US006714196B2
a2 United States Patent (10) Patent No.: US 6,714,196 B2
McCormack et al. 45) Date of Patent: Mar. 30, 2004
(54) METHOD AND APPARATUS FOR TILED 6,462,761 Bl * 10/2002 HAaSUO ..vrvreveveerereeee.. 345/338
POLYGON TRAVERSAL 6,545,684 B1 * 4/2003 Dragony et al. 345/531
6,552,723 B1 * 4/2003 Duluk, Jr. et al. 345/419

(75) Inventors: Joel James McCormack, Boulder, CO
(US); Robert Stephen McNamara, OTHER PUBLICATIONS
Portola Valley, CA (US); Laura
Edwards Mendyke, Calabasas, CA
(US); Todd Aldridge Dutton,
Southborough, MA (US)

M. White et al disclosed: Workstation Graphics Rendering
Hardware (IEEE).*

* cited by examiner

(73) Assignee: Hewlett-Packard Development

Company L.P, Houston, TX (US) Primary Examiner—Matthew C. Bella
’ ’ Assistant Examiner—Mackly Monestime

(*) Notice: Subject‘ to any disclaimer,: the term of this (57) ABSTRACT
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 380 days. A method and apparatus for visiting all stamps that are
relevant to a two-dimensional convex polygonal object. The
(21) Appl. No.: 09/934,236 object 1s visited with a rectangular stamp, which contains
_ onc or more discrete sample points. A relevant location 1s
(22) Filed: Aug. 20, 2001 one for which the object contains at least one of the stamp’s
(65) Prior Publication Data sample points when the stamp 1s placed at that location.
Stamp locations are discrete points that are separated verti-
US 2002/0085010 Al Jul. 4, 2002 cally by the stamp’s height, and horizontally by the stamp’s
o width. The stamp may move to a nearby position, or to a
Related U.S. Application Data previously saved position, as it traverses the object. The

(60) 56%‘3510“31 application No. 60/226,495, filed on Aug. 18, plane in which the object lies is partitioned into rectangular
' tiles, which are at least as wide and high as the stamp. The

(51) Int. CL7 .o, GO6T 15/00 invention visits stamp locations in an order that respects tile
(52) US.CL ..., 345/423; 345/419; 345/614; boundaries—that 1s, it visits all locations within one tile

345/622 before visiting any locations within another tile. The inven-
(58) Field of Searchccooveveveeveenn... 345/501, 419, tion may also be used with further partitioning of the plane

345/421, 423, 588, 614, 622; 711/201, (metatiles), so that it will visit all locations within a metatile

217, 218; 382/193, 194 before visiting any locations within another metatile, and

further visit all locations within a portion of a tile within the

(56) References Clited current metatile before visiting any locations within a por-
tion of a different tile within the current metatile.

U.S. PATENT DOCUMENTS

5,754,191 A * 5/1998 Mills et al. 345/563 64 Claims, 10 Drawing Sheets
j— 102
Processing Unit 100
118
4
CPU
V/
1 12L6
Host \
108 |
112 —f_ Bus 104 v
' — 134~ 128
L d L | | ;
/O bus System Graphics
= IJ g Chipset T (_J "l Accelerator ﬂ?_’ g <D \
4 132
110 A 116 A 127 | 4
Memory r—J Displav Device
(14 Bus o4 | L %
' 106 130
£ 7 f_ VAN
Main Graphics - 122
Memory Memory

U.S. Patent Mar. 30,2004 Sheet 1 of 10 US 6,714,196 B2

‘L | /j— 102

Processing Unit 100

CPU J
126
] L
Host y
112 Bus A

Yy 134 123
/ ?J / |
/O bus System Graphics . |
| I Chipset] Accelerator <> _W |
/

118

10 y tL L/ 132
Memory
a1 Bus 174 1splay Device L/
' l GL
Main | Graphics 122
Memory Memory
L 17 17

Figure 1

U.S. Patent

Mar. 30, 2004

203

Sheet 2 of 10

303

Figure 3A

300

301

s s s s

200

201

210

US 6,714,196 B2

A

1/
N %

.k
‘I.
AN
B

Figure 3C

Figure 3D

U.S. Patent Mar. 30, 2004 Sheet 3 of 10 US 6.714.196 B2

a am T LR - —k = = A = - m 2 Fr §omw o LI T T A I S] = = === - —_—— == = - - - = — = = — = m e ammaa - omom omeEmom oo
" Ew = mrewr kv i A p B m o == --mmEmE s = rEm T mE=. = ok ow ok B LI LB R TR e mE == - - s om om o= o o e BN
- & . = - E vEEFF ¥R W W T RN WoE TR g . - Em oy m g mE Wy - E W E EE = W m e m T Eam " T m = wm o wr = -5 = & B E = = = =
= s = - omom s o omam T FETEm T P FEE O E - -y W TR - -memwmem o= om - mwmm om - o owr o owm oW o Fmom - B - = % m o= o=
= om omom - = rsE= - m w om o= - m W o = omw oW - -ew w momorw - mwm e mTEw rmm - - r T — o - B o o = = = ek E AR JdmErR

- o o - A kR - -- -, - - - - - - - - - - - i -- - - - - - + o - - - -
L I - W e -y - o = - r > - -+ - -+ - - - - - [5 - omam - . - - - o - - - . om - - Ll
-k LR - - re - == - L - - - ==
- Eaw - ra - m - - - oo - - - = - - - - - -~ - - e . -+ = - - - - - L - - - -
- om o L - -rw L - - -- - - - - - - - - - - - - - - - - - e - - LN
- om i dn de o - LN -k - - - - - - - -]] LI N | LI | -] -m -] L] L - -
- - A - A E oA P = - - - - - - - - -]] -Ew w -] - m -] L I L - - - -
- mom - s oo - - - - & - |] - - - - L - - - L - - - - - - - - - - - - -
- m - om A E N EE R E EEEFmTFERER - - om - - - - - - - a LI B L L Y] - - - —_ =
- o s L - & 4 & a &EE. - EFrErFrFEF" - - = oo - - - - - - - - - o wr - wm - o o - - - - -
reuwr - - T rE B NEE AR - - rrw - - - - - w - - -y == -- LI - - - - - —-
wh i Ak B & B [3 B BN B B BN B | H FE FTEFFB® - LI - - - - - o - - o - o om oW - o . LB I - - Lol - e
LI N - = T FrT R FEIEw T W oEoEm om o - - - mem - - - - - = - - - m o - - - w om - - - - -mem
e v b o ol oo kNN A A EEERN - -FrRY - - - - - - - - --- o= LR - -y - - - -
. A A - = - FSEFEEE WY R " - L - - - - - - - - - wm W - - oam om - - - mom s m
L. I | - WS EEEBFESE H WY FWTYEY FW - - - - - - - - - - - - - o m o - w LB B -r - - L
- - - - - - - - - - - amom om - - o o
- - - - - - - - - - LI I I LI NN
-~ - - - - - - - - - A - A = ER
- - - - - - - - - - raTaw - om o=
- - - - - - - - - - ok kw A PE N N |
- & - - - - - - - - - 4w aam A EE
- - - - - - ¥ -+ - - - Ewrrm LI
- - - - - - * - - - Ewmaw - rw
- - - - - == = - - - = m A -
- - - - - - - - - - - - - T Fsa - - -
- - - - - - - . - - - - - - - = kN A - E e R
- - - -+ - - - - - L - - - - - - o=y oy - -
- - - - - - - - - - v - - - . - = em - --m
P - - - - - ™ = -] - - - i =Eawa - maw
- - - - - - - - - - i - - - m " " e aw - o=
[[E—— - - - - - - - - & mEa - maa
- - - - - - - - = - - & A kA - AW W
- - o= - - - -- = - v - = - - w - - ama
+ & 3= - - - -- - - & - - - - - - = . aEa - aaa
- w4 - - - - - .- - . - - - - owlom dom - =
- - - - - - = ' - r e ik - - .] - wwn L
- o * - - -- - - - - -~ -~ -- - S EEa m-mawm
- . =] - -uw L -+ - - - - - - Ak A& -k N m
L -) i gam LI o= - - - - - = amaa - om =
N O] - - - - .. - .w - - - - o - - . = .aaam - amem o
- | I | - -
- - - - - a - a a2 mom - - - - - - - - - = - - - - - - W A
- - - . - . A - - - - - - - - - v = - [N & & - . a .
- -+ - = - * -+ ramw - = - - - - - - - - - - - - - -mom
- - - & - & -+ FaAw L] - - - - - LE N |] - - - - - -
- - - a . - = = Al - - L] - - - L] LI] - .. L a = - - Ea
- | .. -w [) - - - - - - - - - = L - = . [] a m LI B |
- - - -m =ramu m-w- -w - - -+ - o - - w - L] & A & m
] - - w - m LI L - w - - -+ - v & - - m = - - - -
- T - - = L - - - - - - - - - -_ - —_— - - - - om - - - - o ow e
- rwewr > - - o -+ = - - - - - - -- - - - wa - & - - - Eam - - -
- ww w oww - - - - = . - - - - - - - - - e e - - - - - - - -y o - o
T FF R - - - -y = - - - [L] L] [- - - - - m - - L - - - v mom
-k A w B - * = - aw - - - - i - [S Y - [- - - n - - - - - 4 mn LI
EEEEFEN - - w L] - - - - - r [[L] - - - v - - -k & - o oma L L
RS BN) L 3 - = - am - - - - [- .- - - - - - - - - - - - - -
L N B I - - - a N] - - - - - .- - - - - - - - - - - - - - - - .
- w - - - - L - - - - - - - - - - - om T
- - - - - - - - — - - - - - - - 4 maEam LIE B
- - - - - - - - = - - - - - - - — - - eaa - -
- - - -+ - - - - - - [- - - - - " maa - mame
Fas - - - - - - - - - - - - - -l -Tmaw LI BN
- - - - - - - - - - " | - - - - - - -4 aaw LI N
- m - - - - - - - - - - - - LRI | -
-m] - - - - - - - - - - - = - - & - N
L - L -, - - - - - - - - L - = = = - .. .
=y W ¥ pEyg -y Em mwmom - - - - - - - - - - - L] - - - - - . m - om om wk
- - m o om W m - W o W T W W™ “ wm w & w - = - - . L - - - - - T - - - = - L - EaEw.
F U Fu¥yea WY FYEFER® LB B - . - - - - - - - L - 4 - W - - A - - s u - . om o
- rFruErsn T Er T FTETTwn - T - - - - - - - - - - - - - - i - - - == - - -
A EFEFray rFrEaAaFr I ryxruuw - - - - - - - - - - L - - - - - - - - =
v Frrwmnw e dw oy o & N - - - - - -m -w] - - - -w - - - L L - a
TN NN A FEE A EEEE -w - -w - - - - - - - - - - - - - - -+ a s
- wmTuFEa rFET*T¥Yrwrm- > wrwm -am
- - -
- - -
- - -

1
1
111 FPdniq1
I 1 I " EOIOD B
| T I B B
I 1 14 kK F1L b
L1 F R RED
I F &R 0147
I FF EE | F D
I 1 01 & F &1
= b FFNERG

- pom o= = - - - . I - - - = momaom
- - w v - - +- - - - - - - e o o
- - - - - = - am - - om
- —— - - - o A - - - rEarn
- r T ow - - = - - - . - - Esw
- o - - - - - - - I B
- o m = - - - L - - - - N & + 4
- mom - - = —— - - - - & FE AN
- r = ~ - - LI - -] - 4 + + 9

- - - - - L - - - - - - - - - - - - - om m o - - -k k& d B
= moaom - - - " E N - - - - - | [3 -~ - - + » raww - -k F kR
- - - - [- ok L] - - L] - i]] & - L] -a FE [L B B BB
- - + - - - - - - - - - - - - - - - F AR - - F T EEFERN
= om wm oW - [] - [3N B [] - - [L] - - - o L] & B - E A & o = n 4w e
- rwmm - - - - - - - - - - - L] L L] L] LI L - -+ W F 2 ¥ 34
= awr L J L] wh B & o "~ &+ L J &+ - - " - - - L L B - wosh s BAE
& B &N - - - Lo - - - - - * - -+ - += + 4 - . - - - m m oam m = o
- = - - -

- -

-

= =

[
| B |

T REEEREEREERN:

T EEEEREEN

r 1 I R4 0100
T R R EA 1 LCF
r1RR4A1 1M1
4 FrE 4101
FRIEREJFTILIEI
1 F R BT 1L
F F R EFELTI IO
F 1R F 1L DY
F F R R LPF PRI
P14 20101
P F a4 a1 10 i
LI BN I B B]
1 Fd & FI1I1
F F R BRI PFPILE
1 4 84 FI1 011
F B 4 4 FI1 F 4
1 ¢ 4 1 % K11
I bk 4 8 & I J
PRl
1 P4 & % FI1 i
[B R]
FF 44 F101i
1 F & & FEII
L & &4 g1 L4
I ma4 xkpry
¥ Y FEFITENRE
y g s hamnml
F & ¥ F 444
[BT B B BN B
F e dd 0 A
1 4010 4F

- - a - = =-EE FEEREFTR - - =-rr - - - - - - - - - - RO | -aaa .
- P Y [W [N O | A FE=E g -. A m gp . L] [] - i wh [- L] L | LB B W = " . waa
- - = - TEF R, - - - - - - - - - - - - - - m e ow -
- = m " EE "R Fam - L] -] rw - L L - LI I e m m o
k= m e R - R A - - E R - - - a [[-awm - . - - -w - LI B BN S LB L BB
- rww - . - oo Bk R - -k - - L]] L] - - = - - - - - .] LI L * R FEN
LN = - e m L - - - m - - - - - - - - - - - - - - [N R -
- Ew = = oaom = ammam - - .o - - = a - - - - - - - - - - * 4 A BB
- o w = - - .- --- - - - - - - - - - - - - - i - - - -4 EEER "EEAEFEEAEAFS - - - -
— m aam - -rw - - - - - - - - - - o - | R - & - A RS EAR *FEEEEFTS L] - - -
" - - - - - - o= - - - - - - - - - - - & - m - . -+ - TAarFEEN L B B BN B B I - - - -
- r & - o E [N . | [] [] [I] [] - [I] [] [] - ooy -y - -y - g - - e om owr m om - O Om W W o’ W [- - -
PR - v B [] - - - [- - . - - -’ [| - - ew - % - rr ek *kd ok RS - - - =
- mw - - o e -- e - - - - - [- - - - - -aw -m - EEEE"R - Y + L] -
rFEw"® - - - = oaom - - - - - - - - - - - - - - - - - - - o om om o TN E TN - - -w
EErwm = - - omo. - - - - - - - - - - - - - - - o - - kW - EEE R - L] -

[E— - - - - - - - - om - - - - - - - - - - - - - F A A B - T T W EF -
- o - - Y [- - - - m . - E R - - - - o - . - - - - w om ok ook A om - T B L
- _——— - = am - - - - L] - - = [- - - - - - L] =- = -k om A - F & 4 F B -
- - - e m - ™~ - - LN r A m ok - - - - LB] - - - EEFEE FEYTSE LA I LB -
- o - - . - - - - [- ok - - ™ Y Y - - - - - W FaE WY - w ou = § g L
- " dE EEFAN AETYw®ET"r L]
- - [, - - - - - - . - - aam - - - - - - - - - - ok A B A H FWEFR *
- = - --a- - - - - - - - - - m - - - - - o - - - - R ROk AR A EEFEEARY .
L - - - - - - - Fr = = b - - = - - - - - - = - - - - o s oA mom = momemwom -
a = - - - EEEwn - - A w - - - - - - PR N - & B A | - EETETY RS
[— - - -- == - L R - - = am - - . - FEEEET EP ERL N - - ok ok AR
- = a - - & . R . - [N 3 [3 K Y - L I | - - [] a»mwm m k&R - L] - I Fw¥yYFrs
+ w - - - A owk ol ok - - = LI [- m . - - m - "rw T rFrdr. L N L] - A A SR
- - -l LI - L | N L] ana - = m - = Frrrw FEw - R - - 5 4 B BN wE
- mw - - - & w = — -+ = - e . - - . - - - - N I L) -k - - ''E X N E TN
- w o - - -_- - - - - - - - - -k - ok - o W o o E TR - - e W F ey
- —_ = . - - TR N | - - = [| - - .] - - - E e oam ok - -k - - L 4 5 8 &N+ +HE

- - - - L] - - g mom
- - - - [- - .
- - - - L - L
* - - - - - - Fnm
- - - - L] - - g ¥+
- + ay -] - LI B
™ - - - - - - Aok
- - - - - - - n Fn
=TT T T T T T ow o b T oA ¥ - o+ S 4 - 2 . 4w oaoaa - s s g meam A R L mEE A MR - o m mEmmm R LB FwRFEW -y omom
o = nk o = = A& B B e de A e de N A m S A . - Ema s s m ma - - A mE . - m E E m E o - maom - o - om o= om ow o LEL B I - . = oa
[P T A = m oA A m B == P - m wm T m Omwm - e mr om o wm oW - r r * r - - o - a“ e A moa . dr 5 & ok & B R - 4 F ¥
" T rwm e T A N L) - m g - moaam --mymomom oW == = rs rs T T ErrT T - r - T T 4T = - i m o E mom - E
- = = = o=k e T P 1 " = m " m o= = - m a m T = r oW - - - - - - = e = = = == - = = = = W = - 1 " E T r = LI I B

U.S. Patent Mar. 30, 2004

500
Ll | AP
JIEID
B . 39
| L KIRORIRAHN,
C /

1

N
[
L

'L“u
el
N, /]
Vel
30
N, /]
>
\,
Vi
\,
F
\,
g
N\ /]

<o

>
o~
..uJ

LA
=
ﬁu

Figure S

Figure 7

Sheet 4 of 10 US 6,714,196 B2

600

| | | 1
Bl B
'oézggzu
MI

m /1
‘®9,.. /R

810 300 801

s

802

303

Figure 8

U.S. Patent Mar. 30,2004 Sheet 5 of 10 US 6,714,196 B2

002
L L
l-==E%%E%
000 — T | L6]
agnn=gmnu
s p 7 8 q
.HEEH@E%"
BRSO EEE
TINEE T
NG
EEEEMEEEE
_ 901
Figure 9
1010

1001 (J
\
EEERRE

717 1877

[P
1 20 | 21 @
vl [Ny |

o

>
L

-

QIR
AN AL~

o |-
(3

/

oo
n
\
Iil
L)
b
4
7 e \
N"/

N/
v\
=
X
&
5

B
g

\
4

/

A
BlE
o | ©
BB
“ ! S
7 on \
N__/,

38 139

Ln
H
 — \

/

-y

A

-

Ch

T
Y
)
J
{
i

©.
N/

O o
D OIE
S
JEEEE
\/ |\
O

r-l‘-‘a
da
b2

E-.
IEL
! b N S) e
! b3 4 - | I3

&
'\
A
h
"
WO ™

-
o0
-

Ff

\
v

t
80886
WY WSS SRV
“ \
N~/
HEEEE
S|l 9t =]l =] v

e
-

)

.__‘__-l

g

| |
— 1002

Figure 10

U.S. Patent

Mar. 30, 2004

Nowhere to move,

get next object

Sheet 6 of 10

1101
bounding box
1102

Select starting

Update bookkeeping
information

vertex

Align starting point

i
o
)

1104

Imitialize edge

evaluators

1105

Determine tile

boundarv masks
— 1106
Initialize stamp state l :-/

| 1107

US 6,714,196 B2

functions at probes

1108
v /
Quash forward and f

backward slivers

Evaluate edge E

1109

Move stamp

Somewhere to move 1110

Update saved
contexis

_ 1111

Figure 11

U.S. Patent Mar. 30,2004 Sheet 7 of 10 US 6,714,196 B2

64-bit PCI 155 108
PC Interface
1252
Command
Parser
1260
(Generator
i 1262 Controller
Rl
— Texture
Cache 1763

Texture Processor

Memory
Controller

- 1275 —‘_ﬁ ‘:3_.] Replicated N
: e '

: el] 5 (e.g., 8) times
Frame '

1273 Bufter Cachel ""‘
E Frame Buffer :
Segment

--

Figure 12

U.S. Patent Mar. 30,2004 Sheet 8 of 10 US 6,714,196 B2

1310
Initialize Edge
Interpolator Fragment

Values 1395 —_| sample

masks

1320 I O
s Y- f:) 1330
Next object edge

registers

1323 1——“"—}(? y eage E
increments E

1325 —
L—‘ Initial edge values i—*— |

1327

il

| 1340 1345 1357 i- Edge evaluators
e + i Sample points

L

Saved edge

contexts
A A

Current edge
context

—_— points
1360 1370 CTTTTTI3R80 T
— = =
o | - firstColumn ompuie
Dec1-d_e next ‘ »| Bookkeeping InObject — vahd, sl_lver, <
- pOSlthI'l o state band élle
¢ o F | oundary | |
| move to !4, hits
T

1390 _L__ X, ytile

masks

Figure 13

U.S. Patent Mar. 30,2004 Sheet 9 of 10 US 6,714,196 B2

1410

Initialize Channel

Interpolator Values 1495 | l Interpolated
490 channel values

A

v

Next object channel
registers

1430

1423

X, y channel
Increments

X, v channel
. !
Increments

1425

Imitial channel
values

, 1450

1445 I

Current channel l
context

Compute next |
channel values l

Saved channel |
1440 j- contexts |

A

1480 Decision
result latch

Decide next |J
position to
move 1o

1360

Figure 14

U.S. Patent

1
L

-SO

--—————----———--“_‘_-—H-—--—‘

Edge context

Edge 0 function value
| Edge 1 function value

i | Edge 2 function value

Edge 3 function value

Valid position
‘ Sliver position _|
Figure 16

Mar. 30, 2004

Sheet 10 of 10

———————————————————————————————

—

Channel context

Red_—vaﬁue -
Green value
Blue value

———

B Alphﬁanparency value
Z depth value

Fog value

Texture coordinate u value |

Texture coordinate v value

Texture coordinate w3 value
L o —— R

Texture coordinate q value

Texture derivative du/dx value

Texture derivative dv/dx value

Texture denvative du-X_dy value

I Texture derivative dv/dy value

:]
X coordinate value
R — —

Figure 17

--—-—--ﬁ--_“—-_-——---

US 6,714,196 B2

|

US 6,714,196 B2

1

METHOD AND APPARATUS FOR TILED
POLYGON TRAVERSAL

This application claims priority on U.S. provisional
patent application No. 60/226,495, filed Aug. 18, 2000.

This 1nvention relates generally to graphics accelerators,
and more particularly to graphics accelerators that use
half-plane edge functions to determine whether a given (X,
y) position of a pixel is within a graphic object such as a line
or triangle while rendering the object.

BACKGROUND OF THE INVENTION

Fragment Containment

A three-dimensional (3D) graphic processing device uses
a description of an object such as a polygon, line, or triangle
to generate the object’s constituent fragments. A fragment 1s
defined as all information required to render a single pixel
that 1s within the boundaries of the object, for example, the
x and y coordinates of the pixel, the red, green and blue color
values used to modily the pixel, alpha transparency and Z
depth values, texture coordinates, and the like. The graphics
device must determine which fragments are contained
within the object. Most prior art fragment generation meth-
ods fall into two categories: scanline and half-plane edge
functions.

Scanline Generator

A scanline-based fragment generator renders trapezoids
on a graphics rendering surface of an output device, such as
a printer page or a display terminal screen. Without loss of
generality, here a scanline is considered to be a (horizontal)
row of pixels, and the top and bottom edges of the trapezoid
are horizontal. Note that some fragment generators consider
a scanline to be a (vertical) column of pixels and the right
and left edges of the trapezoid are vertical.

The scanline fragment generator determines the inverse of
the slope of the left and right edges of the trapezoid 1n order
to determine how many pixels the left and right edges move
horizontally when moving from one scanline to the next. At
cach scanline, the generator uses the inverse slope informa-
tion to determine a starting pixel address and either a length
or ending pixel address. This information 1s used to generate
corresponding fragment information for each pixel position
on the scanline within the object.

To render a non-trapezoidal object, such as an arbitrary
triangle, the generator, in effect, renders two trapezoids
while sharing some computation between the two. The
ogenerator first determines the 1nverse of the slope of all three
cdges of the triangle. The generator then vertically partitions
the triangle 1nto a top portion and a bottom portion, the point
for partitioning being they coordinate of the vertex that is
between the top and bottom of the triangle.

The two portions are degenerate trapezoids. The top
portion has a top edge with a length of zero; the bottom
portion has a bottom edge with a length of zero. The
fragments for the top trapezoid can then be generated, and
one of the iverse slopes used to generate the top portion can
later be used to generate fragments for the bottom trapezoid
portion.

Half-plane Edge Fragment Generator

Ahalf-plane edge function fragment generator uses planar
(affine) edge functions of the x and y screen coordinates. The
values of these edge functions at a given pixel determine

10

15

20

25

30

35

40

45

50

55

60

65

2

directly 1f the pixel 1s inside or outside an object. As an
advantage, the generator does not need to determine the
iverse slopes of the edges of the objects. However, traversal
of the object 1s less 1ntuitive than with a scanline generator.
Given the value of the edge functions at various points
surrounding the current position, the generator decides
where to go next.

An 1ntroduction to half-plane edge functions i1s given by
J. Pineda 1in “A Parallel Algorithm for Polygon
Rasterization,” ACM Computer Graphics, Volume 22, Num-
ber 4, August 1988 (SIGGRAPH 1988 issue), which is
hereby 1ncorporated by reference as background
information, though the basic traversals methods described
by Pineda are less than optimal.

As a very brief summary, each directed edge of an object,
such as a triangle with three edges or a line with four edges,
is represented as function that partitions the 2D (x, y)
rendering plane 1nto two portions: at points to the left of the
parting edge with respect to its direction, the function 1s
negative, and at points on the parting edge or to the right of
the parting edge the function 1s nonnegative, that 1s, zero, or
positive.

By combining information from all edge functions at a
orven point, 1t can be determined whether the point 1s inside
or outside the object. For example, if the three directed edges
of a triangle connect 1n a clockwise fashion, then a point 1s
inside the triangle 1f all three edge functions are nonnega-
five. If the three edges connect in a counterclockwise
fashion, then a point 1s inside the triangle if all three edge
functions are negative. Note that points along an edge or
vertex that 1s shared between two or more objects should be
assigned to exactly one object. The edge equations can be

adjusted during setup to accomplish this.

FIG. 2 shows a triangle 200 that can be described by three
clockwise directed edges 201203, which are shown as bold
arrows. The half-plane where each corresponding edge
function 1s nonnegative 1s shown by the several thin
“shadow” lines 210. The shadow lines 210 have the same
slope as the corresponding edge. The shaded portion of FIG.
2 shows the area where all edge functions are nonnegative,
1.€., points within the triangle object 200.

Fragment Stamp

One advantage of using half-plane edge functions is that
parallel fragment generation 1s possible. For example, one
can define a “fragment stamp” as a 2™ pixel wide by 2" pixel
high rectangle, and simultaneously determine all fragments
that are within both the fragment stamp and the object.

Most known half-plane based fragment generators first
move the stamp horizontally left, and then horizontally right
across a row “stampline” before stepping up or down
somewhere 1nto the next stampline. A stampline 1s similar to
a scanline, except that a row stampline has a height equal to
the height (i.e., the vertical extent of the stamp, as measured
in units of pixels) of the fragment stamp. Alternatively, the
stamp can be moved vertically up and down 1n a column
stampline, followed by stepping horizontally into the next
column stampline. In this alternative, the column stampline
has a width equal to the width of the fragment stamp.

Although Pineda does not describe stamp movement 1n
any great detail, his most efficient implementation implies a
method that starts at a vertex that lies on one of the four
cdges of a minimal horizontally and wvertically aligned
rectangular bounding box that encloses the object.

Stamp Contexts

The best Pineda traversal method requires at least two
stamp contexts. A stamp context 1s all the information

US 6,714,196 B2

3

neceded to place the stamp at a given position within the
object. The context information includes the x and y position
of the stamp, the value of all four half-plane edge evaluators,
as well as the value of all channel data being interpolated
from values provided at the object’s vertices. The channel

data includes, for example, color, transparency, Z depth, and
texture coordinates.

Unfortunately, the Pineda implementation frequently
allows the stamp to move outside of the object. This means
that the stamp has to somehow find its way back into the
object. This increases the amount of time taken to traverse
the object completely.

One way to 1ix this straying problem 1s to start at a vertex
of the triangle that 1s at one corner of the minimal bounding
box. However, usually no vertex of a wide line or an
antialiased line will be 1n the corner of the bounding box, so
this solution 1s of limited usefulness. A more general
solution, which works for “four-sided lines” as well as
three-sided triangles, adds a third stamp context. If no
restrictions are placed upon the starting vertex, then four
stamp contexts are required.

Typically, it takes approximately 600 bits or more to store
a stamp context. With so many baits, the amount of chip “real
estate” required to store stamp contexts becomes significant.
Furthermore, as more contexts are used, the decision logic to
compute and multiplex the next stamp position becomes
more complex and slower. Because stamp movement com-
putations cannot be pipelined, this decision and multiplexing,
logic may determine the minimum cycle time of the frag-
ment generation logic. Thus, 1t 1s desirable that movement
methods be implemented with a minimum number of such
stamp contexts.

Prior Art Traversal Order

Regardless of the number of contexts used, the stamp
movement methods 1implied by Pineda, and other known
scanline fragment generators, traverse an object 1n a similar
manner. They generate all fragments on a stampline, and
then proceed to the next stampline.

Consequently, none of these approaches generate frag-

ments 1n an order that 1s most ethicient for a frame buffer
constructed from typical dynamic RAM (DRAM, VRAM,

SDRAM, SGRAM, FBRAM, etc.) used in graphics proces-
sors. This 1s true for the following reasons.

Physical Memory Page Crossing Overhead

Dynamic RAM is partitioned into pages. A dynamic RAM
offers one or more banks. Each bank acts as a cache line in

a direct-mapped cache for the pages. That is, each page 1n
the RAM 1s associated with exactly one of the banks. The
RAM offers very fast access to a page that 1s already loaded
into 1its corresponding bank.

However, to access a page which 1s not already loaded
into 1ts corresponding bank, the bank must be written back
to the page from which it was loaded (“precharged”), and the
new page must be loaded into the bank (“row activated”).
The precharge and row activate operations typically take
three to eight times longer than accessing data already
loaded 1nto the bank. The combination of precharge and row
activate operations 1s herecafter referred to as “page crossing
overhead.”

Reducing Page Crossing Overhead

To alleviate this overhead, some modem DRAMSs (e.g.
SDRAM, RAMBUS Direct RAM) allow precharge and row

10

15

20

25

30

35

40

45

50

55

60

65

4

activate operations for one bank to be overlapped with data
read or write operations 1 another bank. If precharge and
row activate commands are 1ssued sufliciently far in advance
(the page is “prefetched”), then the page crossing overhead
can be substantially reduced, or even completely hidden.

In order to reduce page crossing overhead, it 1s desirable
to:

(1) arrange page dimensions so that most objects are
stored 1n as few pages as possible, and

(2) generate all the fragments for an object that reside in
a given page before generating any fragments for a
different page.

In order to satisfy (1), most graphics systems “tile” the
rendering plane (screen or printer page) with DRAM pages
that are as square as possible rather than linearly allocating
screen pixels to pages. For example, rather than allocating a
page that can hold 64-pixels as a strip that 1s 64 pixels wide
by 1 pixel high, a graphics accelerator might allocate the
page as a file that 1s 8 pixels wide by 8 pixels high. On the
average, this mapping of pixel locations into physical
memory locations tends to group more fragments of an
object onto a given page.

Mapping Pixel Locations to Memory Pages

FIGS. 3A-3D demonstrate this mapping. The thin lines
301 demarcate pixel boundaries, while the thick lines 302
demarcate page boundaries. The arrows 303 show the order
in which fragments are generated, starting at the top-most
scanline down through the bottom-most scanline. FIGS.
3A-3D show traversal orders for triangles 300 residing in
one to four pages respectively.

One Page

In FIG. 3A, all pixels within the triangle lie on the same
page, which substantially reduces page crossing overhead
when compared to a linear assignment of pixels to pages.
Unfortunately, when compared to a linear allocation, this
technique can increase the page crossing overhead for some
small triangles, and for nearly all large triangles, which must
access two or more pages on each scanline in the widest
parts of the triangle.

Two Pages

FIG. 3B shows such a situation in which fragment gen-
eration alternates between two pages of memory on the
second, third, and fourth scanlines, requiring two page
crossings on e¢ach such scanline. A one-bank DRAM would
Incur expensive page crossing overhead twice on these
scanlines. A two-bank DRAM would be more forgiving, as
most graphics accelerators “checkerboard” pages, so that
pages that are horizontally or vertically adjacent lie 1n
different banks. With such checkerboarding, the accelerator
would access the two different pages in different banks.
Three Pages

For some objects, even a two-bank DRAM encounters
problems. FIG. 3C shows a triangle that 1s stored in three
pages. Two of the pages must use the same bank 1n a
two-bank DRAM. For example, 1f the two banks are
checkerboarded, the left-most and right-most pages reside 1n
the same bank. Page crossing overhead occurs twice on each
of the first three scanlines-once to fetch the left-most page
into the bank, and once to fetch the right-most page into the
bank.

Four Pages

FIG. 3D shows a triangle that 1s stored 1n four pages, two
for each bank 1n a two-bank DRAM. The crossing from the
top two banks to the bottom two banks may have insufficient
work on the bottom scanline of each of the top pages to

US 6,714,196 B2

S

allow page crossing overhead to be completely hidden by
prefetching. For example, if pages are checkerboarded, the
top left and bottom right pages share bank A, and the top
right and bottom left pages share bank B. The bottom right
page cannot be fetched into bank A until all transactions in
the top left page are completed. Even worse, the bottom left
page cannot be fetched into bank B until all transactions in
the top right page are completed. The page crossing over-
head from the top right page to the bottom left page 1s fully
exposed.

It would thus be desirable to be able to constrain the order
of fragment generation so that all fragments of an object on
cach page are generated before any fragments on another
page.

Checkerboarding

In order to maximize the possibility of hiding page
crossing overhead by prefetching early enough, many graph-
ics accelerators not only allocate each page to a rectangular
region of the rendering plane, but as mentioned above,
further allocate the rectangular regions such that a given

page 1n one bank 1s 1n a different bank from the pages above,
below, left, or right of 1it.

FIG. 4 shows this “checkerboarded” arrangement of
pages where again thin lines 401 demarcate pixel
boundaries, while the thick lines 402 demarcate page bound-
aries. Further, the shaded pages 403 belong to one bank,
while the unshaded pages 404 belong to the other bank.

To take advantage of multiple bank DRAM, 1t 1s desirable
that the fragment generator be aware of and exploit the bank
arrangements, so that after all fragments on one page have
been generated, the next page for which fragments are
ogenerated 1s 1n a different bank 1f possible.

Texture Cache Accesses

Furthermore, the efficiency of accesses to texture memory
are directly influenced by the order in which fragments are
ogenerated. If the texture memory has a cache associated with
it, then rendering large triangles may cause a sudden and
large 1ncrease 1n texture cache capacity misses. This 1s
because texture data fetched for a fragment on one stampline
1s ejected from the cache before the data can be reused for
nearby fragments on an adjacent scanline.

Thus, 1t would be desirable to be able to constrain the
order of fragment generation so that the capacity miss rate
of the texture cache 1s reduced. That is, the rendering surface
can be partitioned into rectangular tiles, where all positions
within a tile should be visited before moving to another tile,
and where the tile size 1s related to the texture cache size(s),
the texture cache line size, and the hierarchical structure of
the cache.

It 1s also desirable to maintain locality of reference in
texture memory when moving from one tile to another. That
1s, when all positions 1n the object within one tile have been
visited, it 1s desirable to move to a nearby tile rather than to
a more distant ftile.

Furthermore, while maintaining all the benefits of map-
ping tile dimensions to memory pages, it 1s desirable to
simultaneously decrease the texture cache miss rate.
Specifically, 1t would be desirable to visit all locations within
a tile before visiting any positions in other tiles. Smaller tiles
may be combined into a larger tile, a metatile overlaying
smaller tiles. Thus, once all the locations 1n a tile are visited,
the next tile visited should be within the metatile. When all
of the tiles in a metatile have been visited, a different
metatile 1s selected, and the process of visiting locations
within a tile and then visiting other tiles within the metatile
1s repeated.

10

15

20

25

30

35

40

45

50

55

60

65

6
Tiling Prior Art

The paper “The Design and Analysis of a Cache Archi-
tecture for Texture Mapping,” by Ziyad S. Hakura & Anoop
Gupta, in Proceedings of the 24th ISCA (1997), describes
how various performance results improve when fragments
arc generated 1n tiles. However, the details of how to
accomplish such tiling are not described. Since this paper
describes software simulation, it 1s likely that the tiling
fragment generation 1s based upon a scanline generator. The
high degree of parallelism 1n half-plane generators 1s a boon
for hardware implementations but 1s usually a source of
inefficiency for software implementations.

Microsolit’s Talisman, see “Talisman: Commodity Real-
time 3D Graphics for the PC,” by Jay Torborg & James
Kajiya, in Proceedings of SIGGRAPH 96, and an Apple chip
described 1in “Hardware Accelerated Rendering of Antialias-
ing Using a Modified A-Buffer Algorithm”, by Stephanie
Winner et al. in Proceedings of SIGGRAPH 97, must process
“blocks” of fragments, because these implementations do
not 1nclude enough memory to hold all fragment information
needed to render 3D graphics on a full rendering plane.

However, those implementations bear little resemblance
to the graphics processor described here. They require that
all fragments from different objects that lie within a particu-
lar portion of memory be generated before any fragments for
a neighboring portion. Therefore, those 1mplementations
require that the graphics engine save up all objects 1n a
scene, sort these objects, replicate the objects when an object
has fragments 1n two or more portions of memory, then
present all the objects 1n each portion to the fragment
generator as a group, and then present all the objects (some
duplicated) in the next block, etc. The fragment generator
does not automatically move from block to block within an
object, but 1s instead presented with the same object multiple
times at perhaps widely separated intervals 1n time. Each
fime 1t 1s presented with a different block from a given
object, it 1s either provided with a new starting point within
the object, or it 1s given a “new” object, which 1s the original
object clipped to the current block’s boundaries.

Sorting and replicating graphic objects consumes system
resources, as does computing a multiple starting points for
an object or clipping an object to each block it overlaps. For
some 3D application interfaces, such as OpenGL, which do
not require one to present all objects 1n a frame before
anything can be rendered, it 1s impossible to use these prior
art techniques.

SUMMARY OF THE INVENTION

The present invention relates to a method and a computer
system for visiting all stamp locations that are relevant to a
two-dimensional convex polygonal object, such as might be
encountered when rendering an object on a display device.
The object 1s visited with a rectangular stamp, which con-
tains one or more discrete sample points. Arelevant location
1s one 1n which the object contains at least one of the stamp’s
sample points when the stamp 1s placed at that location.
Stamp locations are discrete points that are separated verti-
cally by the stamp’s height, and horizontally by the stamp’s
width. The stamp may move to a nearby position, or to a
previously saved position, as 1t traverses the object. The
plane 1n which the object lies 1s partitioned 1nto rectangular
tiles, which are at least as wide and high as the stamp. The
invention visits stamp locations in an order that respects tile
boundaries—that 1s, 1t visits all locations within one tile
before visiting any locations within another tile.

In terms of the method, the mvention uses each pair of
vertices, 1n the order presented, to construct a directed edge

US 6,714,196 B2

7

between the vertices. Each directed edge 1s represented by
an affine function of the form E(x,y)=Ax+By+C, in which all
points to the left of the edge have a negative value, all points
on the edge have a zero value, and all points to the right of
the edge have a positive value. Points are considered within
the object 1f all edge functions are nonnegative for objects
described by a series of clockwise vertices, or it all edge
functions are negative for objects described by a series of
counterclockwise vertices. Some edge functions are effec-
fively infinitesimally displaced from their corresponding
edge, so that edges that are shared between adjacent objects
assign points directly on the edge to exactly one of the
objects. The edge functions are evaluated at several points
near the current position. Some nearby stamp positions are
also checked to see 1f they are within the same tile or within
a different tile. The sign bits of all edge functions are
evaluated at several points, and the bits indicating 1f nearby
stamp positions are 1n the same or a different tile are
combined to determine 1f the next position of the stamp
should be one of the nearby positions, if the next position
should be fetched from a previously stored context, or if all
locations within the object have been visited. These bits are
also combined to determine which, if any, of the nearby
locations should be stored into their corresponding contexts.

In one aspect of the mnvention, the first stamp position 1s
ncar a vertex that lies on an edge of the unique minimal
rectangular bounding box that contains the object and has
two horizontal and two vertical edges. The invention uses up
to s1x contexts, the current context as well as five saved
contexts, to wvisit all locations within the object while
respecting tile boundaries.

In another aspect of the invention, one of the five saved
contexts shares physical storage space with two other saved
contexts, and so while the invention conceptually uses a total
of six contexts, 1t physically uses space for only five
contexts.

In another aspect of the invention, a different polygon
traversal process enables the invention to respect tile bound-
aries with only four contexts.

In another aspect of the invention, the traversal order from
file to tile occurs as much as possible 1n a serpentine manner.
That 1s, when all locations in the object within one tile have
been wvisited, the next tile visited 1s chosen to be close
whenever possible.

In another aspect, tiles are partitioned 1nto two or more
disjoint sets. Tiles are arranged such that for any given tile
belonging to one of the sets, each adjacent tile above, below,
left and right of the tile belongs to a different set from the
orven file’s set. When tiles are partitioned 1nto two sets, this
results 1n a familiar checkerboard pattern of tiles. When all
locations 1n the object within one tile have been visited, the
next file visited 1s chosen to be within a different set

whenever possible.

In another aspect of the invention, the plane in which the
object lies 1s partitioned mnto a second grid of tiles
(“metatiles™), and the visitation order respects both tile and
metatile boundaries. Each tile may be completely contained
within a metatile; alternatively, the tile and metatile grids
may be oflset such that each tile 1s contained i1n several
metatiles. The 1nvention visits each location 1n the object
respecting both tile and metatile boundaries, by visiting all
locations 1n one metatile before visiting any locations within
another metatile, and within each metatile by further visiting
all locations within one tile before visiting any locations 1n
another tile.

BRIEF DESCRIPTION OF THE DRAWINGS

An embodiment of the invention will be described with
reference to the accompanying drawings, in which:

10

15

20

25

30

35

40

45

50

55

60

65

3

FIG. 1 1s a block diagram of a graphics processing system
that can use the tiled polygon traversal according to the
mvention;

FIG. 2 1s a diagram of a triangle with associated half-
plane edges;

FIGS. 3A-3D shows a mapping of pixels to memory
pages,

FIG. 4 1s a diagram of memory pages assigned to banks
in a checkerboard pattern;

FIG. 5 1s a diagram of a non-tiled traversal of a polygonal
object;

FIG. 6 1s a diagram of a tiled traversal of a polygonal
object;

FIG. 7 1s a diagram of a phased tiled traversal of a
polygonal object;

FIG. 8 1s a diagram of a minimal bounding box for a
polygonal object;

FIG. 9 a diagram of a metatiled traversal of a polygonal
object;

FIG. 10 1s a diagram of a metatiled traversal of a rectangle
for copying the rectangle to a second location;

FIG. 11 1s a flow diagram for the general method accord-
ing to the mmvention;

FIG. 12 1s a diagram of a graphics engine;

FIG. 13 1s a diagram of a portion of the fragment
cgenerator of FIG. 12 that generates edge contexts;

FIG. 14 1s a diagram of a portion of the fragment
cgenerator of FIG. 12 that generates channel contexts;

FIG. 15 depicts the positions for which edge function
values are generated by the edge evaluators of the fragment
generator,

FIG. 16 depicts an edge context data structure, which 1s
generated by the fragment generator; and

FIG. 17 depicts a channel context data structure, which 1s
generated by the fragment generator.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

System Overview

FIG. 1 shows a computer system 100 embodying the
principles of the invention. The system 100 can generate
monochrome or multicolor 2-D and 3-D graphic images for
rendering on a display device. In the computer system 100,
a system chip set 104 provides an interface among a pro-
cessing unit 102, a main memory 106, a graphics accelerator
108, and devices (not shown) on an I/O bus 110. The
processing unit 102 1s coupled to the system chip set 104 by
the host bus 112 and includes a central processing unit
(CPU) 118. The main memory 106 interfaces to the system
chip set 104 by bus 114.

The graphics accelerator 108 1s coupled to the system chip
set 104 by a bus 116, to a graphics memory 122 by a bus 124,
and to a display device 126 by a bus 127. The display device
126 includes a raster display monitor 128 for rendering color
images on, for example, a display surface or screen 130. The
invention can also be practiced with a monochrome monitor
that displays gray-scale images, with a printer that prints
black and white or color images, or with any other pixel-
based output device such as a liquid-crystal or dot matrix
displays.

The rendering surface 130, for example, a display screen,
includes a 2-D array of data elements called pixels and

US 6,714,196 B2

9

produces an 1mage 132 by i1lluminating a particular pattern
of those pixels 134. Conventionally, the pixels have (x,y)
Cartesian coordinates. The 1mage 132, for example, can be
2-D alphanumeric characters or a 3-D scene {illed with
objects.

The graphics memory 122 includes storage elements for
storing an encoded version of the graphical image 132.
There 1s a direct correspondence between the storage ele-
ments and the pixels 134 on the display screen 130. The
values stored in the storage elements for a particular pixel,
referred to as pixel data, control the intensity of the particu-
lar pixel 134 on the screen 130.

General Operation

During operation, the processing unit 102 can issue
ographics commands requesting that a complex graphical
object be rendered into an 1mage 132. The processing unit
first tessellates the graphical object into primitive objects
such as triangles, lines, or quadrilaterals, or 1nto lists of such
primitives. Each primitive directly or indirectly specifies a
convex polygon of three or more sides. The chip set 104
sends graphics commands specitying such primitives to the
ographics accelerator 108, which executes the commands,
converting the primitive objects 1nto fragments.

A fragment 1s the information associated with a 2-D
polygon created by clipping a convex polygonal primitive of
the 1mage 132 to the boundaries of a pixel. Fragment
information 1ncludes the x and y coordinates of the pixel; 1n
this description, x coordinates increase from left to right, and
y coordinates increase from top to bottom. Fragments also
include channel information that 1s interpolated from values
provided at the primitive’s vertices, such as the red, green,
and blue color values of the primitive object at that location,
alpha transparency, Z depth value, texture coordinates, and

the like.

The graphics accelerator 108 merges or replaces existing
pixel data with data from the fragments, and loads the pixel
data corresponding to the fragments into the appropriate
storage elements of the graphics memory 122.

Introduction

As stated above, an 1mportant operation during graphics
rendering 1s to determine which fragments are contained
within a convex polygonal object. The graphics accelerator
initially positions a fragment stamp (1.e., a 2 pixel wide by
2" pixel high rectangle) so that it contains one vertex of the
object. Typically, the stamp 1s aligned to an X and y position
that 1s a multiple of the stamp’s width and height,
respectively, while the vertices are specified to subpixel
precision. The 1nitial position of the stamp 1s computed by
setting the appropriate number of lower bits of the starting
vertex’s x and y coordinates to zero. Though the detailed
methods below can start at any vertex on the edge of a
minimal bounding box, for simplicity of description, each
example 1n this document starts at the left-most vertex of the
object.

At each position of the stamp, the graphics accelerator
renders the portion of a graphic object that falls within the
set of pixels covered by the stamp. For each pixel within the
stamp that has at least one sample point contained within the
object, one fragment 1s generated by the graphics accelera-
tor. The fragment for a pixel represents the color, depth and
other attributes of the graphic object at that pixel. In one
preferred embodiment, the graphics accelerator simulta-
neously generates fragments for all of the N pixels within the
stamp, while 1n other preferred embodiments, the graphics

10

15

20

25

30

35

40

45

50

55

60

65

10

accelerator generates fragments for one pixel (within the
stamp) at a time, or two pixels at a time, or more generally
for less than all N pixels at a time.

Edge functions are evaluated at several points near the
stamp, which yields information about which nearby stamp
positions probably contain portions of the object (i.e., fall at
least partially within the boundary of the object), which
information 1s used to determine nearby stamp positions to
be visited immediately or sometime later. For the various
embodiments of the invention described herein, the nearby
stamp positions considered are the “Manhattan” stamp
positions, which are directly left, right, up, and down from
the current position. It will become apparent that the meth-
ods described herein can be extended to consider diagonally
adjacent stamp positions or even nonadjacent positions, 1n
order to avoid visiting “unproductive” stamp positions that
generate no fragments. However, the extra circuitry required
for non-Manhattan movement may increase overall cycle
fime so much as to outweigh the small reduction 1n the
number of moves used to traverse an object.

A nearby stamp position 1s valid if the traversal logic or
process considers it a plausible candidate for visiting, and
invalid if the position 1s not a candidate. Valid positions are
those for which the 2™x2" pixel stamp probably contains a
portion of the object. More complex implementations of the
oraphics accelerator 108 evaluate the edge functions at more
points, and thus are able to classily some positions as shivers
if the stamp rectangle contain a portion of the object, but
nonetheless will not generate any fragments. This may occur
if an object barely intrudes into a stamp position, and so
doesn’t contain any of the sample points 1n the stamp.

The valid nearby stamp positions are also determined to
be 1n the same tile as the current position, or 1n a different
tile. This knowledge 1s combined with the current state of the
fragment generator 1n the graphics accelerator to move the
stamp to another position within the same tile (if one exists)
before moving to a position within a different tile. Move-
ment of the stamp can be either directly to a nearby position
(e.g., adjacent to the current stamp position), or by restoring
a previously saved stamp context. The method also deter-
mines what nearby positions (if any) should be saved to the
corresponding stamp contexts.

Non-tiling Method

First, a non-tiling traversal method 1s described for the
case where each stampline 1s a column of one or more pixels,
equal to the width of the fragment stamp. This method uses
three contexts: the current context, as well as a backSave and
overdave context.

If the stamp position above the starting position 1s valid,
then that position 1s saved 1n a backSave stamp context.

The method moves to all valid stamp positions below the
starting position, then restores the backSave context and
then visits all valid positions above the starting position.
Restoring a context also empties the restored context (or,
equivalently, invalidates the restored context); a new posi-
tion must be stored 1n the context before 1t can be restored
again. When a context 1s restored, it 1s copied into the current
context.

As the stamp visits positions on the stampline, also
examined are the positions on the column stampline 1mme-
diately to the right of the current position. The first such
valid position 1s saved 1n the overSave context.

When the stamp has finished visiting all positions on the
current stampline, the stamp then moves right to the over-
Save position 1n the next stampline. That 1s, the graphics

US 6,714,196 B2

11

accelerator restores the overSave context by copying it into
the current context and mvalidating the overSave context.
The graphics accelerator repeats the process of storing into
backSave the valid position above the first position in the
new stampline, visiting all the valid positions below, restor-
ing the backSave context and visiting all the valid positions
above, and then moving to the next stampline to the right by
restoring the overSave context. When the stamp has no
positions farther to the right to visit (i.e., when overSave 1s
empty), the graphics accelerator is finished traversing the
object.

Bypassing Saved Contexts

In this, and all other embodiments of the invention
discussed below, bypassing 1s used to avoid the time
required to save an adjacent stamp position, and then imme-
diately load that saved context. For example, if the first
stamp position 1n a stampline has no valid position to visit
below, then for the next cycle the stamp 1immediately pro-
ceeds to the valid position above, rather than taking one
cycle to save the above position 1n backSave, and another
cycle to restore it from backSave mto the current context.

Similarly, 1f the position to the right 1s valid and overSave
1s empty when all locations 1n a stampline have been visited,
then the graphics accelerator immediately moves the stamp
right to the next stampline rather than saving the position 1n
overSave and then restoring that position on the next cycle.

As can be seen 1n the detailed descriptions, bypassing
increases the complexity of the traversal logic and process.
For clarity, the summaries of each method always refer to
saving and restoring a context, even when the implementa-
tion actually bypasses the saved context for efficiency.

Example of Order of Traversal for a Non-tiling
Method

FIG. § depicts the order in which this non-tiling method
visits stamp positions 1nside an exemplary triangle 500. For
simplicity, the fragment stamp 1n this example 1s a single
pixel wide and high. It should be apparent that other stamp
sizes (27'x2" pixels) can be used. A pixel is considered to be
inside the triangle when the center of the square representing
the pixel 1s inside the triangle. That 1s, the stamp has a single
sample point 1n its center. Each pixel 1nside the triangle has
been labeled with a number showing the order in which
pixels are visited.

Each back position above the first position on each
stampline that was saved into backSave and then later
restored 1s enclosed 1n a solid diamond. Each back position
that was 1mmediately bypassed directly into the current
context 1s enclosed 1n a dashed diamond. Each over position
to the right of the stampline that was saved into backSave
and then later restored, or was 1immediately bypassed, 1s
enclosed 1n a solid or dashed circle, respectively.

Page (tile) boundaries are shown with thick grid lines.
Since the triangle spans four pages, a traversal method that
respects page boundaries would cross pages three times. But

note the six page crossings for the non-tiling method: from
position 1 to 2, from 15 to 16, from 16 to 17, from 21 to 22,
from 23 to 24, and from 36 to 37.

Inspection of this example reveals that the non-tiling
process may benefit from 1dentifying a valid position as a
sliver position 1f the stamp contains a portion of the object,
but the object does not contain any of the stamp’s sample
points (the pixel center in this 1x1 stamp example). Visiting
sliver positions 1s often not necessary—since the object

10

15

20

25

30

35

40

45

50

55

60

65

12

contains no sample points at that position, the stamp will
ogenerate no fragments. Note, however, that the stamp moves
from position 36 to position 37, a pixel whose center 1s
outside the object. This move 1s needed to get to position 38,
which 1s 1n the object. This stepping outside the object
temporarily 1s called “sliver following.” In general, stamp
traversal implementations 1n which slivers are not followed
unless absolutely necessary are preferred. Use of shiver
information 1s discussed more completely below.

A 6-Context Tiling Method

This method wvisits all locations within a tile before
visiting a location in a new tile. Typically, a tile is 2* pixels
wide by 2/ pixels high. It uses six contexts: current,
backSave, backTileSave, forwardTileSave, overSave, and
overTileSave.

The tiling method moves vertically along a column
stampline, much like the non-tiling method. However, 1f the
current position 1s at the bottom of a tile, and the next
position down 1s valid, then the stamp does not proceed
further down the stampline. Instead, 1t saves the stamp
position below in the context forwardTileSave 1f that context
1s empty, then proceeds to restore the backSave context.
Similarly, if the current position 1s at the top of a tile, and the
next position up 1s valid, then the stamp does not proceed
further up the stampline. Instead, i1t saves the stamp position
above 1n the context backTileSave 1if that context 1s empty,
then proceeds to restore the overSave context. Additionally,
if the current position 1s at the right edge of a tile, and the
position to the right 1s valid, the position to the right 1s saved
into overTileSave (if empty) rather than overSave.

When all locations within both the object and the first tile
have been visited (the traversal logic or method attempts to
restore overSave, but that context is empty), it proceeds to
visit the tile below the current one, if the tile below contains
a portion of the object, by restoring forwardTileSave. The
traversal method 1nside this tile 1s much like that 1n the first
tile, except that saves into backTileSave are not allowed.
The traversal process similarly proceeds to visit all tiles in
the tileline below the first tile. (A tileline is a column of tiles
in all embodiments described herein.)

When all tiles 1n the tileline below the first tile have been
visited (the traversal process attempts to restore
forwardTileSave, but that context is empty), it then proceeds
to visit all tiles which contain a portion of the object that are
above the first tile. It restores backTileSave, and wvisits
locations 1n each tile much like the first tile, except in this
case saves 1nto forwardTileSave are not allowed.

The entire tileline has been traversed when the traversal
process attempts to restore backlileSave, but that context 1s
empty. The graphics accelerator then moves the stamp to the
next tileline to the right, by restoring overTileSave, and
starts the visiting process anew: visiting all location 1n the
object 1n the first tile, visiting all tiles below, and then
visiting all tiles above.

The entire object has been traversed when an attempt 1s
made to restore overTileSave, and that context 1s empty.

Example of Order of Traversal for the 6-Context
Tiling Method

The triangle 600 shown in FIG. 6 demonstrates the
traversal order of this tiling method. As 1n FIG. §, backSave
positions are shown 1n diamonds, and overSave positions are
shown 1n circles. Again, bypassed positions that would
otherwise be saved are shown 1nside dashed versions of the

US 6,714,196 B2

13

non-bypassed 1ndicators. The triangle 1s not high enough to
require a backTileSave position. The forwardTileSave posi-
fion 1s shown by the hexagon around position 30. The
overlileSave positions are shown with small triangles
around positions 2 and 37. Note the reduced number of page

crossings for the tiling method with only three crossings in
total: 1 to 2, 29 to 30, and 36 to 37.

A 5-Context Tiling Method

An alternative embodiment uses the same traversal order
as the 6-context method, but exploits the fact that i1f back-
Save 1s non-empty, then either overSave or overTileSave 1s
empty and remains empty until backSave 1s restored and
thus emptied. This alternative stores backSave 1n whichever
of these two other stamp contexts 1s empty at the time, and
thus uses only five physical stamp contexts to store the six
virtual stamp contexts used by this alternative embodiment.

A 4-Context Tiling Method

Another alternative embodiment rotates the order in
which fragments are visited within a tile by 90 degrees,
which reduces the number of stamp contexts required to
four: current, forwardSave, backSave, and overTileSave. In
this embodiment, again suppose that the method chooses the
leftmost vertex of the object to begin.

Rather than visiting stamplines that are multiple columns
of pixels, this method wvisits stamplines that are multiple
rows ol pixels. Tilelines, however, remain columns of tiles.
This method can be divided into three phases.

Phase 0

Phase O visits all (row) stamplines within the object and
first tile that are in the starting stampline or 1n stamplines
below the starting stampline.

In phase 0, first visit all locations in the (row) stampline
to the right of the starting position that are in the first tile of
the tileline. While visiting each position 1n this stamplme
that 1s within the object and the tile, detect valid positions in
the stamplines above and below, and save the first of each in
backSave and forwardSave, respectively. These saved posi-
tions need not be in the same tile as the current position.

In all portions of all three phases, if the stamp position to
the right 1s valid and 1n a different tile, and if overTileSave
1s empty, then save the position to the right 1n overTileSave.

After the 1nitial stampline within the first tile 1s visited, the
traversal process visits all other stamplines below that are
also within the first tile. If the position below the current
stampline that 1s saved 1n forwardSave 1s 1n a different tile,
or if forwardSave 1s empty, then the method enters Phase 1
described below. Otherwise, restore the forwardSave
position, and visit all locations within the object and the
current tile 1n that stampline, while looking for the first valid
positions below to store 1nto forwardSave. Continue sweep-
ing out stamplines farther below that are still within the tile
by restoring forwardSave only 1if 1t 1s within the same tile.

Phase 1

Phase 1 visits all the stamplines that are above the starting,
position, and that are 1n the same tileline.

Restore backSave, which 1s somewhere in the stampline
above the first stampline, and visit each position within the
object and within the current tileline, saving a valid back-
Save position 1n the stampline above if one exists. At the
right edge of the object or tile, restore backSave and visit the

10

15

20

25

30

35

40

45

50

55

60

65

14

next stampline above, etc. Since this embodiment does not
check for tile boundaries above when restoring backSave,
after visiting the rest of the stamplines in the first tile, the
method seamlessly proceeds to visit all locations 1n each tile
above the starting tile. When 1t 1s not possible to move up to

a new stampline anymore (backSave is empty), enter Phase
2.

Phase 2

Phase 2 visits all the (row) stamplines in the (column)
tileline that are below the first tile visited.

Phase 2 1s similar to the second portion of Phase 0, but
doesn’t pay attention to tile boundaries below when restor-
ing forwardSave. It starts by restoring forwardSave, which
1s a topmost position in the tile below the original tile. Visit
all locations on the stampline that are within the object and
the tileline, saving the first valid position below 1n forward-
Save. Confinue restoring forwardSave, visiting the stam-
pline below, and saving a new forwardSave.

If the forwardSave context cannot be restored because it
1s empty, the enfire tileline has been traversed. In this case,
the overTileSave position that is in the next (column) tileline
to the right is restored. Return to Phase O to traverse this
tileline. If overTileSave cannot be restored because it 1s

empty, the object has been completely traversed.

Example of Order of Traversal for the 4-Context
Tiling Method

The movement of this method 1s shown for the exemplary
triangle 700 1n FIG. 7. In this case the forwardSave positions
are shown 1n hexagons, the backSave positions in diamonds,
and the overlileSave positions 1n triangles. As usual,
bypassed positions are enclosed in dashed lines.

Serpentine Traversals

The methods described thus far save the first valid posi-
tion 1n a new tileline into the context overTileSave. This
imposes a traversal order at the file level which 1s not
optimal for a frame buffer or for a texture cache. In
particular, when traversing large objects that span many
tiles, restoring overTileSave tends to jump to a tile that 1s
distant from the current tile.

This behavior can be 1mproved by imposing a serpentine
traversal order on tiles, 1n which restoring overTileSave
tends to jump to a tile that 1s nearby, or in the best case
horizontally adjacent to, the current tile. This 1s accom-
plished by repeatedly overwriting overlileSave with the
most recent valid position found in the next tileline to the
richt, and by swapping the order in which tiles are visited
from one tileline to another. The traversal order of blocks
then resembles a snake’s movement, 1n the best case trav-
cling up one tileline, down the next, up the next, etc., hence
the name serpentine. In the worst case, the top and bottom
edges of the object grow apart for some time, but serpentine
behavior 1s still approximated: down one tileline then up the
rest of the tileline, up a little bit 1n the next tileline then down
the rest of the tileline, down a little bit the next tileline then
up the rest, etc.

When tiles are configured (i.e., sized) to match the DRAM

page size (1.€., cache line size) of the frame buffer, serpentine
traversal increases the odds that the move from the last
position 1n a tileline to the first position 1n the next tileline

will move horizontally or vertically to an adjacent tile. In a
multibank DRAM that has been checkerboarded as in FIG.

4, this moves from one DRAM bank to a different DRAM

US 6,714,196 B2

15

bank. This 1n turn increases the odds that prefetching may be
able to hide some or all of the page crossing overhead.

When tiles are configured (i.e., sized) to optimally reduce
texture cache misses, serpentine traversal increases the
locality of texture accesses when moving from one tileline
to another. This i1n turn increases the odds that texture
accesses will hit the texture cache, rather than miss and thus
require a fetch from texture memory. This also increases the
odds that 1f a texture cache miss must fetch data from texture
memory, it will fetch data from a memory location that 1s on
the same page as other recent texture cache misses, and so
1s still loaded from a memory bank that can be accessed
quickly.

Determining the optimal tile size as a function of the
texture cache size requires consideration of several other
texture mapping factors. For example, for a given texture
cache size, using 8-bit texels would either require (or make
optimal) use of larger tiles than if 32-bit texels were used.
Using trilinear interpolation instead of bilinear interpolation
might require the use of smaller tiles. Using anisotropic
texture mapping requires even smaller tiles. And because
texture mapped surfaces can be at various distances from the
viewer, and rotated and tilted as well, there 1S not an exact
correspondence between the (X, y) position of textured
pixels and the texture memory accesses required to texture
them, as there 1s between the position of pixels and the frame
buffer memory accesses required to update them. Thus, even
using the same size texels and the same texture mapping
mode, different surfaces will require different amounts of
texture information for the same tile size. This makes 1t more
difficult to choose the best tile size. As a result, determining
the size of the tile based on the texture cache size, texel
depth and texture mapping mode may also take 1nto account
statistical probabilities of various types of surfaces and the
size of the cache lines within the texture cache.

This serpentine technique can be applied to any of the
embodiments described above. However, due to the com-
plexity that already exists 1in the 6-context version and its
5-context variant, the detailed traversal process description
below does not 1nclude a full serpentine movement 1mple-
mentation. Although it saves the last valid position found in
the next tileline 1nto overTileSave, 1t does not reverse the
traversal order of tiles from one tileline to another.

The detailed description of the traversal process for the
4-context invention, which 1s much simpler, includes the
feature of optionally reversing the roles of forward and back
cach tileline. Serpentine traversal should be optionally
enabled, as some operations, such as copying data from one
place to another, may require a more restrictive traversal
order to prevent prematurely overwriting old data that has
not yet been read.

Adding Contexts to Reduce Page Crossings

As a further variant to all the above methods, another
stamp context can be added so that two positions 1n the next
tileline to the right can be saved: overTileSaveA for one set
of banks, and overTileSaveB for a different set of banks.
This further increases the odds that when 1t 1s time to move
to a new position 1n the next tileline, the method can choose
the position that is 1n a different bank from the current bank.

This solution does not eliminate a same-bank page cross-
ing 1n all cases. Sometimes only one tile 1n the next tileline
contains the object, and this tile 1s in the same bank as the
last tile visited on the current tileline. In other cases, this
technique successtully changes banks as 1t crosses from one
tileline to another, but this then causes a page transition

10

15

20

25

30

35

40

45

50

55

60

65

16

within the same bank to occur within the tileline when
moving to backTileSave 1n the 6- and 5-context methods, or
to forwardTileSave 1n Phase 2 of the 4-context method.

Managing Slivers

The methods described 1 detail below are a somewhat
more complex than the summaries above, mainly due to
additional steps or logic that are used to avoid “shivers.” A
“sliver” 1s a portion of an object that may pass through a
stamp position, but 1n such a fashion that it 1s guaranteed not
to generate any fragments at that position, because that
portion of the object does not enclose any of the stamp’s
sample points.

In some such cases, the sliver stamp position must be
visited 1n order to reach other stamp positions which may
ogenerate fragments. In other cases, the sliver stamp position
need not be visited when, 1n the course of visiting other
stamp locations, a better stamp position 1s found. A “better”
position may 1tself be a sliver position that leads to a
non-sliver position more quickly.

Avoiding slivers with a 2 pixel by 2 pixel stamp decreases
the number of stamp positions visited for an object by about
10% for aliased drawing, where the stamp contains four
sample points (one for each pixel). In such cases, it is quite
likely that a stamp position will contain a portion of the
object, but the object will not contain any of the four sample
positions. Avoiding slivers decreases the number of stamp
positions visited for an object by only about 1% for anti-
aliased drawing, where each pixel has a 16x16 grid upon
which 16 sample points are placed. Since the antialiased
sample points are densely spread over each pixel, 1t 1s rare
for the object to mntersect a stamp position, yet not contain
any of the stamp’s 64 sample points (4 pixelsx16 sample
points=64 sample points).

Because it takes time to determine the sliver information
and to process the information, i1t may be better for an
antialiasing 1mplementation of the graphics accelerator to
avold sliver handling, and perhaps reduce the time required
to compute a new position. This reduction in processing time
may lead to a reduced cycle time. Though 1t will occasion-
ally visit a stamp position that could have been avoided via
sliver processing, the reduced cycle time nonetheless may
mean that less time overall 1s required to traverse objects.

So as yet another variant, all methods described 1n detail
below can be slightly simplified by assuming that the shiver
imnformation 1s not determined; the variant methods are
derivable from the described methods by simply setting the
sliver inputs to a logical false value, and then simplifying the
conditions that depend upon slivers.

Implementation Details

The principle steps for the traversal methods according to
the invention are shown 1n FIG. 11. These steps are 1mple-
mented by circuits and software of the graphics accelerator
108 of FIG. 1. All of the traversal methods use the basic
steps shown 1n FIG. 11, however, the details of Steps 1106
and 1108—1111 are substantially different for the 4-context
embodiment.

Implementation Details of 6-Context Traversal
Method

The 6-context (and the derived 5-context) traversal
method traverses the object 1n stamplines that are columns,
and moves from column to column left to right—when the
starting vertex 1s at the left, or right to left—when the
starting vertex 1s at the right.

US 6,714,196 B2

17

When it 1s advantageous to 1nstead use stamplines that are
rows, the mvention swaps the x and y offsets of the probe
points that evaluate the edge equations at several locations
surrounding the stamp, and also appropriately swaps a few
other values dependent upon x and y. This swapping means
that the stamp movement method described below need not
have a column stampline case and a row stampline case,
which substantially simplifies the implementation and
reduces gate delays. The details of this x and y swapping are
not described, as they do not change the fundamental
movement method. Without loss of generality, the descrip-
fion below will be phrased in terms of stamplines that are
columns, with the 1mplicit understanding that swapping
changes how right, left, up, and down information 1s mul-
tiplexed 1nto forward, back, and over mmformation.

When swapping 1s not enabled, the forward position 1s
defined as the stamp position directly below the current
position (down). The back position is directly above the

current position (up). The over position 1s directly to the
right of the current position (right) when dirOver is
POSITIVE, else the over position 1s directly to the left of the

current position (left).

If x and y swapping 1s enabled, the object 1s traversed in
stamplines that are rows, 1n which case one can move from
row to row 1n the top to bottom direction—when the starting
vertex 1s at the top side of the bounding box, or the bottom
to top direction—when the starting vertex 1s at the bottom
side of the bounding box. In this case, the forward position
1s right, the back position 1s left, and the over position 1is
down when dirOver 1s POSITIVE, else the over position 1s

up.

Stamp Contexts

There are several stamp contexts: current, backSave,
overSave, forwardTileSave, backTileSave, and overTile-
Save. Each saved stamp context has associated with 1t a
corresponding valid bit backSaveValid, overSaveValid,
forwardTileSaveValid, backTileSave Valid, or overTileSave
Valid, respectively. A context’s corresponding valid bit 1s
frue when some stamp position 1s actually saved i the
context, otherwise the context 1s empty.

Each saved context backSave, forwardTileSave, and
backTileSave has associated with 1t a sliver bit
backSaveSliver, forwardTileSaveSliver, or
backTileSaveShiver, respectively. A context’s corresponding,
sliver bit 1s true when the context’s valid bit 1s true and the
position saved 1s determined to be a “sliver” position that 1s
not productive (generates no fragments), and thus may not
need to be visited or saved, as discussed more fully below
in the descriptions of steps 1108 through 1110. The sliver bat
1s a hint, not absolute knowledge, because a valid context for
which the sliver bit 1s false may or may not be an unpro-
ductive sliver position.

Each saved context overSave and overTileSave has asso-
ciated with 1t a corresponding productive bit overSavePro-
ductive or overTileSaveProductive, respectively. A context’s
corresponding productive bit 1s true when the context’s valid
bit 1s true and the position saved has been determined to be
productive, that 1s, at least one sample point associated with
the position 1s within the object. The productive bit 1s a hint
as well, 1n that a valid context for which the associated
productive bit 1s false may or may not be productive.

Saved Contexts

The saved contexts represent the following positions:

1. backSave: the position above the first stamp position 1n
the current stampline (column) if the position above is
in the same tile as the first position.

10

15

20

25

30

35

40

45

50

55

60

65

138

2. overSave: the first best position found 1n the same tile
in the next (column) stampline over from the current
stampline. (“First best” means that an over position
known to be productive can replace a saved over
position that is not know to be productive.)

3. forwardTileSave: the first best forward position found
below the current position and 1n a different tile, as long
as the stamp 1s moving forward from tile to tile. (“First
best” means that a valid over position 1nvalidates a
sliver forwardTileSave, allowing a better position to be
saved 1in it.)

4. backTileSave: the first best back position found above
the current position and 1n a different tile, as long as the
stamp 1s moving back from tile to tile, or if the stamp
1s 1n the first tile on a tileline.

5. overTileSave: the last best position found 1n the next
tileline over (by making this the last position found, the
stamp tends to visit tiles 1n a serpentine fashion, which
increases the chances that moving from one ftile to
another also moves from one bank to another).

Step 1101: Determine the minimal bounding box for object.

FIG. 11, step 1101 determines the minimal rectangular

bounding box (bbox) that encloses the object and is aligned
with the x and y axis. For example, FIG. 8 shows a triangle
800 drawn with solid lines, and its minimal bounding box
810 drawn with dashed lines. In this embodiment, we allow
both three-sided objects like triangles, and four-sided
objects like quadrilaterals and rectangular lines, so we allow
up to four vertices (Xq, Yo), (X35 V1) (X5, ¥2), and (X5, y3). For
simplicity of this description, assume that for triangles, the

(X,, ¥,) vertex is copied into the (X5, y5) vertex. C code for
FIG. 11, step 1101 1s:

bbox.xmin=min(X,, X;, X5, X3);
bbox.xmax=max(X,, X;, X,, X3);

bbox.ymin=min(yo, ¥, Y2, ¥3);

bbox.ymax=max(yo, Y1, Y2, ¥3);

It 1s noted here that the C code here and elsewhere 1n this
document specifies the logical operation of certain portions
of the circuitry of the graphics accelerator. The listing of C
code 1n this document does not mean that the graphics
accelerator 1s implemented using a general purpose proces-
sor that executes C code. Rather, the C code 1s descriptive of
the operation of dedicated logic circuits.

Step 1102: Select a Starting Vertex on a Side of the Bound-
ing Box.

In FIG. 11, step 1102, sclect a starting vertex (X, ., V., ..)
that 1s on the side of the bounding box bbox, where start 1s
in the range [0, 3]. That is, (x_, ., V.,..) must satisfy the
condition:

(x.,.,=bbox.xmin|x__ =bbox.xmax)||

SIari

(Vgrar=bbox.ymin|y,,, ,=bbox.ymax)

Such a starting vertex 1s called a single-extreme vertex, as
this vertex 1s at an extreme X or y position of the bounding
box. For triangle 800 in FIG. 8, all three vertices 801, 802,
and 803 are single-extreme vertices.

For stamp movement methods that do not implement
serpentine traversal, there are definite advantages, such as
fewer stamp contexts, to starting at the corner of the bound-
ing box. That is, (X, .., V.,...) must satisfy the condition:

(X ;0 =bDbOX.Xmin|lx, =bbox.xmax)&&

(Vs1qr=bbOX.ymin|[y,, ,,=bbox.ymax)

Such a vertex 1s called a double-extreme vertex, as 1t 1s at
both an extreme X position and an extreme y position of the

US 6,714,196 B2

19

bounding box. For triangle 800, the vertex 801 1s a double-
extreme vertex. It 1s always possible to find a double-
extreme vertex for triangles, thin OpenGL lines, Microsoft
Windows objects, X11 thin lines, and wide OpenGL aliased
lines. However, 1t 1s not possible to find a double-extreme
vertex for X11 wide lines, nor for OpenGL antialiased lines.
These objects may be rendered using fewer contexts by
splitting them into two portions, each of which has a
double-extreme vertex.

Step 1103: Align the Starting Position to the Stamp Size

In general, the starting vertex (X,,.,,» Yo, 15 specified
with subpixel accuracy, e.g., (191%s, 34%56). The origin of
the stamp, though, typically must be aligned to an (X, y)
position commensurate with the stamp dimensions. For
example, 1f the stamp 1s four pixels wide by two pixels high,
then the starting position must be aligned so that the x
position 1s a multiple of four pixels, and the y position 1s a
multiple of two pixels. This alignment of the starting posi-

fion to the stamp size 1s performed i FIG. 11, step 1103:

X =Xstart™ (xsmr:mﬂd sta mpW1 dth)?

alignedSiari

ya!.ignedﬂm riYstart™ @SIErIde Stampnght),,

In this embodiment, stamp Width and stampHeight are
both powers of two, and so the alignment can be performed
more eificiently as a masking operation:

xaf.ign edSta rr=xsmr.i,‘ &~ (StampW1dth— 1):

ya!z’gn edStart Y start &~ (Stamp HElght_ 1))

Step 1104: Initialize the Edge Evaluators

In FIG. 11, step 1104, the edge evaluators are nitialized
for the aligned starting position. This 1nvolves computing
the increments A and B for each edge function E(x,y)=Ax+
By+C, and computing the value of each edge function at the
POSIION (X, ineasiare Yatigneasiars) 10E setup for the edge
evaluators 1s described by Pineda in the paper incorporated
above.

Step 1105: Determine the Tile Boundary Masks

FIG. 11, step 1105 establishes the tile boundary masks
that are used to determine whether a stamp position 1s at the
left, right, top, or bottom boundary of a tile. For example, the
stamp 1s at the right-most position 1n a tile when several of
the bits of its X coordinate are all 1. The number and position
of the bits that must have a value of 1 1s dependent upon the

tile width and the stamp width.

For example, if the stamp 1s two pixels wide, then the
bottom bit (bit 0) of the x coordinate will always be 0, and
so the bottom bit does not need to be a 1 when the stamp 1s
at the right-most boundary of a tile. Similarly, 1f the tile 1s,
say, four pixels wide, then bits 2 or higher do not need to be
a 1, as these bits reveal nothing about the stamp position
within a tile.

Specifically, when the stamp 1s at the right-most boundary
of a tile, the group of bits 1n the x coordinate that start at bat
position log,(tile Width)-1, and extend down to and includ-
ing bit position log,(stamp Width), are all 1. Note that this
oroup ol bits 1s empty—that 1s, no bits 1n the mask are
1—when the stamp width 1s equal to the tile width. In this
case, all stamp positions are at the right-most boundary of a
file. The same mask can also be used to determine 1if the
stamp 1s at the left-most position 1n a tile. A similar mask,
based upon the tile and stamp heights, can be used to
determine if the stamp i1s at the top-most or bottom-most

10

15

20

25

30

35

40

45

50

55

60

65

20

position 1n a tile. These two masks are easily constructed
with the following C code:

xTileMask=(tileWidth-1)&~{(stampWidth-1);
vTileMask=(tileHeight-1)&~(stampHeight-1);

If the tile and stamp sizes for a particular system are
permanently fixed, then these masks may be hardwired in
the graphical accelerator, eliminating the need for step 11085.
Alternately, step 1105 may be performed only when the
oraphics accelerator 1s configured, such as at the beginning
of execution of a particular graphical rendering task or
session, and thus will not be repeated for each object to be
rendered by the graphics accelerator.

Step 1106: Initialize the Starting Bookkeeping State of the
Invention

FIG. 11, step 1106 1nitializes the values of all state used
while traversing the object. The following are initial book-
keeping state values used herein:

// Traversing left to right or right to left?

dirOver = (X,,,,, = bbox.xmin)? POSITIVE: NEGAIIVE;

dirStamp = POSITIVE; // Stamp movement 1nside tile in
forward or back direction?

dirTile = POSITIVE; // Tile to tile movement forward or back?

firstColumnInQObject = true; // Still on the very first stampline?

firstStampInLine = true; // First stamp position 1n a stampline?

firstTileInline = true; // First tile within a tileline?

Initially, all Saved Contexts are Invalid:

backSaveValid = false;
backSaveSliver = false;
overSave Valid = false;
oversaveProductive = false;
forwardTileSaveValid = false;
forwardT1ileSaveSliver = false;
backTileSaveValid = false;
backTileSaveSliver = false;
overlileSaveValid = false;
overlileSaveProductive = false;

Note, steps 1107 through 1111, described 1n the following

sections, are repeated until no further stamp moves are
possible 1 Step 1109.
Step 1107: Determine Valid, Sliver, Productive, and Bound-
ary Bits For stamp movement purposes there are an addi-
tional three “sparse” stamp contexts. The sparse stamp
contexts (which are dynamically computed each cycle)
contain much less information than the full contexts
described above. These sparse contexts do not include all the
information associated with the interpolated values of
colors, Z depth, transparency, and so on, and instead only
include the edge function values for these stamp positions.
Furthermore, the edge function values for these positions are
not stored i flip-flop or latch circuits of the graphics
accelerator 108, but are determined anew each cycle by
combinational logic. These sparse contexts are:

1. forward: the stamp position 1immediately below the
current position

2. back: the stamp position immediately above the current
position
3. over: the stamp position 1mmediately right of the
current position if dirOver 1s POSITIVE, else the
position immediately to the left.
Each of the sparse contexts forward, back, and over has
associated with 1t a valid bit (forwardValid, backValid, or

US 6,714,196 B2

21

over Valid, respectively) that indicates if the stamp position
1s valid. The sparse contexts forward and back have an
associated sliver bit forwardSliver and backShiver that indi-
cate 1f they have been determined to be sliver positions that
might be avoided. The sparse context over has an associated
productive bit overProductive that indicates whether the
position has been determined to be productive. The edge
functions, evaluated at several points around the stamp,
determine whether the up, down, left, and right positions are
valid positions which are believed to contain a portion of the
object. A valid position may be marked as a sliver position
if 1t 1s known that no sample points at that position are
contained by the object, or as a productive position 1s it 1S
known that at least one sample point 1s contained in the
object.

The computation of the valid, shiver, and productive bits
1s not described 1n this document, as many possible com-
putations exist. While using different computations of the
valid, sliver, and productive bits may affect the number of
unproductive stamp positions visited, 1t does not change the
stamp movement method described herein.

Each of the sparse contexts xxx also has an associated
xxxTileBoundary bit. First, the current position 1s evaluated
to determine if it 1s at the right-most position 1n a tile, the
left-most position, the top-most position, and the bottom-
most position. Given the xTileMask computed 1n Step 11085,
it 1s determined 1if the stamp 1s at the right-most position of
a tile as follows:

rightBoundary=((x|~xTileMask)=~0)

That 1s, bit-wise OR 1’s with all the positions of the
stamp’s x coordinate that are not relevant 1n determining it
the stamp 1s at the right-most position 1n the tile, and check
whether the result 1s all 1°s. The result will be all 1’s only
if the stamp’s x coordinate has all 1’s 1n the relevant group
of bits, and so 1s at the right-most boundary. Similarly, we
can determine 1f the stamp 1s at the left-most position in the

tile like:
leftBoundary=({x&xTileMask)=0)

That 1s, bit-wise AND 0’s 1n all the positions of the x
coordinate that are not relevant in determining if the stamp
1s at the left-most position 1n the tile, and check if the result
1s all 0’s. The topBoundary and bottomBoundary bits are
determined similarly via the yTileMask:

bottomBoundary=((v|~TileMask)=~0);
topBoundary=((y&yTileMask)=0);

These four boundary values are appropriately multiplexed
to create the forwardTile Boundary, backTile Boundary, and
overTileBoundary bits of the forward, back and over sparse
contexts, respectively. A true value indicates that the stamp
position 1n question 1s 1n a different tile from the current tile.
Step 1108: Quash Forward and Back Shvers

If any over context 1s valid, whether a sparse context
(over) or saved context (overSave, overTileSave), then there
1s no point in moving to any shiver back and forward
positions, whether sparse or saved contexts, even 1if the
sparse or saved over context 1s not known to be productive.
The back and forward slivers never lead to any productive
stamp positions 1n the current stampline, but merely lead to
a valid (though perhaps unproductive) stamp position in the
next stampline over. Thus, a valid over position immediately
quashes any sliver back and forward positions by setting
their Valid and Sliver bits to false.

5

10

15

20

25

30

35

40

45

50

55

60

65

22

The C code for this quashing operation 1s:

anyOver = overValid|overSaveValid|overTileSave Valid;
if(anyOver) {
// Invalidate all forward and back slivers, in both sparse
and saved contexts
if (forwardSliver) forwardValid = forwardSliver = false;
if (backSliver) backValid = backSliver = false;
if (forwardTileSaveSliver)
forwardTileSaveValid = forwardTileSaveSliver = false;
if (backSaveSliver) backSaveValid = backSaveSliver = false;

if (backTileSaveSliver) backTileSaveValid =
backTileSaveSliver = false;

Step 1109: Determine the Next position to Which to Move
the Stamp

The basic 1dea 1s to move forward along a stampline until
reaching a tile boundary, then back along the stampline until
hitting the opposite tile boundary. Then move over and do
the same, until the last stampline within the tile has been
completed.

At step 1109 the graphics processor moves the stamp
cither within the current tile or, when processing of stamp
positions 1n the current tile 1s completed, to a next tile.
Within the current tile, as described above, the stamp 1s
moved 1n the forward direction until the forward tile bound-
ary 1s reached, then the stamp 1s moved 1n the back direction
until the back tile boundary 1s reached, and finally the stamp
is moved over to the next stampline (if any) within in the tile.
When moving the stamp to a next tile, the stamp 1s initially
moved to the next tile (if any) in the forward direction. Then
it generates all fragments within 1t, and continues until all
tiles m the forward direction have been completed. The
oraphics processor then goes back to the tile in the back
direction, and sweep out all tiles 1n the back direction.
Finally, it goes to a ftile in the next tileline 1n the over
direction, and repeat the operations to sweep out a tileline
untill no more moves are possible. C code for the decision-
making logic is found in Table 2 (Appendix A).

Step 1110: Update Saved Contexts

After deciding which way to move, the graphics accel-
erator determines which sparse contexts, if any, should be
stored 1nto their corresponding saved contexts, and which
saved contexts should be mvalidated. Although any given
sparse context can be stored into exactly one of the saved
contexts 1n this step, multiple different sparse contexts can
be stored mto multiple different saved contexts in this step.

Known productive positions slightly complicate the logic
for saving over positions into overSave and overTileSave. In
order to maintain the “first best” over position 1n overSave,
an over position that 1s known to be productive replaces an
overSave position that 1s not known to be productive. In
order to maintain the “last best” over position 1in
overlileSave, an over position that 1s not known to be
productive must not replace an overTileSave position that 1s
known to be productive.

The forwardTileSave and backTileSave contexts do not
need any similar special sliver processing conditions. If, for
example, a sliver forward was stored mnto forwardTileSave,
and sometime later a better non-sliver forward position 1n
the next tile 1s found, then an 1ntervening over move of some
sort was made, and the over move will have quashed the
sliver forwardTileSave that was previously stored (see step
1108).

Table 3 (Appendix B) gives the C code for updating saved
contexts as performed by FIG. 11, step 1110.

US 6,714,196 B2

23

Step 1111: Update Other Bookkeeping Information

Finally, FIG. 11, step 1111 updates the values that indicate
in which direction the stamp 1s moving and other
information, for example, 1s this the first position within a
stampline or tileline. The C code for this updating 1s given
in Table 4 (Appendix C).

After completing step 1111, the process resumes at step
1107 to process the object at the current stamp position, until
the movement logic of step 1109 determines that the object
has been completely traversed.

Implementation Details of 5-Context Traversal Method

As an optimization, an alternative embodiment exploits
the fact that all five save contexts are never active simulta-
neously. In this alternative embodiment, the backSave state
remains conceptually, however this state does not need to
have separate physical storage. Instead, the backSave state 1s
stored 1n either the overSave or overlileSave state. The
embodiment may still use physical storage for the backSave
Valid and backSaveSliver bits, which avoids synthesizing
these bits from other state information.

Table 1 shows where the conceptual backSave informa-
tion resides, given the state of several bits. An “X” indicates
that the state of the bit 1s irrelevant.

TABLE 1

overTile

firstTile dirStamp firstStamp Boundary

10

15

20

24

The else clause that stores back into backSave 1n Table 2
(Appendix B) becomes:

} else if(writeBackSave) {
if (overTileBoundary) {
oversave = back;

}else {

overlileSave = back;
h

backSaveValid = true;
backSaveSliver = backSliver;

Implementation Details of 4-Context Traversal Method

Even better than multiplexing one context between two
other contexts, it 1s possible to 1mplement a tiled traversal
with just three saved states. This alternative embodiment
involves a different way of visiting positions within the
object.

In the following sections, the meaning of the terms
forward, back, and over are the same as above in the sense

that forward will mean down, back will mean up, and over
will mean left (dirOver NEGATIVE) or right (dirOver

[nl.ine

false

false

true

true

true

frue

true

dirTile?

Negative

Positive

Negative

Positive

Positive

Positive

Positive

?

X

X

Negative

Negative

Positive

Positive

Inl.ine

X

false

frue

?

X

false

true

Where i1s backSave?

No need. Since we start each
stampline at the bottom edge
of each tile, we can’t move
forward within tile, so we
never save back, but always
use the back bypass.

No need. Since we always
start each stampline at the
top edge of each tile, we
never have a valid back
position within the tile to
save.

[nvalid state. By definition,
we start each new tileline by
tiling in the Positive (top to
bottom) direction.

No need. backSave has
already been saved and
restored.

[nvalid state. By definition,
we start each new stampline
by moving the stamp in the
Positive direction.

In overTileSave, as we aren’t
at the overTile boundary of
the tile, so 1t’s still unused.
In overSave, as we are at the
overTile boundary of the tile,

so don’t need it anymore.

60

This table shows that only the overTileBoundary bit 1s
needed to decide to where to store backSave, or from where
to recall the previously stored context. The multiplexing for
properly recalling backSave from either of the two saved
positions 1s:

backSave=overTileBoundary? overSave: overlileSave;

65

POSITIVE). However the basic method visits stamplines
that are columns, whereas this alternative visits stamplines
that are rows.

Again, the actual implementation of the alternative can
paint column stamplines by exchanging the role of x and y
offsets for the position of the stamp probes and sample

US 6,714,196 B2

25

points, and by appropriately changing the multiplexing of
left, right, up, down data into forward, back, and over data.

Saved Contexts

The saved contexts represent the following positions:

1. backSave: the first best position above the current (row)
stampline.

2. forwardSave: the first best position below the current
stampline.

3. overlileSave: the last best position found 1n the next
tileline over.

The basic method proceeded along a column stampline in

the forward, then back direction, before moving over. The

alternative method processes each tileline 1n three phases,

referred to as phases 0, 1, and 2 1n the C code below and 1n
Tables 5 and 6 (Appendices D and E).

This alternate 1mplementation does not associate an over-
Productive bit with the sparse over context, nor an over-
TileSaveProductive bit with overTileSave. Rather, these
contexts have associated overSlhiver and overTileSaveShiver
bits, respectively. Again, the computation of these bits 1s not
described here; various implementations of this computation
may change the number of unproductive positions visited,
but do not change the method for moving the stamp based
upon this information as described below. If an over shiver
bit 1s true, then there are guaranteed to be no productive over
positions for the rest of the stampline.

The details of the alternative 4-context embodiment of
steps 11061111 are given 1n the following sections labeled

Step 11064 through 1111a.

Step 11064: Initialize the Starting Bookkeeping State of the
Invention C Code to Initialize State 1s as Follows:

firstStamplinelnTile = true; // Is this the very first stampline in the
tileline?

firstColumnInObject = true;

phase = 0;

dirGeneral = POSITIVE; // Flip each tileline to reverse roles of

// Torward and back in the phases
forwardSave Valid= false;
forwardSaveSliver = false;

backSaveValid= false;

backSaveSliver = false;
overTileSaveValid = false;
overlileSaveSliver false;

Note, steps 1107a through 1114, described 1n the follow-
Ing sections, are repeated until no further stamp moves are
possible 1n Step 1109a.

Step 1107a: Determine Valid, Shiver, and Boundary Bits

Step 1107a 1s nearly identical to step 1107 described
above, except that overShiver 1s computed rather than over-
Productive.

Step 1108a: Quash Forward and Back Slivers

Sliver handling i1s slightly modified in the 4-context
alternative embodiment due to the smaller number of saved
contexts. The basic 1dea 1s the same, though. Any valid over
position, even 1if 1t 1s a sliver, immediately mnvalidates any
sliver back and forward positions, whether these are relative
to the current stamp position, or saved positions, as in the
following C code:

10

15

20

25

30

35

40

45

50

55

60

65

26

anyOver = overValid|overTileSave Valid,;
if(anyOver) {
// Invalidate all forward and back slivers
if (forwardSliver)forwardValid = forwardSliver = false;
if (backSliver) backValid = backSliver = false;
if (forwardSaveSliver) forwardSaveValid = forwardSaveSliver =
false;

if (backSaveSliver) backSaveValid = backSaveSliver = false;

Step 1109a: Determine the Next position to Which to Move
the Stamp

Here 1s where the alternate method differs substantially
from the original method. Note that giving over moves
priority means that the graphics processor cannot avoid
moving to an over position that 1s not known to be
productive, 1n favor of a forward or back position that 1s not
a sliver. Further, over moves do not invalidate back or
forward slivers that are not adjacent to the current stampline,
as described 1n more detail below 1n step 1110a.

Phase 0O

Phase 0 generates all fragments 1n the starting tile of a

fileline that are at the same height or below the starting
position 1n the tileline.

In phase 0, the alternative method proceeds along a row
stampline 1n the over direction. Also saved are the first valid
forward and back positions encountered, regardless of tile
boundaries. When the boundary of a tile i1s reached 1n the
over direction, the method saves the over position that 1s 1n
the next tile to the right. Then, it loads the forwardSave
context into the current context, and visits all positions
within the tile 1n the over direction again. Continue visiting
(row) stamplines until the forwardSave position to be
restored 1s 1n a new tile. Then, restore the backSave position,
and enter phase 1.

Phase 1

Phase 1 generates all fragments in the tileline that are
above the starting position in the tileline.

In phase 1, move from stampline to stampline in the back
direction, and so trace out the rest of the object in that
direction that 1s in the current tileline. While moving 1n the
back direction, ignore the top tile boundary, but still use the
right tile boundary to stay within the current tileline. After
completing the above movement, go back to the saved
forward position, and enter phase 2.

Phase 2

Phase 2 generates all fragments 1n the tileline that are 1n
tiles below the starting position’s tile.

In phase 2, trace out the rest of the object 1n the current
tileline 1 a fashion similar to phase 1, but moving from
stampline to stampline 1n the forward direction. Similar to
phase 1, 1ignore the bottom tile boundary, and only check for
tile boundaries 1n the over direction.

When the method finally has no more forward stamplines
to trace out 1n phase 2, directly proceed to the saved over
position in the next tileline, and start the whole process over
again 1n phase 0. In order to sweep out stamplines in a
serpentine manner, so that page transitions that use the same
bank are reduced, and to maintain locality of reference 1n a
texture cache, the roles of forward and back (below and
above) are reversed in each new tileline.

US 6,714,196 B2

27

The C code for moving the stamp according to the
alternative embodiment is given in Table 5 (Appendix D).
Step 1110a: Update Saved Contexts

Again, overTileSave should contain the last, best position
found, so a non-sliver overTileSave position 1s never
replaced with a sliver over position.

The cases for writeBackSave and writeForwardSave are
symmetrical, because they effectively trade responsibilities
as dirGeneral changes from POSITIVE to NEGATIVE. So
here we’ll just consider when we save 1nto the backSave
context.

Since backSave 1s “first, best save” for correctness, it 1S
only possible to save 1nto i1t when 1t 1s empty.

A valid back position 1s also required, and this cannot
have used the bypass. Beyond that, 1if dirGeneral 1is
POSITIVE, then it 1s only possible to save mto backSave
when this 1s the very first stampline of a new tileline, or if
this 1s phase 1 and thus traveling in the back direction. If
dirGeneral 1s NEGATIVE, then save when in phases O or 2.

If any kind of forward move 1s made, either directly to the
sparse forward context, or indirectly by loading the foward-
Save context, the backSaveSliver bit 1s set false.
Symmetrically, 1if any kind of back move 1s made, the
forwardSaveSliver bit 1s set false. This prevents step 1108a
from using an unrelated valid over position to 1nvalidate a
saved sliver position that may need to be visited to get to a
productive position. The C code for updating backSave, as
well as forwardSave, is given in Table 6 (Appendix E).
Step 1111a: Update Other Bookkeeping Information

if (goOverNewTile || goOverTileSave) {
// Start a new ftileline
phase = 0;
firstStamplinelnTile = true;

if (serpentineEnabled) {// Reverse dirGeneral direction
dirGeneral = (dirGeneral == NEGATIVE ? POSITIVE:
NEGATIVE);

i

i

if (goForward||goForwardSave|goBack||goBackSave) {
firstStamplinelnTile = false;

i

if (goOverInTile||goOverNewTile|goOverTileSave) {
firstColumnInObject = false;
h

Simplitying and Speeding up Movement Decisions

If texture maps are stored 1n, for example, SRAM, in
which all locations can be addressed equally quickly, the
advantages of maintaining locality from tile to tile are
reduced. There may also be little or no advantage when
texture memory has sufficient bandwidth to absorb the
occasional non-local jumps from tile to tile, or 1n various
other scenarios.

The above alternative 4-context method, which uses a
serpentine traversal from tileline to tileline, can be reduced
to a simpler non-serpentine version by substituting POSI-
TIVE wherever dirGeneral appears 1n the right-hand side of
an assignment, and deleting all assignments where dirGen-
eral 1s on the left-hand side. Then, use standard Boolean
logic to simplify the resulting code (and the corresponding
circuitry).

Avoiding Shiver and Productive Bit Processing

Similarly, as mentioned above, sliver and productive bit
processing 1mproves the stamp traversal efficiency signifi-

10

15

20

25

30

35

40

45

50

55

60

65

23

cantly when generating aliased fragments, but has a much
smaller effect when generating antialiased fragments.

There 1s a circuit delay cost to determining and using,
sliver and productive information. If the goal of the graphics
accelerator 1s solely or primarily antialiased fragment
ogeneration, then faster antialiased fragment generation may
result from not determining or using sliver or productive
information. With respect to the above methods, just replace
forwardSliver, backSliver, overProductive, and overSliver
with false, and then simplify the code (and the correspond-
ing circuitry) using standard Boolean logic. The reduced
cycle time may well outweigh the disadvantage of visiting a
few additional unproductive positions.

Increasing the Likelithood That a Page Crossing
Uses Different Banks

When tiles are configured such that the traversal generates
all fragments on a given DRAM page before moving to
another page, it 1s preferred to always move from a page 1n
onc memory bank to a page 1n another memory bank so as
to maximize page prefetching opportunities. In this case,
replace the overTileSave state with two states: overTileSav-
¢Even and overTileSaveOdd. Determining whether an (x, y)
position 1s 1n an even or odd tile 1s easy, as 1t merely requires
logically XORing a bit from the stamp’s x coordinate with
a bit from 1its y coordinate:

OddTile(x, y)=x| log,(tileWidth) | (v|log,(tileHeight) |;

where z[n] means “the n” bit of z.”

The code sequences (and corresponding circuitry) that
implement saving over can be broken into two cases: even
over tiles are saved 1n overTileSaveEven; and odd over tiles
are saved in overTileSaveOdd. The code sequences (and
corresponding circuitry) that use overTileSave are broken
into two cases as well, and choose overTlileSaveEven if
current 1s 1n an odd tile; else choose overTileSaveOdd. In
addition, it 1s necessary to manage other small details, for
example, invalidate both overlileSaveEven and overTile-
SaveOdd where the old code invalidates overlileSave.

Traversal Using Subset Metatiling

The above concepts of traversing an object 1n a tile by tile
manner can be extended to any number of levels of tiling.
For example, some specialized DRAM devices (3DRAM
and CDRAM from Mitsubishi, in particular), have a small
first-level cache with cache lines that are much smaller than
the second-level bank cache that holds pages.

For these RAMSs, 1t would be desirable to first generate all
fragments 1n a first-level cache line, then all fragments 1n all
the other first-level cache lines that are still within the same
page, and then generate all fragments 1n the next page, again
ogenerating the fragments within that page first-level cache
line by first-level cache line, etc.

Any of the methods above can be extended by adding
more save contexts to maintain mformation about how to
move to a new metatile. For example, the 4-context alter-
native can be extended with the three contexts
forwardTileSave, backTileSave, and overMetaTileSave.

FIG. 9 shows an example of such a traversal order for a
triangle 900. Here, the thick dashed lines 901 are metatile
boundaries, and the thick solid lines 902 are normal tile
boundaries. In this case, the tile size has been reduced to 4x4
pixels, while the metatile size 1s 8x8 pixels. This example
has no need for backTileSave, but locations where the
forwardTileSave context is used are shown by pentagons (6,

US 6,714,196 B2

29

10, etc.), and an overMetaTileSave context save 1s shown
with an upside down triangle (37).

This metatiling type of traversal can also be used for other
purposes. Assume that the tile size used for the texture cache
1s smaller than the tile size used to match a page. It may be
advantageous to use metatiling, where the size of a metatile
1s the size of a page, 1n order to both reduce misses to the
texture cache, as well as reduce page crossing overhead 1n
the frame bulifer.

Non-subset Metatiling

Above, tiled and metatiled traversal has been described 1n
terms of a single destination pixel grid. This works well for
filling areas of a rendering surface with data that are inter-
polated from vertices. This method also works for texture
mapping, where maximizing cache hits 1s probably the
biggest performance 1ssue. However, this type of traversal
does not work well for copying pixel data from one portlon
of a frame buffer to another, where a given tile size and
origin may not be appropriate for both the source and
destination grids.

In this case, the source and destination rectangles being
copied are usually not aligned with each other. For example,
a graphics application might copy a 25x25 pixel rectangle
from location (5,6) in the source grid to a location (19,35) in
the destination grid. Even when the source and destination
pages have 1dentical dimensions, if the tile size and origin 1s
configured for the destination grid, a destination tile will
map very rarely to a single page in the source grid. A
destination tile will sometimes map to two pages 1n the
source grid, and will map most often to four pages in the
source grid.

By adding an offset or otherwise arithmetically moditying,
the destination (X,y) values, it is possible, for example, to
map ftiles to match the source pixel grid. This simply
reverses the problem: a single page 1n the source pixel grid
maps to one, two, or four pages 1n the destination grid.

To further complicate things, the source and destination
orids may have different page dimensions. For example, the
source grid may be an off-screen array of pixels, and thus use
square pages, while the destination grid may be the display-
able screen, and thus be more rectangular 1n order to
accommodate screen refresh operations. Finally, the source
and destination grids may even have different numbers of
pixels per page. For example, 1f a source grid of 32-bit pixels
Oust RGBA) is copied into a destination grid of 128-bit
pixels (front and back buffered RGBA, plus Z depth, stencil,
and other information), then the source pages will contain
four times as many pixels as the destination pages.

In many systems, especially those using more than two
banks, 1t would be advantageous to use tiled traversal to, for
example, visit all locations 1n a destination page before
moving to the next destination page, and within a destination
page to also generate all fragments being copied from one
source page before moving to another source page. Rather
than bouncing between the portions of the four source pages
required to fill a destination page, this scheme, instead,
localizes the access to source data as much as possible.

Source to Destination Traversal Using Metatiling,

By adding a signed offset vector to the destination (x, y)
position, one can map destination positions 1nto source
positions, and thus define metatiles that correspond to physi-
cal enfities, such as memory pages, 1n the source. If metatiles
are aligned to destination pages, while tiles are aligned to

10

15

20

25

30

35

40

45

50

55

60

65

30

source pages or vice-versa), then overlaying both the tile and
metatile grids on the destination creates a composite grid
with several different rectangle sizes that are not restricted to
powers of two 1 width and height.

The metatiling method suggested 1n the previous sections
then has the best possible behavior one can expect for
copying pixel data. Traversal with metatiling generates all
fragments on a destination page (a metatile) before moving
to another destination page. The method further generates all
fragments on the portion of a source page (tile) that 1s within
the current metatile before moving to the portion of a
different source page that 1s within the same metatile.

Even if full metatiling 1s not sufficiently usetful to warrant
implementation 1n a system, 1t may still be desirable to
support pixel copy metatiling with fewer additional con-
texts. Copies are rectangular 1n shape, and thus fragment
generation can begin at a double-extreme vertex.
Furthermore, because the source and destination rectangles
may overlap, copies must not serpentine their way through
the rectangle, but must proceed 1n a typewriter-like fashion
from tile to tile. Thus, 1t 1s possible to implement pixel copy
metatiling with just five contexts: current, forwardSave,
forwardTileSave, overlileSave, and overMeta TileSave.

An actual implementation must deal with starting at any
vertex, 1n order to properly handle overlapping copies.
However, for stmplicity of this description, assume that one
starts at the upper left corner. The forwardSave context
always records the first position found on the stampline
below that 1s in the same metatile. The forwardMeta'Til-
eSave context records the first position found on the stam-
pline below that 1s in the next metatile down.

The overTileSave context records the first position found
to the right that 1s in the next tile, while overMetaTileSave
records the first position found to the right that 1s in the next
metatile. Thus, although the movement methods must be
slightly different for general (non-metatiled) polygons and
for (metatiled) pixel copies, the storage would increase by a
single context.

FIG. 10 shows an example of a metatiling traversal order
for copying pixel data from destination locations to source
locations. The 4x4 pixel source page tiles are shown with
thick solid lines 1002, the 8x4 pixel destination page meta-
tiles with thick dashed lines 1001. The rectangle of pixel
1010 being copied 1s shown 1n destination space. Positions
saved 1n fowardSave are 1n hexagons, fowardTileSave
pentagons, overTileSave triangles, and overMetaTileSave in
upside-down triangles.

Graphics Accelerator Logic

FIG. 12 depicts a stmplified representation of the graphics
accelerator 108 (FIG. 1). An interface 1250, such as a PCI
interface, couples the graphics accelerator to the system
chipset 104 (FIG. 1). Graphics rendering and other com-
mands received from the processing unit 102 (FIG. 1) via the
system chipset are parsed by a command parser 1252. The
parser 1252 determines the object rendering operations to be
performed, and passes these to a fragment generator 1260,
which will be described 1n more detail with reference to
FIGS. 13 and 14. Fragments generated by the fragment
generator 1260 are further processed by a texture processor
1262 so as to apply a speciiied texture pattern, if any, to the
object being rendered. The resulting fragments are then
passed to one or more pixel pipelines 1222 for pixel pro-
cessing and storage. A pixel pipeline 1222 preferably
includes a pixel processor 1270 for storing fragments into
the frame buffer segment 1272 via a memory controller

US 6,714,196 B2

31

1274. The pixel processor 1270 may perform tasks such as
combining a fragment previously stored 1n the frame buifer
secoment 1272 with a fragment obtained from the graphics
accelerator 108 and then stormg the resulting combined
fragment back into the frame buffer segment 1272.

A video controller 1280 couples the plurality of frame
buffer segments 1272 to a display device 126 (FIG. 1). The
video controller 1280 reads pixel values from the frame
buifer segments 1272 via memory controller 1274 and sends
corresponding pixel information to the display device 126
for display.

Each frame buffer segment 1272 preferably includes a
frame buffer cache 1273 havmg a plurality of frame bufler
cache lines 12735 for storing image information. Each frame
buifer cache line 1275 preferably stores the fragment infor-
mation for a plurality of pixels. Furthermore, the size of the
frame bulfer cache lines, 1in terms of the number of pixels
whose fragment mformation i1s stored within each cache
line, 1s used to determine the size of the tiles used by the
ographics processor. In particular, the frame bufler 1s parti-
tioned into frame buffer segments 1272 that are distributed
across the plurality (e.g., eight) of pixel pipelines 1222, and
tiles are sized so that the fragment information for each tile
1s stored 1n an integer number of frame buifer cache lines,
salid 1nteger number being equal to the number of pixel
plpehnes 1222. Preferably the fragment information for each
file 1s stored in one cache line 1275 from each frame buffer
segment 1272 (each of which is used by one of the plurahty
of pixel pipelines 1222), as opposed to being stored in a
plurality of frame buffer cache lines from a single frame
buffer segment 1272.

In summary, the tiles are sized to that the fragment
information for each tile 1s stored 1n an nteger number of
frame buffer cache lines, and further all the pixels whose
information 1s stored 1 any one cache line fall within a
single tile. Sizing the tiles 1n this way, and organizing the
storage locations of fragment information for pixels in this
way, allows for efficient usage of the memory resources in
the graphics processor.

A portion of frame buffer (which comprises the plurality
of frame buffer segments 1272) is used as a texture map
memory and the texture processor 1262 preferably includes
a texture map cache 1263 having a plurality of texture map
cache lines 1265. Texture map pattern information in stored
in the texture map cache lines 1265, and the size of the
texture map cache 1263 and the texture map cache lines
1265 1s taken into account in sizing the tiles used by of the
ographics processor when texture mapping 1s enabled. In
particular, the texture map cache 1263 preferably stores
texture map information for the plurality of pixels that fall
within a single tile, and the texture map information required
by the current texture mapping mode for an entire tile 1s
preferably approximately the size of the texture cache, on
average, over a range of representative textured surfaces.
Further, a useful rule of thumb is that the tiles should be
sized so that, 1n a worst case tile, the texture information
assoclated with the pixels in the tile has a storage size that
1s not larger than twice the capacity of the texture map cache.

FIGS. 13 and 14 show some of the circuitry of the
fragment generator 1260. Edge initialization logic 1310
generates or provides edge and edge increment values for
the next object to be rendered that are stored 1n a set of next
object edge registers 1320. These registers 1320 include next
ob"ec: x and y edge increment registers 1323, and next
object 1nitial edge values registers 1325. Next object regls-

ters ready flag 1327 1s enabled when registers 1325 and 1323

10

15

20

25

30

35

40

45

50

55

60

65

32

contain valid edge and edge increment values, and when
registers 1425 and 1423 (FIG. 14), described below, contain
valid channel and channel increment values. After one
primitive object has been rendered, when the next object
registers ready flag 1327 1s set, the next object x and y edge
increments 1323 are loaded into the current x and y edge
increments 1330, and the next object initial edge values
1325 are loaded 1nto the current edge context 1345.

Each of the saved contexts (described above in detail for
the various embodiments) includes a saved edge context,
stored 1n registers 1340, and a saved channel context, stored
in registers 1440 (FIG. 14). A data structure representation
of an edge context 1s shown in FIG. 16, and includes four
edge function values plus a valid flag and a sliver flag. (The
over contexts contain a productive flag rather than a sliver
flag for the 5-context and 6-context embodiments.) Each of
the edge function values represents the evaluation of a
half-plane edge function at the origin of the stamp location
associated with the saved context. A data structure repre-
sentation of a channel context 1s shown 1n FIG. 17, and
includes color, transparency, depth, fog, texture coordinate,
texture derivative and x and y coordinate values.

The current context includes the current edge context,

stored 1n registers 1345, and the current channel context,
stored in registers 1445 (FIG. 14).

Each of the three sparse contexts forward, back, and over
includes only an edge context. The sparse edge contexts are
not stored in registers 1340, but are generated by edge
evaluators 1350

The current edge context 1345 and the current x and vy
edge 1increments 1330 are conveyed to a set of edge evalu-
ators 1350. The edge evaluators 1350 are used to determine
whether various points 1n and around the current stamp fall
within the object being rendered. Each edge evaluator con-
tains circuitry for evaluating a set of half-plane edge
functions, by adding appropriate multiples of the current x
and y edge increments 1330 for each edge to the edge values
from the current edge context 1340. Each set of edge
evaluators together determine whether a given (X, y) posi-
tion of a pixel or sample point 1s within a specified object.
Edge evaluation 1s described above with respect to step 1107

and 1107a.

There are edge evaluators 1352 for evaluating the sample
points 1n the current stamp, an edge evaluator 1354 for the
origin of the current stamp, edge evaluators 1356 for evalu-
ating probe points around the current stamp, as well as edge
evaluators 1358 for evaluating speculative points around the
current stamp, 1n particular, the origin of the stamp positions
immediately to the left and above the current position.

FIG. 15 depicts exemplary edge evaluation locations for
a 4x2 stamp. The locations marked by X’s are sample points
in the stamp, the location marked by a circle 1s the origin of
the stamp, the locations marked by diamonds are probe
points, and the locations marked by a square are speculative
points. The edge evaluators 1352 (FIG. 13) for all seven
sample points, as well as the edge evaluator 1356 for probe
point RB, compute only the sign bit of the half-plane
functions, as these values are needed only for testing if
points are 1nside the object being rendered. The edge evalu-
ator 1358 for the speculative points SB and SO, as well as
the edge evaluator 1356 for probe point LB and RT, compute
the full halt-plane function values, as these values may be
loaded into the current edge context 1345 1if the stamp
movement decision circuitry 1360 moves the stamp back,
over (when dirOver is NEGATIVE), forward, or over (when

dirOver is POSITIVE), respectively. The origin edge evalu-

US 6,714,196 B2

33

ator 1354 passes the current edge context values 1345
through without modifying them. The probe points are
preferably at fixed locations for a given stamp size, and are
always all evaluated.

The results generated by the origin and sample point edge
evaluators 1354 and 1352, respectively, are used to form a
fragment sample mask 1395. The mask 1s a set of bits
indicating which sample points of the stamp fall within the
object being rendered.

The results generated by the probe point edge evaluators
1356 are used by logic 1380 to compute valid, shver,
productive, and ftile boundary bits. This logic 1s described
above with respect to step 1107 and 1107a. The x and vy tile
masks 1390 used by the compute logic 1380 are described
above with respect to step 11035.

Stamp movement decision circuitry 1360 1s described in
detail above with respect to step 1109 and 1109a. This
circuitry 1360 uses information from the saved edge con-
texts 1340, mmformation from bookkeeping state circuitry
1370, and the valid, sliver, productive, and tile boundary bits
from logic 1380. The stamp movement decision circuitry
1360 generates control signals for updating the saved edge
contexts 1340, the current edge context 1345, and the
bookkeeping state 1370. The stamp movement decision 1s

also used by the channel context update circuitry shown 1n
FIG. 14.

Channel initialization logic 1410 (FIG. 14) generates or
provides 1nitial channel and channel increment values that
are stored 1in a set of next object channel registers 1420.
These registers 1420 include next object x and y channel
increment registers 1423, and next object initial channel
value registers 1425. After one primitive object has been
rendered, the next object x and y channel imncrements 1423
are loaded 1nto the current x and y channel increments 1430,
and the initial channel values 1425 are loaded into the
current channel context 13435.

While the current edge context 1345 contains the edge
values for the stamp origin during the current cycle, the
current channel context 14435 contains the channel values for
the stamp origin on the previous cycle. The current edge
context 1345 1s needed immediately 1n a cycle, so that the
probe point edge evaluators 1356 can quickly deliver results
to the stamp movement decision circuitry 1360. Between the

10

15

20

25

30

35

40

34

probe point edge evaluators 1356 and the speculative point
cdge evaluators 1358, the edge functions are completely
evaluated to their full precision for the four adjacent Man-
hattan stamp positions to which the stamp may immediately
move. A similar arrangement for channels would require
evaluating all channel values for these nearby positions, then
multiplexing between these possibilities and the saved chan-
nel contexts using control signals from the stamp movement
decision circuitry 1360. Unlike edge function values, chan-
nel values are not needed by stamp movement decision
circuitry 1360, and so this arrangement wastefully evaluates
channel values for positions that will not be moved to. To
reduce the logic devoted to computing channel values, the
logic in FIG. 13 delays computing channel values until after
the stamp movement decision circuitry 1360 generates
stable control signals. Allowing this channel computation to
proceed 1n the same cycle 1n which the stamp movement
decision 1s made would require 1ncreasing the cycle time of
the logic shown 1in FIGS. 13 and 14. Instead, the channel
computation logic in FIG. 14 saves the control signals from
stamp movement decision circuitry 1360 (FIG. 13) in deci-
sion result latch 1480, and computes the channel values
during the next cycle.

The compute next channel values logic 1450 selects
channel data from the current channel context 1445 if the
decision result latch 1480 indicates a move to an adjacent
position, or from one of the saved channel contexts in
registers 1440 1f the decision result latch 1480 indicates a
move to a saved position. The compute next channel values
logic 1450 adds the appropriate multiples of the x and y
channel increments 1430 to the selected context to compute
the interpolated channel values 1495 and to load into the
current channel context 1445 for use 1n the next cycle. If the
decision result latch 1480 indicates that one or more adja-
cent position should be saved, the current channel context

1445 1s loaded 1nto the appropriate contexts in saved channel
contexts 1440.

This 1nvention 1s described using specific terms and
examples. It 1s to be understood that various other adapta-
tions and modifications may be made within the spirit and
scope of the invention. Therefore, it 1s the object of the
appended claims to cover all such variations and modifica-
fions as come within the true spirit and scope of the
invention.

TABLE 2

APPENDIX A

goForwardInTile = goBackSave = goBackInTile = goOverInTile = goOverSave
= goForwardTileSave = goForwardNewTile = goBackNewT1le
= goBackTileSave = goOverNewTile = goOverlileSave = false;

if (forwardValid && !forwardTileBoundary && (dirStamp == POSITIVE)) {
// forward 1s valid, inside this tile, and we’re already moving forward in this

stampline.

goForwardInTile = true;
current = forward;
} else if (backSaveValid) {
// Saved back position in this tile 1s valid, so go back to it and then start moving
// backward through stampline
goBackSave = true;
current = backSave;
} else if(backValid && !backTileBoundary
& & (firstStampInLine|(dirStamp == NEGATIVE))) {
// Back position valid, inside this tile, and either (1) we’re at the first
// position in this stampline (and no forward move within tile), so we want
// to bypass directly to back, or (2) we’re already going backward in this stampline
goBackInTile = true;
current = back;

US 6,714,196 B2

35

TABLE 2-continued

APPENDIX A

} else if (overValid && !overTileBoundary
& & (loverSaveValid||(loverSaveProductive && overProductive))) {
// over valid, 1n this tile, and either no saved over 1n this tile, or else over 1s
// strictly superior to overSave. This implements “first-save” semantics for
// over, which 1s not needed for correctness, but which increases the hit rate
// of the texture cache by minimizing the variance in the number of fragments
// generated between fragments that are adjacent in the over direction.
goOverInTile = true;
current = over;
} else if (overSaveValid) {
// Saved over 1n this tile 1s valid, use it
goOverdave = true;
current = overSave;
// If we get to any of the tests below, it means that the current tile has been
// completely generated, and we now need to decide what tile to go to next.
} else if (forwardTileSaveValid) {
// Saved forward in new tile is valid (choosing saved position rather than
// the sparse combinational forward 1n a new tile implements “first-save”
// semantics, which is needed for correctness)
goForwardTileSave = true;
current = forwardT1leSave;
} else if(forwardValid & & forwardTileBoundary && dirTile == POSITIVE) {
// Forward valid, in new tile, and we’re moving from tile to tile in the positive
direction
goForwardNewTile = true;
current = forward;
} else if(backTileSaveValid) {
// Saved back tile 1s valid, and at this point we have no more work within the tile,
// and we can’t move forward to a new tile. Again, we must choose a saved position
// before a combination back position 1n a new tile for correctness.
goBackTileSave = true;
current = backTileSave;
} else if (backValid && backTileBoundary
& & (firstTileInLine|[(dirTile == NEGATIVE))) {
// Looks almost like moving directly to back position within tile. The back
// position 1s valid and in a new tile, and either this 1s the first tile in the stampline,
// or we’re already moving backward from tile to tile.
goBackNewTile = true;
current = back;
} else if (overValid && overTileBoundary
& & (loverTileSaveValid || toverTileSaveProductive || overProductive)) {
// Over 1s valid and 1n new tile, and either no saved over position in
// new tile, or else over 1s at least as good as saved state. This

// implements “last-save™ semantics, which seems to reduce page
// crossings in which both pages are in the same bank.
goOverNewTile = true;
current = over;

} else if(overTileSaveValid) {
goOverTileSave = true;
current = overTileSave;

}else {

// We’ve generated all fragments within the object.
Get new object and go to Step 1;

TABLE 3

APPENDIX B

// Any more positions to visit in this stampline 1in this tile?
morelnStampline = goForwardInTile||goBackInTile|backSaveValid;
// Any more positions to visit in this tile?
morelnTile = morelnStampline||goOverlnTile|loverSave Valid;
// Any more tiles to visit in this tileline?
morelnTileline = morelnTile|jgoForwardNewTile||goBackNewTile
|forwardTileSave Valid |backTileSaveValid;
// Save back into backSave if 1t’s valid and inside this tile, and this 1s the very
// first stamp position within the stampline, and we’ll be moving forward inside
f/this tile
writeBackSave = backValid && !backTileBoundary && firstStamplnLine
& & forwardValid && lforwardTile Boundary;
if (goBackSave) {
backSaveValid = false;
oversaveSliver = false;

36

US 6,714,196 B2
37

TABLE 3-continued

APPENDIX B

I else if(writeBackSave) {
backSave = back;
backSaveValid = true;
backSaveSliver = backSliver;

h

// Save first over position found inside this tile into overSave as long as we
// still have other positions to visit in this stampline (that is, we don’t take the
// goOverlnTile bypass). Also allow replacement of overSave if it is not known
// productive and over 1s known productive.
writeOverSave = overValid && loverTileBoundary && morelnStampline

&& (loverSaveValid || (loverSaveProductive && overProductive));

if(goOverSave || goOverInTile) {

overSave Valid = false;
oversaveProductive = false;
} else if(writeOverSave) {
Oversave = over;
oversave Valid = true;
oversaveProductive = overProductive;
;
// Save first forward position found 1n new tile into forwardTileSave as
// long as we’re moving from tile to tile in the forward direction, and we
// have more positions to visit in the current tile. We don’t have to worry
// about replacing a saved sliver with a non-sliver position, because to get to
// the non-sliver position we’ll have moved to a new stampline due to over being
// valid, and that will have zapped any saved forward and back sliver positions.
writeForwardTileSave = forwardValid && forwardTileBoundary
& & (dirTile == POSITIVE) & & !forwardTileSave Valid
& & morelnTile;
if (goForwardTileSave) {
forwardTileSaveValid = false;
forwardTileSaveSliver = false;
} else if (writeForwardTileSave) {

I

forwardTileSave = forward;

el

forwardTileSaveValid = true;

I

forwardTileSaveSliver = forwardSliver;

h

// Save first back position found in new tile into backTileSave, as long as
// we’ve 1n the first tile 1in a stampline, or else we’re moving from tile to

// tile 1n the back direction.
writeBackTileSave = backValid && backTileBoundary
& & (firstTileInLine || (dirTile == NEGATIVE))
& & !backTileSaveValid & & !goBackNewTile;
if(goBackTileSave) {
backTileSaveValid = false;
backTileSaveSliver = false;
} else if(writeBackTileSave) {
backTileSave = back;
backTileSaveValid = true;

backTileSaveSliver = backSliver;
;
// Save last over position found in new tile to overTileSave (as long as we don’t replace a
// known productive with a not known productive), but only if we have other work to do in
this
// stampline (that is, we don’t take the goOverNewTile bypass).
writeOverTileSave = overValid && overTileBoundary
& & morelnTileline
&& (loverTileSaveValid || loverTileSaveProductive || overProductive);
if (goOverTileSave || goOverNewTile) {
overlileSaveValid = false;
overlileSaveProductive = false;
} else if (writeOverTileSave) {

1"]

overlileSave = over;

bl

overlileSaveValid = true;

1"]

overlileSaveProductive = overProductive;

33

US 6,714,196 B2

39

TABLE 4

APPENDIX C

// Moving in forward direction 1n stampline unless we choose one of the

// two back moves within a tile
dirStamp = ((goBackInTile || goBackSave) ? NEGATIVE:POSITIVE);
if (goBackNewTile || goBackTileSave) {
dirTile = NEGATITVE;
} else if (goOverNewTile || goOverTileSave) {
dirTile = POSITIVE;

}else {

/f leave 1t whatever it was

40

TABLE 4-continued

APPENDIX C

5 firstStampInLine = !(goForwardInTile || goBackSave | goBackInTile);
if (goOverNewTile || goOverTileSave) {
firstTileInline = true;
} else if (goForwardTileSave || goForwardNewTile
| goBackTileSave || goBackNewTile) {
firstTileInline = false;

}else {

/f leave 1t whatever it was

if (goOverInTile || goOverNewTile || goOverSave || goOverTileSave) {
firstColumnInObject = false;

}else {

/f leave it whatever is was

goto Step 1107;

10

15

TABLE 5

APPENDIX D

goForward = goForwardSave = goBack = goBackSave

= goOverlnTile = goOverNewTile = goOverTileSave = false;

oldPhase = phase;
if(overValid && !overTileBoundary && !overSliver) {

// over valid, not a sliver, and 1n this tile
goOverlInTile = true;

I else if (phase == 0& &

((dirGeneral = POSITIVE

&& (forwardSaveValid || forwardValid) && !forwardTileBoundary)
| (dirGeneral == NEGATIVE

&& (backSaveValid || backValid) && !backTileBoundary))) {
// There 1s work to do yet in phase 0, so move to a new scanline

// 1n the dirGeneral direction
if (dirGeneral = POSITIVE) {
if(forwardSaveValid) {

goForwardSave = true;

}else {

goForward = true;
;

}else {
if (backSaveValid) {

goBackSave = true;

}else {

goBack = true;
y

)

} else if ((dirGeneral = POSITIVE

& & (backSaveValid

| (backValid
| (dirGeneral = NEGATIVE

&& (firstStamplinelnTile || phase == 1))))

& & (forwardSaveValid || (forwardValid && (firstStamplineInTile || phase == 1))))) {

// There 1s work to do in phase 1, so move to a new scanline in the opposite of
// the dirGeneral direction
phase = 1; // In case 1t 1s currently O

if (dirGeneral = POSITIVE) {
if (backSaveValid) {
goBackSave = true;
}else {
// Either we’re already heading back, or we’re still on the first

// stampline 1n the tileline. In either case it’s okay to use the bypass.
goBack = true;

h
}else {

if (forwardSaveValid) {
goForwardSave = true;

}else {

goForward = true;
h

US 6,714,196 B2
41

TABLE 5-continued

APPENDIX D

} else if ((dirGeneral == POSITIVE
&& (forwardSaveValid || ((phase & 1) == 0 & & forwardValid)))
| (dirGeneral = NEGATTVE
&& (backSaveValid [((phase & 1) == 0 && backValid)))) {
// There’s work to do 1n phase 2, so move to a new scanline 1n the dirGeneral
direction.
phase = 2;
if (dirGeneral == POSITIVE) {
if (forwardSaveValid) {

goForwardSave = true;
}else {
// Either we’re already heading forward in phase 2, or else
// we’re still 1n phase 0, but there was nothing to do in phase 1
// so we’re skipping directly to phase 2. In either case it’s
// okay to use the bypass

goForward = true;

h

I else {
if(backSaveValid) {

goBackSave = true;

Felse 4

goBack = true;
y
h

} else if (overValid && loverTileBoundary) {
// over valid and 1in this tile. It’s a sliver, but we didn’t find anything more
// useful to do above, so we have to take it.
goOverInTile = true;

} else if (overValid && (YoverTileSaveValid || overTileSaveSliver || overSliver)) {
// Use the over bypass, as either no saved value, or else we want to take the
// last best over position 1n the new stampline, and this over 1s no worse than
// saved over

goOverNewTile = true;
} else if (overTileSaveValid) {
goOverTileSave = true;

}else {

load new object and go to Step 1; // Nothing left to do in this object
)

if (goOverInTile) {
current = over;

I else if (goOverNewTile) {
current = over;

I else if(goOverTileSave) {
current = overTIileSave;

} else if(goForwardSave) {
current = forwardSave;

} else if (goForward) {
current = forward;
I else if (goBackSave) {

current = backSave;
} else if (goBack) {

current = back;

}else {

assert (0);
h

TABLE 6

APPENDIX E

writeBackSave = backValid && !backSaveValid && !goBack
& & ((dirGeneral == POSITIVE & & (firstStamplinelnTile || oldPhase == 1))
(dirGeneral == NEGATTVE & & ((oldPhase & 1) == 0)));
if (goBackSave) {
backSaveValid = false;
backSaveSliver = false;
} else if (writeBackSave) {
backSave = back;
backSaveValid = true;
backSaveSliver = backSliver;

h

writeForwardSave = forwardValid && !forwardSaveValid & & !goForward
& & ((dirGeneral = NEGATIVE && (firstStamplineInTile || oldPhase == 1))
| (dirGeneral = POSITIVE && ((oldPhase & 1) == 0)));

42

US 6,714,196 B2

43

TABLE 6-continued

APPENDIX E

if (goForwardSave) {
forwardSaveValid = false;
forwardSaveSlhiver = false;

} else if (writeForwardSave) {
forwardSave = forward;
forwardSaveValid = true;
forwardSaveSliver = forwardShiver;

h

// Last-save, but only if current over 1s no worse than saved position
writeOverTileSave = overValid && overTileEdge

& & 1goOverNewTile

&& (loverTileSaveValid || overTileSaveSliver || loverSliver);
if (goOverTileSave || 'goOverNewTile) {

overlileSaveValid = false;

overlileSaveSliver = false;
} else if (writeOverTileSave) {

overlileSave = over;

overlileSaveValid = true;

overlileSaveSliver = overSliver;

h

44

// We cannot treat forward or back positions as slivers once we move away from the

// stampline 1n which they were marked slivers.

if (goForward || goForwardSave) {
backSaveSlhiver = false;

)

if (goBack || goBackSave) {
forwardSaveSlhiver = false;
h

We claim:

1. A method for traversing pixels of a graphic object with
a stamp, the graphic object being defined with respect to an
array ol pixels that 1s divided into an array of rectangular

files, comprising:
moving the stamp along on a stampline, within one of the

tiles, until a boundary of the tile or a boundary of the
ographic object 1s reached;

saving 1nformation associlated with a stamp position that
1s 1n an adjacent tile, if any, mnto a corresponding stamp
context of a plurality of stamp contexts; the saved

information including said stamp position;

jumping to another stampline 1n the one tile and repeating,
the moving, saving, and jumping steps until all pixels
that are 1in an 1ntersection of the graphic object and the
tile have been traversed; and

restoring from a stamp context of the plurality of stamp
contexts the saved stamp position so as to position the
stamp 1n another tile, and repeating the moving, saving,
jumping and restoring steps until all pixels of the
graphic object have been traversed.

2. The method of claim 1 wherein the plurality of stamp
contexts include a first stamp context for storing a stamp
position adjacent to a current stamp position, and a second
stamp context for storing a stamp position that 1s adjacent to
the current stamp position and 1n a tile adjacent to the current
tile.

3. The method of claim 1 wherein the plurality of stamp
contexts include a first stamp context for storing a stamp
position adjacent to a current stamp position 1n a direction
perpendicular to a direction of movement of the stamp along,
a stampline, and a second stamp context for storing a stamp
position 1n an adjacent tile 1n the same direction as the
direction of movement of the stamp along a stampline.

4. The method of claim 1 wherein the plurality of stamp
contexts include a first stamp context for storing a stamp
position adjacent to a current stamp position in a direction
perpendicular to a direction of movement of the stamp along,

30

35

40

45

50

55

60

65

a stampline, a second stamp context for storing a stamp
position adjacent to the current stamp position 1n the oppo-
site direction from the first stamp context, and a third stamp
context for storing a stamp position in an adjacent tile 1n the
same direction as the direction of movement of the stamp
along a stampline.

5. The method of claim 1 wherein the stamp moves
vertically along column stamplines before moving to the
next stampline.

6. The method of claim 1 wherein the stamp moves
horizontally along row stamplines before moving to the next

stampline.
7. The method of claim 1 wherein the graphic object
includes a plurality of vertices and the method includes:

determining a minimal rectangular bounding box for the
oraphic object; and

selecting a starting vertex from the plurality of vertices,

the starting vertex lymmg on a side of the minimal
rectangular bounding box, and positioning the stamp to
a pixel position such that the stamp contains the starting,
vertex prior to performing the first moving step.

8. The method of claim 7 wherein the starting vertex 1s
positioned on a corner of the minimal rectangular bounding
box.

9. The method of claim 1 including evaluating a plurality
of edge functions at each of a plurality of points whose
positions are determined relative to a current stamp position
to produce a corresponding set of edge function results, and
using sald edge function results to determine when to
perform the move, save, jump, and restore steps.

10. The method of claim 1, wherein the tile includes left,
right, top and bottom boundaries;

the method including determining whether the current
stamp position 1s at one or more of the left, right, top,

and bottom boundaries of the tile.
11. The method of claam 1 wherein:

information associated with the pixels 1s stored 1n a frame
buffer memory;

US 6,714,196 B2

45

the frame buifer memory includes a frame buiffer cache
having frame buifer cache lines;

cach frame buffer cache line 1s capable of storing infor-
mation associated with a plurality of the pixels; and

the texture information associated with the pixels located
in any one of the tiles having a storage size that 1s not

46

19. The method of claim 18, including

at a current stamp position of the stamp, computing for a
plurality of sparse contexts information associated with
a plurality of stamp positions neighboring the current

: : : : t 1ti0n;
all the mmformation capable of being stored 1n each frame : SHTHP POSITON,
bu : - : the i1nformation computed for each sparse context
uifer cache line corresponds to pixels located 1n only . L . i
. includes a valid bit, wherein a first value of the valid bit
one of the tiles. i hether th . - ted with
12 The method of claim 1 wherein: mndicates whether the stqmp posm@n assomf‘;lte wit
- | | | T | the sparse context potentially contains a portion of the
information associated with the pixels is stored 1n a frame 10 object and is therefore a valid position, and a second
bufler memory; value of the valid bit indicates that the corresponding
the frame buffer memory 1s partitioned 1nto a plurality of stamp position does not contain a portion of the object
frame buffer segments; and 1s therefore an mvalid position;
cach frame bufller segment 1includes a frame bufler cache whn—irem Sald.tI.HOVl'I]g slep éncludes ?ﬁ" tiflmlml%g 4 I:?Xt
having frame buffer cache lines: s stamp position in accordance wi ¢ 1nformation
b e be Tine i ble of storine inf computed for the plurality of sparse contexts; and
cacll ltame DULCD cacle Une 15 ¢dpable O1 SI0tIE 1101 said saving step uses information from at least one of the
mation associated with a plurality of the pixels; and sparse contexts
the tile mncludes at most one cache line from each of the 20 The method of claim 19 wherein
plurality of frame buifer segments. | . 5o the information associated with each of a plurality of
13. The method of claim 12 wherein each tile comprises contexts includes a sliver bit, wherein a first value of
a set of pixels comprising all pixels stored m a single the sliver bit indicates whether the stamp position
respective cache line of (-:;.ach of the frame buffer segments. acsociated with the context has been determined to be
14. The ‘method _Of claim 1 Whﬁ}[‘@lﬂ: | | a sliver position that may potentially be avoided, and a
exture 1qf0rmat10n to be applied to pixel fragments 1s hs second value of the sliver bit indicates that the stamp
stored 1 a texture map memory; position associated with the context has not been deter-
the texture map memory includes a texture map cache mined to be a sliver position; and
ca.pable of St(?rillg texture map information associated the method 1ncludes mvalidating a particular one of the
Wlﬂ} a plurahty.of the pixels, the texture map cache stamp contexts that contains a sliver bit set to the first
having an associated storage capacity; and 30 value when another particular one of the stamp contexts

contains a valid bit set to the first value of the valid bat.
21. The method of claim 19, wherein the bypassing and

moving directly step includes selecting and saving one of the
plurality of sparse contexts mto a current context.

22. The method of claim 19 wherein the plurality of sparse
contexts includes a forward sparse context denoting a stamp
position immediately adjacent to the current stamp position
in a direction of movement of the stamp along a stampline,
an over sparse context denoting a stamp position immedi-
ately adjacent to the current stamp position and perpendicu-
lar to the direction of movement of the stamp along a
stampline, and a back sparse context denoting a stamp
position immediately adjacent to the current stamp position
in the opposite direction from the forward sparse context.

larger than twice the capacity of the texture map cache.
15. The method of claim 1 wherein:

texture information to be applied to pixel fragments 1s 35
stored 1n a texture map memory; and

the stamp moves horizontally from tile to tile within row
tilelines and the tiles have an associated width that 1s

equal to a width associated with the stamp.
16. The method of claim 1 wherein: 40

texture information to be applied to pixel fragments 1s
stored 1n a texture map memory; and

the stamp moves vertically from tile to tile within column

tilelines and the tile have an associated height that 1s

23. The method of claim 22, wherein

. : . 45
176(31}11]&1 o a height ass.ocmted Wlt.h the stamp. the stamp con texts include a current context, a back save
. The method of claim 1 wherein
_ o _ o stamp context, a forward save stamp context, over save
d s}wer position of the stamp 1s a stamp position where an context, back tile save stamp context, forward tile save
intersection of the stamp and the object does not stamp context and over tile save context;
include any'sample points of the stamp and the position S0 the method including:
may potentially be avoided; e 1 .
_ using tilelines parallel to the stamplines;
cach stamp context of a plurality of the stamp contexts upon placing the stamp in a new stampline, saving the
includes a sliver bit indicating whether the saved posi- back sparse context into the back save stamp context
tion stored 1n the stamp context has been determined to when the back sparse context is valid and denotes a
be a sliver position; and 55 stamp position within a current tile;
the restoring step includes preferentially selecting a stamp when the stamp is within a first tile of a tileline, saving
context having a silver bit that indicates that the saved the back sparse context into the back tile save
position stored therein has not been determined to be a context if the back sparse context is valid and
sliver position over another stamp context having a denotes a position in a tile adjacent to the current tile;
silver bit that indicates that the saved pOSitiOﬂ stored 60 when the Stamp 1S moving 1n a back direction from tile
therein has been determined to be a sliver position. to tile within a tileline, saving the back sparse
18. The method of claim 17, ncluding context mnto the back ftile save context if the back
bypassing the saving and restoring steps, when predefined sparse context 1s valid and denotes a position 1n a tile
bypass criteria are satisiied, and moving directly to the adjacent to the current tile;
stamp position that would have been saved into a 65 saving the over sparse context into the over save

corresponding stamp context of the plurality of stamp
contexts.

context if the over sparse context 1s valid and denotes
a position within the current tile;

US 6,714,196 B2

47

saving the over sparse context into the over tile save
context 1f the over sparse context 1s valid and denotes
a position 1n a tile adjacent to the current tile;

when moving 1 a forward direction from tile to tile
within a tileline, saving the forward sparse context
into the forward tile save context if the forward
sparse context 1s valid and denotes a position in a tile
adjacent to the current tile;

traversing a current stampline by moving to the stamp
position denoted by the forward sparse context as
long as the forward sparse context 1s valid and within
the current tile, then restoring the back save context
if valid to the current context and moving to the
stamp position denoted by the back sparse context as
long as the back sparse context 1s valid and within
the current tile;

traversing the current tile by moving to a new stampline
by restoring the over save context i1if valid to the
current context, then repeating the traversing the
current stampline and moving to a new stampline
operations until all portions of the object within the
tile have been visited;

traversing the current tileline by moving to a new tile
in the tileline m the forward direction by restoring,
the forward tile save context if valid to the current
context, traversing the new ftile, and repeating until
all tiles 1n the tileline in the forward direction that
contain a portion of the object have been visited, then
moving to a new ftile in the fileline 1n the back
direction by restoring the back tile save context 1f
valid to the current context, traversing the new tile,
and repeating until all tiles 1n the tileline 1n the back
direction that contain a portion of the object have
been visited;

traversing the entire object by moving to a new tile 1n
a new tileline 1n an over direction by restoring the
over tile save context 1f valid to the current context,
then repeating until all tilelines that contain a portion
of the object have been visited.

24. The method of claim 23 wherein the back sparse
context 1S not saved into the back tile save context, but 1s
instead saved 1nto and restored from the over save context
when the over sparse context stamp position 1s 1n a ftile
adjacent to the current tile, and 1s saved into and restored
from the over tile save context when the over sparse context
1s 1n the current tile.

25. The method of claim 19 wherein the plurality of sparse
contexts includes a forward sparse context denoting a stamp
position immediately adjacent to the current stamp position
and perpendicular to a direction of movement of the stamp
along a stampline, an over sparse context denoting a stamp
position 1mmediately adjacent to the current stamp position
in the direction of movement of the stamp along a stampline,
and a back sparse context denoting a stamp position 1mme-
diately adjacent to the current stamp position 1n the opposite
direction from the forward sparse context.

26. The method of claim 25 wherein

the stamp contexts include a current context, a back save
stamp context, a forward save stamp context, an over
save context, and an over tile save context;

the method 1ncluding:
using tilelines perpendicular to the stamplines;
saving the forward sparse context into a forward save
context 1f the forward context 1s valid and movement
from stampline to stampline 1s in a forward direction;
saving the back sparse context into a back save context
if the back sparse context 1s valid and the stamp 1s on

10

15

20

25

30

35

40

45

50

55

60

65

43

the first stampline or if movement from stampline to
stampline 1s 1n a back direction;
saving the over sparse context into an over tile save
context 1f the over sparse context 1s valid and denotes
a stamp position in a tile adjacent to the current tile;
traversing a stampline 1n the graphic object by moving,
to the stamp position denoted by the over sparse
context as long as the over sparse context 1s valid and
denotes a stamp position within the current tile;
traversing portions of the graphic object, if any, 1n the
first tile 1n the tileline 1n the forward direction by
restoring the forward save context if the forward
save context 1s valid and denotes a stamp position 1n
the current tile, and repeating the stampline travers-
ing and restoring the forward save context steps;
traversing portions of the graphic object, if any, 1n the
tileline 1n the back direction by restoring the back
save context if valid and repeating the stampline
traversing and restoring the back save context steps;
traversing portions of the graphic object 1 the tiles, it
any, below the first tile in the tileline 1 the forward
direction by restoring the forward save context if
valid and repeating the stampline traversing and
restoring the forward save context steps; and
restoring the over save context i1f valid and repeating
the traversing steps.

27. The method of claim 25 wherein

the stamp contexts include a current context, a back save
stamp context, a forward save stamp context, an over
save context, and an over tile save context;

the method 1ncluding:

using tilelines perpendicular to the stamplines;

saving the forward sparse context into a forward save
context 1f the forward context 1s valid and movement
from stampline to stampline 1s 1n a forward direction;

saving the back sparse context into a back save context
if the back sparse context 1s valid and the stamp 1s on
the first stampline or 1if movement from stampline to
stampline 1s 1n a back direction;

saving the over sparse context into an over tile save
context if the over sparse context 1s valid and denotes
a stamp position in a tile adjacent to the current tile;

traversing a stampline 1n the graphic object by moving,
to the stamp position denoted by the over sparse
context as long as the over sparse context 1s valid and
denotes a stamp position within the current tile;

traversing portions of the graphic object, if any, 1n the
tileline 1 the forward direction by restoring the
forward save context if the forward save context is
valid and repeating the stampline traversing and
restoring the forward save context steps;

traversing portions of the graphic object, if any, in the
tileline 1n the back direction by restoring the back
save context if valid and repeating the stampline
traversing and restoring the back save context steps;

restoring the over save context if valid and repeating,
the traversing steps.

28. The method of claim 1 wherein

information associated with the pixels 1s stored 1n a frame
buffer memory; and

the moving from stampline to stampline, and the saving
and restoring of stamp contexts are ordered for efficient
access to the frame bufler memory.
29. The method of claim 28 wherein a serpentine traversal
pattern determines an order 1in which the tiles are to be
traversed.

US 6,714,196 B2

49
30. The method of claim 28 wherein
tiles are partitioned into two or more disjoint sets;

one or more of the stamp contexts that are associated with
positions outside the current tile are sub-divided into
first and second stamp contexts;

the sparse contexts are saved into the first and second
stamp contexts such that if both of the two stamp
contexts are valid, the first stamp context contains a
stamp position 1n a tile that 1s 1n a different set from a
tile containing the stamp position denoted by the sec-
ond stamp context; and

the restoring step includes selecting a valid stamp context

from the first and second stamp contexts, and if both

first and second stamp contexts are valid, selecting a
context from the first and second stamp contexts that
denotes a stamp position in a tile that 1s 1n a different
set from the current tile; the restoring step further
including invalidating both the first and second stamp
contexts.

31. The method of claim 1 further comprising;:

overlaying the tiles with metatiles, each metatile encom-
passing a plurality of the tiles;

saving a metatile stamp context identifying a next metatile
to process;

moving the stamp so as to visit all tiles that contain a
portion of the object within a current metatile; and

restoring the metatile stamp context identifying the next
metatile to be processed when all tiles that contain a
portion of the object 1n the current metatile have been
visited, the metatile stamp context restoring including
invalidating the metatile stamp context, and repeating
the metatile stamp context saving, moving and metatile
stamp restoring steps until the metatile stamp context 1s
invalid.

32. The method of claim 1 further comprising:

dividing the array of pixels into an array of metatiles,
wherein at least one tile of the plurality of tiles 1s
partially enclosed 1n each of a plurality of the metatiles;

saving a metatile stamp context identifying a next metatile
to process;

moving the stamp so as to visit a portion of all tiles that
contain a portion of the object and that are within a
current metatile; and

restoring the metatile stamp context identifying the next
metatile to be processed when all portions of the tiles
that contain a portion of the object in the current
metatile have been visited, the metatile stamp context
restoring including invalidating the metatile stamp
context, and repeating the metatile stamp context
saving, moving and metatile stamp restoring steps until
the metatile stamp context 1s mvalid.
33. A graphics processor for rendering an 1image including
a graphic object, the graphic object being defined with
respect to an array of pixels that 1s divided into an array of
rectangular tiles, comprising;:

a frame buffer memory for storing information associated
with the pixels;

oraphics circuitry for rendering the graphic object at
pixels 1n a stamp, comprising a rectangular stamp
region of predefined size at a current stamp position
within the array of pixels;

stamp control logic for setting the current stamp position
to a sequence of stamp positions, and enabling the
graphics circuitry to render the graphic object at each

10

15

20

25

30

35

40

45

50

55

60

65

50

current stamp position 1n the sequence so as to render

the graphic object at all pixels 1n the array of pixels that

have at least one sample point 1n the graphic object, the

stamp positioning logic configured to set the current

stamp position by:

moving the stamp along on a stampline, within one of
the tiles, until a boundary of the tile or a boundary of
the graphic object 1s reached;

saving 1nformation assoclated with a stamp position
that 1s 1n an adjacent tile, if any, into a corresponding
stamp context of a plurality of stamp contexts; the
saved mnformation including said stamp position;

jumping to another stampline in the one tile and repeat-
ing the moving, saving, and jumping operations until
all pixels that are in an intersection of the graphic
object and the tile have been traversed; and

restoring from a stamp context of the plurality of stamp
contexts the saved stamp position so as to position
the stamp 1n another tile, and repeating the moving,
saving, jumping and restoring operations until all
pixels of the graphic object have been traversed.

34. The graphics processor of claim 33 wherein the
plurality of stamp contexts include a first stamp context for
storing a stamp position adjacent to a current stamp position,
and a second stamp context for storing a stamp position that
1s adjacent to the current stamp position and 1n a tile adjacent
to the current tile.

35. The graphics processor of claim 33 wherein the
plurality of stamp contexts include a first stamp context for
storing a stamp position adjacent to a current stamp position
in a direction perpendicular to a direction of movement of
the stamp along a stampline, and a second stamp context for
storing a stamp position in an adjacent tile in the same
direction as the direction of movement of the stamp along a
stampline.

36. The graphics processor of claim 33 wherein the
plurality of stamp contexts include a first stamp context for
storing a stamp position adjacent to a current stamp position
in a direction perpendicular to a direction of movement of
the stamp along a stampline, a second stamp context for
storing a stamp position adjacent to the current stamp
position 1n the opposite direction from the {first stamp
context, and a third stamp context for storing a stamp
position 1n an adjacent tile 1n the same direction as the
direction of movement of the stamp along a stampline.

37. The graphics processor of claim 33 wherein the stamp
moves vertically along column stamplines before moving to
the next stampline.

38. The graphics processor of claim 33 wherein the stamp
moves horizontally along row stamplines before moving to
the next stampline.

39. The graphics processor of claim 33 wherein the
cgraphic object includes a plurality of vertices and the stamp
positioning logic 1s further configured to set the current
stamp position by:

determining a minimal rectangular bounding box for the

oraphic object; and

selecting a starting vertex from the plurality of vertices,

the starting vertex lyimng on a side of the minimal
rectangular bounding box, and positioning the stamp to
a pixel position such that the stamp contains the starting,
vertex prior to performing the first moving operation.

40. The graphics processor of claim 39 wherein the
starting vertex 1s positioned on a corner of the minimal
rectangular bounding box.

41. The graphics processor of claim 33 including evalu-
ating an edge function at each of a plurality of points whose

US 6,714,196 B2

51

positions are determined relative to a current stamp position
to produce a corresponding set of edge function results, and
using said edge function results to determine when to
perform the move, save, jump, and restore operations.

42. The graphics processor of claim 33, wherein

the tile includes left, right, top and bottom boundaries;
and

the stamp positioning logic 1s further configured to set the
current stamp position by:
determining whether the current stamp position 1s at
one or more of the left, right, top, and bottom
boundaries of the tile.
43. The graphics processor of claim 33 wherein:

the frame buifer memory includes a frame buffer cache
having frame buifer cache lines;

cach frame bufler cache line 1s capable of storing infor-
mation associated a plurality of the pixels; and

all the information capable of being stored 1n each frame

buffer cache line corresponds to pixels located in only
one of the tiles.

44. The graphics processor of claim 33 wherein:

information associated with the pixels is stored 1n a frame
buflfer memory;

the frame bufler memory 1s partitioned 1nto a plurality of
frame bufler segments;

cach frame bufler segment 1includes a frame bufler cache
having frame bufler cache lines;

cach frame buffer cache line i1s capable of storing infor-
mation associated with a plurality of the pixels; and

the tile includes at most one cache line from each of the

plurality of frame buffer segments.

45. The graphics processor of claim 44 wherein each tile
comprises a set of pixels comprising all pixels stored 1n a
single respective cache line of each of the frame buifer
segments.

46. The graphics processor of claim 33 wherein:

texture information to be applied to pixel fragments 1s
stored 1n a texture map memory;

the texture map memory includes a texture map cache
capable of storing texture map information associated
with a plurality of the pixels, the texture map cache
having an associated storage capacity; and

the texture information associated with the pixels located
in any one of the tiles having a storage size that 1s not
larger than twice the capacity of the texture map cache.
47. The graphics processor of claim 33 wherein:

texture information to be applied to pixel fragments 1s
stored 1n a texture map memory; and

the stamp positioning logic 1s further configured to set the
current stamp position so as to move the stamp hori-
zontally from tile to tile within row tilelines, and the
tiles have an associated width that 1s equal to a width
associated with the stamp.

48. The graphics processor of claim 33 wherein:

texture information to be applied to pixel fragments 1s
stored 1n a texture map memory; and

the stamp positioning logic 1s further configured to set the
current stamp position so as to move the stamp verti-
cally from tile to tile within column tilelines and the tile
have an associated height that 1s equal to a height
assoclated with the stamp.

49. The graphics processor of claim 33 wherein

a sliver position of the stamp 1s a stamp position where an
intersection of the stamp and the object does not

10

15

20

25

30

35

40

45

50

55

60

65

52

include any sample points of the stamp and the position
may potentially be avoided;

cach stamp context of a plurality of the stamp contexts
includes a shiver bit indicating whether the saved posi-
tion stored 1n the stamp context has been determined to
be a sliver position; and

the restoring operation includes preferentially selecting a
stamp context whose silver bit indicates that the saved
position stored therein has not been determined to be a
sliver position over another stamp context whose silver
bit indicates that the saved position stored therein has
been determined to be a sliver position.

50. The graphics processor of claim 49, including,

bypassing the saving and restoring operations, when
predefined bypass criteria are satisfied, and moving
directly to the stamp position that would have been
saved 1nto a corresponding stamp context of the plu-

rality of stamp contexts.
51. The graphics processor of claim 50, mcluding

at a current stamp position of the stamp, computing for a
plurality of sparse contexts information associated with
a plurality of stamp positions neighboring the current
stamp position;

the information computed for each sparse context
mcludes a valid bit, wherein a first value of the valid bit
indicates whether the stamp position associated with
the sparse context potentially contains a portion of the
object and 1s therefore a valid position, and a second
value of the valid bit indicates that the corresponding
stamp position does not contain a portion of the object
and 1s therefore an mvalid position;

wherein
saidd moving operation includes determining a next
stamp position 1n accordance with the information
computed for the plurality of sparse contexts; and
said saving operation uses information from at least one
of the sparse contexts.
52. The graphics processor of claim 51, wherein

the mformation associated with each of a plurality of
contexts mcludes a shiver bit, wherein a first value of
the sliver bit indicates whether the stamp position
assoclated with the context has been determined to be
a sliver position that may potentially be avoided, and a
second value of the sliver bit indicates that the stamp
position associated with the context has not been deter-
mined to be a shiver position; and

the stamp positioning logic 1s further configured to set the
current stamp position by:
invalidating a particular one of the stamp contexts that
contains a sliver bit set to the first value when a
particular one of the contexts contains a valid bit set
to the first value of the valid bat.

53. The graphics processor of claim 51, wherein the
bypassing and moving directly operation includes selecting
and saving one of the plurality of sparse contexts into a
current context.

54. The graphics processor of claim 51 wherein the
plurality of sparse contexts includes a forward sparse con-
text denoting a stamp position 1mmediately adjacent to the
current stamp position 1 a direction of movement of the
stamp along a stampline, an over sparse context denoting a
stamp position immediately adjacent to the current stamp
position and perpendicular to the direction of movement of
the stamp along a stampline, and a back sparse context
denoting a stamp position immediately adjacent to the
current stamp position 1n the opposite direction from the
forward sparse context.

US 6,714,196 B2

53

55. The graphics processor of claim 54, wherein

the stamp contexts include a current context, a back save
stamp context, a forward save stamp context, over save
context, back tile save stamp context, forward tile save
stamp context and over tile save context;

the stamp positioning logic 1s further configured to set the
current stamp position by:
using tilelines parallel to the stamplines;
upon placing the stamp 1n a new stampline, saving the

54

tile adjacent to the current tile, and 1s saved 1nto and restored
from the over tile save context when the over sparse context
1s 1n the current tile.

57. The graphics processor of claim 51 wherein the

s plurality of sparse contexts includes a forward sparse con-
text denoting a stamp position immediately adjacent to the
current stamp position and perpendicular to a direction of
movement of the stamp along a stampline, an over sparse
context denoting a stamp position 1mmediately adjacent to

b : the current stamp position in the direction of movement of
ack sparse context into the back save stamp context 10 :
. . the stamp along a stampline, and a back sparse context
when the back sparse context 1s valid and denotes a , - e - :
. L . denoting a stamp position immediately adjacent to the
stamp position Wl,thl,n a current tile; o _ current stamp position 1n the opposite direction from the
when the stamp 1s within a ﬁrgt tile of a tllehne:, saving, forward sparse context.
the back sparse context mio the back tile save 58. The graphics processor of claim 57 wherein
context 1t th.e‘ bgck SPArsc context 1s valid qnd 15 the stamp contexts mnclude a current context, a back save
denotes a position in a tile adjacent to the current tile; stamp context, a forward save stamp context, over save
when the Stamp 1s moving in a bafzk direction from tile context, and over tile save context:
to tile within a tileline, saving the back sparse the stamp positioning logic is further configured to set the
context 1nto the back tile save context if the back current stamp position by:
sparse context 1s valid and denotes a position 1n a tile 20 using tilelines perpendicular to the stamplines;
adjacent to the current tile; saving the forward sparse context into a forward save
saving the over sparse context into the over save context if the forward context is valid and movement
context 1f the over sparse context 1s valid and denotes from stampline to stampline is in a forward direction;
a position within the current tile; saving the back sparse context into a back save context
saving the over sparse context into the over tile save 25 if the back sparse context 1s valid and the stamp 1s on
context if the over sparse context is valid and denotes the first stampline or if movement from stampline to
a position 1n a tile adjacent to the current tile; stampline 1s 1n a back direction;
when moving in a forward direction from tile to tile saving the over sparse context imto an over tile save
within a tileline, saving the forward sparse context context if the over sparse context 1s valid and denotes
into the forward tile save context if the forward 30 a stamp position 1n a tile adjacent to the current tile;
sparse context is valid and denotes a position in a tile traversing a stampline 1n the graphic object by moving
adjacent to the current tile; to the stamp position denoted by the over sparse
traversing a current stampline by moving to the stamp context as long as the over sparse context is valid and
position denoted by the forward sparse context as denotes a stamp position within the current tile;
long as the forward sparse context is valid and within 35 traversing portions of the graphic object, if any, 1n the
the current tile, then restoring the back save context first tile in the tileline 1n the forward direction by
if valid to the current context and moving to the restoring the forward save context if the forward
stamp position denoted by the back sparse context as save context 1s valid and denotes a stamp position in
long as the back sparse context is valid and within the current tile, and repeating the stampline travers-
the current tile; 40 ing and restoring the forward save context opera-
traversing the current tile by moving to a new stampline tions;
by restoring the over save context if valid to the traversing portions of the graphic object, if any, 1n the
current context, then repeating the traversing the tileline 1n the back direction by restoring the back
current stampline and moving to a new stampline save context 1f valid and repeating the stampline
operations until all portions of the object within the 45 traversing and restoring the back save context opera-
tile have been visited; tions;
traversing the current tileline by moving to a new tile traversing portions ot the graphic object 1n the tiles, 1t
in the tileline in the forward direction by restoring, any, below the first tile in the tileline m the forward
the forward tile save context if valid to the current direction by restoring the forward save context it
context, traversing the new tile, and repeating until 50 valid and repeating the stampline traversing and
all tiles in the tileline in the forward direction that restoring the forward save context operations; and
contain a portion of the object have been visited, then restoring the over save context it valid and repeating
moving to a new ftile in the fileline 1n the back the traversing operations.
direction by restoring the back file save context if 59. The graphics processor of claim 57 wherein
valid to the current context, traversing the new tile, 55 the stamp contexts imnclude a current context, a back save
and repeating until all tiles 1n the tileline 1n the back stamp context, a forward save stamp context, over save
direction that contain a portion of the object have context, and over tile save context;
been visited; the stamp positioning logic 1s further configured to set the
traversing the entire object by moving to a new ftile 1n current stamp position by:
a new tileline 1n an over direction by restoring the 60 using tilelines perpendicular to the stamplines;
over tile save context 1f valid to the current context, saving the forward sparse context into a forward save
then repeating until all tilelines that contain a portion context 1f the forward context 1s valid and movement
of the object have been visited. from stampline to stampline 1s 1n a forward direction;
56. The graphics processor of claim 51 wherein the back saving the back sparse context into a back save context
sparse context 1s not saved into the back tile save context, 65 if the back sparse context 1s valid and the stamp 1s on
but 1s 1nstead saved 1nto and restored from the over save the first stampline or 1if movement from stampline to

context when the over sparse context stamp position 1s 1n a stampline 1s 1n a back direction;

US 6,714,196 B2

33

saving the over sparse context into an over tile save
context 1f the over sparse context 1s valid and denotes
a stamp position 1n a tile adjacent to the current tile;

traversing a stampline 1n the graphic object by moving
to the stamp position denoted by the over sparse
context as long as the over sparse context 1s valid and
denotes a stamp position within the current tile;

traversing portions of the graphic object, if any, 1n the
tileline 1n the forward direction by restoring the
forward save context if the forward save context 1s
valid and repeating the stampline traversing and
restoring the forward save context operations;

traversing portions of the graphic object, 1f any, 1n the
tileline 1n the back direction by restoring the back
save context 1f valid and repeating the stampline
traversing and restoring the back save context opera-
tions;

restoring the over save context i1f valid and repeating
the traversing operations.

60. The graphics processor of claim 55 wherein

information associated with the pixels 1s stored 1n a frame
buffer memory; and

the operations of moving from stampline to stampline,
and the saving and restoring of stamp contexts are
ordered for efficient access to the frame buifer memory.
61. The graphics processor of claim 60 wherein a serpen-
fine traversal pattern determines an order in which the tiles
are to be traversed.
62. The graphics processor of claim 60 wherein

tiles are partitioned into two or more disjoint sets;

one or more of the stamp contexts that are associated with
positions outside the current tile are sub-divided into
first and second stamp contexts;

the sparse contexts are saved into the first and second
stamp contexts such that if both of the two stamp
contexts are valid, the first stamp context contains a
stamp position 1n a tile that 1s in a different set from a
tile containing the stamp position denoted by the sec-
ond stamp context; and

the restoring operation includes selecting a valid stamp
context from the first and second stamp contexts, and 1f
both first and second stamp contexts are valid, selecting,
a context from the first and second stamp contexts that

5

10

15

20

25

30

35

40

56

denotes a stamp position 1n a tile that 1s 1n a different
set from the current tile; the restoring operation further
including invalidating both the first and second stamp
contexts.
63. The graphics processor of claim 33 wherein the stamp
positioning logic 1s further configured to set the current
stamp position by:

overlaying the tiles with metatiles, each metatile encom-
passing a plurality of the tiles;

saving a metatile stamp context identifying a next metatile
to process;

moving the stamp so as to visit all tiles that contain a
portion of the object within a current metatile; and

restoring the metatile stamp context identifying the next
metatile to be processed when all tiles that contain a
portion of the object in the current metatile have been
visited, the metatile stamp context restoring including
invalidating the metatile stamp context, and repeating
the metatile stamp context saving, moving and metatile
stamp restoring operations until the metatile stamp
context 1s mvalid.
64. The graphics processor of claim 33 wherein the stamp
positioning logic 1s further configured to set the current
stamp position by:

dividing the array of pixels into an array of metatiles,
wherein at least one tile of the plurality of tiles 1s
partially enclosed 1n each of a plurality of the metatiles;

saving a metatile stamp context identifying a next metatile
to process;

moving the stamp so as to visit a portion of all tiles that
contain a portion of the object and that are within a
current metatile; and

restoring the metatile stamp context 1dentifying the next
metatile to be processed when all portions of the tiles
that contain a portion of the object in the current
metatile have been visited, the metatile stamp context
restoring 1ncluding invalidating the metatile stamp
context, and repeating the metatile stamp context
saving, moving and metatile stamp restoring operations
until the metatile stamp context 1s mvalid.

	Front Page
	Drawings
	Specification
	Claims

