devices. The apparatus, 1n
(58) Field of Search 702/57, 58, 62, one embodiment, comprises a controller, a device identifier

702/60, 108, 116, 117, 118, 119-123, 183—185, capable of idenfifying each one of a plurality of devices as
188, FOR 103, FOR 104, FOR 106, FOR 111, onc of a plurality of device types, and a plurality of test
FOR 134, FOR 135, FOR 170, FOR 171; heads. Each test head 1s capable of testing each one of the
700/9, 10, 11, 12, 19; 324/764, 765; 714/718, devices independently of the rest of the plurality of test
724 heads responsive to the 1dentification of each device by the

device 1dentifier and under the control of the controller. In a

(56) References Cited second aspect of the invention, a method 1is provided for

testing a plurality of devices. The method, 1n one
U.s. PATENT DOCUMENTS embodiment, comprises placing the plurality of devices

4517512 A * 5/1985 Petrich et al. 324/73 R~ Identified into a plurality of test heads, each device being
4635259 A * 1/1987 Schinabeck et al. 371/20 identified as one of a plurality of predetermined device types
4,637,020 A * 1/1987 Schinabeck 371/20 and being placed 1n a respective test head; and directing the
4,646,299 A * 2/1987 Schinabeck et al. 371/20 testing of each device independently of the testing for the
4,868,493 A = 971989 Beckerc.eoueins 324/73 R remaining devices responsive to the respective 1identification
0,355,320 A * 10/1994 Egavic et al. 304/435 of the device, the direction for the testing of each device
5,381,417 A * 1/1995 loopik et al. 371/15.1 coming from the same controller.

5,539,676 A * 7/1996 Yamaguchi 364/559

5,561,386 A * 10/1996 Funaki et al. 324/758

5,591,299 A * 1/1997 Seaton et al. 156/626.1 26 Claims, 42 Drawing Sheets

512, 530A-D . 500
s \ Y/ 546~ 516 y536A-E / ,
X _ A/// .

Fay _ =
' Y488 T EGEE1ES
| . . l .

771

514 514
= _\i:n .

L aaa

546 \518 036k —H

US 6,732,053 B1

Page 2
U.S. PATENT DOCUMENTS 6,137,303 A * 10/2000 Deckert et al. 324/765
6,151,390 A * 11/2000 Volitsun et al. 379/229
6,031,384 A * 2/2000 Furutaolll 324/760 6,157,200 A * 12/2000 OKayasuccoo.... 324/753
6,031,387 A * 2/2000 Berarccocovvinvinnnnnn. 324/765 6,166,552 A * 12/2000 O’Connellce.......... 324/754
6,032,274 A * 2/2000 Manningoo.e 7147718 6,170,071 B1 * 1/2001 Wheelerccouu...... 714/724
6,055,463 A * 4/2000 Cheonget al. 7007223 6,185,708 B1 * 2/2001 Sugamori 714/724
6,067,651 A * 5/2000 Rohrbaugh et al. 7147738 6,192,496 B1 * 2/2001 Lawrence et al. 714/724
6,078,188 A * 6/2000 Bannaietal ... 324/765 6,194,911 B1 * 2/2001 Currin et al. 324/765
6,094,061 A = 7/2000 Saoultetal ... 324/761 6,195,772 B1 * 2/2001 Mielke et al. 714/724
6,097,204 A * 8/2000 Tanaka et al. 324/765 6,198,273 B1 * 3/2001 Onishi et al. 324/158.1
6,111,421 A * 8§/2000 Takahashi et al. 324/758
6,130,543 A * 10/2000 IINO .evevririvriininiininnnn.. 3247754 * cited by examiner

U.S. Patent May 4, 2004 Sheet 1 of 42 US 6,732,053 Bl

" FIGURE 1 '
| 140
Soral I
120 Uooxo
LT ' g
1l | _ ‘ ' .
—{=0)
' ®
®
150

130

I

(]

a
|0
]

FIGURE 2

PLACE A PLURALITY OF DEVICES INTO A
PLURALITY OF TEST HEADS, EACH DEVICE

BEING IDENTIFIED AS ONE OF A PLURALITY OF
DEVICE TYPES AND BEING PLACED IN A

RESPECTIVE TEST HEAD

DIRECT THE TESTING OF EACH DEVICE
INDEPENDENTLY OF THE TESTING FOR THE
REMAINING DEVICES RESPONSIVE TO THE

RESPECTIVE IDENTIFICATION OF THE DEVICE, THE

DIRECTION FOR THE TESTING OF EACH DEVICE

COMING FROM THE SAME CONTROLLER

U.S. Patent May 4, 2004 Sheet 2 of 42 US 6,732,053 Bl

FIGURE 3
320

12

350

327

335 |
® - —350

310

— 316
318

540

FIGURE 5

- 500
516 ,~536A—E / _
_

U.S. Patent May 4, 2004 Sheet 3 of 42 US 6,732,053 Bl

FIGURE 4

PLACE A PLURALITY OF DEVICES INTO A
PLURALITY OF TEST HEADS, EACH DEVICE
- BEING PLACED IN A RESPECTIVE TEST HEAD

———————= NUMBER OF |
EACH DEVICE !

IDENTIFY. THE
DEVICES

|
l
|
|
|
|
|
|
|
|

DIRECT THE TESTING OF EACH DEVICE
'INDEPENDENTLY OF THE TESTING FOR THE
" REMAINING DEVICES RESPONSIVE TO THE]
RESPECTIVE IDENTIFICATION OF THE DEVICE, THE [™~
DIRECTION FOR THE TESTING OF EACH DEVICE
COMING FROM THE SAME CONTROLLER

U.S. Patent May 4, 2004 Sheet 4 of 42 US 6,732,053 Bl

FIGURE 6

" SELECT AUTO, DEBUG, OR
MANUAL OPERATION MODE

ENTER OPERATOR ID, USER ID
~ AND SHIFT -

INSERT DUT INTO MATRIX ID READER
TO READ THE SERIAL NUMBER

REMOVE THE DUT FROM THE MATRIX ID READER |
TO CLOSE THE MATRIX ID READER INHIBITOR

| INSERT DUT INTO TEST HEAD

OPEN MATRIX ID INHIBITOR ANY MORE DEVICES
" FINISH TESTING THE DUT _ —1'NO '

FJECT TESTED DUT AND INDICATE
WHETHER DUT PASSED OR FAILED

U.S. Patent May 4, 2004 Sheet 5 of 42 US 6,732,053 Bl

FIGURE 7

'BEGIN TESTING THE DEVICE

READ ETHERNET ADDRESS, TEST SERVER
NAME, OPERATOR ID, SHIFT, AND USER ID

CREATE SUMMARY FILE

QUERY IFICS SERVER TO OBTAIN PRODUCT CODE
FROM SERIAL NUMBER AND STORE IN TEST FILE

PARSE. THE TEST FILE TO OBTAIN PRODUCT CODE

~ RETRIEVE SCRIPT CORRESPONDING TO
PRODUCT CODE FROM A DATA FILE

PARSE SCRIPT FOR INSTRUCTIONS AND
STORE INSTRUCTIONS IN ARRAY

1 YES

ANY MORE DEVICES
TO TEST

~ FINISH TESTING THE DEVICE NO

EXECUTE INSTRUCTIONS STORED IN THE ARRAY

~ OPEN MATRIX ID INHIBITOR

U.S. Patent May 4, 2004

MFC (MICROSOFT FOUNDATION

COBJECT .|

_ - —— [CWINTHREAD
I

Sheet 6 of 42 US 6,732,053 B1

FIGURE 8
CLASS LIBRARY)

INSTRUMENT _ GUI CONTROL _ THREAD
"CLASS LIBRARY " CLASSES CONTROL CLASSES
CRACK _ CBULB COUTTHREAD]
- CBOIRACK CFONT CMATRIXIDTHREAD
[C601DRACK CDSTATUSBAR _ APPLICATION
_ E— - - CLASSES
CINSTRUMENT| CMYDIALOG . ~
_
coB ‘ . *
. —— CMMODOC
- H{c1260_14 [CSPLASH - —
- CMMOVIEW
C1260_14C {CXCELLW —
. 1| CMAINFRM |
C1260_35 CXTHW ' E—
; CCHILDFRM
C1260_36 CZAUTOSPLIT —
i CSTDAFX
CHPE1411 | '
T CPOWERSUPPLY] | CZBUGSPUIT o
_ — TEST CONTROL
CRS232 | [LCZBUGYW © CLASSES
CDI700 CZDUTVYW ' CHTEADCTRLDLG
' CZMANSPLIT | {CTESTHEAD |
| TCRANDLER CIMBNWW | CEASTERT
CIOREADER CNEWPASSWORD| CEASTERTSX
CFRONTPANEL({ CPASSWORD CWHIDBEY
CINHIBITOR | o i

CSERIALTESTMSG| | -

U.S. Patent May 4, 2004 Sheet 7 of 42 US 6,732,053 Bl

TART

FIGURE 9A

YES ——{ STOP

~ ARE
ANY THREADS
RUNNING

NO

INITIALIZE CELL VIEW

INITIALIZE. TEST HEAD VIEWS
INITIALIZE MANUAL VIEW

»
1 -
L]
. [
. L)
[]
F
L
-
L]

DISPLAY |
"SELF—TEST FAILED
SHUTDOWN RACK!”

RACK
SELF-TEST
PASSES 7

NO

'

YES

DISPLAY
- "CANNOT OPEN

SERVER.TXT. USE
DEBUG MODE &

ENTER SERVER NAME”

CHECK
SERVER

CONNECTION

PASSES 2

-NO

- NO

READ

© DISPLAY
"INHIBITOR ERROR” [
" DISPLAY
NO —=1"MATRIX ID ERROR” _>TOP

D READER
TARTS 7

U.S. Patent May 4, 2004 Sheet 8 of 42 US 6,732,053 Bl

. FIGURE 9B
n | IS
_. ' RESET COUNTER "
TEST HEAD THREAD . BUTTON
COUNTER=0 | CLICKED 2.

CREATE NEW TEST YES'

"HEAD THREAD
o 1 - RESET ALL COUNTERS
| ' IN CELL VIEW

INITIALIZE TEST HEAD |

STORE TEST HEAD POINTER
INTO THREAD ARRAY

1S
RESET LOCKOUT
BUTTON

“CLICKED ?_~

-NO

INCREMENT TEST HEAD
- THREAD COUNTER

YES

RESET COUNTER IN CELL

IS TEST ™ '
HEAD THREAD NO—»t { | VIEW FOR SELECTED
OUNTER=8 ? TEST HEAD

TURN OFF LOCKOUT FOR
SELECTED TEST HEAD

YES

T & USERID |ENTER OPID, SHIFT,
ENTERED 2~ & USER 1D

YES

GO TO .
DUT THREAD
FLOW

U.S. Patent

START

CREATE NEW

TEST HEAD AND TEST
RACK OBJECTS

KEYPAD
BUTTON
PRESSED 2.

YES

-~ |GET HEXIDECIMAL CODE
. FOR BUTTON

START

" BUTTON
PRESSED ?

NO

“TRAY
IN BUTTON
PRESSED 7

~ NO

I~

CONTINUED
ON 10/42

May 4, 2004

- NO

YES

YES -

Sheet 9 of 42 US 6,732,053 B1

FIGURE 10

THE FLOW IS INITIATED WHENEVER THE USER PRESSES A
START (#) BUTTON ON THE DUT CONTROL PANEL IN THE
DEBUG MODE GUI, OR WHENEVER THE USER PRESSES THE
NITIAUZE BUTTON FROM THE MANUAL MODE GUI

SEE INITIALIZE METHODS IN THE DESCRIPTIONS:
FOR THE TEST HEAD AND RACK CLASS®

KEYPAD
BUTTON
PRESSED 7

NO

YES

GET WINDOWS MESSAGE
OF BUTTON

NO

- EXECUTE
RUN THE TEST HEAD
METHOD IN THE TEST}
HEAD OBJECT

EXECUTE
| RUN THE TEST HEAD
[METHOD IN THE TEST|

- HEAD OBJECT

STOP THREAD ?

YES
RETURN

CONTINUED
~ ON 10/42

U.S. Patent May 4, 2004 Sheet 10 of 42 US 6,732,053 Bl

FIGURE 10

CONTINUED (CONTINUED) CONTINUED
ON 9/42 ON 9/42

EXECUTE

~TRAY
- - RUN THE TEST HEAD
ouT BUTTON YES —={METHOD IN THE TEST

HEAD OBJECT

PRESSED ?

NO

EXECUTE
RUN THE TEST HEAD
METHOD IN THE TEST

HEAD OBJECT

PRESS
DOWN BUTTON
PRESSED 7

YES

NO

EXECUTE
RUN THE TEST HEAD
METHOD IN THE TEST

HEAD OBJECT

—~PRESS
UP BUTTON
PRESSED 7

YES

NO

EXECUTE
RUN THE TEST HEAD

METHOD IN THE TEST
HEAD -OBJECT

AlIR
ON BUTTON
PRESSED 7

YES

NO

EXECUTE
RUN THE TEST HEAD
METHOD IN THE TEST

HEAD OBJECT

AlR
OFF BUTITON
PRESSED 7

-YES

NO

U.S. Patent May 4, 2004 Sheet 11 of 42 US 6,732,053 Bl

FIGURE 11

(START

INITIALIZE TEST STATION

| FLUSH FRONT PANEL BUFFER
| DISPLAY WAIT... MESSAGE

TURN OFF AIR FLOW
RAISE TRAY

~ TURN OFF POWER

n
-
1
|
.
.
=
-
*
'
a
L]

~ OPEN TRAY

DISPLAY

IS
“TRAY IN OPEN
~POSITION 2

NO ERROR TRAY
' MESSAGE

YES

_ DISPLAY
TEST HEAD READY
MESSAGE

{ TURN ON CREEN LED &
GREEN "BULB”

RETURN

U.S. Patent May 4, 2004 Sheet 12 of 42 US 6,732,053 Bl

- FIGURE 12

- DISPLAY | .
— - SCAN BOARD
- o ' DISPLAY
| @ YES CLEAR DISPLAY

&

S
| . RETRIEVE
E%%ngoi? o 2 YES SERIAL

NUMBER

EXECUTE .
NOPRODUCTCODE
METHOD

SERIAL NUMBER >-NO

YES

EXECUTE
START

METHOD

EXECUTE
TES " STOP METHOD

EXECUTE
YES RESET METHOD |

“IS TRAY
CLOSED °?

VES - EXECUTE TRAY |
- "] CLOSE METHOD

NO

S

CONTINUED ON 13/47

U.S. Patent May 4, 2004 Sheet 13 of 42 US 6,732,053 Bl

CONTINUED
- ON 12/42 FIGURE 12
| - (CONTINUED)

. [EXECUTE TRAY -
OPEN METHOD

YE
VES EXECUTE PRESS

=1 DOWN METHOD
YES

EXECUTE PRESS
UP METHOD

]
-
] N

- EXECUTE AR

AR FLOW
- YES ~ ON METHOD

ON?

NO

AR FLOW
OFF 7

EXECUTE AR

YES OFF METHOD

NO

— EXECUTE
—NO TES CYCLE METHOD

U.S. Patent May 4, 2004

~ DISPLAY START
TURN ON YELLOW LED
& YELLOW "BULB”

NO

YES

RETRIE
TEST HEAD
D ?

NO

YES

LEAN FILE
FROM TEST
SERVER 7

NO

YES

YES

i

O

CONTINUED
ON 15/42

Sheet 14 of 42

FIGURE 13

"NO

CONTINUED
ON 15/42

START)

INCREMENT TESTED
COUNTER. CALCULATE &
DISPLAY YIELD.

~ IS TESTED
COUNTER > 5 &
YIELD < 607% 7

- YES

TEST HEAD IS
LOCKED OUT

US 6,732,053 Bl

U.S. Patent May 4, 2004 Sheet 15 of 42 US 6,732,053 Bl

" FIGURE 13

(CONTINUED)

- CONTINUED CONTINUED
ON 14 /42 ON 14 /42

- <PARSE AAA FILE >——— NO

YES

_PARSE SCRIPT ?

~ NO OPEN INHIBITOR RETURN

YES

(RETRIEVE NUMBER OF
| INSTRUCTIONS FROM
| SCRIPT ARRAY

RETRIEVE INSTRUCTION
FROM SCRIPT ARRAY

EXECUTE INSTRUCTION

~ LAST
INSTRUCTION ?

YES .
.

O — INCREMENT
~ ARRAY[SUBSCRIPT]

U.S. Patent May 4, 2004 Sheet 16 of 42 US 6,732,053 Bl

FIGURE 14

TRAY OPEN

S DISPLAY ~_ TURN ON
~ BUTTON YES—= TRAY OPEN —=—1YELLOW LED AND
PRESSED ? ___MESSAGE - | YELLOW "BULB".

- NO

S TRAY CLOSED ? - NO
YES
NO

S PRESS UP 7
YES

OPEN TRAY

DISPLAY TURN ON
- NO FRROR -TRAY RED LED AND
MESSAGE RED "BULB"

DID TRAY OPEN ?

U.S. Patent May 4, 2004 Sheet 17 of 42 US 6,732,053 Bl

START FIGURE 15

o DISPLAY ~ TURN ON
YES TRAY CLOSE = —={YELLOW LED AND
| MESSAGE | | YELLOW "BULB”

RAY CLOSE
BUTTON

PRESSED ?

NO

IS TRAY OPEN ? NO
YES
"IS PRESS UP 7 — NO

YES

| cLose TRAY |

e N DISPLAY TURN - ON
DID TRAY CLOSE ? - NO - ERROR TRAY RED LED AND
MESSAGE RED "BULB

YES

U.S. Patent May 4, 2004 Sheet 18 of 42 US 6,732,053 Bl

FIGURE 16

DISPLAY
~ PRESS DOWN
"~ MESSAGE.

- - TURN ON
~1YELLOW LED AND
| YELLOW "BULB”

PRESS DOWN
~ BUTTON
PRESSED ?

YES -

NO -

S PRESS UP ?

YES

'S TRAY CLOSED ?

YES

_LOWER PRESS |

WAS PRESS _[Coseeay 1| N A
LOWERED 7 -~ N0~ ERRUR FRESS AND Rt TURR

RED "BULB”

YES

RETURN

U.S. Patent May 4, 2004 Sheet 19 of 42 US 6,732,053 Bl

FIGURE 17

L DISPLAY ' - TURN ON
YES PRESS UP YELLOW LED AND
_ MESSAGE _ YELLOW "BULB”

'PRESS UP
- BUTITON
PRESSED ?

NO

S TRAY CLOSED 7 >——NO
YES
NO

'S PRESS DOWN ?

CYES

[RAISE PRESS

TURN ON
RED LED .

AND
RED "BULB”

WAS PRESS
RAISED ?

DISPLAY |
NO ——ERROR PRESS
MESSAGE |

YES

U.S. Patent May 4, 2004 Sheet 20 of 42 US 6,732,053 Bl

FIGURE 18

START |

AIR. ON BUTTON™
"PRESSED ?

' DISPLAY " TURN ON
YES AIR ON YELLOW LED &
MESSAGE YELLOW "BULB”

NO

TURN ON AIR FLOW
*

FIGURE 19

DISPLAY
AR OFF
MESSAGE

~AIR ON BUTTON YES

PRESSED 7

TURN ON
YELLOW LED & |
YELLOW "BULB”

NO |
TURN OFF AIR FLOW

U.S. Patent May 4, 2004 Sheet 21 of 42 US 6,732,053 Bl

FIGURE 20

1~ TURN ON RED LED
& RED "BULB”

- ~ DISPLAY
. ABORT MESSAGE
o |
TURN OFF POWER
~ DISPLAY
" POWER OFF MESSAGE
TURN OFF AIR FLOW
RAISE PRESS UP
OPEN TRAY

RETURN

U.S. Patent May 4, 2004 Sheet 22 of 42 US 6,732,053 Bl

| START FIGURE 21

| DISPLAY -
RESET |
MESSAGE

S
TRAY
CLOSED ?

NO

YES

YES

T DISPLAY
FRROR RESET |
MESSAGE -

YES

- PERFORM |
. SOFT -
RESET

RETURN

U.S. Patent May 4, 2004 Sheet 23 of 42 US 6,732,053 Bl

FIGURE 22

. STOP)

B R DISPLAY SCAN BOARD |
| GEAR LS —1 _ MESSAGE. TURN ON
. | | RED LED & RED "BULB"

1S MATRIX | .' ’ ~ IS -
<REAoER UseD 2 > YES—=—] READ SERIAL SERIAL NUMBER™>-— NO

VALID ?_

NO

-~ CREATE
LOG FILE

YES

SERIAL NUMBER
EXIST ?

D ' CREATE DUMMY
- NO —=={ SERIAL NUMBER
0000

YES

1 WRITE SERIAL
| NUMBER TO |
LOG FILE .

CONTINUED
ON 24/42

U.S. Patent May 4, 2004 Sheet 24 of 42 US 6,732,053 Bl
FIGURE 22
CONTINUED (CONTINUED)
ON 23/42

RETRIEVE CYCLE COUNT
FROM CYCLE EDIT BOX |

[WRITE TME STAMP |
% CYCLE COUNT |=
10 LOG FILE.

NUMBER OF
¢ BOARD CYCLES =
NLYCLE COUNT?

YES

NO

" DID BOARD
. PASS 7

| WRITEFALTO |
LOG FILE == NO

YES

|WRITE PASS TO LOG FILE

IS MATRIX ID
READER USED ?

' EXECUTE ;
NO NOPRODUCTCODE |—
~ METHOD ,

YES

EXECUTE START METHOD

U.S. Patent May 4, 2004 Sheet 25 of 42 US 6,732,053 Bl

FIGURE 23

START

4

DISPLAY STOPPING WAIT... |

MESSAGE

 TURN OFF ALL POWER
- - SUPPLIES

STOPPED MESSAGE _
& RED lBULB

U.S. Patent May 4, 2004 Sheet 26 of 42 US 6,732,053 Bl

FIGURE 24
(" START.)
' TURN OFF ALL
| POWER SUPPLIES |

" TURN ON
RED LED AND
RED "BULB

DID
POWER SUPPLIES
“OHUT DOWN 7 -

- NO -

~ DISPLAY
FAIL POWER OFF
|- MESSAGE

YES

| DELAY 2 SECONDS

1
.

TURN OFF AIR FLOW

RAISE PRESS UP
" OPEN TRAY

RETURN

U.S. Patent May 4, 2004 Sheet 27 of 42 US 6,732,053 Bl

FIGURE 25

START

DISPLAY
POWER DOWN
-~ 'MESSAGE '

TURN OFF ALL
| POWER SUPPLIES

. DID
POWER SUPPLIES
SHUT DOWN ?

| DISPLAY [TURN ON
NO FAIL POWER OFF RED LED AND
- MESSAGE RED "BULB"

YES

DELAY 2 SECONDS

U.S. Patent May 4, 2004 Sheet 28 of 42 US 6,732,053 Bl

START)

~ DISPLAY
TESTING POWER

, MESSAGE

FIGURE 26

EXECUTE POWER ON

SEQUENCE & MEASURE
POWER/VOLTAGE

DID CELL
ONTROLLER PAS
SOWER TEST 2

- DISPLAY ' “TURN ON
NO —={FAIL POWER UP |— RED LED AND
o MESSAGE. | RED "BULB .
ES WRITE CCC FILE TO
TEST SERVER
| DispLAY N
POWER ON MESSAGE -

TURN POWER OFF

- POWER
UP FOR 1ST
- TIME 7

NO

YES

OPEN MATRIX ID
“INHIBITOR

DISPLAY . ' '
NO FAIL BOOT RE TURN
MESSAGE - -

DISPLAY -
BOOTING MESSAGE |

U.S. Patent May 4, 2004

- START .

" DISPLAY
WAITING FOR
<FILE EXTENSION>
MESSAGE

SET TIMER .TO O

LOOK ON TEST SERVER],
<ETHERNET ADDRESS>
- EEE FILE

4@ YES
NO

LOOK ON TEST
"SERVER FOR
<ETHERNET ADDRESS>
<FILE EXTENSION> FILE

NO.

<FILE EXTENSION>

YES

DISPLAY
FOUND <EXTENSION>
~ MESSAGE

NO

YES

Sheet 29 of 42 US 6,732,053 B1

FIGURE 27

~NOTE: THE SYSTEM LOOKS FOR

THE EEE FILE FIRST TO DETERMINE
WHETHER A FAILURE HAS OCCURRED.
AT THE SAME TIME, IT LOOKS FOR:
THE FILE THAT THE SCRIPT SPECIFIES.

- DELAY 20
SECONDS

DISPLAY
FAIL MTA
MESSAGE

WHILE WINSS
SHUTS
DOWN

OISPLAY 1 ‘.
1iMeD OUT POJEI? NOFF
MESSAGE '

STOP

YES

HAS
TIME—QUT
PERIOD BEEN

" REACHED/
EXPIRED

NO

INCREMENT TIMER

'DELETE_FILE
'FROM TEST

SERVER

RETURN

U.S. Patent May 4, 2004 Sheet 30 of 42 US 6,732,053 Bl

FIGURE 28

- DISPLAY - -
NO ERROR NO OPID |-
| MESSAGE -

YES

- DISPLAY
NO ERROR NO SHIFT

MESSAGE -

YES

READ
USER ID 7

' - DISPLAY
NO FRROR NO USERID
| MESSAGE

YES

DISPLAY
NO———= ERROR SERVER.TXT

 MESSAGE

* READ
<SERVER NAME> 7

YES

CREATE <ETHERNET
ADDRESS>.QRY
FILE ON TEST

SERVER

CONTINUED CONTINUED
ON 31/42 ON 31/42

U.S. Patent May 4, 2004 Sheet 31 of 42 US 6,732,053 Bl

FIGURE 28

CONTINUED (CONTINUED) CONTINUED
ON 30/42 _ ON 30/42

WRITE TO QRY FILE
<SERIAL NUMBER>, |
OPID, SHIFT &
- USER ID

WAIT 10 SECONDS
| FOR TEST
SERVER TO SEND|
QRY FILE TO IFICS

SERVER AND
RETURN AAA FILE |

FIND AAA FILE
N TEST SERVER

. DISPLAY TURN ON
NO ERROR QRY AAA RED LED AND
MESSAGE RED "BULB" |

YES

' , TURN
RETURN — — POWER
- OFF

U.S. Patent May 4, 2004 Sheet 32 of 42 US 6,732,053 Bl

FIGURE 29

DISPLAY
ERROR

NO ZZ7

MESSAGE

IRITE <€ THERNE

ADDRESS>.ZZZ FILE TO
_TEST SERVER ? .~

NO

YES

DISPLAY
L OOKING FOR EEE
MESSAGE

FIND DISPLAY __
CETHERNET ADDRESS>>-YES =
EEE FILE 7 FEE EEE FILE

MESSAGE

NO

DISPLAY
LOCKING FOR BBB.
MESSAGE

CONTINUED CONTINUED
ON 33/42 ON 33/42

U.S. Patent May 4, 2004 Sheet 33 of 42 US 6,732,053 Bl

. FIGURE 29
CONTINUED (CONTINUED) CONTINUED

ON 32/42 ' ON 32/42

A

i) | usAY) e e[S
<ETHERNET ADDRESS> >—YES BRB 1FILE & RENAME F=— FOUND
BBB FILE ?_~ TT0CCC | | FLAG

MESSAGE

NO

DISPLAY |
| LOOKING FOR AAA
| MESSAGE

_ " FIND o LY UPDATE AAA | [TseET |
ETHERNET ADDRESS>>>-YES- N 1{FILE & RENAME | FOUND |-
AAA FILE 4 MECEACE T 7O CCC FLAG

'NO
DISPLAY ;
" 1S FOUND ERROR NO [TURN ON
NO . RED LED 'AND
‘ MESSAGE RED

YES
| [TURN
- | POWER
LOOK FOR EEE FILE| OFF
PARSE EEE FILE

RE TURN

U.S. Patent May 4, 2004 Sheet 34 of 42 US 6,732,053 Bl

'FIGURE 30

NOTE: THIS MESSAGE INDICATES |
THAT IFICS NEVER RETURNED THE
'DDD FILE TO THE TEST SERVER,
WHERE IT WOULD HAVE BEEN
CONVERTED TO ‘AN.EEE FILE.

DISPLAY

OPEN

ETHERNET ADDRESS>>—NO —=—1 e RED LED AND POWER
~~_ .EEE FILE ° MESSAGE RED "BULB” OFF

YES

[DISPLAY '
o . " TURN ON
DOES FiLt YES PASS GREEN LED AND
CONTAIN 0 ? BOARD REEN LED AN

~ MESSAGE

DISPLAY

TURN ON

DOES FILE FAIL
_ CONTAIN 1 ? YeS™1 goarp [|RED LD AND
o | MESSAGE RED BULS

DISPLAY
fAIL IFICS
ERROR
MESSAGE

'TURN ON |
RED LED AND
RED "BULB”

DOES FILE

CONTAIN 2 2 —YES

CLOSE EEE FILE |-
REMOVE EEE FILE

RETURN ' — -

U.S. Patent May 4, 2004 Sheet 35 of 42 US 6,732,053 Bl

FIGURE 31

START

- LOOK FOR
<ETHERNET ADDRESS>
SSS FILE ?

USPEND VOLTAG
EASUREMENT 2

T DISPLAY [WRITE cCC FILE
NO - <VOLTAGE - TO .
MEASUREMENT>| . | TEST SERVER

YES

DISPLAY TURN
<VOLTAGE ' POWER
~ MEASUREMENT> - OFF

RE TURN

U.S. Patent May 4, 2004 Sheet 36 of 42 US 6,732,053 Bl

FIGURE 32

T START)
T DISPLAY
WRITING THE. RES
MESSAGE

ITE <ETHERNETN
ADDRESS>.RES TO
TEST SERVER 7

NO

DISPLAY
ERROR NO RES
_ MESSAGE

YES

CLOSE RES FILE

TOGGLE _
ON_OFF BIT 2

' ~ DISPLAY TURN ON
NO FAIL RESUME ~ RED LED &
' | MESSAGE RED "BULB”

WRITE

CCC FILE TO
TEST SERVER

[TURN
—— POWER
- _ OFF

U.S. Patent May 4, 2004 Sheet 37 of 42 US 6,732,053 Bl

FIGURE 33

‘IS TRAY CLOSED ? >

o]

YES

“TURN ON | [DISPLAY DISPLAY

IS PRESS DOWN ? RED LED & ERROR JAM |—=— RE-SCAN
' RED "BULB MESSAGE | | MESSAGE

YES

' |

RETURN

U.S. Patent

FIGURE 34

~ START)

RETRIEVE. SET

CLOCK VALUE
(1 OR 0)

" FROM SCRIPT

DISPLAY SET

CLOCK <VALUE> |

MESSAGE

| SET THE CLOCK

SELECTION BIT
TO <VALUE>

RETURN)

May 4, 2004

'FIGURE 36
START

EMPTY
SERIAL NUMBER
STRING

TERMINATOR

Sheet 38 of 42

FIGURE 35

START

RETRIEVE |
DELAY <VALUE>
FROM SCRIPT

ENTER DELAY
<VALUE>
IN SECONDS

RETURN .

NOTE: EMPTYING THE
SERIAL NUMBER STRING
ACTS AS A FLAG TO THE
-MATRIX 1D INRIBITOR
OBJECT TO EXECUTE THE
OPENINHIBIT METHOD

US 6,732,053 Bl

U.S. Patent May 4, 2004 Sheet 39 of 42

. START FIGURE 37

TURN ON
YELLOW LED &
YELLOW "BULB”

DISPLAY
START
- MESSAGE

 YES

{ SET CLOCK = 0

IS POWER ON ? NO

YES

YES

DELAY 20 SECONDS

NO —1 sToP MESSAGE

- TURN POWER OFF

" RETURN)

WAIT FOR

US 6,732,053 Bl

U.S. Patent May 4, 2004 Sheet 40 of 42 US 6,732,053 Bl

FIGURE 38

START

OPEN
<ETHERNET ADDRESS>
AAA FILE

DISPLAY |
NO-={ ERROR NO AAA
MESSAGE

YES

CLOSE DISPLAY | "TURN ON

“OpE PSSFEFNUGCT? NO-=| AAA |—= ERROR NO PROD f—=|RED LED AND

FILE | MESSAGE . RED "BULB"

TURN
POWER
| OFF

YES

RETURN

U.S. Patent

START

" OPEN
SERVER.TXT
CFILE

| RETRIEVE <SERVER
| NAME> |

~ CLOSE SERVER.TXT
- FILE

OPEN
" CELL_TBL.DAT
FILE ON TEST
SERVER ?

YES

I

CONTINUED
ON 42/42

May 4, 2004

NO —

Sheet 41 of 42 US 6,732,053 B1

FIGURE 39

DISPLAY
| ERROR

SERVERS. TXT {
MESSAGL

DISPLAY
ERROR NO
1BL
MESSAGE

NO

U

CONTINUED
ON 42/42

U.S. Patent May 4, 2004 Sheet 42 of 42 US 6,732,053 Bl

CONTINUED , CONTINUED
ON 41/42 FIGURE 39 -~ ON 41/42
(CONTINUED) —
SEARCH FOR
| PRODUCT CODE |

FIND
PRODUCT
CODE 7

NO

YES

BEGIN TEST 1 DISPLAY
MESSAGE /FLAG NO CLOSE CELL_TBL.DAT ERROR IN
ASSOCIATED WITH . o FILE - IBL |
PRODUCT MESSAGE

0Dt 7

YES

STORE
INSTRUCTION

FIND -

_ FIND IN SCRIPT
’ ENEGEESFTAGP | " SIMICOLON ARRAY.
_ AS’E(SJ(SJIATE{) LWITH NO 'ON CURRENT LINE YES -=~ INCREMENT
, N CELL_TBL.DAT FILE. POINTER
PRODUCT ~FILE ? TO NEXT LINE IN|

CELL_TBL.DAT
. FILE

YES NO

CLOSE CELL_TBL.DAT
FILE
, TURN [TURN ON
RETURN)=————] POWER — RED LED AND
— OFF RED "BUL"

CLOSE CELL_TBL.DAT
 FILE ‘

US 6,732,053 Bl

1

METHOD AND APPARATUS FOR
CONTROLLING A TEST CELL

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to device testing and,
more particularly, to a method and apparatus for testing
devices.

2. Description of the Related Art

Electronic devices are usually tested after their manufac-
ture and before being shipped from the factory. In this
context, “device” may mean an mndividual integrated circuit,
or “chip,” or may mean an assembled printed circuit board
containing one or more chips. The hardware of such a tester
1s usually referred to as a “test cell” and usually has some
software operating the test cell. The test cell generally
includes a number of test heads into which devices are
placed for testing. Device testers are designed to test a
specific type of device and, so are uniquely adapted depend-
ing on the target device type. However, device testers, 1n
many respects, have severely limited capabilities.

One typical limitation regards the number of device types
that a tester may actually test. A test cell’s unique adaptation
to a particular type of device means that the test cell
ogenerally tests that device type well and thoroughly. On the
other hand, the unique adaptation prevents the tester from
ciiectively testing any other type of device. Thus, a test cell
will usually test only a single type of device.

One approach to this ditficulty i1s to include a variety of
different test heads 1n a single test cell. However, each test
head still 1s limited to testing a single device type. Further,
the test cell increases 1n complexity with the number of
different kinds of test heads. In effect, such a test cell 1s no
more than a series of small test cells awkwardly cobbled
together.

The present invention 1s directed to overcoming, or at
least reducing the effects of, one or more of the problems set
forth above.

SUMMARY OF THE INVENTION

In one aspect of the present invention, an apparatus 1s
provided for testing a plurality of devices. The apparatus, in
one embodiment, comprises a controller, a device 1dentifier
capable of 1dentifying each one of a plurality of devices as
one of a plurality of device types, and a plurality of test
heads. Each test head 1s capable of testing each one of the
devices mdependently of the rest of the plurality of test
heads responsive to the 1dentification of each device by the
device 1dentifier and under the control of the controller.

In a second aspect of the invention, a method 1s provided
for testing a plurality of devices. The method, 1n one
embodiment, comprises placing the plurality of devices
identified mto a plurality of test heads, each device being
identified as one of a plurality of predetermined device its
types and beimng placed mm a respective test head; and
directing the testing of each device mmdependently of the
testing for the remaining devices responsive to the respec-
five 1denfification of the device, the direction for the testing
of each device coming from the same controller.

BRIEF DESCRIPTION OF THE DRAWINGS.

Other objects and advantages of the invention will
become apparent upon reading the following detailed
description and upon reference to the drawings in which:

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1 1s a block diagram of an apparatus for testing a
plurality of devices constructed and operated 1in accordance
with the present mvention 1n a {irst invention;

FIG. 2 1s a block diagram of a method for testing a
plurality of devices 1in accordance with a first embodiment of
the mvention;

FIG. 3 1s a block diagram of an apparatus for testing a
plurality of devices built and operated 1n accordance with
the present invention 1n a second embodiment;

FIG. 4 1s a block diagram of a method for testing a
plurality of devices 1n accordance with a second embodi-
ment of the invention;

FIG. § 1s a block diagram of an apparatus for testing a
plurality of devices built and operated 1n accordance with
the present invention 1n a third embodiment;

FIGS. 6-7 are block diagrams of a method for testing a
plurality of devices 1n accordance with a third embodiment
of the invention;

FIG. 8 1llustrates the software architecture of the embodi-
ment 1n FIGS. 5-7; and

FIGS. 9A-39 are flow charts of selected objects and
methods of the software architecture in FIG. 8.

While the i1nvention 1s susceptible to various modifica-
tions and alternative forms, speciiic embodiments thereof
have been shown by way of example 1n the drawings and are
herein described 1n detail. It should be understood, however,
that the description herein of specific embodiments 1s not
intended to Ilimit the invention to the particular forms
disclosed, but on the contrary, the mtention 1s to cover all
modifications, equivalents, and alternatives falling within
the spirit and scope of the invention as defined by the
appended claims.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

[llustrative embodiments of the invention are described
below. In the interest of clarity, not all features of an actual
implementation are described 1n this specification. It will of
course be appreciated that 1in the development of any such
actual embodiment, numerous i1mplementation-specific
decisions must be made to achieve the developers’ speciiic
goals, such as compliance with system-related and business-
related constraints, which will vary from one implementa-
tion to another. Moreover, it will be appreciated that such a
development effort, even 1f complex and time-consuming,
would be a routine undertaking for those of ordinary skill in
the art having the benefit of this disclosure.

Turning now to FIG. 1, an apparatus 100 constructed and
operated 1n accordance with the invention 1s illustrated. The
apparatus 100 generally comprises a controller 120, a device
identifier 130, and a plurality of test heads 150. The device
identifier 130 1s capable of identifying each one of a plurality
of devices 140 as one of a plurality of device types. Each test
head 150 1s capable of testing a device 140 independently of
the rest of the plurality of test heads 150 responsive to an
identification of the device 140 by the device i1dentifier 130
and under the control of the controller 120. Thus, each test
head 150 can effectively test any device 140 that 1s one of
the plurality of device types, even when a second test head
150 1s testing a device 140 of a second type.

The manner 1n which the controller 120, device 1dentifier
130, and test heads 150 communicate among themselves
will be implementation specific and may include any tech-
nique known to the art and suitable for a given 1implemen-
tation. For 1nstance, the device identifier 130 1s shown 1n

US 6,732,053 Bl

3

FIG. 1 communicating directly with the controller 120.
However, the 1nvention 1s not so limited as, in other
embodiments, the device identifier 130 and the controller
120 might communicate over a bus or some other commu-
nications medium. Conceivably, the controller 120 and
device 1dentifier 130 might even communicate wirelessly,
such as by infrared or microwave techniques as are known
to the art.

FIG. 2 1llustrates one embodiment of a method as may be
practiced 1in accordance with the invention. Referring to both
FIGS. 1 and 2, the method begins by placing the plurality of
devices 140 1nto a plurality of test heads 150. Each device
140 1s 1dentified as one of a plurality of predetermined
device types and 1s placed 1n a respective test head 150. Each
device 140 may be 1dentified prior to placement in the test
head 150, but the invention 1s not so limited. In other
embodiments, the device 140 might be identified after
placement 1n the test head 150, provided the test head 140
has such capability. Next, the testing of each device 140 1s
directed i1ndependently of the testing for the remaining
devices 140 responsive to the respective 1dentification of the
device 140. All tests are directed from the same controller

120.

FIG. 3 illustrates an apparatus 300 constructed and oper-
ated 1n accordance with a second embodiment of the inven-
tion. The apparatus 300 includes controller 327, a device
identifier 310 capable of identifying a device 340 under test,
and a plurality of test heads 350, as does the apparatus 100
in FIG. 1. Each test head 350, accordingly, 1s capable of
testing any device 340 of a predetermined device type
independently of the rest of the plurality of test heads 350
testing other devices 340 responsive to an identification by
the device 1dentifier 310 and under the control of the
controller 327. The apparatus 300, however, further com-
prises a server 320 through which the controller 327 controls
the plurality of test heads 350.

The controller 327 1n the apparatus 300 comprises a part
of a test bed 312. The test bed 312, in the embodiment
illustrated, also includes a plurality of power supplies 325
and a communications interface 335. Thus, test bed 312 of
the apparatus 300 controls the plurality of test heads 350 via
the controller 327 and the server 320.

The device identifier 310 mn FIG. 3 includes a serial
number reader 316 and a product 1dentifier 318. The device
identifier 310, 1n this particular embodiment, identifies the
device 340 before the device 340 1s mserted 1nto a test head
350, although this 1s not necessary to the practice of the
invention. In this particular embodiment, the serial number
recader 316 of the device identifier 310 reads the serial
number from the device 340 1n a manner known to the art.
The product identifier 318 1dentifies the device 340 as one of
several predetermined device types from the serial number
of the device 340. The 1dentification of the device 340 1s then
communicated to the controller 327. Note that the device
identifier 310 1s shown communicating with the controller
327 mdirectly, as opposed to the embodiment i FIG. 1, in
which the device 1dentifier 130 communicates directly with
the controller 120.

FIG. 4 1llustrates one embodiment of method as may be
practiced 1n accordance with the present invention with the
apparatus 300 of FIG. 3. Referring now to both FIGS. 3 and
4, the method begins by placing the plurality of devices 340
into a plurality of test heads 350, each device 340 being
placed 1n a respective test head 350. The devices 340 may be
previously 1dentified using the device identifier 310 and,
more particularly, the serial number reader 316 and the

10

15

20

25

30

35

40

45

50

55

60

65

4

product 1dentifier 318. The devices 340 may be 1dentified
cither before or after being placed in the test heads 350,
depending on the particular implementation. Either way, the
testing of each device 340 1s conducted independently of the
testing for the remaining devices 340 and under the direction
of the controller 327. The testing 1s conducted responsive to
the respective 1dentification of the device 340 in that ditfer-
ent devices 340 may be subject to different testing protocols
depending on their 1dentification.

Turning now to FIGS. 5-6, one particular embodiment of
the mmvention includes a multithreaded, C++, Windows® NT
software application (not shown) controlling the hardware of
a test cell 500 of FIG. 5 using the method of FIG. 6. The
software may be encoded on any suitable program storage
medium (not shown), which may comprise, without
limitation, random access memory (“RAM?”), a hard disk, a
floppy disk, and an optical disk. The software provides a
platform for testing mobile processor products. More
particularly, this particular embodiment tests products mcor-
porating processors for installation 1n portable computers,
such as laptops. The test cell 500 includes a test rack 512, at
least two test heads 514, a matrix identification (“ID”) reader
516, a matrix ID reader inhibitor 518, a test server 520, and
an IFICS server 522.

The test rack 512 comprises fixed power supplies 524,
programmable power supplies 526, a controller 527, and a
VersaModule Eurocard (“VME”) bus eXtensions for Instru-
mentation (“VXI”) card cage 528. The fixed power supplies
524 may include 24V, 12V, 5V, and 3.3V power supplies
530a—d, respectively, and the programmable power supplies
526 may include programmable V.- and 3.3V program-
mable power supplies 532a—b, respectively. The VXI card
cage 528 may include a digital multi-meter (“DMM?”) card,
two multiplexer (“MUX”) cards, and two digital input/
output (“DIG-IO cards”) 534a—d, respectively. Alternative
embodiments might also include a D1700 card (not shown).
In one particular embodiment, the fixed power supplies 524,
VXI card cage 528, and the programmable power supplies
526 are provided by an 801 Test Rack and an 801D Test
Rack, both commercially available from Racal Instruments,
Inc. Eight sets of cables 36a—/1 connect the test rack 512 to
cach test head 514.

The test rack 512 provides all necessary signals and data
for testing the range of devices that might be tested 1n the test
heads 514. For instance, the fixed power supplies 524 and
programmable power supplies 532a—b provide all power
necessary to power the devices. Siumilarly, the VXI card cage
528 provides the capability for the controller 527 to control
the testing over the bus 542 and through the server 520 and
the test heads 514. The bus 542 1s an Ethernet such as 1s well
known 1n the art. However, the invention 1s not so limited
and any bus mechanism known to the art may be used.

Each test head 514 consists of an actuator 538, a cassette
tray 540 used to insert the device (not shown in FIG. §) into
the actuator 538, an Ethernet connection 542 to the test
server 520, the cable connections (not shown) to the test rack
512, and a keypad 544 to control the actuator 538 and the
cassette tray 540. There are eight test heads 514 1n the test
cell 500 of FIG. 5. However, the invention 1s not so limited
as the number of test heads 514 will be implementation

specific. Each of the test heads 514 1s connected to the test
bed 512 via a set of RS-232 cables 536a—#, respectively.

The Matrix ID reader 516 and the matrix ID reader
inhibitor 518 are connected to the test rack 512 via RS232
cables 546. The matrix ID reader 516 reads the serial number
of a device under test. The Matrix ID reader inhibitor 518

US 6,732,053 Bl

S

selectively blocks user access to the Matrix ID reader 516 to
regulate the availability of the Matrix ID reader 516 to the
Cell Controller 527 as described further below.

The cell controller 527 communicates with the test heads
514 through software running on each apparatus. The soft-
ware exchanges files through the test server 520. The names
of these files are based upon the Ethernet address of the test
head 514 requiring service and the type of service required.
For example, if the Ethernet address of a test head 514 is
ABC123 and the test head 514 requires query service from
the IFICS server 522, the file name 1s ABC123.QRY.
Additionally, the test server 520, in the embodiment

illustrated, provides the means of communication to the
IFICS server 522.

The IFICS server 522 ascertains the product code of a
device under test based on the device’s serial number. The
product code 1s used to determine which set of test program
instructions should be executed for a particular device under
test. After the test 1s completed for that device, the Pass/Fail
data 1s recorded according to its serial number stored on the

IFICS server 522.

FIG. 6 1llustrates one embodiment of a method practiced
in accordance with the present mnvention using the test cell
500 of FIG. 5. Referring now to both FIGS. 5 and 6, the user
first selects one of the Auto, Debug, or Manual operation
modes for testing using a graphical user interface (“GUI”)
ogenerated by the software resident on the controller 527. The
user then enters their operator ID, user ID, and shift for
record-keeping purposes. The user then inserts the first
device mto the matrix ID reader 516, which reads the serial
number of the device. The user then removes the device
from the matrix ID reader 516, which causes the controller
527 to close the matrix ID reader inhibitor 518 to tempo-
rarily prevent further use of the matrix ID reader 516.

The device 1s then placed 1n a test head 514. Because each
of the test heads 514 operates independently of the others,
the device may be placed into any unused test head 514.
Once the device 1s placed 1n a test head 514, the controller
527, under control of the software resident thereon, directs
the testing of the device to begin. The testing 1s responsive
to the 1identification of the device generated by the matrix ID
reader 516 1n that the 1dentification drives the selection and
parameters of the test applied to the device.

At some point during testing of the device, the controller
527 directs the matrix ID inhibitor 518 to open. This permits
the user to 1dentily another device using the matrix ID reader
516, insert the identified device into a test head 514, and
begin testing another device. Thus, the matrix ID reader
inhibitor 518 selectively blocks user access to the matrix 1D
reader 516 to regulate the availability of the Matrix 1D
reader 516 to the Cell Controller 527. In the embodiment
1llustrated, the block persists long enough to set up and begin
the test for an 1dentified device.

In one particular variant of this embodiment, when the test
for any given device 1s begun, the software implements the
method presented in FIG. 7. When the cassette tray 540
closes, the device 1s plugged 1nto an Easter-T Mule board
assembly (not shown). The Ethernet address of the test head
514 1s read from a NOVRAM 1n the test head 514. The test
server name, the operator ID (“OPID”), the shift, and the
user ID are read from separate files created by the controller
527 when the respective information 1s made available. The
controller 527 then creates a new, summary file associated
with the Ethernet address of the test head 514 and containing,
the serial number of the device, the OPID, the shift, and the
user ID. The test server 520 then query the IFICS server 522,

10

15

20

25

30

35

40

45

50

55

60

65

6

looks up the product code based upon the serial number, and
creates a new, test file.

The cell controller 527, executing the software stored
thereon, then parses the test file for the product code, opens
a data file containing scripts based on product codes that
defines the testing protocols for each type of device. The cell
controller 527 1dentifies the appropriate script based on the
product code stored 1n the summary file for the device under
test, parses the script containing the instructions for testing
the respective device, and stores the 1nstructions 1n an array.
The cell controller 527 then opens the matrix ID reader
inhibitor 518. The cell controller 527 then executes the test
instruction stored in the array.

Returning to FIG. 6, upon completing the test
mstructions, the cell controller 527 instructs the test head
514 to eject the device under test and displays an indication
of whether the device passed. The controller 527, which has
been monitoring the test, then displays an indication of
whether the device passed or failed the test. Once the test
head 514 1s empty, it may be used to test another 1dentified
device. Eventually, testing 1s completed for all devices under
test and no more devices are put to test. The test cell 500 can
then be powered down.

As mentioned above, the cell controller software 1n this
particular embodiment 1s an object oriented application
whose software architecture 1s shown 1n FIG. 8. This par-
ticular embodiment 1s coded using the commonly known

programming language C++ and the Microsoft Foundation
Classes (“MFC”) software developers kit. However, the

invention 1s not so limited and may employ other program-
ming languages, even 1f those languages are not object
oriented. The practice of the invention 1s likewise not limited
to the MFC software developers kit. A brief explanation of
several object oriented programming concepts 1s provided to
further discussion of the invention below.

Three key concepts define object oriented technology 1n
programming: (1) “objects” that encapsulate procedures and
data; (2) “messages” that support polymorphism across
objects; and (3) “classes” that implement inheritance within
class hierarchies. These concepts are well known 1n the art

and are described 1n many books, such as Object
Technology—A Manager’s Guide (Second Edition) by

David A. Taylor, Ph.D. (First Printing September, 1997).

More particularly, an object 1s a software element that
combines data and related procedures that manipulate that
data. The procedures are referred to as “methods™ to distin-
ouish them from conventional procedures that are not
attached to objects. The data elements are referred to as
variables.

A class 1s a software template that defines the methods and
variables to be included 1n each 1nstance of an object that 1s
created from the class using its software template. The class
specifles a data structure and the permissible methods that
apply to each of the objects created from the template.
Typically, the data structure comprises numerous pointers
that represent a physical address for the location of data, the
actual data 1itself, or both. Each class 1s often uniquely
identified by a data value known as a class identifier. An
object, then, 1s an instance of a particular class

The methods and variables that make up an object are
defined only once, 1n the definition of the class. In any
particular application there may be many objects of a certain
class. The objects that belong to a class contain only their
own particular values for the variables, but all objects of a
particular class contain the same methods. It 1s possible for
one class of objects to be defined as a special case of a more
ogeneral class. This mechanism or technique 1s known as
“inheritance.”

US 6,732,053 Bl

7

Returning to FIGS. 5-6, the cell controller software
controls the hardware of the test cell 500 by emulating the
test hardware functions and providing an interface to the
user operating the test cell 500. The controlling object within
this software 1s the test head object. The test head object
communicates and controls the hardware and communicate
with the user. The communication 1s accomplished by con-
structing;:

graphical user mterface (“GUI”) objects;
instrument objects;

the test head object, including passing pointers of the GUI
and 1nstrument objects 1nto the test head object.

The test head object communicates to the GUI and instru-
ment objects through the pointers. To increase the efficiency
of the test platform, each test head 1s made to operate
independent of all the other test heads by creating a thread
object for each test head.

More particularly, this particular embodiment of FIGS.
5—6 includes at least the following exemplary objects:

main application (MMO.cpp) object: derived from
CWinApp, this object interfaces the main application
with the Windows operating system to execute the
MMO Cell Controller software. When the Cell Con-
troller software 1s first called, this object 1nitializes the
GUI. This object also controls the calls made to the
objects mapped to the menu and toolbar items dis-
cussed elsewhere.

bulb object (BULB.cpp): this object links and embeds a
ographic object 1nto the XCELLVW.CPP and XTH-
VW.CPP constituent object files discussed below. Bulb
objects are grouped 1n three to emulate the red, yellow,
and green light emitting diodes (“LEDs”) on a test
head. Red indicates that the board failed; green indi-
cates that the board passed; and yellow indicates that
the test head cannot process another board until it
finishes processing the current one (busy).

status display object (XTHVw.cpp): object displays the
status and messages of each test head during 1its test
execution. The color of the bulb object represents the
status of the test execution: red for fail; yellow for busy;
and green for Pass. The messages are displayed 1n a list
box associated with the appropriate test head. The

XTHVw Class 1s derived from CFormView.

number of devices under test display object
(XCellVw.cpp): this object displays the number of
devices under test 1n a particular test head, the number
that passed the test suite for a particular test head, and
the yield for each particular test head. The XCellVw
Class 1s dertved from CFormView.

splitter objects (ZAutoSplit.cpp, ZManSplit.cpp,
ZBugSplit.cpp): these objects create a splitter window
view displayed when the Auto Mode, Manual Mode, or
Debug Mode toolbar or menu 1tem 1s selected, respec-
tively. The splitter windows contains the ZAutoVw,
/ManVw, or ZBugVw views, respectively; the
XCellVw view, and the XTHVw view. The ZAutoSplit
Class, SManSplit Class, and ZBugSplit Class are
derived from CMDIChildWnd.

view creation object (ZAutoVw.cpp, ZManVw.cpp,
ZBugVw.cpp): These objects create the Auto Mode,
Manual Mode, and Debug Mode views, respectively, to
provide user interfaces in these various modes. The

ZAutoVw Class, ZManVw Class, and ZBugVw Class
are derived from CFormView.

thread creation object (DU TThread.cpp): this object starts
the thread for a test head. The keypad buttons on the

10

15

20

25

30

35

40

45

50

55

60

65

3

test head, or, 1f 1n Debug mode, the front panel buttons
on the GUI, are continuously polled, ready for the user
to press a button. The appropriate method call to the test
head object, testhead.cpp (discussed below), 1s made.
For example, 1f you press the Trayln button, the test
head object executes the OnTrayIn(). DUTThread.cpp
1s dertved from CWinThread.cpp.

binding object (TheadCtrlDlg.cpp): this object contains
all of the methods that bind test head functionality,
including control of the cassette tray movement, key-
pad buttons and display, and LEDs to the GUI features
in the test head control dialog box.

enable objects (Testhead.cpp, EasterT.cpp, Whidbey.cpp):
these objects contain all of the methods that enable test
head functionality, including control of the cassette tray
movement, keypad buttons and display, and LEDs. The
Testhead Class 1s a base class; the Easter'T Class and the
Whidbey Class are derived from TestHead.cpp and all
of the methods are overloaded from TestHead.cpp.

instrumentation objects (Rack.cpp, 801Rack.cpp,
802Rack.cpp, Instument.cpp, 1260__13.cpp, 1260

14.cpp, 1260__14C.cpp, 1260_35.cpp, 1260__38.cpp,

HPE1411.cpp, PowerSupply.cpp): These objects emu-

late the mstrumentation of the test rack and includes

base classes and classes derived from the base classes.

The base classes include:

(1) the Rack Class, from which the 801Rack, 802Rack
classes are derived; (2) the Instrument Class, from
which the 1260__13, 1260__14, 1260__14C, 1260__
35.,1260__38, HPE1411 classes are derived, and (3)
the PowerSupply Class. The Rack BASE class con-
tains all methods enabling test rack functionality
including: controlling the actuators that control cas-
sette tray movement, communication via the RS232
port to the keypad buttons, keypad display, Matrix
ID Reader, and the Matrix ID Inhibitor, and control-
ling the fixed power supplies, the programmable
power supplies, and the VXI card cage via the GPIB.
The Instrument BASE class contains all methods
enabling basic functionality of instruments intercon-
nected via GPIB that use National Instruments CVI
software. The various derived classes address vari-
ous operational characteristics including protocols
and standards.

communication objects (RS232.cpp, D1700.cpp,
5014C.cpp, HANDLER.cpp IDReader.cpp,
FrontPanel.cpp, Inhibitor.cpp): These objects emulate
basic functionality of all RS232 devices and includes
the RS232 BASE class and classes derived from the
base classes. The D1700, 5014C, HANDLER derived
classes specifically emulate communications devices 1n
the test rack. The IDReader Class, FrontPanel Class,
and Inhibitor Class emulate communication the cell
controller and the Matrix ID Reader, the test rack front
panel (not shown), and the Matrix ID Reader Inhibitor,
respectively.

message object (SerialTestMsg.cpp): this object sets up
the communication between the motherboard in the
testhead and the MMO Cell Controller via a RS-232
port and enables the MMO Cell Controller software to
communicate to the test suite software.
The methods and a description thereof associated with each
object 1s set forth 1n Tables 1-X appended hereto and which
form a part of this specification.
The main application object (MMO.cpp) defines five
document templates, which mnclude MMO, Manual Mode,

US 6,732,053 Bl

9

Automatic Mode, Debug Mode, and DUT Configuration.
More particularly:

the MMO document template provides the main applica-
tion view, which appears when the application 1is
opened. This view provides the means to open ASCII
files using the file open menu 1tem, or to open any
Mode document template when the associated toolbar
button or menu 1tem 1s selected.

when the DUT Configuration template 1s selected when
the user selects which product will be tested. The
software automatically configures the test heads to
work with the selected product.

when the Debug Mode template 1s selected the Debug
Mode view appears by calling the ZBugSplit object,
which calls the ZBugVw object, XTHVw object, and
the XCellVw object to create a splitter window. When
the ZBugVw object 1s called 1t creates a IDReader
object, either a Handler object or Inhibitor object
(depending upon the test platform configuration), reads
the OPID, user ID, shift, and server text files and
updates all edit boxes. If the start Matrix ID Reader
button 1s pressed the MatrixIDThread object 1s created.
When any test head button 1s pressed a TheadCtrlDlg,
object 1s created without a DUTThread object being
created.

when the Manual Mode template 1s selected the Manual
Mode view appears by calling the ZManSplit object,
which calls the ZManVw object, XTHVw object, and
the XCellVw object to create a splitter window. When
the ZManVw object 1s called 1t creates an IDReader
object, a MatrixIDThread object, an Inhibitor object,
cight TheadCtrlDlg objects also signaling each
TheadCtrlDlg object to create a DUTThread object,
and reads the OPID, user ID, shift, and server text files
and updates all edit boxes.

when the Automatic Mode 1s selected the Automatic
Mode view appears by calling the ZAutoSplit object,
which calls the ZAutoVw object, XTHVw object, and
the XCellVw object to create a splitter window. When
the ZAutoVw object 1s called 1t creates an IDReader
object, a MatrixIDThread object, an Handler object,
cight TheadCitrlDlg objects also signaling each
TheadCtrlDlg object to create a DUTThread object,
and reads the OPID, user ID, shift, and server text files
and updates all edit boxes.

When a TheadCirlDlg object 1s created it 1s passed a
pointer to the IDReader object, a pointer to the Handler
object (if it was created), a pointer to the XTHVw object, a
pointer to the XCellVw object, and a test head number
corresponding to the test head to control. The TheadCtrlDlg
object provides a dialog box containing controls for the test
head and 1s responsible for the creation of the thread running
that test head.

When a DUTThread object 1s created 1t 1s passed a pointer
to the XTHVw object, a pointer to the XCellVw object, a
pointer to the Handler object (if it was created), a pointer to
the list box object which resides 1n the TheadCtrlDlg dialog
box, a test head number corresponding to the test head to
control, and a flag indicting if the Matrix ID reader 1s being
used. The DUTThread object starts a program thread for the
test head associated with 1t. This object first creates an
appropriate Rack (801, 801A, or 802) object and appropriate
TestHead object (EasterT, EasterTSX, or Whidby), and then
starts the program thread which 1s constantly looping
responding to keypad commands from buttons being
depressed on the test head front panel keypad.

10

15

20

25

30

35

40

45

50

55

60

65

10

When a Rack object 1s created 1t 1s passed a test head
number corresponding to the test head to control, creates a
cable map object which defines signal names and connec-
tions from the test head to the equipment contained within
the Rack, and creates the instrument objects associated with
the ‘type” of Rack being created. For an 801Rack object a
Frontpanel object, 1260__14 object, 1260__13 object, 1260__
35 object, HPE1411 object, and PowerSupply object are
created. For an 802Rack object a Frontpanel object, 1260__
14C object, 1260__38 object, D1700 object, 5014 object,
HPE1411 object, and PowerSupply object are created. The
Rack object now contains all of its constituent instrument
objects. As per FIG. 1 we now have constructed a software
model of the test rack hardware.

When a TestHead object 1s created it 1s passed a pointer
to the XTHVw object, a pointer to the XCellVw object, a
pointer to the Handler object (if it was created), a pointer to
the list box object which resides 1n the TheadCtrlDlg dialog
box, a test head number corresponding to the test head to
control, a flag indicting 1f the Matrix ID reader 1s being used,
and a pointer to the Rack object. Also at the time of creation
the ‘type’” of test head i1s determined. If an EasterTSX or
Whidby test head type 1s determined then a SerialTstMsg
object 1s created. The communication mechanism between
the test head and the rack instruments 1s either through a
serial port (required by EasterT'SX and Whidby) or through
a ether net port (required by EasterT).

As will be recognized by the art, each of the above objects
will be associated with one or more methods. As with the
objects, the number and definition of methods and objects
will be 1mplementation specific. The methods associated
with the objects set forth above 1n this particular embodi-
ment are set forth 1n Tables 1-32 1n the Appendix hereto. The
logic flow for several, selected methods are set forth FIGS.
9A—-39 as noted in Tables 1-32.

The particular embodiments disclosed above are 1llustra-
five only, as the invention may be modified and practiced in
different but equivalent manners apparent to those skilled in
the art having the benefit of the teachings herein.
Furthermore, no limitations are mtended to the details of
construction or design herein shown, other than as described
in the claims below. It 1s therefore evident that the particular
embodiments disclosed above may be altered or modified
and all such variations are considered within the scope and
spirit of the mvention. Accordingly, the protection sought
herein 1s as set forth in the claims below.

Appendix
TABLE 1

Methods Associated With MMO.cpp

MMO();: Constructs the MMO object.

~MMO();: Destructs/Destroys the MMO object.

PreTranslateMessage(MSG* pMsg);: Processes Windows
messages passed to the application.

DisableTheToolBarAndMenu(int pressed ID);: Once an
item from the toolbar or menu has been selected, this
method disables the item (masks it in gray).

EnableTheToolBarAndMenu();: After the selected toolbar
or menu 1tem has been successfully executed, this com-
mand enables the item (fills it in with color).

InitInstance();: Initializes the MMO application GUI. (See
FIG. 3.)

OnAppAbout();: Processes calls to the selected About menu
and toolbar item.

US 6,732,053 Bl

11

OnModeManual();: Processes calls to the selected Manual
Mode menu and toolbar item.

OnMode Automatic();: Processes calls to the selected Auto
Mode menu and toolbar item.

OnModeDebug();: Processes calls to the selected Debug
Mode menu and toolbar item.

OnXmode();: Processes calls to the selected Exit Mode
menu and toolbar 1tem.

OnAppExit();: Processes calls to the Exit menu.

OnPassword();: Processes calls to the selected Password
menu and toolbar item.

TABLE 2

Methods Associated With BULB.cpp

Bulb();: Constructs the bulb object.

~Bulb();: Destructs/Destroys the bulb object.

SetBackColor(OLE__COLOR);: Matches the background
color of the bulb with the color of the window.

SetForeColor(OLE __COLOR);: Sets the foreground color of
the bulb to red, yellow, or green.

SetCaption(LPCTSTR);: Centers the text within the bulb
(for labeling the object).

GetFont();: Retrieves the font you mapped to the text using

the SetCaption method. Use this method 1n conjunction
with the font object (FONT.CPP).

SetFont(LPDISPATCH);: Sets the font you assign to the text
using the SetCaption method. Use this method in con-
junction with the font object (FONT.CPP).

TurnOn();: Changes the color of the bulb object to the
foreground color you previously set using the SetFore-

Color method. This makes the “bulb” appear that 1t has
been turned on.

TurnOff();: Changes the color of the bulb object to the
background color you previously set using the SetBack-
Color method. This makes the “bulb” appear that 1t has
been turned off.

TABLE 3

Methods Associated With XTHV.cpp

XTHVw();: Constructs the XTHVw object.

~XTHVwW();: Destructs/Destroys the XTHVw object.

[nitXTHView();: Initializes the XTH view by turning the
“bulbs” off and clearing the list boxes.

Shut XTHView();: Turns off all the “bulbs” simultaneously
in the XTH view.

THBarGreen(int nBar);: Turns a “bulb” green.

THBarYellow(int nBar);: Turns a “bulb” yellow.

THBarRed(int nBar);: Turns a “bulb” red.

THBarOff(int nBar);: Turns off a “bulb”.

write THL(CString strL.BData, int nBar);: Writes a message
in a list box.

SeparatorTHL(int nBar);: Inserts a blank line in a list box.

ClearTHL(int nBar);: Clears the contents of a list box.

TABLE 4

Methods Associated With XCellVw.cpp

XCellVw();: Constructs the XCellVw object.

~XCellVw();: Destructs/Destroys the XCellVw object.

CVBarReset(int nBar);: Resets the Tested, Passed, and %
counters to 0.

CVBarCount(int nBar);: Increments the Tested counter and
displays the result in the Tested edit box.

10

15

20

25

30

35

40

45

50

55

60

65

12

CVBarPass(int nBar);: Increments the Passed counter and
displays the result 1n the Passed edit box.

CVBarYield(int nBar);: Calculates the yield and displays it
in the Yield edit box.

[nitXCellView();: Initializes the XCell view, resetting the
Tested, Passed, and % counters to O.

TestYield(int nBar);: After a test head has been started five
times, the method determines whether the yield has
dropped below 60 percent.

ShutXCellView();: Resets the Tested, Passed, and %
counters to 0.

TABLE 5

Methods Associated With ZxxxSplit.cpp

ZxxxSplit();: Where xxx is Auto, Bug, or Man, constructs
the ZAutoSplit, ZBugSplit, or ZManSplit object, respec-
tively.

~ZxxxSplit();: Where xxx is Auto, Bug, or Man, destructs/
Destroys the ZAutoSplit, ZBugSplit, or ZManSplit object,
respectively.

OnCreateClient(LPCREATESTRUCT Ipcs, CCreateCon-
text™ pContext);: Specifies the sizes of and includes the
views that are displayed within the splitter window view.
The views included are ZAutoVw in the ZAutoSplit
object, ZBugVw 1n the ZBugSplit object, or ZManVw 1n
the ZmanSplit object, respectively, and XTHVw and
XCellVw 1n each of the ZAutoSplit, ZBugSplit, or
ZmanSplit objects.

PreCreateWindow(CREATESTRUCT& cs);: Specifies the
qualifiers of the splitter window.

TABLE 6

Methods Associated With ZAutoVw.cpp

ZAutoVw();: Constructs the ZAutoVw object.

~ZAutoVw();: Destructs/Destroys the ZAutoVw object.

CMMODoc* GetDocument();: Gets the document associ-
ated with the application.

InitAutoView();: Display ‘ShutDown’ in the rack listbox
associated with this view.

ShutAutoView();: Display ‘ShutDown’ in the rack listbox
associated with this view.

ZAutoVw* GetThisView();: Gets the object pointers for
cach splitter view associated with this window.

RackSelfTest();: Executes rack self test.

ServerUp();: Test connection to test server.

StartMatrixID();: Starts the Matrix ID thread.

StopMatrixID();: Stops the Matrix ID thread.

StartHandler();: Starts the Board Handler.

OnAppExit();: Defeats normal exit of application, ensuring,
the operator will not close the application before the

application has been terminated.

OnFileClose();: Defeats normal exit of window.
OnOpid();: This method stores the OPID.

OnShift();: This method stores the shift.
OnUserid();: This method stores the user ID.

OnAinit();: Initialize this view, instruments, and test heads.

OnAshut();: Close this view.
OnButthx();: Opens test head control panel for test head x,

where x=[1,8].

US 6,732,053 Bl

13
TABLE 7

Methods Associated With ZManVw.cpp
(Flowchart in FIGS. 9A-9B)
ZManVw();:: Constructs the ZManVw object.
~ZManVw();: Destructs/Destroys the ZManVw object.
Onlnit();: Maps to the INITIALIZE button in the view.
Press the INITIALIZE button to run a self-test on the Test

Rack, check communication with the test server, and
create the communication link to the Matrix ID Reader
and Matrix ID Reader Inhibitor. This method starts all test
head threads, which poll the front panel of each test head
ready (“waiting”) for you to press a button on the testhead

front panel.
OnShut();: Maps to the SHUTDOWN button in the view.

Press the SHUTDOWN button to shut down the threads
in an orderly manner and break the communications link
to the Matrix ID Reader, Matrix ID Reader Inhibitor, and
test server.

OnButthx();: Opens test head control panel for test head x,
where x=[1,8].

OnAppEXxit();: Prevents the user from exiting the applica-
tion while the application has any threads running.

OnFileClose();: Prevents the user from closing this view
while the application has any threads running.

OnOpID();: Maps to the OPID button on the view and
enables the user to update the operator ID data.

OnShift();: Maps to the SHIFT button on the view and
enables the user to update the shift data.

OnUserID();: Maps to the USERID button on the view and
enables the user to update the user ID data.

[nitMan view();: Initializes the view, including the edit and
list boxes.

ShutManView();: Clears the view.

RackSelfTest();: Executes the Test Rack self-test.

StartMatrixID();: Sets up the RS232 port used for commu-
nicating with the Matrix ID Reader.

StopMatrixID();: Closes communication with the Matrix ID
Reader.

ServerUp();: Tests the communication link with the test
SETVEr.

StartInhibit();: Sets up the RS232 port used for communi-
cating with the Matrix ID Reader Inhibaitor.

GetThisView();: Accesses the appropriate view within the

splitter window for updating data within that view. The
views 1nclude XTHView, XCellVw, ZManVw.

TABLE &

Methods Associated With ZBugVw.cpp

ZBugVw();: Constructs the ZBugVw object.

~ZBugVw();: Destructs/Destroys the ZBugVw object.

OnRack();: Maps to the Rack Self Test button and is used
to execute the Test Rack selt-test.

OnOpID();: Maps to the OPID button and 1s used to update
the operator ID data.

OnShift();: Maps to the SHIFT button and is used to update
the shift data.

OnUserID();: Maps to the USERID button and is used to
update the user ID data.

OnServer();: Maps to the Enter Server button and is used to
update the test server name.

OnTstsrvr();: Maps to the X button and is used to check the
connection between the Test Rack and the test server.
OnClinhib();: Maps to the Close button and is used to close

the Matrix ID Reader Inhibitor.
OnOpinhib();: Maps to the Open button and is used to open
the Matrix ID Reader Inhibitor.

10

15

20

25

30

35

40

45

50

55

60

65

14

OnStopMat();: Maps to the Stop MatrixID button and is
used to disconnect the Test Rack from the Matrix ID
Reader.

OnStartMat();: Maps to the Start MatrixID button and is
used to connect the RS232 communication link between
the Test Rack and the Matrix ID Reader.

OnRdsn();: Maps to the Read S/N button and is used to read
the serial number of a DEVICE UNDER TEST placed 1n
the Matrix ID Reader fixture.

OnlLoadth();: Maps to the Load Board button and is used to
load a board onto a test head by the board handler.

OnUnloadth();: Maps to the UnlLoad Board button and is
used to unload a board from a test head by the board
handler.

OnRadfail();: Maps to the Pass Bin radio button and is used
to 1ndicate to unload a board to the pass bin from a test
head by the board handler.

OnRadpass();: Maps to the Fail Bin radio button and 1s used
to 1ndicate to unload a board to the fail bin from a test
head by the board handler.

OnRadthx();: Maps to the THx radio button, where x=[1,8],
and 1s used to indicate to load/unload a board from the
indicated test head by the board handler.

OnButthx();: Opens test head control panel for test head x,
where x=[1,8].

OnAppExit();: Prevents the user from exiting the applica-
tion while the application has any threads running.

OnFileClose();: Prevents the user from closing this view
while the application has any threads running.

TABLE 9

Methods Associated With DUTThread.cpp

DUTThread(XTHVw* pTH=NULL, XCellVw* pCVw=
NULL, int nTHID=NULL, BOOL bReader=FALSE);:
Creates a DUTThread object and calls to create a new test
head object, rack object, and DMM object.

~DUTThread();: Destroys/Destructs a DUTThread object.

RunDut();: Repeatedly calls CheckfrontPanel().

ExitDutThread(DUTThread™ pThread);: Exits a thread.

SetOwner(XTHVw*pTHOwner, XCellVw*pXCOwner):
Scts the owner of the GUI to the present thread.

EmulateFrontPanel(int nEvent);: Causes the GUI front panel
buttons to emulate the keypad buttons on the test head.

DoStop();: Interfaces the method from the ZBugVw object
with the Stop() method in the test head object.

DoClock(int nClkSet);: Interfaces the clock selection
(CLK_SELECT) method from the ZBugVw object with
the clock selection method 1n the test head object.

CheckFrontPanel();: Singularly polls the keypad buttons on
the test head.

TABLE 10

Methods Associated With TheadCtrlDlg.cpp

CTheadCtrlDIg(BOOL bStartThread, int nTHID=0,
IDReader* plDReader=NULL, CHandler* pHandler=
NULL, XTHVw* pTH=NULL, XCellVw* pCVw
NULL,CWnd* pParent=NULL);: Constructs a TheadC-
trlDlg object.

OnAiroff();: Maps to the Air Off button and will turn the air

off to the test head.

OnAiron();: Maps to the Air On button and will turn the air
on to the test head.

OnCounter();: Maps to the Reset Counter button and will
reset the lockout counter.

US 6,732,053 Bl

15

OnCycle();: Maps to the Cycle button and will repeatedly
test a device under test up to the number of times entered
into the edit box.

OnLoadboard();: Maps to the Load Board button and will
instruct the board handler to load a DUT onto this test
head.

OnLock();: Maps to the Reset Lockout button and will reset
the lockout on this test head.

OnPressdown();: Maps to the Press Down button and will
cause the tray to lower.

OnPressup();: Maps to the Press Up button and will cause
the tray to raise.

OnRadiofail();: Maps to the Fail radio button and will cause
the board handler to place a DUT onto the fail bin.

OnRadiopass();: Maps to the Pass radio button and will
cause the board handler to place a DUT onto the pass bin.

OnReadthid();: Maps to the Read THID button and will
cause the test head to read the test head ID from the front
pancl NVRAM.

OnReset();: Maps to the Reset button and will cause the
DUT to re-boot.

OnRobotstart();: Maps to the Start button in the board
handler group and will open the communication path to
the board handler.

OnRobotstop();: Maps to the Stop button in the board
handler group and will close the communication path to
the board handler.

OnStart();: Maps to the Start button in the front panel group
and will cause test execution to start.

OnStop();: Maps to the Stop button in the front panel group
and will cause the test execution to halt.

OnThreadstart();: Maps to the Start button in the thread
control group and will cause this ‘program thread’ to start.

OnThreadstop();: Maps to the Stop button in the thread
control group and will cause this ‘program thread’ to stop.

OnTrayin();: Maps to the Tray In button and will cause the
tray to close.

On'Trayout();: Maps to the Tray Out button and will cause
the tray to Open.

OnUnload();: Maps to the UnLLoad button and will cause the
board handler to remove the DUT from the test head.
OnWritethid();: Maps to the WriteTHID button and will

write the test head ID to the NVRAM i1n the front panel.

OnlnitDialog();: Initializes this dialog box by recalling all
states of all buttons.

OnOK{();: Maps to the OK button and will cause this dialog
box to close and save present settings.

TABLE 11

Methods Associated With Testhead.cpp

Test head(XTHVw* pTH=NULL, XCellVw* pCVw=
NULL, int n THID=NULL, Rack* pRack=NULL, BOOL
bMatrixID=FALSE);: Creates a new test head object.

~Test head();: Destroys/Destructs a test head object.

InitTest head();: (See FIG. 11) Initializes the test head object
by doing the following: Clearing the variables that the
power supplies and DIG-IO use 1n the Test Rack;: Flush-
ing the front panel display buffer;: Sending a Wait mes-
sage to the front panel display;: Making sure the power
flow 1s off to the test head;: Bringing the tray to 1ts Open
position;: Sending a Test Head Ready message to the front
panel display;: Illuminating the green LED on the test
head;: and turning on the green “bulb” on the GUI
assoclated with the test head.

RunTheTest head(int m_ nFPBut);: (See FIG. 12) Starts

execution of the function determined by the button you

10

15

20

25

30

35

40

45

50

55

60

65

16

press, either the one on the test head’s front panel or from
the GUI in Debug mode. When you press the Start button,
the RunTheTest head(int m_ nFPBut) method determines
whether the Matrix ID Reader has been started:;: If the
Matrix ID Reader has not been started, the NoProduct-
Code method 1s executed.;: If the Matrix ID Reader has

been started, the RunTheTest head(int m_nFPBut)
method checks for a serial number from the Matrix ID
Reader and executes the Start method.

Start();:(See FIG. 13) Executes the normal test flow for a
DUT, defined as follows: Illuminating the LED on the test
head and turning the GUI “bulb” yellow;: Inserting the
tray 1nto the test head;: Reading the test head ID;: Que-
rying IFICS for the product code;: Parsing the 5A file for
the appropriate product code;: Parsing the script file for
the appropriate test flow; and executing the test flow.

NoProductCode();: (See FIG. 37) Used to insert a DUT into
a test head and apply power to boot the test head.

TrayClose(CString str'TC);: (See FIG. 15) Closes the cas-
sette tray.

TrayOpen(CString strTO);: (See FIG. 14) Opens the cassette
tray.

PressDown(CString strPD);: (See FIG. 16) Presses the tray
down, inserting the DUT into 1ts connector on the
Easter-T board.

PressUp(CString strPU);: (See FIG. 17) Raises the tray up,
extracting the DUT from 1ts connector on the Easter-T
board.

AirOn(CString strAON);: (See FIG. 18) Turns on the air
used for cooling the DUT.

AirOff(CString strAF);: (See FIG. 19) Turns of
for cooling the DUT.

Abort();: (See FIG. 20) Shuts off power to the test head and
cjects the DUT.

Reset();: Causes a soft reset of a DUT that is currently being
tested.

SelfTest();: Invokes the Test Rack self-test method in the
rack object.

WriteID(CString strID);: Writes the test head ID to the
NOVRAM i1n the test head’s front panel.

ReadID(CString& strRID);: Reads the test head ID from the
NOVRAM 1 the test head’s front panel.

Stop();: (See FIG. 23) Causes the execution of the Start
method or NoProductCode method to halt.

ClockSelect(int Clock);: This method does the following:
Powers down the DUT;: Sets the bit that controls the clock
setting on the Easter-T board;: SDARM or EDO clock-
ing;: and powers up the DUT.

Cycle();:(See FIG. 22) Causes a repeated cycling of the
Start or NoProductCode, methods.

Suspend(DWORD dwTimeOut, CString& strFilePath);:
(See FIG. 31) Looks for a flag, the {Ethernet
address}.SUS file located on the test server, from the
functional test. When this method finds the flag, the
DUT’s 3 VS voltage 1s tested. If the DUT fails the
voltage test, test execution 1s halted and the DUT 1s failed.

Resume(DWORD dwTimeOut, CString& strFilePath);:
(See FIG. 32) Toggles the Power On__ Off bit, ending the
DUT’s Suspend status. After togeling the bit, a flag, the
Ethernet address.RES file on the test server, 1s sent to the
functional test execution flow and testing 1s resumed.

InsertDut();: (See FIG. 33) Inserts and lowers the cassette
tray containing the DUT and turns on the air flow.

GetThe THID(CString& strTHID);: Reads the test head ID
from the NOVRAM 1n the test head’s front panel.

SetTheClock(int nRam);: (See FIG. 34) Sets the clock bit.

LookForFile(CString strFileExt, DWORD dwTimeOut,
CString& strFilePath);: (See FIG. 28) Looks for a par-

" the air used

US 6,732,053 Bl

17

ticular file on the test server for a set period of time. If the
time period expires, the DUT 1s failed, power 1s shut off,
and the tray 1s ejected.

HardReset();: Cycles power.
Write The QRY(CString strThID, CString& strFilePath);:

(See FIG. 29) Writes the file {Ethernet address}.QRY to
the test server. This file contains the serial number of the
DUT. The test server then sends this file to IFICS, which
looks up the product code based on the serial number.

Parse TheEEE(CString strFile);: (See FIG. 30) Parses a
(Ethernet address).EEE file upon test completion, which
determines 1f the DUT passes or fails the test suite.

PowerOff();: (See FIG. 24) Powers down a DU, and ejects
the tray.

PowerDown();:(See FIG. 25) Powers down a DUT.

PowerOn();: (See FIG. 26) Powers up a DUT and tests the
voltages applied to the Easter-T board and that generated
from the DUT.

Test headMessage(CString strTHMsg);: Displays messages
on the test head’s front panel and the list box associated
with 1ts GUI.

ClearDisplay();: Clears the front panel display and GUI list
boxes assoclated with a particular test head.

TestheadLights(CString strTHBulb);: Turns on the appro-
priate LED and GUI “bulb” for a particular test head.

Write The CCC(CString& strFilePath, CString strFailMsg);:
(See FIG. 29) Is invoked upon a DUT’s test failure and
determines whether an EEE, BBB, or 5A file exists. If the
system finds an 5A or BBB file, a CCC f{ile 1s written that
creates an EEE file. The EEE file 1s then parsed for failure
data.

Openlnhibitor();: (See FIG. 36) Causes the Matrix ID
Inhibitor to assume an open position.

Delay(DWORD dwSec);: (See FIG. 35) Causes the current
program execution to be suspended (“sleep”) for a set
period of time.

ParseTheSA(CString& strFilePath, CString&
strProductCode);: (See FIG. 38) Parses the SA file that a
query for the product code of the DUT creates.

Parse The TBL(CString& strProductCode, CStringArray&
strFlowArray);: (See FIG. 39) Parses the script file asso-
clating the test execution flow with the DUT based on the
DUT product code.

CleanTheServer(int m_n THID, CString strTHID,
CString& strFileName);: Deletes from the test server all

files corresponding to the test head ID except for ZZZ files
and LOG files.

TABLE 12

Methods Associated With EasterT.cpp

EasterT (XTHVw* pTH=NULL, XCellVw* pCVw=NULL,
int nTHID=NULL, Rack® pRack=NULL, BOOL
bMatrixID=FALSE);: Creates a new test head object.

~EasterT();: Destroys/Destructs a test head object.

Start();: (See FIG. 13)

Suspend(DWORD dwTimeOut, CString& strFilePath);:
(See FIG. 31)

Resume(DWORD dwTimeOut, CString& strFilePath);:
(See FIG. 32)

SetTheClock(int nRam);: (See FIG. 34)

LookForFile(CString strFileExt, DWORD dwTimeOut,
CString& strFilePath);: (See FIG. 28)

Write The CCC(CString& strFilePath, CString strFailMsg);:
(See FIG. 29)

Parse The TBL(CString& strProductCode, CStringArray&
strtFlowArray);: (See FIG. 39)

10

15

20

25

30

35

40

45

50

55

60

65

138

CleanTheServer(int m_n THID, CString strTHID,
CString& strFileName);:

TABLE 13

Methods Associated With EasterTSX.cpp

EasterTSX (XTHVw* pTH=NULL, XCellVw* pCVw=
NULL, int n' THID=NULL, Rack* pRack=NULL, BOOL
bMatrixID=FALSE);: Creates a new test head object.

~EasterTSX();: Destroys/Destructs a test head object.

Start();: (See FIG. 13)

Suspend(DWORD dwTimeOut, CString& strFilePath);:
(See FIG. 31)

Resume(DWORD dwTimeOut, CString& strFilePath);:
(See FIG. 32)

Write The CCC(CString& strFilePath, CString strFailMsg);:
(See FIG. 29)

TABLE 14

Methods Associated With Whidbey.cpp

Whidbey(XTHVw* pTH=NULL, XCellVw* pCVw=
NULL, int n' THID=NULL, Rack* pRack=NULL, BOOL
bMatrixID=FALSE);: Creates a new test head object.

~Whidbey ();: Destroys/Destructs a test head object.

Start();: (See FIG. 13)

Suspend(DWORD dwTimeOut, CString& strFilePath);:
(See FIG. 31)

Resume(DWORD dwTimeOut, CString& strFilePath);:
(See FIG. 32)

Write The CCC(CString& strFilePath, CString strFailMsg);:
(See FIG. 29)

TABLE 15

Methods Associated With Rack.cpp

Rack(int nTHID=0);: Creates a Test Rack object.

~Rack();: Destroys/Destructs a Test Rack object.

FlushTheFrontPanelBuffers();: Clears the buffer used to
send and receive data to the front panel.

InitTestStation(void);: Initializes the Test Rack hardware.

OperateActuator(CString strActuator);: Sets the relay driv-
ers 1n the VXI card cage used to control the actuators.

PollButtons();:Polls the status of the keypad buttons,
pressed or not pressed.

ReadActuators(int& XtrayState, int& XpressState);: Reads
the status of the sensors connected to the actuators used to
control cassette tray movement in the test head.

SetActuationCounter(long actuatorCount);: Resets the test
head counter.

ReadActuationCounter();: Reads the data from the test head
counter.

SetMessage(CString strMsg);: Sends messages in ASCII
text to the front panel of the keypad.

ReadFixtureID(CString& strRead);: Reads the data stored in
the NOVRAM located 1 the front panel keypad.

SetFixtureID(char *fixtureID);: Writes the data stored in the
NOVRAM located 1n the front panel keypad.

SetIndicatorLight(CString strLight);: Turns on and off
test head LEDs.

SetFan(CString strFanState);: N/A
ReadDUTParameterFile(CString path_ name);: Used to
read the test parameters from the ‘dutparam.dat’ file.

ResetDUT();: Drives the Reset signal.

PowerUp();: Turns on the fixed and programmable power
supplies, drives the Power Good, Power On, and Power

the

US 6,732,053 Bl

19

Off signals, and measures the voltages that the fixed and
programmable power supplies generate.

PowerDown();: (See FIG. 25) Disconnects the fixed power
supplies and programs the programmable power supplies
to O volts.

WriteI2Cbus (unsigned char dataByte);: Enables the Test
Rack to drive the I2C bus on the Easter-T board.

SetClockFrequency(int busFrequencySelect);: N/A

SetClockBoost(int clockBoostSetting);: N/A

Strobe PON();: Toggles the Power On signal.

SoftReset();: Causes the Power On signal to become
strobe-like, which 1n turn causes a soft reset of the
Easter-T board.

SelectClock(int ClockSetting);: Drives the clock-selection
(CLK__SELECT) bit high or low.

Resume();: (See FIG. 32) Causes the Power On signal to
become strobe-like.

RackPOST(void);: Executes the self-test of the Test Rack
hardware.

DoSuspendMeas(double& dMeasSuspend, int& iSerror);:
Measures the DUT’s 3_ VS voltage after a Suspend has
occurred on the Easter-T board.

ParseDUT(int nParse, CString strParse);: Parses a line of
data from the ‘dutparam.dat’ file.

DoPowerShortsTest();: Tests for short circuits on the power
buses.

DoPowerMeasurements();: Tests the voltages on the power
buses.

TABLE 16

Methods Associated With C80xRack.cpp

C80xRack(int n THID=0);: where x=[1,2].

virtual ~C80xRack();:

InitTestStation (void);:

Operate Actuator(CString strActuator);:

ReadActuators(int& XtrayState, int& XpressState);:

SetlndicatorLight(CString strLight);:

SetFan(CString strFanState);:

WriteI2Cbus (unsigned char dataByte);:

SetClockBoost(int clockBoostSetting);:

SetClockFrequency(int busFrequencySelect);:

ResetDUT();:

Strobe PON();:

SoftReset();:

Resume();: (See FIG. 32)

SelectClock(int ClockSetting);:

PowerUp();:

PowerDown();: (See FIG. 25)

RackPOST(void);:

DoPowerShortsTest();:

DoPowerMeasurements();:

DoSuspendMeas(double& dMeasSuspend, int& iSerror);:

A SectupCableMap_ 80x(CMapStringToString
&map801Cables, int nTHID);: where x=[1,2]., this
method 1s NOT derived from the Rack object and 1s used
to map the cabling from the rack equipment to the test

heads.
TABLE 17

Methods Associated With Instrument.cpp

configure device(CString& strPrimary_ Addr, CString&
strSecondary__Addr);: Configures a VXI instrument so
that the National Instruments CVI driver can communi-
cate with that instrument.

10

15

20

25

30

35

40

45

50

55

60

65

20

WriteDevice(CString& strPrimary_ Addr, CString&
strSecondary_ Addr, CString& buffer);: Writes data to
instruments connected to the GPIB.

ReadDevice(CString& strPrimary_ Addr, CString&
strSecondary__ Addr, CString& buffer, long maxlen, long

*numread);: Reads data from instruments connected to
the GPIB.

ClearDevice(CString& strPrimary_ Addr, CString&
strSecondary_ Addr);: Clears the command buffer used
for sending GPIB commands to an mstrument.

SerialPollDevice(CString& strPrimary Addr, CString&
strSecondary_ Addr, int *stat__byte);: Polls the state of a
instrument connected to the GPIB bus.

TriggerDevice(CString& strPrimary_ Addr, CString&
strSecondary__ Addr);: Used to trigger a single instrument.

Trigger2Devices(CString& str1Primary_ Addr, CString&
strlSecondary__Addr, CString& str2Primary_ Addr,
CString& str2Secondary Addr);: Used to trigger two
instruments simultaneously.

LockResources();: Creates a mutually exclusive handle to
the shared resources (VXI cards) on the Test Rack. This
allows only one thread to access the resource at a time,
locking out the other threads until the mnstrument finishes
servicing the current thread.

UnlockAllResources();: Releases a mutually exclusive
shared resource from Lock status so that another thread
may access that resource.

DelayDevice(int nDelay);: (See FIG. 35) Used to create a
specific delay before or after executing an instruction by
an instrument.

CheckRead(CString strActual, CString strExpect, CString
strType, CString strCompare);: Used to check the actual
response by an instrument against a expected response by
the programmer.

GpibErr(CString strErr);: Used to translate the error
response back from an instrument into understandable
data by the user.

Executelnstructions(CStringArray& strlnstructions, CStrin-
gArray& strResponse, CStringArray& strErrors);: Used
to execute an array of instructions.

CheckYerr(CString strCheck);: Used to check the response
from an YERR command to an instrument.

Parselnstruction(CString strParse);: Used to parse an
instruction used 1n an instruction array by the Executeln-
structions method.

TABLE 18

Methods Associated With MMO.cpp

C1260__13(CString strPrimary, CString strSecondary,
CString strMod);: Creates a 1260__13 object.
~C1260__13();: Destroys/Destructs a 1260__13 object.
CloseRelay(CString strChannel);: Causes a relay to close.
OpenRelay(CString strChannel);: Causes a relay to open.
SetRelays(CStringArray & strRelayArray);: Causes multiple
relays to set open or closed.
OpenRelaylnstruction(CStringArray& strlnstructionArray,
CString strRelays);: Causes the relay open instruction to
be stored 1n a instruction array.
CloseRelaylInstruction(CStringArray& strlnstructionArray,
CString strRelays);: Causes the relay open instruction to
be stored 1n a instruction array.
YERRInstruction(CStringArray& strlnstructionArray);:
Causes the YERR 1instruction to be stored 1n a mstruction
array.

PolIRELAY (int& status);: Polls the 1260_ 13 for its status.

US 6,732,053 Bl

21
TABLE 19

Methods Associated With MMO.cpp

C1260_ 14(CString strPrimary, CString strSecondary,
CString strMod, CString strPort);: Creates a 1260_ 14
object.

~(C1260__14();:Destroys/Destructs a 1260__14 object.

ClearDiglo();: Clears the 1260__14 instrument to its factory
defaults.

SetupPullUp(CString strPorts);: Enables the pull-ups on all
digital output channels.

ReadFastPort(int& nData);: Programs the 1260 14 to read
in fast port mode.

WritePortBit(CString strDigitalLine, int nState);: Programs
the 1260__14 to set all the bits on a port.

ReadPortBit(CString strDigitalLine, int& nResponse);: Pro-
orams the 1260__14 to read all the bits on a port.

Write Bit(CString strDigitalLine, int nState);: Programs the
1260 14 to set a single bat.

SetBitlnstruction(CStringArray& strlnstructionArray,
CString strDigitalLine, int nState);: writes the instruction
to program the 1260__14 to set a single bit to an 1nstruc-
tion array.

WritePortlnstruction(CStringArray& strlnstructionArray,
CString strDigitalLine, int nState);: Writes the instruction
to program the 1260 14 to set all the bits on a port to an
instruction array.

ReadFastPortlInstruction(CStringArray&
strInstructionArray, CString strDigitalLine);: Writes the
instruction to program the 1260__14 to read in fast port
mode to an 1nstruction array.

ExecuteThelnstructions(CStringArray& strlnstruct, CStrin-
gArray& strRead, CStringArray& strErr);: Executes the
instructions stored 1n an instruction array.

PolIDIGIO(int& status);: Polls the 1260 14 for its status.

TestDIGIO);: Self tests the 1260 14.

TABLE 20

Methods Associated With MMO.cpp

C1260__14C(CString strPrimary, CString strSecondary,
CString strMod, CString strPort);: Creates a 1260_14C
object.

~(C1260_14C();: Destroys/Destructs a 1260 14C object.

ClearDiglo();: Clears the 1260 14C instrument to its
factory defaults.

SetupPullUp(CString strPorts);: Enables the pull-ups on all
digital output channels.

ReadFastPort(int& nData);: Programs the 1260 14C to
read 1n fast port mode.

WritePortBit(CString strDigitalline, int nState);: Programs
the 1260__14C to set all the bits on a port.

ReadPortBit(CString strDigitalLine, int& nResponse);: Pro-
orams the 1260__14C to read all the bits on a port.

Write Bit(CString strDigitalLine, int nState);: Programs the
1260__14C to set a single bat.

SetBitlnstruction(CStringArray& strlnstructionArray,
CString strDigitalLine, int nState);: Writes the instruction
to program the 1260_14C to set a single bit to an
Instruction array.

WritePortInstruction(CStringArray& strlnstructionArray,
CString strDigitalLine, int nState);: Writes the instruction
to program the 1260__14C to set all the bits on a port to
an 1nstruction array.

ReadFastPortlnstruction(CStringArray&
strInstructionArray, CString strDigitalLine);: Writes the

10

15

20

25

30

35

40

45

50

55

60

65

22

instruction to program the 1260__14C to read 1n fast port

mode to an instruction array.
ExecuteThelnstructions(CStringArray& strlnstruct, CStrin-

gArray& strRead, CStringArray& strErr);: Executes the

instructions stored in an instruction array.
PolIDIGIO(int& status);: Polls the 1260_ 14C for its status.
TestDIGIO();: Self tests the 1260 14C.

TABLE 21

Methods Associated With MMO.cpp

C1260_35(CString strPrimary, CString strSecondary,
CString strMod, CString strPort);: Creates a 1260_ 35
object.

~(C1260_35();: Destroys/Destructs a 1260__35 object.

ClearMUX();:Clears the 1260__35 instrument to its factory
defaults.

TestMUX();: Self tests the 1260 35.

PolIMUX(int& status);: Polls the 1260_35 for its status.

ReadDMMChannels(DMM_ Mode mode, double range,
double aperature, int chan_ listl], int chan_ cnt, int
settle__delay, int num_ _samples, CArray<double,
double>&readings);: Programs the DMM to take voltage
and resistance mesurements.

Exclusion();: Creates an exclusion list for a 2 wire mea-
surement.

CloseMux(CString strChannel);: Closes the specified
1260__35 channels.

OpenMux(CString strChannel);: Opens the specified 1260__
35 channels.

OpenAllMux();: Opens all 1260_ 35 channels.

Exclusion4Wire();: Creates an exclusion list for a 4 wire
measurement.

Configure DMM(DMM__Mode mode, double range, double
aperature);: Used to configure the DMM.

DMMModeAndRange(DMM__Mode mode, double range,
int *mode_ param, int *range_param);: Used to set the
mode and range of the DMM.

TABLE 22

Methods Associated With MMO.cpp

C1260_38(CString strPrimary, CString strSecondary,
CString strMod, CString strPort);: Creates a 1260 38
object.

~(C1260__38();: Destroys/Destructs a 1260__38 object.

ClearMUX();:Clears the 1260_ 38 instrument to its factory
defaults.

TestMUX);: Self tests the 1260 38.

PolIMUX(int& status);: Polls the 1260_ 38 for its status.

ReadDMMChannels(DMM __Mode mode, double range,
double aperature, int chan_ listl], int chan_ cnt, int
settle__delay, int num_ samples, CArray<double,
double>&readings);: Programs the DMM to take voltage
and resistance mesurements.

Exclusion();: Creates an exclusion list for a 2 wire mea-
surement.

CloseMux(CString strChannel);: Closes the specified
1260__38 channels.

OpenMux(CString strChannel);: Opens the specified 1260
38 channels.

OpenAllMux();: Opens all 1260_ 38 channels.

Exclusion4Wire();: Creates an exclusion list for a 4 wire
measurement.

Configure DMM(DMM __ Mode mode, double range, double

aperature);:: Used to configure the DMM.

US 6,732,053 Bl

23

DMMModeAndRange(DMM__Mode mode, double range,
int *mode_ param, int *range_ param);: Used to set the
mode and range of the DMM.

TABLE 23

Methods Associated With MMO.cpp

HPE1411(CString Prim_ GPIB_ addr,
GPIB__addr, CString Dmm__addr);: Creates a HPE1411
object.

virtual ~HPE1411();: Destroys a HPE1411 object.

ClearHPE1411();:

hpel41la_ init(int, int, int, int, double, 1t *);:

hpel41la app fast meas (int, int, int, int, int *, double|

D
hpel41l
hpel41l

hpel41:

a_config meas (int, int, int, 1nt, int);:

a__config trig (int, int, int, 1nt, long, double);:

la_ set_timeout (int, double);:

hpel4lla trig arm (int, int);:

hpel41la_trig (int);:

hpel41la_read_meas (int, double *);:

hpel41la_config samp (int, int, long, double);:

hpel41la_soft samp_ trig (int);:

1411a_read mult meas (int, int, int *, double|]);:)

a_read data_ buffer (int, int, int, int []);:
a__convert__data_ buffer (int, mt, int, int [], int *,

hpel

hpel411

hpel41l

double []);:

a_ data_ ready (int, int *);:

hpel41la read stat reg (int, int *);:

hpel41la_read_ error (int, int *);:

hpel41la_ reset (int);:

hpel41l

hpel41la close instr (int);:

1411a_ init_ gpib (int);:

hpel41la invalid integer range (int, int, int, int);:

hpel41la invalid longint range (long, long, long, int);:

hpel41la_invalid real range (double, double, double,
a_device_ closed (int);:

hpel41la_get status reg (int, int *);:

hpel41la_read_ reg (int, int, int *);:

141:

hpel

hpel41la wait_til done (int);:

hpel41la check for error (int);:
a_read_ with_peek (void *, int, int, int| [);:
a_read with no_window (long, int, int, int|]);:

hpel411
1411a_ close(int);:
hpel
int);:
hpel41la write_reg (int, int, int);:
1411
ith_ GPIB (int, int, int, int]]);:

1411
hpel
a__open__instr (int, int, int *);:
1411
hpel41l
1411a_wait__cmd_parm_ ready (int);:
hpel
a_read wi

hpel411

hpel4l:

hpel41l
la__setup__arrays (void);:
TABLE 24

Methods Associated With MMO.cpp

CPowerSupply(CString prim_ PROG__addr, CString sec__

PROG__addr, CString PSCHAN1, CString PSCHAN2);:
Creates a power supply object.

~CPowerSupply();:Destroys/Destructs a power supply
object.

CheckPowerSupplyErrors(int *num__errs, int test _head

list| |, int error__codes| |);:Reads back any errors that the
programmable power supplies send.
ClearPowerSupplyStatus(void);: Clears the status buffer in
the programmable power supplies.
ResetPROGInstruction(CStringArray& strlnstruct, int
nChan);: Resets the programmable supplies to there fac-
tory default settings.

CString Sec__

10

15

20

25

30

35

40

45

50

55

60

65

24

CloseRelaylnstruction(CStringArray& strlnstruct, int
nChan);: Closes the output relays on the programmable
supplies.

PowerOnNOXInstruction(CStringArray& strlnstruct, int
nChan, double n Volts,double nCurrent);: Programs a
programmable supply to a specific voltage and current
limit and turns the supply on immediately.

PowerOnXlInstruction(CStringArray& strlnstruct, int
nChan, double n Volts, double nCurrent);: Programs a
programmable supply to a specific voltage, current limait
and trigger event.

TriggerInstruction(CStringArray & strlnstruct);: Programs a
programmable power supply to turn on at a speciiic
trigger ebent.

PowerOffInstruction(CStringArray& strlnstruct, int
nChan);: Programs a power supply to turn off.
ResetSCRInstruction(CStringArray& strlnstruct, int

nChan);:Programs a programmable power supply to reset
its SCR device.

TestOutputlnstruction(CStringArray& strlnstruct, int
nChan);: Executes the self test for a programmable power
supply.

PollPower(int& status);:Polls a programmable power supply
for 1ts status.

TestPS();: Tests a power supply.

TABLE 25

Methods Associated With MMO.cpp

OpenSerialPortOVRLPD(int nComPortNumber,
HANDLE& hOpen, DCB& CommDCB, OVERLAPPED
CommOVLPD);: Connects to a RS-232 device via a
RS-232 port 1 overlapped mode.

OpenSerialPort(int nComPortNumber, HANDLE& hOpen,
DCB& CommDCB);: Connects to a RS-232 device via a
RS-232 port 1n non-overlapped mode.

CloseSerialPort(int nComPortNumber);:Disconnects a
RS-232 device from a RS-232 port.

SetupConnection(HANDLE& hSetup, DCB& XDCB);:
Sets up a RS232 port.

ClearBuffer(HANDLE hOpen);: Purges the buffer associ-
ated with an RS-232 port.

TABLE 26

Methods Associated With MMO.cpp

CD1700(HANDLE hD1700=NULL, CString strComPort,
CString strAddress, CString strParity, int nBaud, CString
strLineFeed,,CString strEcho, int nDelay, int nEvent, int
nWordLen);: Constructs a D1700 object.

virtual ~CD1700();: Destroys a D1700 object.

AIB(CString strData);: Assign input bit.

AIO(CString strData);: Assign /0.

AIP(CString strData);: Assign input position.

AOB(CString strData);: Assign output bit.

AOP(CString strData);: Assign output position.

CE();: Clear event counter.

EC(CString& strData);: Event read & clear.

ID(CString strData);: Identification.

[V(CString strData);: Initail value.

RR();: Remote reset.

SU(CString strData);: Setup.

WT(CString strData);: Watchdog timer.

CB(CString strData);: Clear bit.

CP(CString strData);: Clear position.

SB(CString strData);: Set bit.

US 6,732,053 Bl

25

SP(CString strData);: Set position.

DO(CString strData);: Digital output.

DI(CString& strData);: Digital input.

RA(CString& strData);: Read assignments.

RAB(CString& strData);: Read assignment bit.

RAP(CString& strData);: Read assignment position.

RB(CString& strData);: Read bit.

RP(CString& strData);: Read position.

RD(CString& strData);: Read data.

RE(CString& strData);: Read event counter.

RID(CString& strData);: Read identification.

RIV(CString& strData);: Read initial value.

RS(CString& strData);: Read setup.

RSU(CString& strData);: Read setup.

RT(CString& strData);: Read watchdog timer.

SetDefault DCB(DCB& xdcb);: Set default rs232 commu-
nication parameters.

SetUpD1700(DCB& NewDcb, CString& strSetup, int
nAddress, CString strLineFeed, CString strParity, int
nBaud, CString strEcho, it nDelay, it nEvent, int
nWordLen);: Setup communication parameters.

ReadBack(DWORD dwlLength);: Read back data over serial
port.

Write To(CString strlnstruction);: Write data over serial port.

Delay(int nDelay);: (See FIG. 35) Time delay.

LockCommPort();: Lock serial port resource.

UnLockCommPort();: Unlock serial port resource.

TABLE 27

Methods Associated With MMO.cpp

C5014r(HANDLE h5014=NULL);:
virtual ~C5014r();:

TABLE 28

Methods Associated With MMO.cpp

CHandler(HANDLE hHandler=NULL);:
virtual ~CHandler();:

InitHandler();:

ScanBoard();:

LoadBoard(int nPlace);:
UnLoadBoard(int nPlace, BOOL bPass);:
LockHandler();:

BOUnLockHandler();:

Write To(CString strlnstruction);:
ReadBack(DWORD dwLength);:

TABLE 29

Methods Associated With MMO.cpp

[DReader(HANDLE hMatrix=NULL, char* cID=NULL,
BOOL bInhibitor=FALSE);: Creates a Matrix ID object.
~IDReader();: Destroys/Destructs a Matrix ID object.
CString ReadMatrixID(DWORD dwLength, BOOL
bComOpen, HANDLE& hMatrixID);: Reads the serial
number that the Matrix ID Reader scans.
ExitMatrixIDThread(HANDLE& hMat, int nComPort);:
Stops the Matrix ID Reader’s Read Continuous mode.
ReadContinuous(HANDLE hMatID, char* cMatlID);:
Invokes a thread that initiates the Matrix ID Reader’s
Read Continuous mode.
CheckSN();: Determines whether the serial number the
Matrix ID Reader scans contains invalid data.
InitInstance();: Initializes the methods and variables that the
Matrix ID object uses.

10

15

20

25

30

35

40

45

50

55

60

65

26
TABLE 30

Methods Associated With MMO.cpp

WriteFrontPanel(CString strFP);: Writes characters to the
GUI display on the front panel.

GetFrontPanelByteCount();: Retrieves the number of char-
acters returned when you press a button on the front panel.

ReadFrontPanel(char* strFP, int maxLen);::

FlushFrontPanelBuffers();: Clears the buffer associated
with the front panel.

ReadFrontPanelButtons(int& nByteRead);: Retrieves the
character returned when you press a button on the front
panel.

ReadCount(int &nCount);: Reads the actuator count from
the NVRAM 1n the testhead.

Write Count(long actuatorCount);: Writes the actuator count
to the NVRAM 1n the testhead.

WriteNVRAM(char *fixtureID);: Writes data via an RS-232
port to the NVRAM 1n the testhead.

ReadNVRAM(CString& strReadThid);: Reads data via an
RS-232 port from the NVRAM 1n the testhead.

TABLE 31

Methods Associated With MMO.cpp

Inhibitor();: Creates a Matrix ID Reader Inhibitor object.

~Inhibitor();: Destroys/Destructs a Matrix ID Reader
Inhibitor object.

[nitInhibit(HANDLE& hlInhibit);: Initializes the Matrix ID
Reader Inhibitor to i1ts disengaged state.

Openlnhibit(HANDLE& hlnhibit);: Sets the Matrix ID
Reader Inhibitor to 1ts disengaged state.

Closelnhibit(HANDLE& hlnhibit);: Sets the Matrix ID

Reader Inhibitor to i1ts engaged state.
ReadBack(DWORD dwLength, HANDLE& hInhibit);:

Determines the recent state of the Matrix ID Reader
Inhibitor.

WriteTo(CString strlnstruction, HANDLE& hInhibit);:
Sends commands to the Matrix ID Reader Inhibitor.

TABLE 32

Methods Associated With MMO.cpp

CSerialTestMsg(int nComPort=0);: Constructs a SerialTest-
Msg object.
virtual ~CSerialTestMsg();: Destroys a SerialTestMsg

object.
ReadTestMsg(CString& strTestMsg, DWORD dwTimeOut)

;: Reads a message from the test suite.
Write TestMsg(CString strTestData, DWORD dw'TimeOut);:

Writes a message to the test suite.
[sReading();: Indicates busy reading.
[sWriting();: Indicates busy writing.

What 1s claimed:

1. An apparatus comprising:

a central controller;

a device 1dentifier to 1dentify each one of the plurality of
devices as one of a plurality of device types;

a plurality of test heads, each test head to test each one of
the devices independently of the rest of the plurality of
test heads responsive to the identification of each
device by the device 1dentifier and under the control of
the controller; and

a server to 1dentify a set of instructions to the controller
for one of the plurality of test heads to test one of the

US 6,732,053 Bl

27

devices independently of the rest of the plurality of test
heads, the set of instructions to be based upon an
identification of a device of the plurality of devices as
one of the plurality of device types;

wherein the device 1dentifier 1s to 1dentify at least one of
the plurality of devices prior to inserting the at least one
of the plurality of devices mto one of the plurality of
test heads.

2. A method to test a plurality of devices comprising;:

placing the plurality of devices 1dentified mnto a plurality
of test heads, each device to be 1dentified as one of a
plurality of predetermined device types and to be
subsequently placed 1n a respective test head;

identifying a plurality of sets of mstructions to a central
controller to direct the test of each device indepen-
dently of the testing for the remaining devices, each set
of 1nstructions being based upon a device being 1den-
tified as one of a plurality of predetermined device
types; and

directing the testing of each device independently of the
testing for the remaining devices responsive to the
respective 1dentification of the device, the direction for

the testing of each device coming from the controller.
3. An apparatus comprising;:

a device 1dentifier to 1dentify a device;

a plurality of test heads comprising a first test head to test
the device independently of a second test head; and
a central controller coupled with said device identifier
and with said plurality of test heads to direct testing,
of the device according to a testing protocol based
upon 1dentification of the device;
wherein the device 1dentifier 1s to identify the device
before 1nsertion of the device 1nto the first test head.

4. The apparatus of claim 3, wherein the device comprises
a mobile processor board.

5. The apparatus of claim 3, wherein the testing protocol
comprises a protocol to emulate a test hardware function
with the first test head.

6. The apparatus of claim 3, wherein said controller
comprises part of a test bed, wherein said test bed comprises:

a power supply coupled with said plurality of test heads;
and

a communications interface coupled with said controller.
7. The apparatus of claim 3, further comprising a server

through which the test bed controls said plurality of test
heads.

8. The apparatus of claim 3, wherein said device 1dentifier
COMprises:

a serial number reader to determine a serial number of the
device; and

a product identifier to 1dentily the device as a device type.

9. If The apparatus of claim 3, further comprising a server
coupled with said controller to associate testing protocols
with the device based upon the identification.

10. An apparatus comprising:

a device identifier to identify a device;

a plurality of test heads comprising a first test head to test
the device independently of a second test head;

a server coupled with said device 1dentifier to associate a
testing protocol with the device based upon an identi-
fication of the device; and

a central controller coupled with said device identifier and
with said plurality of test heads to direct testing of the
device according to the testing protocol;

10

15

20

25

30

35

40

45

50

55

60

65

23

wheremn the device identifier 1s to 1dentify the device
before imsertion of the device into the first test head.
11. The apparatus of claim 10, wherein the testing pro-
tocol comprises a protocol to emulate a test hardware
function with the first test head.
12. The apparatus of claim 10, wherein said controller
comprises part of a test bed, wherein said test bed comprises:

a power supply coupled with said plurality of test heads;
and

a communications interface coupled with said controller.

13. The apparatus of claim 10, further comprising a server
through which the test bed controls said plurality of test
heads.

14. The apparatus of claim 10, wherein said controller 1s
coupled with said plurality of test heads to direct testing of
the device by the first test head independently of testing of
a different device by the second test head.

15. A method, comprising:
1dentifying a device;
placing the device 1n a first test head of a plurality of test

heads coupled with a central controller, subsequent to

said 1dentifying; and

directing a test of the device via the controller, indepen-

dently of testing of a second device by the controller, 1n
accordance with a testing protocol based upon said
identifying the device.

16. The method of claim 15, wherein said identifying a
device comprises reading the serial number of the device.

17. The method of claim 15, wherein said identifying a
device comprises predetermining an i1dentity of the device.

18. The method of claim 15, wherein said directing a test
of the device comprises 1dentifying a test protocol for the
first device based upon said identifying the device.

19. The method of claim 15, wherein said directing a test
of the device comprises 1dentifying independently of direct-
ing the testing of the second device.

20. The method of claim 19, wherein directing the testing
of the second device comprises directing the testing of the
second device 1n accordance with a different test protocol.

21. The method of claim 15, wherein said directing a test
of the device comprises emulating a test hardware function
with the first test head.

22. A method, comprising:

identifying a device;

placing the device 1n a first test head of a plurality of test

heads coupled with a central controller, subsequent to
said 1dentifying;

assoclating a testing protocol with the device based upon

said 1dentifying the device; and

directing a test of the device via the controller, indepen-

dently of testing of a second device by the controller, 1n
accordance with the testing protocol.

23. The method of claim 22, wherein said directing a test
of the device comprises 1dentifying a test protocol for the
first device based upon said identifying the device.

24. The method of claim 22, wherein said directing a test
of the device comprises 1dentifying independently of direct-
ing the testing of the second device.

25. The method of claim 24, wherein directing the testing
of the second device comprises directing the testing of the
second device 1n accordance with a different test protocol.

26. The method of claim 22, wherein said directing a test

of the device comprises emulating a test hardware function
with the first test head.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,732,053 B1 Page 1 of 1
DATED : May 4, 2004
INVENTOR(S) : Aragona

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Column 1,
Line 57, delete “1ts” at the end of the line.

Column 14,
Line 47, delete “DoClock(int nClkSet)” and insert -- DoClock(int nClkSel) --.

Column 19,
Line 55, delete “A” at the beginning of the line.

Column 22,
Line 50, delete “TestMUX)” and 1nsert -- TestMUX() --.

Column 23,
Line 24, delete “)” at the end of the line.

Column 27,
Line 54, delete “If” after the number “9.”.

Signed and Sealed this

Thirty-first Day of August, 2004

o WD

JON W. DUDAS
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

