US006708222B1
a2 United States Patent (10) Patent No.: US 6,708,222 Bl
Dalal et al. 45) Date of Patent: Mar. 16, 2004
(54) METHOD AND SYSTEM FOR LOCATING (Aho) Aho, Alfred et al. “Compilers Principles, Techniques,
ENCLOSING OWNERS OF EMBEDDED and Tools”, Mar. 1988.%*
OBJECTS Adams, Robert M. “Letters to the Editor, Subobject Mem-

bers”. p. 4, 1996.*

(75) Inventors: Ketan Dalal, Seattle, WA (US); Raja * cited by examiner

Krishnaswamy, Bellevue, WA (US) _ _
Primary Fxaminer—John Follansbee

(73) Assignee: Microsoft Corporation, Redmond, WA Assistant Examiner—Lewis A. Bullock, Jr.

(US) (74) Attorney, Agent, or Firm—Woodcock Washburn LLP
(57) ABSTRACT
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 A computer-based method and system for generating a
U.S.C. 154(b) by 1003 days. reference to an enclosing object from a reference to an
embedded object that 1s embedded within the enclosing
(21) Appl. No.: 08/847,124 object. The el}closing object has an enclosing class, :’;md the
embedded object has an embedded class. Each class inherits
(22) Filed: May 1, 1997 a base class that has a reference counting data member. The

system redefines the base class such that the reference

(51) Int. CL7 ..o, GO6K 9/44 . T . . .

| | counting data member 1s divided into an offset portion and
(52) U-.S. Cl. ... 709/315; 707/103; 717/165 a reference counting portion. The system then instantiates
(58) Field of Search 395/683, 680; the enclosing object. The enclosing object has an enclosing

707/103; 709/303, 315, 316; 717/162-165 object address, and the embedded object has an embedded
object address. The system stores 1n the offset portion of the

(56) References Cited reference counting data member of the base class of the

US. PATENT DOCUMENTS embedded object a difference between the enclosing object

address and the embedded object address. When the system

5634129 A * 5/1997 Dickinson 7095315 receives a reference to the embedded object, the system

5,805,885 A ¥ 971998 Leach et al. 709/316 retrieves from the offset portion of the reference counting

080,472 A * 4/1999 Brodsky et al. 071203 data member of the embedded object referenced by the
5,913,063 A * 6/1999 McGurrin et al. 717/109

received reference the difference between the enclosing
OTHER PUBLICATIONS object address and the embedded object address. The system
then combines the retrieved difference with the embedded
object address of the received reference to generate the
enclosing object address.

Bjarne Stroustrup, Margaret A. Ellis. “The Annotated C++
Reference Manual”, pp. 195-231, 1990.%

Dilascia, Paul. “OLE made almost easy: creating containers
and servers uding MFC 2.5 .. .7, pp. 1-22, Apr. 1994.* 22 Claims, 6 Drawing Sheets

Bi I
Monitor 208 icycle 200

100

—— 150 \ 0 ! refcount
\V 150

151

Tire F
152 refcount 204
182
183 - —_— >
82 refcount Tire B
184 ___—L 205

214

U.S. Patent Mar. 16,2004 Sheet 1 of 6 US 6,708,222 Bl

Bike

101 Bicycle: : vfptr

102
103
104
1052

' 105
105

., Tire B
106¢ Tire : ;: width 106
106¢

Figure 1A

U.S. Patent Mar. 16,2004 Sheet 2 of 6 US 6,708,222 Bl

Bicycle
Root 101

Tire B 106

Tre F 105

Figure 1B

U.S. Patent Mar. 16,2004 Sheet 3 of 6 US 6,708,222 B1

Bicycle 200 206
Monitor 208
- 201 Bicycle : : viptr & (Bicycle: : Addref)
202 Bicycle : : pid & (Bicycle: : Release)

203 Bicycle : : refcount
07

& (Tire: : Addref)

Tire : : viptr & (Tire : : Release)
I
Tire : : pid
Tire F
204 Tire : : refcount

Tire : : viptr

Tire : : pid
Tire B

205 Tire : : refcount

Figure 2

U.S. Patent Mar. 16,2004 Sheet 4 of 6 US 6,708,222 Bl

Monitor 208 Bicycle 200
— o[
n refcount Tire B
i —-)

Figure 3

U.S. Patent Mar. 16,2004 Sheet 5 of 6 US 6,708,222 B1

403c Computer 400

Memory
Objects

-
403 .
401 402

Figure 4

U.S. Patent Mar. 16,2004 Sheet 6 of 6 US 6,708,222 B1

Operator

__b.

501

Return Address

Accessed

F 502

Accessed =
True

503

p Bicycle =
new (Bicycle)

204

Get Bicycle Data
From DB

9035

Fill pBicycle
Data From DB

506
Set Tire F Offset

507
Set Tire B Offset

Return Address

Figure S5

US 6,708,222 Bl

1

METHOD AND SYSTEM FOR LOCATING
ENCLOSING OWNERS OF EMBEDDED
OBJECTS

TECHNICAL FIELD

This invention relates generally to a computer method and
system for managing objects and, 1n particular, a method and
system for locating enclosing objects.

BACKGROUND OF THE INVENTION

The use of object-oriented programming techniques can
facilitate the development of complex computer programs.
Programming languages that support object-oriented tech-
niques are being used to develop these programs. One such
programming language 1s C++. Two common characteristics
of object-oriented programming language 1n general and of
the C++ programming language are support for data encap-
sulation and data-type inheritance. Data encapsulation refers
to the binding of functions and data-type inheritance refers
to the ability to declare a data type in terms of other data

types.
In the C++ programming language, object-oriented tech-

niques are supported through the use of classes. A class 1s a
user-defined type. A class definition describes data members
and function members of the class. For example, the fol-
lowing 1s a definition of a class named Bicycle.

class Bicycle

1
int Height;
int SprocketF;
int SprocketB;
Tire TireF;
Tire TireB;

3

The class Bicycle as shown contains data members that
describe the characteristics of a bicycle, such as height and
number of sprockets. The data members named Height,
SprocketF, and SprocketB are declared to be integers. The
data members named TireF and TireB are declared to be
objects of class Tire. The following i1s a definition of a class
named Tire.

class Tire
1
int Radius;
int Width;
int RPM;
1

The class Tire includes data members that describe the
characteristics of a tire, such as the radius, the width, and the
speed 1n revolutions per minute of the fire.

In the syntax of the C++ programing language, the
following statement declares an object named Bike to be of
type Bicycle.

Bicycle Bike;

This declaration causes the allocation of memory for an
object named Bike, such an allocation i1s also called an

10

15

20

25

30

35

40

45

50

55

60

65

2

instance of the class Bicycle. FIG. 1A illustrates the layout
of memory for an object of type Bicycle. The Bike object
contains a virtual function pointer 101, the Height data
member 102, the SprocketF data member 103, the Sprock-
etB data member 104, the TireF data member 105, and the
TireB data member 106. A typical C++ compiler automati-
cally allocates virtual function pointers for a class that
declares a function member to be virtual. The memory
layout includes instances of the type Tire for the TireF and
TireB data members. The TireF and TireB objects include
the Radius data members 1055, 1065, the Width data mem-
bers 105¢, 106¢, and the RPM data members 105d, 106d.
The TireF and TireB objects are considered to be embedded
within the Bike object, since the TireF and TireB objects are
data members of the class Bicycle. Thus, the TireF and Tire B
objects are considered to be embedded objects, and the Bike
object 1s considered to be an enclosing object.

Certain object-oriented database systems provide appli-
cation programs with access to the data of the database
through C++-like objects. For example, if the database
contains information describing various bicycles, then when
an application program needs to access information relating
to a certain bicycle, the database system would instantiate an
object of a class Bicycle. The database system would then
initialize the data members of the Bicycle object based on
the data 1n the database for that bicycle. The database system
would then provide the application program with a reference
(e.g., the object address which is typically the first memory
location allocated to the object) to the Bicycle object. The
application program could then access the data members of
the Bicycle object using the reference. In the following, the
term “database objects” refers to the data that 1s persistently
stored by a database system and the term “object” refers to
an m-memory 1nstance of a class that may contain the data
of a database object.

Databases are typically transaction-oriented. A transac-
fion 1s a sequence of modifications to a database that needs
to be performed as a unit. That 1s, 1f one of the modifications
in the sequence i1s made, then each modification in the
sequence must also be made. To effect transaction
processing, a database system would typically allow an
application program to instantiate and modify objects cor-
responding to the database objects to be modified as part of
the transaction. Once all the objects have been modified,
then the application program would request the database
system to “commit” those modifications. In response, the
database system would cause the modifications to be stored
persistently, for example, on a disk. When a transaction 1s to
be committed, the database system needs to locate all
instantiated objects so that the corresponding database
objects can be updated. Database systems can use a couple
of different approaches to locate the instantiated objects.
First, the database system could maintain a table that con-
tains a reference to each object that was instantiated as part
of the transaction. However, such an approach may be
unacceptable because of the amount of memory needed to
store the table and because of the amount of processing
needed to maintain the table. Second, the database system
could simply maintain a small table that contains references
to “root” objects of the transaction. The root objects are
those objects from which each other object that was 1nstan-
fiated as part of the transaction are accessible. In such a case,
the database system would start with a root object, and
persistently store the data for that root object. If the root
object contains pointers to other objects, then the database
system would persistently store the data for those referenced
objects 1n the database. The database system would repeat

US 6,708,222 Bl

3

this process 1n a transitive manner for each object that 1s
referenced through each root object. Although this second
approach overcomes the overhead of maintaining a large
table, the approach does not properly handle references to
embedded objects.

Certain objects may contain references that point to
embedded objects rather than the enclosing-objects. FIG. 1B
illustrates references that point to embedded objects. The
root object points to the TireF and TireB objects that are
embedded within the Bicycle object. The database system
may have generated such references in the following way.
The application program may have requested access to a
certain root object that has references to the Tire objects for
a certain make and model of bicycle (e.g., Schwinn/10-
speed). The database system would instantiate a Bicycle
object, but then store a reference to the embedded Tire
objects 1n the root object, rather than storing a reference to
the Bicycle object. When committing a transaction, the
database system would need to determine which Bicycle
object contains the embedded Tire objects so the tire 1nfor-
mation for the appropriate database object (e.g., Schwinn/
10-speed) could be updated. When the database system
follows a pointer to a Tire object, 1t needs to determine
whether the object 1s embedded. If the object 1s embedded,
the database system needs to retrieve or generate a reference
to the enclosing object so that 1t can 1dentify the database
object from 1nformation that 1s 1 the enclosing object, but
not within the embedded object.

Unfortunately, programming languages, such as the C++
programming language, do not provide a mechanism by
which the location of an enclosing object can be determined
from an embedded object. It would be desirable to have a
mechanism by which a database system could determine the

location of the enclosing object from a reference to an
embedded object.

SUMMARY OF THE INVENTION

The present mvention provides a computer-based method
and system for idenfifying the most-enclosing object that
encloses an object of a class. When an object of the class 1s
instantiated within an enclosing object (1.€., embedded), the
system sets a data member of the instantiated object to
indicate an offset between the start of the mstantiated object
to the start of a nearest enclosing object. When an object of
a class 1s not instantiated within an enclosing object, the
system sets the data member of the instantiated object to
indicate a zero offset. When the system receives a reference
to an instantiated object, the system repeats the following
until the reference points to a most-enclosing object. The
system retrieves the offset from the object referenced by the
current value of the reference. The system combines the
retrieved offset with the current value of the reference to
generate a new reference that references the nearest enclos-
ing object of the previously referenced object. When the
oifset 1s zero, then the reference points to the most-enclosing
object.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A 1llustrates the layout of memory for an object of
type Bicycle.

FIG. 1B 1illustrates references that point to embedded
objects.

FIG. 2 1s a block diagram illustrating a sample layout of
classes of objects in memory.

FIG. 3 1s a block diagram illustrating the setting of the
oifset field of objects.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 4 15 a block diagram 1llustrating a computer system
for practicing the present mvention.

FIG. § 1s a flow diagram 1illustrating the overloading of a
reference operator.

DETAILED DESCRIPTION OF THE
INVENTION

The present mvention provides a method and system for
generating a reference to an enclosing object from a refer-
ence to an object embedded within the enclosing object. In
one embodiment, each object that 1s instantiated 1n memory
inherits a class that manages reference counting and that
manages the persistent storage of objects. Thus, each object,
whether embedded or not, includes a field for reference
counting of that object. The reference counting field is
typically 32 bits 1 size. To provide a mechanism for locating
an enclosing object, one embodiment of the present mnven-
tion redefines a portion of the reference counting field to be
an offset field. For example, the high-order 8 bits are defined
to be the offset field and the low-order 32 bits are used for
reference counting. When an embedded object 1s
instantiated, the offset field of that object 1s set to contain the
difference between the address of the embedded object and
the address of 1ts enclosing object. Thus, the address of an
enclosing object from the address of an embedded object can
be generated by using the address of the embedded object to
retrieve the value from the offset field and subtract that value
from the address of the embedded object. When an object 1s
embedded, its offset field 1s set to the offset to the enclosing
object. However, if the object 1s not embedded then its offset
field 1s set to zero. In this way, 1t can be detected whether an
object 1s embedded. In an alternate embodiment, rather than
subdividing the reference counting field, a new field may be
added to each object. However, the addition of such a new
field would increase the size of each object. An advantage of
redefining the reference counting field 1s that the current size
of objects need not be increased. However, the maximum
reference count is reduced from 2°° to 2** and only offsets
of less than or equal to 256 (2%) can be supported.

The following classes are sample classes that may be
defined by a database system. The PersistentObject class
defines a data member and function members for reference
counting and defines a data member that contains a unique
identifier for each object. Alternatively, each class could
inherit the reference counting members from a class devel-
oped specifically to support reference counting (e.g., [Un-
known class of Microsoit Corporation’s Component Object
Model). Although not shown, the PersistentObject class
contains function members for persistently storing the
object. Each class defined by the database system inherits
the PersistentObject class. The Monitor class 1s an example
of a class that contains references to embedded objects. The
Bicycle class defines embedded objects of the Tire class.

class PersistentObject

{
D *pID;
ulong refcount;
virtual Addref();
virtual Release();
13

class Monitor:PersistentObject

US 6,708,222 Bl

-continued
1
Tire* pTirek;
Tire* pTireB;
3
class Bicycle:PersistentObject
1
Tire TireF;
Tire TireB;
3
class Tire:PersistentObject
1
3

FIG. 2 1s a block diagram illustrating a sample layout of
classes of objects in memory. The Bicycle object 200, which
inherits the PersistentObject class, contain a reference 201 to
the virtual function table 206 for the PersistentObject class.
The virtual function table 206 contains references to the
various function members defined for the Bicycle class. In
addition, the Bicycle class contains the data member for
reference counting 203. The embedded Tire objects 204 and
2035 also contain a virtual function pointer and a reference
counting data member. The Monitor object 208 contains
references to the embedded Tire objects 204 and 205. When
the Bicycle object 1s instantiated, the high-order bits of the
reference counting data member (i.¢., the offset field) of the
embedded Tire objects are set to the difference between the
address of the Bicycle object and the address of embedded
Tire object. Since the Bicycle object 1s not an embedded
object, the high-order bits of its reference counting data
member 203 are set to zero.

FIG. 3 1s a block diagram illustrating the setting of the
oifset field of objects. In this example, the Bicycle object
starts at an address of 100. The embedded TireF object starts
at an address of 150 and the embedded TireB object starts at
an address of 182. When an object i1s instantiated, if the
object 1s embedded, the high-order byte of the reference
counting data member of the object 1s set to contain the
offset between the address of the embedded object and the
address of the enclosing object. If the object 1s not
embedded, then the high-order byte 1s set to zero. In this
example, since the embedded TireF object starts at address
150 the offset field 1s set to 50. Thus, the starting address of
the Bicycle object can be derived from a reference to the
embedded TireF object by subtracting 50 from the value of
the reference (i.e., the address of the embedded TireF
object). Similarly, the high-order byte of the reference
counting data member for the TireB object contains an 82.
The high-order byte for the reference counting data member
of the Bicycle object contains a zero, because the Bicycle
object 1s not an embedded object.

FIG. 4 1s a block diagram 1illustrating a computer system
for practicing the present mnvention. The computer system
400 includes a central processing unit 401, i1nput/output
interface 402, memory 403, and peripheral devices, such as
disk drive 404. The memory contains the database system

10

15

20

25

30

35

40

45

50

55

60

65

6

403a and application program 403b. The various objects
403¢, which are 1nstantiated by the database system, have an
oifset field for locating embedded objects. The offset fields
can be 1nitialized by constructors of enclosing objects, by the
database system when it stores data from the database into
the object, or by other means as described below. The
database system and means for initializing the offset field
may be stored on other computer-readable media, such as a

disk.

The offset field of an embedded object 1s typically 1ni-
tialized when the object 1s instantiated. The constructor of
the enclosing object knows the offsets of 1ts embedded
objects and can thus initialize the offset fields within the
embedded objects. When an object 1s instantiated by a
database system, the object may refer to other objects.
However, the database system typically do not instantiate
and load objects corresponding to those referenced objects
until those references are actually accessed by the applica-
fion program. To mmplement such a delayed instantiation
(i.e., lazy binding), a database system may set the reference
to a point to a special type of binding object. That binding
object may have 1ts referencing operator overloaded. When
the special object 1s first referenced, the overloaded refer-
encing operator would cause the actual object to be 1nstan-
tiated and loaded into memory. The overloaded operator
could then set the offset field of any embedded objects.

FIG. 5 1s a flow diagram 1illustrating the overloading of a
reference operator. The overloading of the reference opera-
tor allows certain functionality to be performed when the
object 1s first referenced. That 1s, when a reference 1s first
accessed, a database system would 1nstantiate the object 1n
memory, 1nitialize the data members from the database, and
set the offsets for any embedded objects. In step 501, if the
object has already been accessed, then the method simply
returns the address of the object, else the method continues
at step 502. In step 502, the method sets a flag to indicate that
this object has already been accessed. In step 503, the
method 1nstantiates a new Bicycle object. In step 504, the
method retrieves the data for that Bicycle object from the
database. In step 505, the method fills the Bicycle object
with the data from the database. In step 506, the method sets
the offset field of the embedded TireF Is object to point to the
oifset of the embedded object within the Bicycle object. In
step 507, the method sets the offset of the embedded TireB
object to contain the offset of the object within the bicycle
object. The method then returns with the address of the
bicycle object.

The present invention can also be used to locate enclosing,
objects when an embedded object 1tself contains an embed-
ded object. In other words, the embedded objects are nested
to an arbitrary level. In such a case, the offset field of each
embedded object would contain the offset of 1ts immediately
enclosing object. To find the address of the most-enclosing
object (i.e., the outer object) each time a reference to an
enclosing object 1s generated the offset field of that enclosing
object 1s checked. If the offset field 1s not zero, then that
enclosing object 1s also an embedded object. Theretfore, that
non-zero offset 1s subtracted from the address of the enclos-
ing object to give the address of the enclosing object at the
next level. This process 1s repeated until an enclosing object
has an offset of zero, which means that it 1s the most-
enclosing object.

The techniques of the present invention can be used 1n
environments other than relating to database systems. The
present mvention can in general be used with any environ-
ment 1n which one object 1s embedded 1n another object. In
particular, the present invention can be used when repre-

US 6,708,222 Bl

7

senting objects 1n memory that correspond to objects that
may reside on disk or some other medium. In addition, the
locating of the enclosing object may be useful when refer-
ence counting, when marking an object as modified (i.e.,
dirty), or when deleting an object. An embedded object may
have a method for reference counting, a method for marking
the object as modified, or a method for deleting the object.
If such a method 1s mvoked, that method may locate the
enclosing object and invoke a corresponding method on the
enclosing object. In this way, mformation i1s effectively
passed from the embedded object to 1ts enclosing object that
may have responsibility for keeping track of reference
counts and dirty flags for the entire object and for deleting
the entire object.

Although the present mvention has been described 1n
terms of a preferred embodiment, it 1s not 1ntended that the
invention be limited to these embodiments. Modifications
within the spirit of the invention will be apparent to those
skilled 1n the art. For example, although this embodiment 1s
described using the C++ programming language, the present
invention can be used in any environment 1n which one
object 1s embedded 1n another object. The scope of the
present invention 1s defined by the claims that follow.

What 1s claimed 1s:

1. A method 1n a computer system for generating a
reference to an enclosing object from a reference to an
embedded object that 1s embedded within the enclosing
object, the enclosing object having an enclosing class, the
embedded object having an embedded class, the enclosing
class and the embedded class inheriting a base class, the base
class having a data member, the method comprising:

instantiating the enclosing object, the enclosing object
contamning an instance of the embedded object, the
enclosing object having an enclosing object address,
the embedded object having an embedded object
address;

storing 1 the data member of the base class of the
embedded object an 1ndication of a difference between
the enclosing object address and the embedded object
address;

receiving a reference to the embedded object, the refer-
ence 1ndicating the embedded object address;

retrieving from the data member of the embedded object
indicated by the received reference the difference
between the enclosing object address and the embedded
object address; and

combining the retrieved difference with the embedded
object address of the received reference to generate the
enclosing object address.

2. The method of claim 1 wherein the storing in the data
member of the base class stores only 1n a portion of the data
member.

3. A method 1n a computer system for identifying the
most-enclosing object that encloses an object of a class, the
method comprising:

when an object of the class 1s instantiated within an
enclosing object, setting a data member of the 1nstan-
tiated object to indicate an offset between the start of
the instantiated object to the start of a nearest enclosing
object;

when an object of a class 1s not instantiated within an
enclosing object, setting the data member of the instan-
tiated object to indicate a zero offset;

generating a reference to an instantiated object; and

repeating the following until the generated reference 1s to
a most-enclosing object,

5

10

15

20

25

30

35

40

45

50

55

60

65

3

retrieving the olfset from the object referenced by the
generated reference; and

combining the retrieved offset with the generated ref-
erence to generate a new reference that references
the nearest enclosing object of the previously refer-
enced object.

4. The method of claim 3 wherein the repeating continues
until a retrieved offset contains a value of zero.

5. The method of claim 3 wherein the data member 1s
defined 1n a base class that 1s inherited by each class of an
object.

6. The method of claim 5 wherein the o
a portion of the data member.

7. The method of claim 3 wherein the setting of the data
member 1s performed by a constructor of the enclosing
object.

8. The method of claim 3 wherein the setting of the data
member 15 performed by an application that instantiates the
enclosing object.

9. A method 1n a computer system for generating a
reference to an enclosing object from a reference to an
embedded object that 1s embedded within the enclosing
object, the enclosing object having an enclosing class, the
embedded object having an embedded class, the enclosing
class and the embedded class inheriting a base class, the base
class having a reference counting data member, the method
comprising;:

™

'set 18 stored 1n

redefining the base class such that the reference counting,
data member 1s divided into an offset portion and a
reference counting portion;

instantiating the enclosing object, the enclosing object
containing an 1nstance of the embedded object, the
enclosing object being referenced by an enclosing
object address, the embedded object being referenced
by an embedded object address;

S i

storing 1n the offset portion of the reference counting data
member of the base class of the embedded object a
difference between the enclosing object address and the
embedded object address;

receiving a reference to the embedded object;

retrieving from the offset portion of the reference count-
ing data member of the embedded object referenced by
the received reference the difference between the
enclosing object address and the embedded object
address; and

combining the retrieved difference with the embedded
object address of the received reference to generate the
enclosing object address.

10. The method of claim 9 wherein the storing 1n the offset
portion 1s performed by a constructor of the enclosing
object.

11. The method of claim 9 wherein the storing 1n the offset
portion 1s performed by an application that mstantiates the
enclosing object.

12. A method mm a computer system for generating a
reference to an enclosing object from a reference to an
embedded object that 1s embedded within the enclosing
object, the enclosing object having an enclosing class, the
embedded object having an embedded class, the embedded
class having an offset data member, the offset data member
containing an difference between an object address of the
enclosing object and an object address of the embedded
object, the method comprising:

receiving a reference to the embedded object;

retrieving from the offset data member of the embedded
object referenced by the received reference the ditfer-

US 6,708,222 Bl

9

ence between the enclosing object address and the
embedded object address; and

combining the retrieved difference with the embedded
object address of the received reference to generate the
enclosing object address.

13. The method of claiam 12 wherein the offset data
member 1s defined 1n a base class that 1s inherited by the
embedded class.

14. The method of claim 13 wherein the offset data
member 1s a portion of a reference counting data member.

15. A computer-readable medium containing instructions
for causing a computer system to i1dentify the most-
enclosing object that encloses a object of a class, by:

when an object of the class 1s instantiated within an
enclosing object, setting a data member of the 1nstan-
tiated object to indicate an offset between the start of
the instantiated object to the start of the enclosing
object;

when an object of a class 1s not instantiated within an
enclosing object, setting the data member of the instan-
tiated object to indicate a zero oflset;

receiving a reference to an instantiated object; and

repeating the following until a retrieved offset 1s zero,
retrieving the offset from the object referenced by the
reference; and
combining the retrieved offset with the reference so that
the reference refers to the nearest enclosing object of
the previously referenced object.

16. The computer-readable medium of claim 15 wherein
the data member 1s defined 1n a base class that 1s 1inherited
by each class of an object.

17. The computer-readable medium of claim 16 wherein
the offset 1s stored 1 a portion of the data member.

10

15

20

25

30

10

18. The computer-readable medium of claim 15 wherein
the setting of the data member 1s performed by a constructor
of the enclosing object.

19. The computer-readable medium of claim 15 wherein
the setting of the data member 1s performed by an applica-
tion that instantiates the enclosing object.

20. A computer-readable medium containing instructions
for causing a computer system to generate a reference to an
enclosing object from a reference to an embedded object that
1s embedded within the enclosing object, the enclosing
object having an enclosing class, the embedded object
having an embedded class, the embedded class having an
offset data member, the offset data member containing a
difference between an object address of the enclosing object
and an object address of the embedded object, by:

receiving a reference to the embedded object;

retrieving from the offset data member of the embedded
object referenced by the received-reference the ditfer-
ence between the enclosing object address and the
embedded object address; and

combining the retrieved difference with the embedded
object address of the received reference to generate the
enclosing object address.

21. The computer-readable medium of claim 20 wherein
the offset data member 1s defined 1n a base class that is
inherited by the embedded class.

22. The computer-readable medium of claim 21 wherein
the offset data member 1s a portion of a reference counting
data member.

	Front Page
	Drawings
	Specification
	Claims

