US006708267B1
a2 United States Patent (10) Patent No.: US 6,708,267 Bl
Flacks et al. 45) Date of Patent: Mar. 16, 2004
(54) SYSTEM AND METHOD IN A PIPELINED 5,781,752 A * 7/1998 Moshovos et al. 712/216
PROCESSOR FOR GENERATING A SINGLE 5,812,812 A * 9/1998 Afsar et al. 7127216
CYCLE PIPELINE STALL 5,870,580 A * 2/1999 Walkercooooiiinni 712/218

FOREIGN PATENT DOCUMENTS
(75) Inventors: Brian King Flacks, Georgetown, TX

(US); Harm Peter Hofstee, Austin, TX KR 0230552 11/1999
(TI;(S)(,,U (S);;amu Takahashi, Round Rock, OTHER PURIICATIONS

Patterson, David A. and John L. Hennessy; Computer archi-

(73) Assignee: International Business Machines tecture: a quantitative approach; 1995; Morgan Kaufman

Corporation, Armonk, NY (US) Publishers; 2nd edition; pp. 139-161.*
(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
patent 1s extended or adjusted under 35 o
U.S.C. 154(b) by 0 days. Primary Examiner—David Wiley
Assistant Examiner—Scott M. Collins
_ (74) Attorney, Agent, or Firm—Casimer K. Salys;
(21) Appl. No.: 09/498,088 Bracewell & Patterson, L.L.P.
(22) Filed: Feb. 4, 2000 (57) ABSTRACT
(51) Int. CL7 ..o GO6k 9/30 A ninelined q bod disclosed £
(52) US. CLl oo 712/216 1at§£f 132@5&3;61?505@&211 dfzzigs %fe lrsgc(;SsZor Oioiizzgs
(58) Field of Searchcocooovvvvevinnn, 712/216-219 Y DCIRIIIIING Cepett -+ 1€ PIOCES’Or proces
a plurality of instructions in order. A speculative detection
(56) References Cited circuit which takes multiple clock cycles to operate deter-
mines whether a dependency exists. The speculative detec-
U.S. PATENT DOCUMENTS tion circuit inserts a single-cycle pipeline stall only in
1750112 A * 6/1958] ol 1217 response to a determination that a speculative dependency
ONces CL dl., .oivviinnnninsss .
P CX1Sts.
5,404,552 A * 4/1995 Ikenagac.ccooeeee.n. 712/216
5,509,130 A 4/1996 Trauben et al.
5,699,536 A 12/1997 Hopkins et al. 11 Claims, 4 Drawing Sheets
[TS e ST AR a T s aEEamEmmaaEamaanememmEmm—_—— 1
: 1 2040
| . Second Level gj
| Primary Hazard !
i 241 Si:;;nZI Y :
| Hazard |
i Detection I
| 1 . |
| Circuit :
| 24 0 |Store E
E Cycle Cycle i
i Info |From Degoue Info ;
; Signal Signal :
! Primary Speculative- |
i 203 Hazard Signal Hazard Signal
E Hazard 204 Hazard + 208
| Detection Detection |
! Circuit 205 Circut I 207
i 202 [Store 206 |Store| ;20 218
19 ' 11| [Decode Circuit L.

Instruction Instruction 201 Instruction Instruction Instruction
Buffer -1 Bufter O Buffer 1 Buffer 2 Buffer 3
b 212 I K

- .- L — o

222 220
S

State Instruction
Machine Fetch

5% xwonan [

L}

US 6,708,267 Bl

=
-

1y 3

¢} 1NN) EY 3114 C AHOLSIH ¥dS
3OVAHILNI IV AHOLSIH | | H31SI93Y
Sng vivd 119 ABYYD 118 AHHYD —
0¥ syds

Ve 34
AHOLSIH HdO

8€ g4

0¢ AHOLSIH Hds

Sheet 1 of 4

1INM LNIOd . LINN

ONILVO14 E JHO1S/avOT

81 1INN
. 43DNINDIS

1NIOd Q3Xli4
X31dNOD

4

—

S —

)

g —
Y

: 1

o~

> .

JHIVD
LINN g LINN
NOILONHLSNI HONVYHE 1INIOd Q3xid

U.S. Patent

¢ b o

UOONJISY|

US 6,708,267 Bl

£ 194Ny ¢ 1894Ng

| 4944ng
UOI11ONIISU|

UDIIINIISU) UOIONIISU|

SUIYOB|A
211G

0¢¢ XA
1ll

0 194Ny -——- L - J943Ng

<r p S

“ R

m N34 {lge)lg’

= u0!32213Q u01303}a(]
207 piezeH pJezey

leubig plezey |leubig piezey

= -aAle|N93dSg Alewiig

S ieubig 07 eubig

] JII U]

m 90AY ~Z¥Z 9p0dBQ WO | 4 A

o~

= 3015l 0 ¥ 2

1y lly
U0I109]3(]
piezey

lpubig
pjezeH Alewiid
|JaA37 pu09asg

00¢

U.S. Patent

|

ve

e e G W AN B AN W B et -l g P P A G- Ee eah i e e e e e s s o aie¥ el Sl --‘--—_--—_—-—-_“--J

UOIONIISU|

01¢

U.S. Patent

Primary
Register
Queue

Speculative
Register
Queue

Mar. 16, 2004 Sheet 3 of 4 US 6,708,267 Bl

204

- target(s) for inst. currently in X stage

- target(s) for inst. currently in C stage

- target(s) for inst. currently in W stage

208

- target(s) for inst. currently in buffer I1BO
- target(s) for inst. currently in X stage

- target(s) for inst. currently in C stage

- target(s) for inst. currently in W stage

Fig. 3

SJ94jnNq UCIIONJISU , p|ay
dnyoeg sabeis X 9 g I SJajng “Isul

US 6,708,267 Bl

S134jNg UOIIINIISUL PI3Y PIey
pjoy abeis g |IN $19}Jng ‘ISul $13)4nQq "1Sul

= $124JNQ UOPINISUI P13y

<t ouUBApE _ $184}NQq “ISul

8

7 S13}JNQ UOIONIISUL WED uny
pioy 8beis q Iy $Jajnq “isut

-

= S194JNQ UOIIONJISUI _] uny

o\

& dnyoeg sabeis X 9 g I _

m (SUOIIONJISUI SYIYS)

$13JJNQ UOIIONJISUI BIUBAPE

‘BIg plezey
UOHOY pjezeH Asewlid
'09dg ||9A3] puoo9sg

plezeH
Alewllid

a|qe | UOIISISURS] 91R1S

U.S. Patent

US 6,708,267 Bl

1

SYSTEM AND METHOD IN A PIPELINED
PROCESSOR FOR GENERATING A SINGLE
CYCLE PIPELINE STALL

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present ivention relates in general to pipelined
processors and, 1n particular, to a pipelined processor for
generating a single cycle pipeline stall. Still more
particularly, the present invention relates to a pipelined
processor processing instructions in order to generate a
single cycle pipeline stall in response to a detection of a
dependency.

2. Description of the Related Art

A pipelined data processing system 1s a data processing
system which 1ncludes a microprocessor architecture which
1s capable of executing multiple instructions per clock cycle.
In order to execute multiple 1nstructions per cycle, multiple
independent functional units that can execute concurrently
are required. In an m-order pipelined processor, these mul-
tiple 1nstructions are executed 1n their original sequence.

Some of the structions are single cycle instructions
which complete their processing i a single clock cycle.
Others 1nstructions require more than one clock cycle to
complete processing.

Dependencies often occur during instruction processing.
One type of dependency occurs when one register writes a
value to a register which must be read by another, later
instruction. When the instruction writing a value to a register
takes more than one cycle to execute, the later instruction
which reads that value stored in the register must be stalled
until the first instruction completes its execution. Therefore,
pipeline stalls must be mserted into the 1nstruction stream in
order to properly execute the instructions.

In known systems, a determination regarding whether to
insert a pipeline stall due to a dependency must be made 1n
a single cycle, it a single-cycle stall 1s to be generated.

Mechanisms that use multiple cycles to determine 1f an
instruction can be dispatched or must be stalled cause
multiple-cycle stalls. Taking multiple cycles to determine
stall conditions 1s advantageous for improving processor
frequency, but multiple stall cycles are disadvantageous for
processor performance as measured 1n cycles per instruction
(CPI).

Therefore a need exists for a pipelined processor process-
ing 1nstructions 1n order for generating a single cycle pipe-
line stall 1n response to a detection of a dependency, where
the detection mechanism takes multiple cycles to control
instruction dispatch.

SUMMARY OF THE INVENTION

A pipelined processor and method are disclosed for specu-
latively determining dependencies. The processor processes
a plurality of instructions in order. A speculative detection
circuit which takes multiple clock cycles to operate deter-
mines whether a dependency exists. The speculative detec-
fion circuit iserts a single-cycle pipeline stall only 1n
response to a determination that a speculative dependency
eXi1sts.

The above as well as additional objectives, features, and
advantages of the present invention will become apparent 1n
the following detailed written description.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features are set forth 1n the appended claims.
The present invention itself, however, as well as a preferred

10

15

20

25

30

35

40

45

50

55

60

65

2

mode of use, further objectives, and advantages thereof, will
best be understood by reference to the following detailed
description of a preferred embodiment when read 1n con-
junction with the accompanying drawings, wherein:

FIG. 1 1llustrates a pictorial representation of a pipelined
processor with in-order dispatch i1n accordance with the
method and system of the present invention;

FIG. 2 depicts a more detailed pictorial representation of
a stall generation circuit included within the sequencer unit
of FIG. 1 1in accordance with the method and system of the
present 1nvention;

FIG. 3 1llustrates a primary register address queue and a
speculative register address queue 1n a computer system 1in
accordance with the method and system of the present
mmvention; and

FIG. 4 depicts state transition table describing the opera-
tion of the processor 1in accordance with the method and
system of the present invention.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT

A preferred embodiment of the present invention and its
advantages are better understood by referring to FIGS. 14
of the drawings, like numerals being used for like and
corresponding parts of the accompanying drawings.

A pipelined processor and method are disclosed for specu-
latively determining dependencies. The dependencies
include data dependencies and structural dependencies. The
processor 1s capable of processing a plurality of instructions
in order. A speculative determination 1s made regarding
whether a dependency exists. A single-cycle pipeline stall 1s
cgenerated only 1n response to a determination that a specu-
lative dependency exists.

A primary hazard detection circuit and primary register
address queue are included to determine whether actual
dependency hazards exist. In addition, a speculative hazard
detection circuit and speculative register address queue are
included to determine whether speculative dependency haz-
ards exist. If a speculative hazard exists, the pipe 1s stalled
for only one cycle by mserting a single NOP 1nstruction into
the pipe.

The disclosed invention 1s capable of inserting only a
single-cycle stall because the dependency detection 1s com-
pleted 1n a speculative manner. Therefore, a dependency
hazard 1s detected prior to the 1nstruction causing the hazard
being dispatched.

FIG. 1 1s a block diagram of a processor 10 system for
processing 1nformation according to the preferred embodi-
ment. In the preferred embodiment, processor 10 1s a single
integrated circuit microprocessor. Accordingly, as discussed
further herein below, processor 10 includes various units,
registers, bullers, memories, and other sections, all of which
arc formed by integrated circuitry. Also, 1n the preferred
embodiment, processor 10 operates according to reduced
instruction set computing (“RISC”) techniques. As shown in
FIG. 1, a system bus 11 1s connected to a bus interface unit
(“BIU”) 12 of processor 10. BIU 12 controls the transfer of

information between processor 10 and system bus 11.

BIU 12 1s connected to an instruction cache 14 and to a
data cache 16 of processor 10. Instruction cache 14 outputs
instructions to a sequencer unit 18. In response to such
instructions from instruction cache 14, sequencer unit 18
selectively outputs instructions to other execution circuitry
of processor 10.

In addition to sequencer unit 18, 1n the preferred embodi-
ment the execution circuitry of processor 10 mncludes mul-

US 6,708,267 Bl

3

fiple execution units, namely a branch unit 20, a fixed point
unit A (“FXUA”) 22, a fixed point unit B (“FXUB”) 24, a
complex fixed point unit (“CFXU”) 26, a load/store unit
(“LSU”) 28 and a floating point unit (“FPU”) 30. FXUA 22,
FXUB 24, CFXU 26 and LSU 28 1nput their source operand
information from general purpose architectural registers
(“GPRs”). In a preferred embodiment, the general purpose
register may “forward” (or “bypass”) results from other
execution units without first storing them 1n registers.

Moreover, FXUA 22 and FXUB 24 mput a “carry bit”
from a carry bit (“CA”) register 42. FXUA 22, FXUB 24,
CFXU 26 and LSU 28 output results (destination operand
information) of their operations for storage to GPRs 32.
Also, CFXU 26 mputs and outputs source operand infor-
mation and destination operand mformation to and from
special purpose registers (“SPRs”™) 40.

FPU 30 1nputs 1ts source operand information from tloat-
ing point architectural registers (“FPRs”) 36. In a preferred
embodiment, the floating point architectural registers may
“forward” (or “bypass”) results from other execution units
without first storing them in registers.

FPU 30 outputs results (destination operand information)
of 1ts operation for storage to FPR 36.

In response to a Load instruction, LSU 28 inputs infor-
mation from data cache 16 and copies such information to
GPR 32. If such information 1s not stored 1n data cache 16,
then data cache 16 inputs (through BIU 12 and system bus
11) such information from a system memory 39 connected
to system bus 11. Moreover, data cache 16 1s able to output
(through BIU 12 and system bus 11) information from data
cache 16 to system memory 39 connected to system bus 11.
In response to a Store mstruction, LSU 28 inputs informa-
tion from a selected one of GPRs 32 and FPRs 36 and copies
such information to data cache 16.

Sequencer unit 18 1nputs and outputs information to and
from GPRs 32 and FPRs 36. From sequencer unit 18, branch
unit 20 mputs 1nstructions and signals indicating a present
state of processor 10. In response to such instructions and
signals, branch unit 20 outputs (to sequencer unit 18) signals
indicating suitable memory addresses storing a sequence of
instructions for execution by processor 10. In response to
such signals from branch unit 20, sequencer unit 18 inputs
the mdicated sequence of 1nstructions from 1nstruction cache
14. If one or more of the sequence of instructions 1s not
stored 1n 1nstruction cache 14, then mstruction cache 14
inputs (through BIU 12 and system bus 11) such instructions
from system memory 39 connected to system bus 11.

In response to the instructions input from instruction
cache 14, sequencer unit 18 seclectively dispatches the
mstructions to selected ones of execution units 20, 22, 24,
26, 28, and 30. Each execution unit executes one or more
instructions of a particular class of 1nstructions. For
example, FXUA 22 and FXUB 24 execute a first class of
fixed point mathematical operations on source operands,
such as addition, subtraction, ANDing, ORing and XORing.
CEFXU 26 executes a second class of fixed point operations
on source operands, such as fixed point multiplication and
division. FPU 30 executes floating point operations on
source operands, such as floating point multiplication and
division.

Processor 10 achieves high performance by processing
multiple 1instructions simultaneously at various ones of
execution units 20, 22, 24, 26, 28, and 30. Accordingly, each
instruction 1s processed as a sequence of stages, each being
executable 1n parallel with stages of other mstructions. Such
a technique 1s called “pipelining”. In a significant aspect of

10

15

20

25

30

35

40

45

50

55

60

65

4

the preferred embodiment, an instruction 1s normally pro-
cessed as five stages, namely fetch, dispatch, execute,
writeback, and completion.

In the fetch stage, sequencer unit 18 selectively inputs
(from instructions cache 14) one or more instructions from
onc or more memory addresses storing the sequence of
instructions discussed further herein above in connection
with branch unit 20 and sequencer unit 18.

In the dispatch/decode/issue stage, sequencer unit 18
decodes and dispatches the first instruction one of execution
units 20, 22, 24, 26, 28, and 30. In the dispatch stage,
operand information 1s supplied to the selected execution
units for dispatched instructions. Processor 10 dispatches
instructions 1n order of their programmed sequence.

Each register has an associated history file in which the
old contents of the register i1s stored. The history files may
be utilized to restore previous contents to the registers when
a reset of the processor occurs following a fault or exception

condition, as 1s known to those skilled 1n the art. Thus, FIG.
1 includes SPR history file 41, carry bit history file 43, GPR

history file 34, and FPR history file 38.

In the writeback stage, the output results from the differ-
ent units are written to the appropriate registers. Because
different instructions may require a different number of
cycles to produce their results, writeback may occur “out of
order” with respect to the programed instruction sequence.

The sequencer unit 18 accumulates information from the
various execution units and determines 1f instructions have
finished without exception conditions. If all instructions
prior to and icluding the current instruction have “finished”
without exception conditions, the prior architectural values
of the registers overwritten by the current instruction need
no longer be stored 1n the history files, and the instruction
has “completed”. Processor 10 thus “completes” mstructions
in order of their programmed sequence. If an exception
condition does occur, the sequencing unit directs the GPRs
to restore architected values prior to the instruction causing
the exception. The sequencing unit “refetches” instructions
from the next valid instruction address.

FIG. 2 depicts a more detailed pictorial representation of
a stall generation circuit included within the sequencer unit
of FIG. 1 in accordance with the method and system of the
present invention. The stall generation circuit 200 includes
a primary detection circuit 203 which includes a primary
hazard detection circuit 202 and a primary register address
queue 204, and a speculative detection circuit 205 which
includes a speculative hazard detection circuit 206 and a
speculative register address queue 208. Primary hazard
detection circuit 202 and primary register address queue 204
are utilized to generate a primary hazard signal when an
actual hazard exists due to a dependency. The detected
dependency may be either a data or structural resource
dependency. Speculative hazard detection circuit 206 and
speculative register address queue 208 are utilized to gen-
erate a speculative hazard signal when a speculative hazard
exists due to a dependency. Again, the detected dependency
may be either a data or structural dependency.

Instruction buffers 210, 212, 214, 216, and 218 are

included for storing instructions. Buifer 212 1s a dispatch
buffer utilized to store the next instruction to be dispatched/
issued. Buflers 214, 216, and 218 store speculative nstruc-
tions. The instructions stored 1n these buflers are the mstruc-
tions which were fetched by instruction fetch unit 220 in
sequential order along with the instruction in buffer 212
from the cache line. An instruction buffer 210 1s included
which contains the most recently dispatched instruction.

US 6,708,267 Bl

S

Instructions are 1ssued to a function unit from 1nstruction
buffer 212. Instruction buffers 214, 216, and 218 represent
the next sequential instructions following the instruction in
buffer 212. In every cycle, state machine 222 controls the
instruction buffers to either shift upwards in the figure to
load the next sequential set of instructions, load a new set of
instructions from an instruction cache (not shown), or hold
the 1ssue queue. The 1ssue queue must be held if there 1s a
resource conilict between the instruction in instruction
buifer 212 and 1nstructions that have been 1ssued previously,
but have not finished and still occupy resources in the
machine.

Dependency detection circuit 200 includes a decode cir-
cuit 201, prior instruction mmformation store 204 and hazard
detection circuit 202. Decode circuit 201 receives the
instruction currently being 1ssued from instruction dispatch
buffer 212, as well as an “issue valid” signal from state
machine 222. Decode circuit 201 provides prior instruction
information store 204 and hazard detection circuit 202 with
decoded information indicating which resources the mstruc-
fion uses, such as target register addresses and structural
resources such as function units or busses. Decode circuit
201 also supplies mnformation indicating the instruction
pipeline stages 1n which the resources are required.

Prior instruction information store 204 updates the infor-
mation on which resources are 1n use by prior mstructions in
response to the information regarding the newly i1ssued
instruction from decode circuit 201, the “issue valid” signal
from state machine 222, and instruction progress signals
from the function units. In an in-order pipelined machine
without pipeline holds, prior mstruction information store
204 may be efficiently implemented as a series of queues for
target address registers, and shift registers to maintain “one-
hot” information indicating the pipeline stages in which
registers or structural resources are 1n use.

Hazard detection circuit 202 determines 1f a resource
conilict exists between the instruction in instruction buifer
212 and the instruction in flight (the resources of which are
maintained by store 204). The circuit 202 includes an array
of comparators for comparing source operand register
addresses from i1nstruction buffer 212 to the targets of
instructions in flight. In addition, hazard detection circuit
202 contains logic to determine 1f any of the structural
resources are required 1n a cycle 1n which they are or will be
in use by both the instructions 1n flight and the 1nstruction in

bufter 212.

If an operand dependency hazard or structural hazard
exists, the hazard signal i1s asserted, and state machine 222
must de-assert the “i1ssue valid” signal, and hold the nstruc-
fion 1n the instruction buffers while the prior instruction
information store 204 1s updated in response to “cycle
information” signals from the function units indicating
Instruction progress.

™

At each cycle, the instructions are shifted from one bufler
to the next. For example, the instruction currently located 1n
buffer 218 will be shifted to buifer 216 during the next clock
cycle as long as the prior instructions continue to be
executed 1n sequential order. If an exception occurs or a
branch instruction 1s executed, istruction fetch 220 will
fetch new 1nstructions which will be stored 1n these instruc-
fion buffers.

A state machine 222 1s included which receives the
primary hazard signal and the speculative hazard signal as
two of its mputs. State machine 222 1s utilized to control the
dispatch of mstructions and the shifting of instructions from
one 1nstruction buffer to the next buffer.

10

15

20

25

30

35

40

45

50

55

60

65

6

Speculative prior instruction information store 208
includes the addresses of the target registers for the mstruc-
tions currently 1n flight and including the instruction stored
in instruction buffer 212. Primary prior instruction informa-
tion store 204 1ncludes the addresses of the target registers
for the instructions currently in flight. The instructions 1n
flight are those 1nstructions which have been dispatched but
which have not yet reached the completion stage.

A third detection circuit 241 i1s also included. Third
detection circuit 241 includes a hazard detection circuit 240
and a prior instruction information store 242. Third detection
circuit 241 1s coupled to instruction buffer 212 and receives
the same Slgna s the detection circuit 203 receives. Third
detection circuit 241 operates 1n a manner similar to primary
detection circuit 203, except that 1nstead of operating at the
dispatch stage (D Stage) as circuit 203 operates, circuit 241
operates at the execution stage (X stage). Therefore, prior
instruction information store 242 includes targets for
instructions 1 the C and W stages of the pipe. Third
detection circuit generates a second-level primary hazard
signal when a dependency 1s detected.

FIG. 3 illustrates a primary register address queue and a
speculative register address queue 1n a computer system 1n
accordance with the method and system of the present
invention. Speculative register address queue holds the
targets for the instructions currently in flight and the targets
for the instruction currently being dispatched. Therefore,
speculative register address queue within 208 holds the
targets for the instruction currently in the D stage, 1.e. the
dispatch stage which 1s the instruction currently in buifer
212, the X stage which follows the D stage and which 1s a
first part of the execution stage, the C stage which follows
the X stage and which 1s a second part of the execution stage,
and the W stage which follows the C stage and which 1s the
write-back stage. Primary register address queue 204 holds
the targets for the instruction currently 1n the X stage, the C
stage, and the W stage.

Those skilled in the art will recognize that the register
address queues must be deep enough to hold all instructions
currently 1n flight that may still occupy resources or produce
results.

As the mstructions are shifted from one instruction buifer
to the next, the entries in each register address queue are also

shifted.

The hazard detection circuits 202 and 206 utilize a cycle
information signal also with their associated register address
queues to determine whether a hazard exists. A hazard exists
when a hazard detection circuit determines that the targets in
the instruction buffer associated with the hazard detection
circuit match one of the targets 1n the associated register
address queue, and where that 1nstruction will not complete
executing in time. The hazard detection circuit utilizes the
cycle information signal to determine whether the instruc-
tions 1 flight will complete execution i1n time for the
registers to hold valid values-for the instruction in the
associated 1nstruction buifer.

FIG. 4 depicts state transition table describing the opera-
tion of the processor 1n accordance with the method and
system of the present invention. The state transition table
describes the operation of the processor 1n response to
whether or not the various hazard signals are currently
asserted.

Specifically, whereas the mechanism has been described
here to govern instruction 1ssue 1n a scalar processor, the
same mechanism may be used to issue instructions from
1ssue queues assoclated with multiple function units 1n a
superscalar microprocessor.

US 6,708,267 Bl

7

While a preferred embodiment has been particularly
shown and described, 1t will be understood by those skilled
in the art that various changes 1in form and detail may be
made therein without departing from the spirit and scope of
the present invention.

What 1s claimed 1s:

1. A method 1n a pipelined processor including a specu-
lative detection circuit designed for in-order processing, said
processor processing a plurality of mstructions 1n order, said
method comprising the steps of:

establishing a first dependency hazard detection circuit
coupled to a speculative instruction buifer for deter-
mining whether a speculative dependency exists;

speculatively determining whether a dependency exists
among 1nstructions being dispatched and executed
in-order, said speculative determining utilizing mul-
tiple clock cycles;

asserting a speculative hazard signal 1n response to a
determination that said speculative dependency exists;

generating via said speculative detection circuit only a
single-clock-cycle pipeline stall in response to a deter-
mination that said speculative dependency exists insert-
ing a single-clock-cycle pipeline stall in response to an
assertion of said speculative hazard signal;

establishing a second dependency hazard detection circuit
coupled to said speculative mstruction buifer for deter-
mining whether an actual dependency exists;

asserting a primary hazard signal in response to a deter-
mination that said actual dependency exists; and

inserting a multiple-clock-cycle pipeline stall 1in response
to an assertion of said primary hazard signal when said
speculative hazard signal 1s not asserted.

2. A single pipelined processor, said processor dispatching
and executing a plurality of instructions 1n order, said single
pipelined processor comprising:

a speculative detection circuit taking multiple clock
cycles to 1implement instruction buffer controls, said
speculative detection circuit including a speculative
decode circuit, a speculative prior instruction informa-
tion store and a speculative hazard detection circuit for
inserting a single-clock-cycle pipeline stall in response
to a detection of a speculative dependency; and

a primary detection circuit taking multiple clock cycles to
implement 1nstruction buffer controls, said primary
detection operating concurrently with said speculative
detection circuit and including a primary decode
circuit, a primary prior instruction information store
and a primary hazard detection circuit for mserting a
multiple-clock-cycle pipeline stall in response to a
detection of an actual dependency.

5

10

15

20

25

30

35

40

45

50

3

3. The processor of claim 2, further comprising:

said speculative detection circuit generating a speculative
hazard signal 1n response to a determination that a
speculative hazard exists.

4. The processor of claim 2, further comprising;:

said speculative prior instruction information store for
storing resources 1n use by instructions currently in
flicht and for an instruction stored 1n an instruction
dispatch buifer; and

said speculative hazard detection circuit for comparing
resources required for a speculative instruction
resources 1n use 1n said speculative prior instruction
information store, said speculative instruction being an
instruction which was fetched next 1n sequential order
after said instruction stored in said dispatch buffer.

5. The processor of claim 4, further comprising:

said speculative detection circuit asserting a speculative
hazard signal in response to a detection of a speculative
hazard.

6. The processor of claim 4, further comprising:

said primary detection circuit asserting a primary hazard
signal 1n response to a detection of an actual hazard.
7. The processor of claim 6, further comprising:

said speculative detection circuit asserting said specula-
tive hazard signal prior to said speculative instruction
causing saild speculative hazard being stored in said
dispatch bulifer.

8. The processor of claim 2, further comprising:

a state machine that receives 1nputs a signal from at least
one of said primary detection circuit and said specula-
tive detection circuit and which includes logic for
determining when to assert a pipeline stall result from
among no pipeline stall, a single clock-cycle pipeline
stall, and multiple clock-cycle pipeline stalls based on
said received inputs; and

wherein said state machine comprises an output means for
signaling said pipeline stall result and effecting an
implementation of said pipeline stall result.

9. The processor of claim 8, wherein both said speculative
detection circuit and said primary detection circuit further
include an output signal that 1s transmitted to said state
machine.

10. The processor of claim 9, wherein said speculative
detection circuit provides a first mput signal to said state
machine and said primary detection circuit provides a sec-
ond input signal to said state machine.

11. The processor of claim 2, wherein said speculative
detection circuit buifers instructions in at least one addi-
tional instruction buffering stage than said primary detection
circuit.

	Front Page
	Drawings
	Specification
	Claims

