(12) United States Patent

Peel et al.

US006711494B2

US 6,711,494 B2
Mar. 23, 2004

(10) Patent No.:
45) Date of Patent:

(54) DATA FORMATTER FOR SHIFTING DATA
TO CORRECT DATA LLANES

(75) Inventors: Eric Peel, Mission Viejo, CA (US);
Bradley Roach, Newport Beach, CA
(US); Qing Xue, Irvine, CA (US)

(73) Assignee: Emulex Corporation, Costa Mesa, CA

(US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 79 days.

(21) Appl. No.: 10/000,848
(22) Filed: Nov. 30, 2001

(65) Prior Publication Data
US 2003/0023819 Al Jan. 30, 2003

Related U.S. Application Data
(60) Provisional application No. 60/309,064, filed on Jul. 30,

2001.
(51) Int. CL7 .o, GO6F 12/00
(52) US.ClL ... 701/201; 365/78; 365/189.12;
365/240; 711/217; 711/219
(58) Field of Search 365/78, 189.08,

365/189.12, 230.03, 236, 239, 240; 711/201,
212, 215, 217, 219, 220

(56) References Cited
U.S. PATENT DOCUMENTS
4,829,475 A * 5/1989 Ward et al. 365/78
Byte lane

4,931,925 A 6/1990 Utsumi et al.

5,226,169 A 7/1993 Gregor

5,473,756 A * 12/1995 Traylorccccceeveeneneen.e. 710/57
5,651,127 A * 7/1997 Gove et al. 711/202
5,774,697 A 6/1998 Hall

5,978,307 A * 11/1999 Proebsting et al. 365/230.05
5999478 A * 12/1999 Proebsting 365/230.05
6,311,258 B1 * 10/2001 Gibson et al. 711/200

6,330,623 Bl 12/2001 Wau et al.

OTHER PUBLICAITONS

Microsoft Press Computer Dictionary, Third Edition, 1997,
p. 433.%

* cited by examiner

Primary Fxaminer—Donald Sparks

Assistant Examiner—Christian P. Chace
(74) Attorney, Agent, or Firm—Morrison & Foerster LLP

(57) ABSTRACT

A data formatter mncludes a shift register and a pointer
manager. The shift register receives data from a providing
RAM and shifts that data 1n response to reading data from
the providing RAM and writing data to a receiving FIFO. A
pointer manager maintains a pointer that points to a first
valid byte 1 a sub-block of data into the correct bytes lanes
of the FIFO by moving the pointer as data 1s shifted into and
out of the shift register.

35 Claims, 5 Drawing Sheets

Providing RAM
RN

St noinrer

N 200

“

Byte lane 3 2 1 0

Receivine FIF()

Shzﬁ‘

-

e

-

e\
==
-t :
N L "Ol4
4......,
o
—
I~
& — — AJOWB\ (8207
7 P !
-
GLl
N ide
O4did
ﬁ = —®| Buneosy ™
1) I = _
e
= _ 12UN0d _AI —
— e £H
= 121UNoD ¢} o)sibal Yt
E S;L ||_ . rv_ 1935161 JUs
7 _ ZLi— M W
labeuely Jo1UI0d -

< Oct 201~
m + —_— \._..._ NV m:__u_>o_n_
—
=
>

_ S AHOWIN

U.S. Patent

14

N

la|jolluo)
AIOLUBIN

0

/

»_ 00}

U.S. Patent Mar. 23,2004 Sheet 2 of 5 US 6,711,494 B2

Byte lane 7 6 5 4 3 2 1 0

Providine RAM
NN

o llll.ll
. 200
e

FEEEES !':II'IHH alolglslalstalalolilo

lll B

Receivine FIF()

Bytelane 3 2 1 O
FIG. 2

U.S. Patent Mar. 23,2004 Sheet 3 of 5 US 6,711,494 B2

302
300 A Clock
signal
305
yes End o
block?
304 no

Set pointer to empty value

310
308

Add raml db width and
substract bytes enabled from
pointer value

YES Read and

write strobes?

no
314

312

ead strobe
and no write

strobe?

Add ram1i db width to pointer yes
value

no
318
_ 316
substract bytes enabled from yes Write
pointer value strobe”?
no

Retain 320

pointer
value

FIG. 3

U.S. Patent Mar. 23,2004 Sheet 4 of 5 US 6,711,494 B2

Byte lane /6 5 4 3 2 1 0

]
Providine RAM
HEEENEE.

-V

Sr nointe -

Receiving FIF(O
Byte lane 3 2 1 0

FIG. 4

Byte lane 7 6 5 4 3 2 1 0

Providing RAM {———1—1— 11—

Byte lane 3 2 1 0

Keceivine

FIG. 5

U.S. Patent Mar. 23,2004 Sheet 5 of 5 US 6,711,494 B2

Byte lane 7 6 5 4 3 2 1 0

lnlalolg HI.I!I

-.--
3 2 1 0

Providine RAM

Receivine
Byte lane

FIG. 6

Byte lane 7 6 5 4 3 2 1 0

Providine RAM
A --------

l vy v v

Byte lane 3 2 1 0

FIG. 7

Receivine

US 6,711,494 B2

1

DATA FORMATTER FOR SHIFTING DATA
TO CORRECT DATA LANES

CROSS-REFERENCE TO RELATED
APPLICATTIONS

This application claims priority to U.S. Provisional Appli-
cation Ser. No. 60/309,064, entitled DATA FORMATTER
and filed on Jul. 30, 2001.

BACKGROUND

In computer systems, a central processing unit (CPU) may
access memory by providing an address that indicates a
unique location of a group of memory cells that collectively
store a data element. A number of operations may be taken
when performing an 1nitial access to memory. These opera-
fions may make the 1nitial access relatively slow. For
example, certain control signals may be 1ssued to begin the
process. Next, the address may be sent to the memory. Then,
the data itself may be transferred. Because of this opera-
tional overhead, or latency, the 1nitial access to memory may
take a relatively long time, ¢.g., four to seven clock cycles
in many devices.

To reduce the latency of the memory, some memory
devices read a block of data including four 64-bit words (256
bits or 32 bytes) from memory consecutively for each
access. An advantage of this “burst access mode,” or
“bursting,” 1s avoiding repetition of the overhead of the
initial access for the subsequent three accesses. The subse-
quent accesses may be shortened to one to three clock cycles
instead of four to seven clock cycles.

A memory device that supports bursting may not be
byte-addressable. Instead of accessing a memory location at
a specific byte address, the memory device may retrieve a
multi-byte block of data elements. Some of the data ele-
ments 1n the block of data may not be valid for the request.

A data formatter may be used to take a multi-block of data
from a source, such as a random access memory (RAM), and
break up the multi-byte block into multiple smaller blocks.
Each of the smaller blocks can then be sent to the appro-
priate local memory addresses.

A controlling program determines the size of each of the
smaller blocks and their destination addresses. The smaller
blocks may be broken up on any byte boundary within the
larger block. The destination addresses may also be located
at any byte boundary. This complicates the data formatter’s
responsibilities. No matter which byte lanes the data ele-
ments are 1n when they come from the providing RAM, the
data formatter must ensure that these bytes are 1n the correct
byte lanes for writing to a new address.

SUMMARY

A data formatter includes a shift register and a pointer
manager. A providing random access memory (RAM) stores
data from a multi-byte block of data, retrieved 1n a burst
access operation to a memory, to be written to local memory
addresses. The shift register receives data from the providing
RAM and shifts that data 1in response to reading data from
the providing RAM and writing data to a receiving first-in
first-out (FIFO) memory. A pointer manager maintains a
pointer that points to a first valid byte 1n a sub-block of data
into the correct bytes lanes of the FIFO by moving the
pointer as data 1s shifted into and out of the shift register.

The pointer manager generates indicators based on the
pointer value which notily the controlling program that the
shift register is full (or almost full) or empty (or almost

empty).

10

15

20

25

30

35

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a memory access system
according to an embodiment.

FIG. 2 1s a block diagram of a shift register including a
pointer 1n a movable window of data elements to be written.

FIG. 3 1s a flowchart describing a pointer management
operation according to an embodiment.

FIGS. 4 to 7 are a block diagrams of the shift register of
FIG. 2 mcluding the window 1n different positions corre-
sponding to different phases of an exemplary pointer man-
agement operation.

DETAILED DESCRIPTION

FIG. 1 illustrates a memory access system 100 including
a data formatter 102 according to an embodiment. A memory
controller 104 may read data from a memory device 106 1n
a “burst access” mode 1n which multi-byte blocks of data are
retrieved from memory and loaded temporarily into another
memory device, such as a random access memory (RAM),
before being sent to local memory addresses. Some of the
data elements 1n the block of data may not be valid for the
request. Also, valid blocks of data and their destination
addresses may be located on any byte boundary in the
burst-accessed multi-byte blocks.

The data formatter 102 may take a block of data from a
providing RAM 108 and send the data to one or more local
memory addresses. The data formatter 102 1s capable of
breaking up the larger multi-byte block of data read from
providing RAM 108 into multiple smaller blocks at the
appropriate byte boundaries within the larger block. Each of
the smaller blocks may be be sent to a destination address in
a local memory 115. The memory controller 104 determines
the size of each of the smaller blocks and their destination
addresses.

The data formatter 102 may include counters 110 to keep
track of how many bytes from the current large block from
the providing PAM 108 have been written to each of the
destination addresses. The data formatter 102 shifts data to
the correct byte lanes for writing to a new address regardless
of which byte lanes the data elements are in when received
from the providing RAM 108. For example, 1n a block of
four bytes, the first two bytes may need to be written to
address 2, the third byte may need to be written to address
10, and the fourth byte may need to be written to address 7.
If the memory bus 1s 4 bytes wide, as shown 1n FIG. 2, the
first two bytes may need to be 1n byte lanes 2 and 3,
respectively, while the third byte may need to be 1n byte lane
3, arid the fourth byte may need to be in byte lane 4.

The data formatter 102 includes a shift register 112 which
shifts the data to the correct byte lanes. The data formatter
may use another set of counters 111 to track and determine
the correct byte lanes at any given moment. Then, based on
these values, certain parameters, and its current state, the
data formatter 102 shifts the data to the proper position, 1.e.,
correct byte lanes, before allowing the data elements to be

written to a receiving FIFO (First-In/First-Out) register or
RAM 116.

Data elements are written into the shift register from the
providing RAM’s data bus 114 when the RAM 108 1s read.
A RAM read strobe from the memory controller 104 signals
to the shift register 112 that a read has occurred. When a read
occurs, the data 1n the entire providing RAM’s data bus may
be copied 1nto the lowest part of the shift register 114, and
data from lower parts of the shift register may be shifted into
the higher parts of the shift register. Data at the highest parts
of the shift register may be lost.

US 6,711,494 B2

3

The width of the shift register 112 depends on the degree
of mismatch between the providing RAM’s speed and word
width and the recerving FIFO’s speed and word width. For
minor mismatches, a shift register width of four times that
of the providing RAM’s data bus width may be sufficient.

A pomter manager 120 controls a window 200 of bytes 1n
the shift register 112, as shown 1n FIG. 2. The window 200
includes a pointer which points to the lowest byte 202 of the
word that will be written next to the receiving FIFO 116 and
a pointer (sr__pointer) which points the highest byte 204 of
the word that will be written next to the receiving FIFO 116.
The sr__pointer factors in an address offset provided by the
memory controller 104 to ensure that the first byte written to
the receiving FIFO 116 1s 1n the correct byte lane.

The pointer manager 120 may monitor operations 1nvolv-
ing the providing RAM 108, receiving FIFO 116, memory
controller 104, and external memory addresses and associ-
ated byte enables in order to manage the pointers. For
example, the pointer will be shifted higher by the amount of
data read 1n from the providing RAM 108. When data
clements are written to the receiving FIFO 116, the pointer
decrements by the number of bytes that were written out.
However, 1f data 1s being read 1n from the providing RAM
108 and being written into the receiving FIFO 116 at the
same time, the pointer value will depend on how many valid
bytes are being written into the receiving FIFO 116. In this
case, the value of the pointer will be decreased by the
number of valid bytes being written into the receiving FIFO
and will be increased by the number of bytes being read
from the providing RAM 108. The actual value i1s deter-
mined by the equation

ram]1__db_ width—bytes_ enabled

where “ram1__db_ width” represents to the width of the
providing RAM’s data bus 114 1n bytes, and “bytes__
enabled” represents the number of bytes that were
written to the receiving FIFO 116.

Bytes__enabled may be set by the memory controller 104
and 1s used for every write to the receiving FIFO 116 for a
orven external memory address. It 1s expected that all write
operations to the receiving FIFO 116 will contain fully valid
words that are the width of ram2_db_ width (i.e., the width
of the receiving FIFO’s data bus 117 in bytes) except for
possibly the first and last writes to a given external memory
address. In the case of the first read from the providing RAM
108 destined to be written to a new address, i1f bytes__
enabled 1s not set to the same value asram2 db_ width, less
than a full word of data was written to the receiving FIFO
116. For this case and the case of any last write to a receiving
FIFO, bytes__enabled adjusts the pointer so that it represents
the amount of data left in the shift register 112.

FIG. 3 1llustrates a flowchart describing a pointer man-
agement operation 300 according to an embodiment. The
following 1s a Verilog language description of the operation

300:

always @ (posedge clock or posedge reset)
begin
if (reset)
pointer[4:0] <= 5'h1F;
else if (pointer_ reset)
pointer[4:0] <= 5'h1F;

10

15

20

25

30

35

40

45

50

55

60

65

4

-continued

else if (read__strb & write__strb)
pointer[4:0] <= pointer{4:0] + (ram1__db_ width -
bytes_ enabled[ram?2_ db_ width:0]);
else if (read_ strb & !write_ strb)
pointer[4:0] <= pointer[4:0] + raml_ db_ width;
else if (write__strb)
pointer[4:0] <= pointer] 4:0] -
byte‘s—enabled[hramz db Wldtho]:
else
pointer| 4:0] <= pointer| 4:0];

end
assign sr__pointer[4:0] = pointer] 4:0] +
address_ offset] 12_log2-1:0];

The pointer managment operation 300 executes on a clock
signal (block 302). When a new starting address for the
external memory 1s introduced, the pointer manager 120
changes a pointer offset value to a new value if the received
bytes need to be shifted to different lanes from a default
position. This new starting address i1s saved as the signal
“address__offset”, and the sr_ pointer 1s assigned a value
described by the equation:

sr__pointer=pointer] 4.0 |+address__offset | '¥2__log2-1:0],

where r2__log2 1s the base 2 logarithm of the ram2_ db__
width parameter, 1.€., the width of the receiving FIFO’s
data bus 1n bytes.

The pointer manager 120 resets the pointer to a value
indicating that the shift register 114 1s empty whenever a
block of data, as defined by the memory controller 104, ends
and another block begins (block 305). In this example, the
empty value 1s hexadecimal value 1F. The pointer may also
be reset to the empty value 1f the pointer reset signal 1s 1ssued
by the memory controller 104 (block 306).

The memory controller 104 indicates when data 1s written
into the receiving FIFO 116 by sending a write strobe signal
to the pointer manager 120. The memory controller 104
indicates when data 1s read from the providing RAM 108 by
sending a read strobe signal to the pointer manager 120.

If a read strobe and a write strobe are received 1n the same
clock cycle (block 308), the pointer manager 120 changes
the pointer value to a value which equals the pointer’s
current value plus the width of the providing RAM’s data
bus 114 in bytes minus the bytes enabled value (block 310).
The bytes__enabled value will be the width of the receiving
FIFO’ data bus 117 1n bytes for any writes other than
perhaps the first or last writes.

If a read strobe 1s received, but no write strobe 1n a clock
cycle (block 312), the pointer manager 120 changes the
value of the pointer to a value which equals its current value
minus the bytes enabled value (block 314).

If the pointer manager 120 determines that neither of the
last two conditions were true and a write strobe 1s received
(block 316), the pointer manager 120 changes the value of
the pointer to a value which equals 1ts current value plus the
width of the providing RAM’s data bus 114 in bytes (block
318).

If the pointer manager determines that none of the pre-
vious conditions are true (block 320), the pointer manager
120 does not change the pointer value (block 322).

Consider the following example of a pointer management
operation 300. Assume the following conditions:
raml__db_ width=8 (bytes)
ram2__db_ width=4 (bytes)
number of bytes 1n shift register=32
address__offset=3

US 6,711,494 B2

S

In this example, fifteen bytes are to be written to an
external memory address of 3. This will require two 8-byte
reads from the providing RAM, and five 4-byte writes to the
receiving FIFO (not four, due to the address offset).

The pointer begins with a value 5’h1F, indicating that the
shift register 1s empty, as shown 1n FIG. 4. The address offset
1s set to 3 when the memory controller 104 assigns a new
external memory address destination for the forthcoming
data.

Next, a read strobe occurs, indicating to the pointer
manager 120 that eight bytes of data have been placed 1n the
shift register 112. The pointer manager 120 adds eight to
pointer’s value, changing the pointer value to 5’h1F+4 h&=

5°h07. The value wraps from 5’h1F to 5°’h00 since the shaft
register 112 1s at 1ts highest possible value at 5’h1F. The first

bytes to be written 1nto the receiving FIFO are those ones
located in bytes A, 9, 8, and 7 of the shift register 112, since
the sr__pointer equals 5’h07+2’h3=5"h0A, as shown 1n FIG.
5. Bytes 7 down to O are the valid bytes 1n the shift register.
Thus, byte 7 of the shift register 1s the first valid byte read
from the providing RAM 108. Byte 7 1s “shifted” into byte
lane 0 for the receiving FIFO 110. This shift happens
because of the address_ offset. This same amount of shift
will be 1n effect for all data written into the receiving FIFO
116 until the memory controller 104 1ssues a new external
memory address.

After the next clock, assume that a write strobe occurs,
with no read strobe. Bytes enabled 1s 4, but this 1s a dummy
value, which 1s the case on the first write. This allows the
pointer to advance to the proper position with all possible
offsets. In reality, only one byte was written to external
memory. The pointer manager 120 changes the pointer’s
value to 5’h07-3’h4=5"h03, as shown 1n FIG. 6. The next
bytes that will be written into the receiving FIFO 116 are the
ones located 1n bytes 6, 5, 4, and 3 of the shift register, since
the sr__pointer equals 5’h03+2°h3=5"h06.

After the next clock, assume that a read strobe and a write
strobe occur simultaneously. Data that were in bytes 7
through 0 are moved 1nto bytes 15 through 8, to make room
for the new data read in. Data that were 1n bytes 15 through
8 arc moved 1nto bytes 23 through 16, and so on. Bytes__
enabled 1s 4. The pointer manager 120 changes the pointer’s
value based on two factors: read and write. The pointer’s
value 1s changed to 5’h03+4°h8-3"h4=5"h07, as shown in
FIG. 5. The next bytes that will be written 1nto the receiving
FIFO are the ones located 1n bytes A, 9, 8, and 7 of the shaft
register, since the sr__pointer equals 5’h07+2’h3=5"h0A.

On the next clock, assume that only a write strobe 1is
occurring, with no read strobe. Bytes_ enabled 1s 4. The
pointer manager 120 changes the pointer’s value to 5°h07-
3°h4=5’h03, as shown 1n FIG. 6. The next bytes that will be
written 1nto the receiving FIFO are the ones located 1n bytes
6, 5, 4, and 3 of the shift register, since the sr__pointer equals
5°h03+2°h3=5"h06.

On the next clock, again there 1s only a write strobe
occurring, with no read strobe. Bytes__enabled has a value
of 4. Pointer changes its value to 5°h03-3’h4=5"hlF, as
shown 1n FIG. 7. The next bytes that will be written into the
receiving FIFO are the ones located 1n bytes 2, 1, 0, and 1F
of the shift register, since the sr_ pointer equals 5°hl1F+
2°h3=5"h02.

On the last clock, agaimn assume that only a write strobe 1s
occurring, with no read strobe. Bytes enabled has a value of
2. Pomter changes 1ts value to 5°’h02-3’h2=5"h00. No more
bytes will be written 1nto the receiving FIFO.

Note that now, pointer has a value of 5’h00. A value of
5°h1F would indicate that the shift register 1s empty, but this
1s not the case. Instead, this value indicates that there 1s one
more byte of possibly valid data 1n the shift register. This
byte may or may not be written to a different external
memory address. This depends on what the memory con-

10

15

20

25

30

35

40

45

50

55

60

65

6

troller 104 wants to do with the byte. If this byte of data 1s
not valid at all, pointer_reset signal will be asserted by the
memory controller 104 before a new external memory
address 1s 1ssued. There will be no more writes to the
receiving FIFO 116, since bytes enabled can only be less
than ram2__db__width for the last write of a block of data
designated for a given address. For this example, this is
where the reading and writing are complete.

Another function of the shift register 112 may be to notily
the memory controller 104 not to read from the providing
RAM 108 or not to attempt to write data to the receiving
FIFO 116. These are temporary conditions that may be used
to keep the memory controller 104 from performing these
functions until the shift register 112 1s 1n a condition to allow
normal operation. The pointer’s value indicates that the shaft
register 112 1s almost full or almost empty and may be used
to signal the temporary notification, €.g., by setting flags. For
example, 1f the shift register 112 1s almost full, 1t indicates
this condition to the memory controller 104. The shaft
register 112 may stay in this condition until a write strobe
occurs, which will make room for read data without pushing
unwritten data out of the shift register 112. The actual
combination of events that allow reads to continue may be
different, depending on the implementation.

When the shift register 112 1s almost empty, this status can
be signaled to the memory controller 104 when the pointer
1s within a few bytes of being empty, depending on the
implementation. The shift register 112 may stay in this
condition until a read strobe occurs, indicating that there 1s
data available to write to the receiving FIFO 116. As before,
the actual combination of events that allow writes to con-
tinue may be different, depending on the 1implementation.

A number of embodiments have been described.
Nevertheless, 1t will be understood that various modifica-
fions may be made without departing from the spirit and
scope of the mvention. For example, blocks in the flowchart
may be skipped or performed out of order and still produce
desirable results. Accordingly, other embodiments are
within the scope of the following claims.

What 1s claimed 1s:

1. A method comprising:

receving unaligned data from a first memory device at a
shift register;

receiving a destination address;

determining an address offset value for the destination
address;

in response to the address offset value, moving a window
to a sub-block of data elements in the shift register to
be written to a secondary memory device, the window
having byte lanes corresponding to byte lanes 1n the
second memory device; and

without switching the data elements in the sub-block,
writing each of the data elements 1n the sub-block to the
second memory device such that each data element 1s
in a correct data lane.

2. The method of claim 1, wherein the data lanes comprise
byte lanes.

3. The method of claim 1, wherein said receiving data
comprises receiving a block of data elements.

4. The method of claim 3, wherein said receiving com-
prises burst accessing a memory to retrieve a multi-byte
block of data.

5. The method of claim 4, wherein the block of data
comprises data elements which are not valid for the access.

6. The method of claim 1,

wherein said first memory device has a first bus width and
the shift register has a second bus width.
7. The method of claim 6, wherein the second bus width
1s larger than the first bus width.
8. The method of claim 1, wherein said moving the
window comprises changing a pointer value to a data

US 6,711,494 B2

7

clement location corresponding to a first valid data element
in a sub-block of data to be written to the second memory
device.

9. The method of claim 8, wherein said changing com-
prises changing the pointer value by a number of data
locations 1n the shift register, said number corresponding to
the size of the received data.

10. The method of claim 8, wherein said changing com-
prises incrementing the pointer value by a number of byte
locations corresponding to the byte-size of the received data.

11. The method of claim 10, wherein said changing
comprises decrementing the pointer value by a number of
byte locations corresponding to the byte-size of the written
data.

12. The method of claim 8, further comprising indicating
a condition of the shift register in response to a pointer value.

13. The method of claim 12, wherein said condition 1s an
empty condition.

14. The method of claim 12, wherein said condition 18 a
full condition.

15. Apparatus comprising:

a memory controller operative to control an access to a
first memory device and assign destination addresses to
data elements retrieved in said access;

a providing memory device operative to receive a plural-
ity of data elements retrieved 1n the access;

a receiving memory device having a plurality of data
lanes and being operative to receive a plurality of data
clements to be written to a local memory device from

the providing memory device; and

a data formatter comprising,

a shift register operative to recerve data elements from the
providing memory device and write data elements to
the receiving memory device, and

™

a pointer manager operative to determine an address offset
value for a destination address and to move a window
to a sub-block of data elements in the shift register 1n
response to the destination address, the window having
byte lanes corresponding to byte lanes 1n the second
memory device and, without switching the data ele-
ments 1n the sub-block, writing each of the data ele-
ments 1n the sub-block to the second memory device
such that each data element 1s 1n a correct data lane.

16. The apparatus of claim 15, wherein the memory

controller comprises a burst access memory operative to
control a burst access which retrieves a multi-byte block of
data.

17. The apparatus of claim 15, wherein the providing

memory device comprises a random access memory (RAM).

18. The apparatus of claim 15, wherein the receiving

memory device comprises a first-in first-out (FIFO)
memory.

19. The apparatus of claim 15, wherein the providing

memory device has a first bus width and the shift register has
a second bus width, and

wherein the second bus width 1s larger than the first bus

width.

20. The apparatus of claim 19, wherein the second bus
width 1s four times larger than the first bus width.

21. The apparatus of claim 15, wherein the pointer man-
ager 1s operative to change a pointer value to a data element
location 1n the shift register corresponding to a location of a
first valid data element in the sub-block of data to be written
to a second memory device.

22. The apparatus of claim 21, wherein the pointer man-
ager 1s operative to generate a signal indicative of a condi-
fion of the shift register 1in response to the pointer value.

10

15

20

25

30

35

40

45

50

55

60

3

23. The apparatus of claim 22, wherein the condition 1s an
empty condition.

24. The apparatus of claim 22, wherein the condition 1s a
full condition.

25. An article comprising a machine-readable medium
including machine-executable instructions, the instructions
operative to control a machine to:

receive unaligned data from a first memory device at a
shift register;

receive a destination address;

determine an address offset value for the destination
address;

in response to the address offset value, move a window to
a sub-block of data elements 1n the shift register to be
written to a secondary memory device, the window
having byte lanes corresponding to byte lanes in the
second memory device; and

without switching the data elements in the sub-block,
write each of the data elements 1 the sub-block to the
second memory device such that each data element 1s
in a correct data lane.

26. The article of claim 25, wherein the data lanes
comprise byte lanes.

27. The article of claim 25, wherein the 1instructions
operative to cause the machine to receive data comprise
Instructions operative to cause the machine to receive a
block of data elements.

28. The article of claim 25, wherein the 1nstructions
operative to cause the machine to move the window include
instructions operative to cause the machine to change a
pointer value to a data element location corresponding to a
first valid data element 1n a sub-block of data to be written
to a second memory device.

29. The article of claim 28, further comprising instruc-
tions causing the machine to 1indicate a condition of the shift
register 1n response to a pointer value.

30. The article of claim 29, wherein said condition 1s an
empty condition.

31. The article of claim 29, wherein said condition 1s a full
condition.

32. An apparatus comprising:

a first parallel memory device having a first length;

a second parallel memory device having a second length,
the second length being different than the first length;

a serial register between the first and second parallel
memory devices, the serial register operative to receive
data elements from the first parallel memory device and
to write a data elements to the second parallel memory
device;

a pointer manager operative to move a window to a
sub-block of data elements in the serial register 1n
response to a destination address, the window having
byte lanes corresponding to byte lanes in the second
memory device and, without switching the data ele-
ments 1n the sub-block, writing each of the data ele-
ments in the sub-block to the second parallel memory
device such that each data element 1s 1n a correct data
lane.

33. The apparatus of claim 32, wherein the first parallel

memory device comprises a RAM.

34. The apparatus of claim 32, wherein the second parallel

memory device comprises a FIFO.

35. The apparatus of claim 32, where in the serial register

comprises a shilt register.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

