US006708186B1
a2 United States Patent (10) Patent No.: US 6,708,186 Bl
Claborn et al. 45) Date of Patent: Mar. 16, 2004
(54) AGGREGATING AND MANIPULATING Primary Examiner—Diane D. Mizrahi
DICTIONARY METADATA IN A DATABASE (74) Arrorney, Agent, or Firm—Gordon E. Nelson
SYSTEM
(57) ABSTRACT
(75) Inventors: George H. Claborn, Amherst, NH _ _ o _ _
(US); Lee B. Barton, Winchester, MA Techniques for stmplifying the aggregation of data stored in
(US) a number of objects 1n a database system. A user-defined
type and an object view are associated with a kind of data to
(73) Assignee: Oracle International Corporation, be aggregated. The object view specifies the locations of the
Redwood Shores, CA (US) data 1n the objects and maps the data to be aggregated into

the user-defined type. An application program interface

*) Notice: Subject to any disclaimer, the term of this . .)
J y
patent is extended or adjusted under 35 includes a fetch interface that causes the database system to
U.S.C. 154(b) by 419 days make a query over the object view associated with the kind
o | of data and return the aggregated data in a set of objects of
(21) Appl. No.: 09/672,914 the user-defined type. The returned data 1s converted to

XML and may be further transformed using XSL
stylesheets. The application program interface further

(22) Filed: Sep. 28, 2000

Related U.S. Application Data includes a filter interface that specifies a restriction for the
(60) Provisional application No. 60/225,229, filed on Aug. 14, query, a count interface that specifies the number of objects
2000. to be returned at once by the application program interface,
7 a transform 1interface that specifies an XSL style sheet, and
(51) Imt. CL7 e, GO6k 17/30 a transform parameter interface for providing parameters to
(52) U..S. Clo o, 707/107; 707/6 the XSL style sheet. The techniques may be used to aggre-
(58) Field of Searchcooll. 707/1, 2, 3, 6, gate metadata for various classes of objects from a data
707/10, 102, 103 R; 705/30 dictionary 1 a database system. In this application, each
(56) References Cited class of object has a name and a user-defined type and object
view are assoclated with the class name. The fetch interface
U.S. PATENT DOCUMENTS specifies a class name and the user-defined type and object
6,122,636 A * 9/2000 Malloy et al. 707/102 view assoclated with the name are used to aggregate the
6,205,447 B1 * 3/2001 Malloy ..oovovevevereenran. 707/102 ~ metadata. One of the transforms performed 1n this applica-
6,327,587 Bl * 12/2001 FOIStEr .oeeeveeveeeeeerannnn.n. 707/2 tion 1s the transformation of the metadata for an object into
6,408,292 B1 * 6/2002 Bakalash et al. 707/2 creation DDL for the object.
6,411,961 Bl * 6/2002 Chen ...cooeerveveereveeennn.. 707/102
* cited by examiner 46 Claims, 24 Drawing Sheets

me&ta

- xsl§ |
/ 921 |
/ L EHH%
~—

meta |
view$
901

metafilt meta meta

erf style | 8|
913 sheet pararms
—. S— 835 g

u27

XsL
atyie
sheat
1521

141

196

U.S. Patent

FIG. 1

Object class
spec. 129

filter spec
113(})

Mar. 16, 2004

filter
specs 131

query generator 123

UDT
110(i)

agqg.
vView
111{)

fetch
command

133

Sheet 1 of 24

aggregai

- EE N SR B Ay - o oawm mE . aE e

in XKk
135

US 6,708,186 Bl

Aggregation object

processor 124

query on

agg. view

119

XML
135

XML generator 125

Agg. objects
with query
results 121

Transform
specs
139 aggregate result
transformed from
XML 137
Metadata
aggregation
XML APl 120
135
115(k)
transformed
result
137

XML transformer 127

transform spec 115(k)

aggregation
metadata
108

transform

specs

TABLE TABLE TABLE TABLE
141 s = = 141 141 141
105 105 105 TOE
system tables 107
data dictionary 106
I T S — EEE—
TABLE TABLE LRE'GR‘ INDEX UDT
141 n . =
141 143 145 147
105 105 105 105 105
TRIG-
GER ubDT INDEX VIEW
143 147 145 149 . = database 108
105 105 105 108

DBMS 103

U.S. Patent Mar. 16,2004 Sheet 2 of 24 US 6,708,186 B1

-- GET_PAYROLL TABLES: Fetch DDL for payroll tables and their indexes.

PROCEDURE get payroll tables IS

tableOpenHandle NUMBER ;
indexOpenHandle NUMBER; 203
tableTransHandle NUMBER;
indexTransHandle NUMBER;

schemaName VARCHARZ2 (30) ;
tableName VARCHAR?2 (30} ; :}_ 205
tableDDLs sys.ku§ ddls;
tableDDL sys.ku§ ddl; :]h 207
parsedItems sys.ku$ parsed items;
1ndexDDL CLOBT“““m‘hH___
209
BEGIN
-- open the output file... note that the 1lst param. (dir. path) must be

-- 1included in the database's UTL FILE DIR init. parameter.

BEGIN 211
fileHandle := utl file.fopen('/private/xml', 'ddl.out', 'w', 32760) ;
EXCEPTION
WHEN OTHERS THEN
RAISE file not found; J
END ;

-- Open a handle for tables in the current schema.
tableOpenHandle := dbms metadata.open('TABLE') ; 213

-- Tell mdAPI to retrieve one table at a time. This call is not actually
-- necesgsary since 1 is the default.
dbms_metadata.set count (tableOpenHandle, 1); 215

-- Retrieve tables whose name starts with 'PAYROLL'. When the filter is
-- 'NAME EXPR', the filter value string must include the SQL operator. This
-- gives the caller flexibility to use LIKE, IN, NOT IN, subcueries, etc.

dbms_metadata.set_filter (tableOpenHandle, 'NAME EXPR', 'LIKE ''PAYROLL%'''); 217

-- Tell the mdAPI to parse out each table's schema and name separately so we
-- can use them to set up the calls to retrieve its indexes.

dbms metadata.set parse item(tableOpenHandle, 'SCHEMA') ; 219

dbms metadata.set parse item(tableOpenHandle, 'NAME'} ; 771

-- Add the DDL transform so we get SQL creation DDL

tableTransHandle := dbms_metadata.add transform(tableOpenHandle, 'DDL'),223

-- Tell the XSL stylesheet we don't want physical storage information (storage,
-- tablespace, etc), and that we want a SQL terminator on each DDL. Notice that

-- these calls use the transform, not open handle.

dbms metadata.set transform param(tableTransHandle,
'SEGMENT ATTRIBUTES', FALSE) ;

dbms_metadata.set transform param({tableTransHandle, 225
'SQLTERMINATOR', TRUE) ;

201

FIG. 2A

U.S. Patent Mar. 16,2004 Sheet 3 of 24 US 6,708,186 B1

-- Ready to start fetching tables. We use the FETCH DDL interface
(rather than N

-- FETCH_XML or FETCH _CLOB). This interface returns a

SYS.KU$ DDLS; a table of

-- SYS.KUS_DDL objects. This is a table because some object types
return

-- multiple DDL statements (like types / pkgs which have create
header and

-~ body statements). Each KU$ DDL has a CLOB containing the
'CREATE foo!

-- statement plus a nested table of the parse items specified. In

our case,
-- we asked for two parse items; Schema and Name.

LOOP
tableDDLs := dbms_metadata.fetch ddl (tableOpenHandle) ; 229
EXIT WHEN tableDDLs IS NULL; -- Get out when no more 231

payroll tables

-- In our case, we know there 1s only one row in tableDDLs (a

KUS DDLS tbl obj)

-- for the current table. Sometimes tables have multiple DDL
statements;

-- eg, 1f constraints are applied as ALTER TABLE statements, but
we didn't ask

-- for that option. So, rather than writing code to loop through
tableDDLs, we'll

-- just work with the 1st row. First, write the CREATE TARLE text

Lo our

-- output file and retrieve the parsed schema and table names.
tableDDL := tableDDLs (1) ;
write lob(tableDDL.ddltext) ; 233
parsedItems := tableDDL.parsedItems;

-- Must check the name of the returned parse items as ordering
isn't guaranteed
FOR 1 IN 1..2 LOOP
IF parsedltems(i).item = 'SCHEMA'
THEN
schemaName := parsedItems (i) .value; 235
ELSE
tableName := parsedItems (i) .value;
END IF; J
| END LOOCP;

\ o1

F1G. 2B

U.S. Patent Mar. 16,2004 Sheet 4 of 24 US 6,708,186 B1

-- Then use the schema and table names to set up a 2nd stream
for retrieval of
-- the current table's indexes

/' indexOpenHandle := dbms metadata.open ('INDEX') ; 239

dbms_metadata.set_filter (indexOpenHandle, 'BASE OBJECT SCHEMA', 241
schemaName) ;

dbms_metadata.set_filter (indexOpenHandle, 'BASE OBJECT NAME',ta 243
bleName) ;

-- Add the DDL transform and set the same transform options we

did for tables
indexTransHandle := 245
dloms_metadata.add transform(indexOpenHandle, 'DDL!') ;
dbms metadata.set _transform param(indexTransHandle, 247
'SEGMENT ATTRIBUTES', FALSE) :
dbms metadata.set transform_param(1ndexTransHandle, 249

227 ' SOLTERMINATOR', TRUE) ;
-- Retrieve index DDLs as CLOBs and write them to the output
file. ~
LOOP
indexDDL := dbms metadata.fetch clob({indexOpenHandle) ;
EXIT WHEN indexDDL IS NULL; > 2351
write lob(indexDDL) ;
END LOOP; ,

~-- Free resocurces allocated for index stream.
dbms_metadata.close (indexOpenHandle) ;

END LOOP;
-- Free resources allocated for table stream and close output
file.

dbms metadata.close (tableOpenHandle) ; 253

utl file.fclose(fileHandle) :

R._.TURN
END; -- of procedure get payroll tables
201

U.S. Patent Mar. 16,2004 Sheet 5 of 24 US 6,708,186 B1

I Type name T Meaning Schema Notes
Object?

IFUNCTION tored functions T

DEX indexes |
INDEXTYPE indextypes l
OBJECT GRANT object grants ot a named object.

' S B } T |
OPERATOR operators
OUTLINE tored outlines |
PACKAGE stored packages iBy default, both package specification and package
body are retrieved. See SET FILTER, below.

PROCEDURE stored procedures | .

ISYSTEM_GRANT system privilege or Not a named object.

B role grants B]
o T —
ABLESPACE tablespaces l
RIGGER 12gers 1

ITYPE ser-defined types y default, both type and type body are retrieved. See

SET_FILTER, below.
IG IEW VIEWSs
- — — -— - - - N

F1G. 3

U.S. Patent Mar. 16,2004 Sheet 6 of 24 US 6,708,186 B1

Object Type ‘ '

amed objects NAME

IEAME_EXPR ext he filter value is the right-hand side of a SQL
| omparison, i.e., a SQL comparison operator (=, !=, |
tc.) and the value compared against. The value must
ontain parentheses and quotation marks where |
| ppropriate. In particular, two single quotes (not a

| ouble quote) are needed to represent an apostrophe.
E.g.,

Meaning

Datatype
ext

bjects with this exact name are selected.

'IN (' ’'DEPT’',""EMP’"’)

he filter value is combined with the object atiribute

orresponding to the object name to produce a
RE condition in the query that fetches the

bjects. In the example above, objects named
‘DEPT’ and ‘EMP’ are retrieved.

By default, all named objects of the object type are
elected.

bjects in this schema are selected.

Schema objects |text

e filter value is the right-hand side of a SQL |
omparison. The filter value is combined with the

etches the objects. See ‘NAME EXPR’, above, for
yntax details.

y default, only objects in the current schema are
selected. See “Security,” below. !

ACKAGE, f TRUE, retrieve the package or type specification.

YPE efaults to TRUE.

f TRUE, retrieve the package or type body.

Defaults to TRUE.
ABLE ABLESPACE I;ext ables in this tablespace (or having this as their

efault tablespace) are selected.

[—————— . gy e T T A

TABLESPACE EXPR Eext Il'he filter value is the right-hand side of a SQL

U.S. Patent Mar. 16,2004 Sheet 7 of 24 US 6,708,186 B1

l icomparison. The fiiter value is combined with the]
lobject attribute corresponding to the object’s

ablespace or default tablespace to produce a
HERE condition in the query that fetches the
bjects. See ‘NAME EXPR’, above, for syntax

etails.

y default, objects in all tablespaces are selected.

INDEX, BASE OBJECT NAME text ndexes, triggers or privileges are selected that are

BJECT GRANT, defined/granted on objects with this name. I
RIGGER

Specify ‘'SCHEMA’ for triggers on schemas.

Specify ‘DATABASE’ for database triggers.

BASE OBJECT SCHEMA ext Indexes, triggers or privileges are selected that are

idefined/granted on objects in this schema.

BJECT GRANT,
YSTEM_GRANT

ERANTOR

IAll objects ICUSTOM_FILTER text he text of a WHERE condition. The condition is
ppended to the query that fetches the objects.

rivileges are selected that are granted to this user or
ole.

Specify ‘PUBLIC’ for grants to PUBLIC.

ivileges are selected that are granted by this user.

y default, no custom filter is used.

USTOM FILTER is an escape hatch to be resorted I

o when the defined filters don’t do the job. Ot

ecessity such a filter depends on the detailed

tructure of the UDTs and views in the query. Since
these may change from version to version, upward
Eompatibility is not guaranteed. o

F1G. 4B

U.S. Patent Mar. 16,2004 Sheet 8 of 24 US 6,708,186 B1

(Object type ll‘ablt-': Type ilter Data ean;;; i |
. ype —
TABLE RELATIONAL boolean f TRUE, retrieve relational tables. |
efaults to TRUE.
L — —
IOBJECT boolean f TRUE, retrieve object tables.
efaults to TRUE.

‘RELATIONAL’ and ‘OBJECT"’ are disjoint sets. A
able is either one or the other. If both filters are set

o FALSE, no tables will be retrieved.

PARTITIONED oolean [f TRUE, retrieve partitioned tables.
efaults to TRUE. .

NON PARTITIONED oolean f TRUE, retrieve non-partitioned tables.
efaults to TRUE.

‘PARTITIONED’ and ‘NON PARTITIONED’ are
iisjoint sets. A table is either one or the other. If both

filters are set to FALSE, no tables will be retrieved.

FEE T - il B e il

HEAP boolean If TRUE, retrieve heap tables.
Defaults to TRUE.
OT oolean It TRUE, retrieve index-organized tables.
Defaults to TRUE.

‘HEAP’ and ‘IOT’ are disjoint sets. A table 1s either
ne or the other. If both filters are set to FALSE, no
tables will be retrieved.

OB COL boolean If TRUE, retrieve tables with LOB columns.
Defauits to TRUE.

FIG. S5A

U.S. Patent Mar. 16,2004 Sheet 9 of 24 US 6,708,186 B1

‘(_)bject type able Type Filter Data ‘Meaning
Type
[TABLE DT COL Iboolean If TRUE, retrieve tables with UDT columns (types
d collections.)

| i
c¢faults to TRUE.

‘LOB_COL’ and ‘UDT COL’ control the com-
'I{::lexity of the per-column data retrieved. If both fil-
ers are set to FALSE, only tables containing

| exclusively columns of built-in, non-LOB datatypes

I | KNUMBER, CHAR, etc.) are retrieved. This often
improves retrieval performance.

I' -
li;COMPLETE oolean f TRUE, retrieve nested tables and overflow seg-
ents as separate objects. These are not complete

l tables; they cannot be created in isolation, but are

instead created when a containing table is created.
I;When the containing table is retrieved, so is the |
metadata for its nested tables and overflow seg-
ments.)

L_ ’ IDefaults to FALSE.

FIG. 5B

U.S. Patent Mar. 16,2004 Sheet 10 of 24 US 6,708,186 B1

— _— - - i
Object Type l Name Meaning I
IAll objects ERB For every row in the sys.ku$_ddls nested table returned by ferch ddl the verb in

he corresponding ddiText is returned. If fetch xml is called, NULL is returned.

he object type as used in a DDL “CREATE” statement is returned, e.g.,
‘TABLE,” “PACKAGE BODY,” etc.

¢ object’s schema is returned. If the object is not a schema object, NULL is
returned.

he object’s name is returned. If the object is not a named object, NULL is

returned.
ABLE, he name of the table’s or index’s tablespace or default tablespace is returned.
EX .
RIGGER NABLE 'lf the trigger is enabled, “ENABLE” is returned. If the trigger is disabled,
‘DISABLE” is returned.

601

el ——

FIG. 6

U.S. Patent Mar. 16, 2004

Object Type

Name

Datatype

Sheet 11 of 24

US 6,708,186 Bl

Meaning

000lean

SQLTERMINATOR boolean

- |
SEGMENT_ATTRIBUTES oolean

lboolean

oolean

Defaults to TRUE.

[f TRUE, format the output with indentation and line
feeds.

Defaults to TRUE.

[f TRUE, append a SQL terminator (*;’ or */’) to each
DDL statement.

Defaults to FALSE.

If TRUE, emit segment attributes (physical attributes,
storage attributes, tablespace, logging). Defaults to
RUE.

If TRUE, emit storage clause. (Ignored if
SEGMENT_ATTRIBUTES is FALSE.)

f TRUE, emit tablespace. (Ignored if
EGMENT_ATTRIBUTES is FALSE.)

efaults to TRUE.

noolean

—
f TRUE, emit all non-referential table constraints.

efaults to TRUE. I

REF CONSTRAINTS oolean
|

LONSTRAINTS__AS__ALTER

[t TRUE, emit all referential constraints (foreign key
d scoped refs).

efaulits to TRUE.

f TRUE, emit table constraints as separate ALTER
ABLE (and, if necessary, CREATE INDEX)
statements. If FALSE, specify table constraints as
art of the CREATE TABLE statement.

efaults to FALSE.

ABLE ID

DEX SEGMENT ATTRIBUTES

STORAGE

t TRUE, emit the OID clause for object tables.
efaults to FALSE.

f TRUE, emit segment attributes (physical attributes,
torage attributes, tablespace, logging).

Defaults to TRUE.

—— I
f TRUE, emit storage clause. (Ignored if

EGMENT ATTRIBUTES is FALSE.)
efaults to TRUE.

oolean

ABLESPACE

[f TRUE, emit tablespace. (Ignored if

EGMENT_ATTRIBUTES is FALSE.)
efaults to TRUE.

701

FIG. 7A

U.S. Patent Mar. 16,2004 Sheet 12 of 24 US 6,708,186 B1

Object Type ,7 Name Datatype Meaning
SPECIFICATION boolean f TRUE, emit the type specification.
Detaults to TRUE.

t TRUE, emit the type body:.

efaults to TRUE.

f TRUE, emit the OID clause,

IOID poolean

efaults to FALSE.

ACKAGE PECIFICATION voolean f TRUE, emit the package specification.

efaults to TRUE. _I
BODY boolean [f TRUE, emit the package body.
efaults to TRUE,
IVIEW FORCE 'baolean l:f TRUE, use the FORCE keyword in the CREATE
VIEW statement.
efaults to TRUE.

f TRUE, emit the INSERT statements into the OL$ |
ictionary tables that will create the outline and its
ints. [f FALSE, emit a CREATE OUTLINE
tatment.

iOUTLINE SERT boolean

Defaults to FALSE.

EFAULT voolean alling SET TRANSFORM PARAM with this
parameter set to TRUE has the effect of resetting all
parameters for the transform to their default values.

t Setting this FALSE has no effect.

here is no default.

HERIT oolean [f TRUE, inherit session-level parameters.

Defaults to FALSE, i.e., if an application calls

ADD TRANSFORM to add the “DDL” transform, |
l en by default the only transform parameters that |
apply are those explicitly set for that transform
handle. |

his has no effect if the transform handle is the
__l session transform handle.

U.S. Patent Mar. 16,2004 Sheet 13 of 24 US 6,708,186 B1

CREATE TYPE sys.ku$ parsed item AS OBJECT (

item VARCHARZ (30) , 203
value VARCHARZ2 (4000) ,
parent NUMBER) ;

CREATE TYPE sys.ku$ parsed items IS TABLE OF sys.ku$ parsed item; 805

CREATE TYPE sys.ku$ ddl AS OBJECT (
dd1lText CLOB, 807
parsedItems

sys.ku$ parsed items) ;

CREATE TYPE sys.ku$_ddls IS TABLE OF sys.ku$ ddl; 309
CREATE TYPE sys.ku$ SubmitError IS OBJECT (
statement CLOB,
811
errorNumber NUMBER,
errorText CLOB) ;

CREATE TYPE sys.ku$ SubmitErrors IS TABLE OF sys.ku$ SubmitError; 813

801

FIG. 8

U.S. Patent

Create table metaview$

(type varchar2 ("M IDEN") not null,

flags number not null,

properties number not null,

model varchar2 ("M IDEN") not null,

version varchar2 ("M IDEN"),
xmltag varchar2 ("M IDEN"),

udt

schema varchar2 ("M IDEN"),

viewname varchar2 ("M IDEN") not null

901

Mar. 16, 2004

varchar2 ("M IDEN") not null,

Sheet 14 of 24 US 6,708,186 B1

/* metadata UDT/view table */
/* object type */ 903
/* object flags */
/* object flags */
/* model properties */ 905
/* version */ 906
/* xml tag */ 907
/* UDT name */ 909
/* view schema */ 911
/* view name */

create table metafilter$ /* maps filters in mdAPI to UDT attributes */

(

filter varchar2 ("M IDEN") not null,

type varchar2 ("M IDEN") not null,

model

properties number not null,

view_attr number not null,

attrname varchar2 (2000),

default val number

(
913

FIG. 9A

varchar2 ("M _IDEN") not null,

/* documented filter. name */ 915

/* dict. obj type: e.g, ‘TABLE’ */ 903

/* model name */ 905
* filter properties */
/* 0x01 = boolean filter,

0x02 = expression filter */ 917

/* 0x04 = custom filter,

O0x08 = has default

*/

/* view flag bits (boolean filters only) */

/* filtering attribute */ 919

U.S. Patent Mar. 16,2004 Sheet 15 of 24 US 6,708,186 B1

Create table metaxsl$ /* metadata xsl table */

(xmltag varchar2 ("M IDEN") not null, /* xml tag */ 907
transform varchar2 ("M_IDEN") not null, /* transform name x/ 923
model varchar2 ("M IDEN") not null, /* model name */ 905
script varchar2 (2000) not null /* URI of xsl script */ 925

)

921

create table metaxslparam$ /*legal parameters for mdAPI’'s XSL scripts*/

(
model varchar2 ("M_IDEN") not null, /* model name */ 929
transform varchar2 ("M _IDEN") not null, /* transform name */ 931
type varchar2 ("M IDEN") not null, /* type: e.g, 'TABLE’ */ 903
param varchar2 ("M IDEN") not null, /* param. name */ 933

default val varchar2 (2000)

)
92

create table metastylesheet /* Storage for XSL stylesheets * /

(name varchar2 ("M IDEN") not null, /* stylesheet name */ 937
model varchar2 ("M _IDEN") not null, /* model */ 930
stylesheet clob /* stylesheet body */ 941

)

935

FIG. 9B

U.S. Patent Mar. 16,2004 Sheet 16 of 24 US 6,708,186 B1

create or replace type kus table t as object

(

db version varchar2 (14), /* database version number */ 1002
major verslion number, /* UDT major version number */ :}_ 1003
minor version number, /* UDT minor version number */

obj num number, /* obj# */ 1005

schema obj ku$ schemaobj t, /* schema object */ 1007

storage ku$ storage t, /* storage */ 1009

ts name varchar2 (30), /* tablespace name */ 1011

dataob]j num number, /* data layer object# */

bobj num number, /* base obij# (cluster/iot) */

tab num number, /* # in cluster, null if

!clustered */
cols number, /* # of columns */
clucols number, /* # of clustered cols,

if clustered */
pct free number, /* min., free space %age
in a block */

pct used number, /* min. used space %age

in a block */

initrans number, /* init number of transaction */
maxtrans number, /* max number of transaction */ 1012
flags number, /* flags */

audit wval varchar2 (38), /* auditing options */

rowent number, /* number of rows */

blkent number, /* number of blocks */

empcnt number, /* number of empty blocks */
avgspc number, /* avg available free space */
chnent number, /* number of chained rows */
avgrln number, /* average row length */

avgspc flb number, /* avg avail free space of

blocks on free list */
flbecnt number, /* free list block count */
1001

FIG. 10A

U.S. Patent Mar. 16,2004 Sheet 17 of 24 US 6,708,186 B1

analyzetime date, /* timestamp when last analyzed */

samplesize number, /* number of rows sampled by
Analyze */

degree number, /* # of PQ slaves per instance */

instances number, /* # of OPS instances for PQ */

intcols number, /* # of internal columns */

kernelcols number, /* number of REAL (kernel)

columns */

property number, /* table propertieg */

trigflag number, /* inline trigger flags */ 1012
sparel number, /* used to store hakan kgldtvc */

spare2 number, /* committed partition # used by |

drop column */
spare3 number, /* summary sequence number */ |

spared varchar2 (1000), /* committed RID used by drop

column */

spareb varchar2 (1000),
spareé date, /* dml timestamp */
col list ku$_column list t, /* list of columns */ 1013
con list kuj_constraint_list t, /* list of constraints */ 1015
part obj ku$ part obj t /* null if lpartitioned */ 1017
)
1001

U.S. Patent Mar. 16,2004 Sheet 18 of 24 US 6,708,186 B1

create or replace force view ku$ table view of ku$ table t :}_ 1102
with object OID(obj num)

as select

//' ‘08.02.00.00.00’, 1, o, 1104
t.obj#, value(o), value(s), 1105

(select ts.name from ku$ tablespace view ts :}, 1107

where t.ts# = ts.ts num},
t.dataobj#, t.bobij#, t.tab#, t.cols, A

t.clucols, t.pctfree$, t.pctused$, t.initrans, t.maxtrans, t.flags,

t.audit$, t.rowent, t.blkent, t.empent, t.avgspe, t.chnent, > 1109
t.avgrin, t.avgspc flb, t.flbcnt, t.analyzetime, t.samplesize,
t.degree, t.instances, t.intcols, t.kernelcols, t.property,
t.trigflag, t.sparel, t.sgspare2, t.spare3d, t.spared4, t.spares, y
L .spareé,
1103 ~
cast { multiset (select * from ku$ column view c 1111
where c.obj num = t.obj#) T
as ku$ column list t), L
——
cast(multiset(select * from ku$S constraint view con
where con.obj num = t.obj#) > 1113
as ku$ constraint list t),
-
(select value(po) from ku$ part obj view po
\\u. where t.obj# = po.obj num)
from tab$ t, ku$ schemaocbj view o, ku$ storage view s
where t.obj# = o.obj num(+) 1117
Is —
AND t.file# = s.file num(+)
AND t.block# = s.block num(+) ¢/~ 1119 115
1116 AND t.ts# = s.ts_num{+) (
AND (UID IN (o.owner num, O0) ™

OR EXISTS (SELECT * FROM session roles . 1121

WHERE role='SELECT_CATALOG_ROLE’')) j Y,

1101

FIG. 11

U.S. Patent Mar. 16,2004 Sheet 19 of 24 US 6,708,186 B1

CREATE TABLE "SCOTT"."BONUS" 1205
("ENAME" VARCHARZ2 (10), 1209
"JOB" VARCHAR2 (9),
1203 1207
"SAL" NUMBER,

"COMM" NUMBER

PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 1213
STORAGE (INITIAL 10240 NEXT 10240 MINEXTENTS 1

1211 MAXEXTENTS 121 PCTINCREASE 50 FREELISTS 1 1215
FREELIST GROUPS 1 BUFFER POOL DEFAULT)

TABLESPACE "SYSTEM"; 1217

FIG. 12

U.S. Patent

Mar. 16, 2004 Sheet 20 of 24

<TABLE T> 1303

(1002)

{ﬂB_VERSIDNbOB.02.00.UU.ﬂﬂﬁ/DB_VERSION}
<MAJOR_VERSION>1</MAJOR_VERSION>
<MINOR_VERSION>0</MINOR VERSION>
<OBJ_NUM>2894</0BJ_NuM> (1005)
<SCHEMA OBJ>

<OBJ_NUM>2894</0BJ_NUM>
<DATAOBJ_NUM>2894 </DATAOBJ NUMs>
<OWNER_NUM>19</OWNER NUM>
<OWNER_NAME>SCOTT</OWNER NAME>
<NAME>BONUS < /NAME >
<NAMESPACE>1</NAMESPACE>
ﬂTYPE_NUM:E{/TYPE_NUM:
<CTIME>1999-05-14 15:56:16.0</CTIME>
<MTIME>1999-05-14 15:56:16.0</MTIME>
<STIME>1999-05-14 15:56:16.0</STIME>
<STATUS>1</STATUS>

<FLAGS>0</FLAGS>
</SCHEMA OBJ>
<STORAGE>

<FILE NUM>1</FILE NUM>
<BLOCK_NUM>21345</BLOCK NUM>
<TYPE_NUM>5</TYPE NUM>
<TS_NUM>0</TS NUM>
<BLOCKS>5</BLOCKS>
<EXTENTS>1</EXTENTS>
<INIEXTS>5«</INIEXTS>
<MINEXTS>1</MINEXTS> (1009)
<MAXEXTS>121</MAXEXTS>
<EXTSIZE>5</EXTSIZE>

<EXTPCT>50</EXTPCT>
<USER_NUM>19</USER NUM>

<LISTS>1</LISTS>

<GROUPS>1«</GROUPS>

<BITMAPRANGES>0</BITMAPRANGES >

<CACHEHINT>0</CACHEHINT>
1301

FIG. 13A

US 6,708,186 Bl

(1003)

(1007)

U.S. Patent Mar. 16,2004 Sheet 21 of 24 US 6,708,186 B1

<SCANHINT>0</SCANHINT>
</coL_LIsT> (1013)

<HWMINCR>Q0</HWMINCR >
(1009) </TABLE T> 1303

</STORAGE>

<TS_NAME>SYSTEM</TS _NaME> (1011)

<DATAOBJ_NUM>2894</DATAOBJ NUM>
<COLS>4</COLS>
<PCT_FREE>10</PCT FREE>
<PCT_USED>40</PCT USED>
<INITRANS>1</INITRANS>
<MAXTRANS>255«</MAXTRANS >
<FLAGS>1</FLAGS>
<AUDIT VAL>-------------- </AUDIT VAL> (1012)
<INTCOLS>4</INTCOLS>
<KERNELCOLS>4 < /KERNELCOLS >
<PROPERTY>0«/PROPERTY >
<TRIGFLAG>0</TRIGFLAG>
<SPARE1>178</SPARE1l>
<SPARE3>0</SPARE3 >
<COL_LIST> (1013)
<COL_LIST ITEM itemNo="1">
dOBJ;NUM}2894¢/OBJ;NUM>
<COL_NUM>1</COL NUM>
<SEGCOL_NUM»>1</SEGCOL NUM>
<SEGCOLLENGTH>10</SEGCOLLENGTH>
<OFFSET>0</OFFSET>
<NAME >ENAME < /NAME >
<TYPE NUM>1</TYPE NUM>
<LENGTH>10</LENGTH> 1305 (1013)
<FIXEDSTORAGE>0</FIXEDSTORAGE >
<IS NULL>0</IS NULL>
<INTCOL NUM>1</INTCOL NUM>
<PROPERTY>0</PROPERTY>
<CHARSETID>2</CHARSETID>
<CHARSETFORM>1</CHARSETFORM>
<SPARE1>0</SPARE1l>

<SPARE2>0</SPARE2>
</COL_LIST ITEM>

1301

FIG. 13B

U.S. Patent Mar. 16,2004 Sheet 22 of 24 US 6,708,186 B1

<xsl:template match="COL LIST"> 1403

<xsl:text> 1405
(</x81:text>

<xsl:for-each select="COL LIST ITEM">
<Xs8l:s0rt select="COL_NUM"/> 1409
<xsl:text> "e/xsl:text> 1411
<xsl:value-of select="NAME"/> 1413
<xsl:text>" </xsl:text>
<x8l:if test="$UDT type='TABLE'"> 1415

<xsl:apply-templates select="TYPE NUM"/> 1417

</xsl:if>
1407 <xsl:choose>
<!-- Put out a comma / LF if not the last col --»>
<Xs8l:when test="not (position()=1last())">
<xsl:text>, 1437
1419

</xsl:text>

</xsl:when>
‘ <Xsl:otherwise>

) </xsl:otherwise> 1439

</xsl:choose>
_</xsl:for—each>

</xsl:template> 1403

<xsl:template match="TYPE NUM"> 142]
<xsl:choose>

<Xs8l:when test=".='1'">
<xsl:text>VARCHAR2</xsl:text> 1425
<xsl:apply-templates select="../LENGTH"/> 1427 1423

</xsl :when>

<xs8l:when test=".='2/">

<Xsl:choose>

<xsl:when test="(../PRECISION NUM) and
not (../SCALE) ">FLOAT</xsl :when>

<Xsl:otherwise>NUMBER<«/xsl:otherwigse>
</xs8l:choose:>

<Xsl:apply-templates select="../PRECISION NUM"/>
</xsl:when>

<xsl:when test=".='8’">LONG<«/xsl :when>

1401
FIG. 14A

U.S. Patent Mar. 16,2004 Sheet 23 of 24 US 6,708,186 B1

<xsl:when test=".='12’">DATE</xsl :when>

<xsl:when test=".=/23'">
<XS8l:text>RAW</xsl:text>
<xsl:apply-templates select="../LENGTH"/>

</%xs8l :when>

<Xsl:when test=".='24’'">LONG RAW</xsl :when>
<xXsl:when test=".='69'">ROWID</xsl :when>
<xsl:when test=".,='96'">

<xXsl:text>CHAR</xsl:text>
<xsl:apply-templates select="../LENGTH"/>

</x8l :when>

<Xsl:when test=".=’105'">MLSLABEL</xsl :when>
<xsl:when test=".='112'">CLOB</xsl:when>
<xsl:when test=".='113’">BLOB</xsl:when>
<xsl:when test=".='114'">BFILE</xsl :when>

<xXsl:otherwise>OTHER</xsl:otherwise>
</xs8l:choose>
<xsl:if test="../IS NULL='1'">
<xsl:text> NOT NULL</xsl:text>
</x8l:if>

</xsl:template> 1421

<!-- This template used for both VARCHAR2 (n), RAW(n), NUMBER (x,y) and
FLOAT (z)
OK for

VARCHARs because SCALE will not be present
-2
<xsl:template match="PRECISION NUM | LENGTH"> 1429
<xsl:text>(</xsl:text> 1431
<xsl:value-of select="."/> 1433
«<xs8l:1f test = "(../SCALE) and not(../SCALE='0')">
<x8l:text>,</xsl:text>
<xsl:value-of select="../SCALE"/>
</xsl:1if>
<xsl:text>)</xsl:text> 1435
</xsl:template> 1429

1401

FIG. 14B

U.S. Patent Mar. 16, 2004

Sheet 24 of 24 US 6,708,186 B1

meta

xXsl$
921

LT

meta m etafilt meta meta
view$ er$ style xsl
901 913 sheet params
835 $
l 927
XSL
style
sheet = = =
1521
Y 1509
Kud_
t::i— . table_vi
— ew [a [|
1001 1101

tab$ obj$ segd col$ con$ cdef$

partobj$

141 141 141 141 141 141
141

106

1501

FIG. 15

US 6,708,186 Bl

1

AGGREGATING AND MANIPULATING
DICTIONARY METADATA IN A DATABASE
SYSTEM

CROSS REFERENCES TO RELATED
APPLICATTONS

This patent application claims priority from U.S. Provi-
sional Application No. 60/225,229, George H. Clabom, et
al., Using object views, XML, XSL to aggregate, encode,
and manipulate dictionary metadata, filed Aug. 14, 2000.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The 1nvention relates generally to database systems of the
kind which store metadata in catalogs or data dictionaries
and more specifically to techniques for reading and manipu-
lating the metadata.

2. Description of Related Art

FIG. 1 provides an overview of the mnvention disclosed
herein. A preferred embodiment of the invention 1s 1mple-
mented 1 an 1mproved version of the Oracle8™ Server,
manufactured by Oracle Corporation, Redwood City, Calif.
The Oracle8 server includes an object-relational database
system. The object-relational database system appears in
FIG. 1 as DBMS 103; prior to modification as required for
the mvention, DBMS 103 includes database 108, together
with those tables 107 1n data dictionary 106 that are required
to implement database 108.

Information 1s stored in DBMS 103 as objects. In FIG. 1,
all objects have the reference number 105. Objects are

divided into classes according to the kind of information
they contain. Shown 1n FIG. 1 are objects of the TABLE

class 141, the TRIGGER class 143, the INDEX class 145,
the UDT (user-deﬁned type) class 147 and the VIEW class
149. Many other classes of objects exist as well in DBMS

103. Object classes that are of particular importance for the
present discussion are TABLE class 141, UDT class 147,

and VIEW class 149. DBMS 103 1s a relational database
system. In such systems, most of the datais s

ored 1n objects
of TABLE class 141. As implied by the name, an object of
TABLE class 141 contains a table. The table 1s made up of
rows and columns. Each row has a field for each of the
columns. A column specifies a kind of data value and a row
represents an entity which has values of the kinds specified
by the column. For example, in a table for storing personal
information, the columns might be called last__name, first
name, m_ 1, street__addr, and so forth, with each row rep-
resenting a person and the fields in the row having the
appropriate values for that person.

DBMS 103 1s an object relational database system. In
such a system, the data values 1n a column may be objects
which have user-defined types or UDTs. For instance, a user
might define a type called contact_info which contained
fields for all of the contact information for an individual and
a column 1n a table of persons might specity a field for which
the values are objects of type contact__info. Objects of class
UDT are objects with user-defined types.

The objects of the TABLE class are what 1s termed base
tables, that 1s, the information contained in an object of the
TABLE class 1s stored as a table in DBMS 103’s memory
system. DBMS 103 has other tables which use the informa-
tion contained 1n one or more base tables, but do not make
separate copies of the information. These tables are termed
views and the objects that represent views are objects of
VIEW class 149. Views can be used to combine information

10

15

20

25

30

35

40

45

50

55

60

65

2

from a number of different base tables and even other views.
A kind of view which is of particular interest in the present
discussion 1s an object view. An object view 1s a view that
1s assoclated with a user-defined type. Each row 1n the table
specifled by the object view 1s an object of the user-defined
type associated with the object view. The information which
the object view obtains from the base tables either directly
or via other views 1s mapped 1nto fields of the objects which

make up the rows in the view.

The objects in DBMS 103 belong either to data dictionary
106 or to database 108. The information in data dictionary
106 1s metadata, that 1s, information that defines all of the
objects in DBMS 103, those 1n database 108, and also those
in data dictionary 106. In the Oracle8 server, most of the
objects 1n data dictionary 106 are TABLE objects 105 that
belong to system tables 107. For example, there 1s a table
named tab$ in system tables 107 that contains a row for
every table defined in DBMS 103, including the tables in
system tables 107.

A problem with present-day database systems 1s that there
1s no simple way of obtaining all of the metadata that
describes an object 105 in DBMS 103. For example, to
obtain a definition of a TABLE object 141, a user or a client
executing a program written by a user may have to make
over a dozen queries to retrieve table, column, object,
partition, sub-partition, tablespace, index, grant, storage,
nested-table and owner information associated with the base
table. Moreover, 1n order to select the views to query, the
user must know what subtype of object one 1s dealing with
(e.g., relational vs. object table, partitioned vs. non-
partitioned table, index-organized vs. heap table, temporary
vs. persistent table), 1.e., in order to obtain the metadata for
an object, the user must have a good understanding of the
structure of data dictionary 106.

The difficulty of obtammg the metadata for an object adds
to the expense and effort requ1red to use and maintain
DBMS 103. For example, 1n today’s networked
environment, 1t 1s often useful to have partial copies of
database 108 at different locations within the network. To
make such a partial copy, one needs to extract the metadata
from data dictionary 106 that defines the partial copy and
then use that information to create the partial copy. Easy
access to mformation about the logical structure of a data-
base 1s of course also useful whenever one 1s modifying the
database’s logical structure. In present-day database
systems, a user who wishes to obtain a useful definition of
an object 1n the database faces three main problems:

No Simple Means of Obtaining Complete Database Object
Definitions

Present-day database systems provide no facility which
permits a user to obtain the complete definition of any object
in DBMS 103. The Oracle8 server provides an example of
what 1s available in present-day systems for obtaining meta-
data from data dictionary 106. The Oracle8 server provides
a series of views onto data dictionary 106, but, like the tables
w1th11:1 the data dictionary 1itself, these views are normalized
for efficiency; hence, several queries against multiple views
nced to be executed mm order to retrieve the complete
metadata for what 1s logically a single object in the database.
No Means to Perform Transformations on Database Object
Definitions

Often, the reason for extracting a definition of an object
1s to transform 1t. For example, a client that 1s maintaining
a local copy of a portion of a database generally wishes to
perform transformations such as adding a column to a table,
changing a table definition into a snapshot definition, chang-
ing object ownership, removing specific storage attributes,

US 6,708,186 Bl

3

ctc. Today, the client requires custom code to perform these
sorts of transformations.

No Means to Generate Creation SQL DDL for Database
Objects

Once an object’s defimition i1s extracted and perhaps
transformed, a client invariably wants to recreate that object
somewhere; perhaps in another schema of the source data-
base or perhaps 1n some other target database. In SQL
databases such as that provided by the Oracle8 server,
objects are created by defining them 1n a data definition
language (DDL) and then providing the DDL to the database
system, which creates the object as defined 1n the DDL.
Present-day database systems provide no simple way of
getting from the metadata for an object to the DDL needed
to create another such object. At present, the client must use
custom code to produce this DDL from the metadata for the
object.

The absence of a facility which makes 1t easy to obtain
complete and accurate metadata for objects 1n the database
also to put the metadata into a form which makes it easy not
only to modify the metadata, but also to produce creation
DDL from the metadata has led to large amounts of dupli-
cated effort within the organizations that produce database
systems and even larger amounts of duplicated effort within
the organizations that use the database systems. It 1s thus an
object of the invention disclosed herein to provide a facility
that makes extraction of metadata for objects from the data
dictionary easy and further puts the metadata mto a form
such that 1t can be easily modified and easily used to create
the objects they describe. It i1s further an object of the
invention to provide techniques that generally simplify the
aggregation of data that 1s stored 1n a plurality of objects 1n
a database system.

SUMMARY OF THE INVENTION

The foregoing objects of the invention are achieved by
apparatus for aggregating data stored in a number of objects.
The apparatus associates a kind of data to be aggregated with
a user-defined type that defines an object for containing the
ageregated data and an object view that specifies the loca-
tions of the data to be aggregated and has an application
program 1nterface that includes a fetch interface that causes
the database system to make a query over the object view
associated with the kind of data to be aggregated that obtains
the data to be aggregated from a plurality of objects and
returns an object of the user-defined type associated with the
kind that contains the aggregated data.

In another aspect of the 1nvention, there are a number of
different kinds of data to be aggregated. The apparatus
assoclates a name with a kind of data to be aggregated and
associates the user-defined type and the object view with the
name. The fetch interface responds to a name of a kind of
data by making a query over the object view associated with
the name that returns and object of the user-defined type
associated with the name. The application program interface
may further include a filter interface that permits a client of
the database system to specily a filter that restricts the query
over the object view. The filter may also be associated with
the name of the kind of data.

In a further aspect of the invention, the apparatus may
convert the contents of the returned object of the user-
defined type 1nto an intermediate form. The application
program may further include a transform interface that
permits a client of the database system to specily a trans-
formation of the intermediate form.

One application for the mvention 1s retrieving metadata
for objects belonging to a given class from the data base’s

10

15

20

25

30

35

40

45

50

55

60

65

4

data dictionary. In this application, the user-defined type, the
object view, and the filter are all associated with the name of
the class. One of the transformations from the intermediate
form 1s creation DDL for an object whose metadata has been
retrieved by the apparatus. XML 1s a particularly useful
intermediate form, with transformations being made using

XSL stylesheets.

Other objects and advantages will be apparent to those
skilled 1n the arts to which the invention pertains upon
perusal of the following Detailled Description and drawing,
wherein:

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 1s a block diagram of a database system in which
the 1nvention 1s implemented;

FIG. 2A 15 a first part of a programming example showing
how the invention 1s used;

FIG. 2B 1s a second part of the programming example of
FIG. 2A;

FIG. 2C 1s a third part of the programming example of
FIG. 2A;

FIG. 3 1s a table of classes of objects whose definitions
may be retrieved using API 120;

FIG. 4A 1s a first portion of a table of the filters that can
be used to specily sets of objects belonging to a class;

FIG. 4B 15 a second portion of the table of FIG. 4A;

FIG. SA 1s a first portion of a table of the filters that can
be applied to objects of TABLE class 141;

FIG. 5B 1s a second portion of the table of FIG. 5A;

FIG. 6 1s a table of the items that can be specified 1n the
set__parse__item procedure;

FIG. 7A 1s a first portion of the table of the transform
parameters that can be set for the DDL transform;

FIG. 7B 1s a second portion of the table of FIG. 7A;

FIG. 8 1s the definition of user-defined types used in the
interfaces of certain of the procedures and functions of API

120;
FIG. 9A 15 a first part of definitions of tables belonging to
aggregation metadata 109;

FIG. 9B 1s a second part of the definitions of FIG. 9A

FIG. 10A 1s a first part of a definition of a UDT 110 used
to aggregate metadata about objects of the TABLE class;

FIG. 10B 1s a second part of the definition of FIG. 10A;

FIG. 11 1s a definition of a view 111 used with the UDT
of FIG. 10;

FIG. 12 1s the creation DDL for an example TABLE
object, SCOTT.BONUS;

FIG. 13A 1s a first part of the XML representation of
object 121 for the table SCOTT.BONUS;

FIG. 13B 1s a second part of the XML representation of
FIG. 13A;

FIGS. 14A-B 15 a portion of the XSL style sheet used to
transtform the XML representation into the creation DDL;
and

FIG. 15 1s a detailed diagram of aggregation metadata
109.

Reference numbers 1n the drawing have three or more
digits: the two right-hand digits are reference numbers in the
drawing indicated by the remaining digits. Thus, an item

with the reference number 203 first appears as item 203 1n
FIG. 2.

DETAILED DESCRIPTION

The Detailed Description will first present an overview of
the invention and an example of its use and will then present
details of a preferred embodiment.

US 6,708,186 Bl

S

Overview of the Invention: FIG. 1

FIG. 1 shows a system 101 in which the invention 1s
implemented. system 101 i1s part of the Oracle91 Server,
manufactured by Oracle Corporation. As explained 1n the
Description of related art, DBMS 103 1s an object relational
database. Data 1s stored in objects 105. The objects 1n data

dictionary 106 contain metadata which describes all of the
objects in DBMS 103.

Added to DBMS 103 1s aggregation metadata 109 1n data

dictionary 106 and metadata aggregation application pro-
gram interface (API) 120, which contains code that uses
information in aggregation metadata 109 to obtain metadata
121 about objects 105 from data dictionary 106, uses XML
generator 125 to make an XML representation 135 of the
imnformation, and uses XML transformer 127 to transform
XML representation 135 to obtain a desired output 137 such
as a DDL description of one or more objects 105. In the
preferred embodiment, XML generator 125 and XML tran-
former 127 are generally-accessible components of DBMS
103. XML generator 125 receives a query, executes 1it, and
transforms the result into an XML document. XML trans-
former 127 receives an XML document and a transform
specifler and transforms the XML as specified by the trans-
form speciiier.

XML (Extensible Markup Language) is a standard lan-
cuage for defining application / industry-specific tagged
dialects for description of the definer’s unique data. XML 1s
particularly useful for this purpose because it separates the
description of the dialect from the content of the data for
which the dialect 1s to be used. The separation of description
and content permits easy parsing and transformation of
XML documents using industry standard tools. For more
information about XML, see http:/www.w3.org/XML. In
other embodiments, other intermediate representations may
be employed. XML documents may be transformed by
means ol style sheets written 1n XSL. In its most general
form, XSL 1s a way to transform an XML document into
something else based on a set of rules embodied 1n the
stylesheet. The output 1s another XML document, or HITML,
or SQL text, or whatever else may be specified by the
stylesheet. Recently, it has been recognized that the data
transformation aspects of XSL are so powerful that they
have been separated from the presentation rules and

renamed XSL-T. For details, see http:/www.w3.org/Style/
XSL.

Continuing 1n more detail, the aggregation metadata 109
include a number of aggregation user-defined types 110.
Each aggregation user-defined type 110 corresponds to a
class of objects 105. An aggregation UDT 110 defines fields
for all of the metadata needed to make a definition of an
object belonging to the class to which the UDT 110 corre-
sponds. An object that has an aggregation UDT will be
termed hereinafter an aggregation object. Corresponding to
cach aggregation user-defined type 110, and thus to a class
of objects, 1s an object view 111 which maps the sources in
system tables 107 for metadata for objects of the class onto
the fields of the aggregation UDT 110 for the class. Such an
object view will be termed hereinafter an aggregation object
view. Query generator 123 makes a query 119 over aggre-
gation object view 111 for the class that obtains the metadata
for a set of objects of the class. The query returns a set 121
of ageregation objects of the class’s UDT 110. Each aggre-
gation object returned by the query contains the metadata for
one of the objects belonging to the set of objects of the class.

The set 121 of returned aggregation objects goes to XML
ogenerator 125 1n metadata aggregation API 120, which

10

15

20

25

30

35

40

45

50

55

60

65

6

generates an XML document 135 that contains the metadata
from the set of ageregation objects 121. If the XML docu-
ment needs to be transformed 1in any way, for example, 1nto
a DDL specification that uses the information from an
aggregation object, the transformation can be done in XML
transformer 127. The client may of course simply take XML

output 135 from API 120 and apply 1ts own transforms to the
XML output.

The remaining components of aggregation metadata 109
permit refinement of query 119 and specification of the
transformations produced by XML transformer 127. Filter
specifications 113 are specifications for restricting the set of
objects for which the query 119 retrieves the metadata. For
example, ageregate view 111 might be for the class of
TABLE objects; a filter specification 113 can be used to limat
the 1nformation retrieved by query 119 to the metadata for

the set of TABLE objects whose names 1nclude the word
PAYROLL. When a filter 1s specified in API 120, query

ogenerator 123 adds a WHERE clause to query 119 which
specifles that the returned result will be limited to a subset
of the rows 1n aggregation view 111 that have the property
specified 1n the filter. Transform specifications 115 are

specifications that describe transformations made by XML
transformer 127 on the XML produced from the set 121 of

aggregation objects; one such transformation is the trans-
formation from XML to DDL.

In the preferred embodiment, a client which 1s using API
120 does so by first specifying the class of objects for which
descriptions are to be obtained (129), then specifying one or

more filters for the query 119 (131), then specifying one or
more transformation specifications (139) indicating how the
XML produced from the set 121 of aggregation objects
returned by the query is to be transformed (139). When all
of this has been specified, the client 1ssues a fetch command
133, which causes query generator 123 to make a query 119
on the aggregation object view 111 for the class that has been
restricted as specified by the filters 113 and provide query
119 to XML generator 125, which executes the query and
ogenerates XML document 135 from the set of returned
objects 121 (135). If any transform specifications 115 were
specifled, aggregation object processor 124 causes XML
transformer 127 to transform XML document 135 as speci-
fied 1n the transforms specifications 115 to produce trans-
formed result 137 and then outputs transformed result 137.

It should be pointed out here that the techniques used 1n
system 101 to map information in objects 107 to fields 1n an
aggregation object and to generate XML from the informa-
tion 1n the aggregation object can be used to produce
metadata 1n any form which may be useful to a client, and
can thus be used to produce metadata according to a number
of different models. Thus, though the metadata produced in
the preferred embodiment conforms to the Oracle metadata
model, system 101 can also produce metadata that conforms
to the ANSI-1999 SQL model. All that 1s required to fetch
the metadata for a class of objects 105 according to a given
model 1s making a UDT 110 and object view 111 for the
class and model. In the preferred embodiment, the class and

model constitute a name for the information aggregated by
the UDT 110 and object view 111 and API 120 associates

UDT 110 and object view 111 with the name. If there 1s a
standard form 1 which the model 1s expressed, a transform
specification 115 can be added which produces that form
from the XML generated from the set 121 of aggregation
objects returned by the query. In some cases, model ditfer-
ences may even be dealt with by simply transforming the
XML as required for the model in question.

It should further be pointed out that the techniques used
in system 101 are not limited to retrieving and transforming

US 6,708,186 Bl

7

metadata, but can be employed 1n any situation where
information needs to be aggregated from a number of
different objects 1n database 108. One way of doing this 1s
simply to define a name for a new class of 1information in
API 120, define a UDT that contains an instance of the
aggregated information, define an object view whose rows
are objects of the UDT, and associate at least the UDT and
object view with the name for the new class of information.
When that 1s done, API 120 can be used to aggregate the new
information.

Another way of doing 1t 1s to make a new API that works
on the same principles as API 120. If the new API 1s only
ogolng to aggregate one kind of information, 1t need not even
name the aggregated information, since the UDT and object
view can be simply associated with the new API. As in API
120, filters may be defined and associated with the API, an
intermediate form such as XML may be generated from the
aggregated mnformation in the objects of the UDT, and the
intermediate form may be transtormed as specified 1n trans-
form specifications. If the API 1s to retrieve a number of
different kinds of information, the kinds of information to be
retrieved may be given names, the UDT, object view, and
filters for a given kind of information may be associated with
the name for the given kind of information, and the name
may be used 1n the API in the same fashion as the name for
a class of objects 1s used 1 API 120.

One example of a system like system 101 that 1s used to
aggregate mformation other than metadata 1s a system that
aggregates the information from the database that 1s needed
fo generate a purchase order. As 1s the case with metadata,
the information needed for a purchase order tends to be
contained 1n a wide variety of objects. In such a system, the
XML document containing the aggregated information
would be transtormed as required to produce a purchase
order.

DETAILS OF A PREFERRED EMBODIMENT

In the following, there will first be presented an overview
of the programming interface to system 101 and an example
program for obtaining descriptions of metadata, then a
detailled description of the programming interface, and
finally examples of an aggregation UDT 110, an aggregation
view 111 using the example UDT, the XML output produced
from the aggregation object 121 returned by the query, and
the DDL produced from the XML.

The Programming Interface to System 101

From a programmer’s point of view, system 101 has an
open-fetch-close programming paradigm. A program
executed by a client will generally use the procedures and
functions provided by API 120 as follows:

1. A call to ‘OPEN’ 1s made describing the class of object
105 for which metadata is being requested (tables,
indexes, etc). A handle is then returned to be used in all
subsequent operations for the set of objects for which
metadata 1s being requested.

2. ‘SET_FILTER’ is then called (perhaps multiple times) to
further refine and restrict the set of objects to be fetched.
This establishes the WHERE clause predicates on the
query that will be executed against the appropriate aggre-
gation view(s) 111. A large variety of filter criteria are
available for each class of object; common ones are object
name and schema expression matching. For tables, special
filter criteria are available to specify heap storage only (no
[OTs), non-partitioned, relational only (no object tables),
ctc. If specified, these allow query generator 123 to prune
the set of object views to be queried for higher perfor-
mance.

10

15

20

25

30

35

40

45

50

55

60

65

3
3. ‘ADD__TRANSFORM’ may optionally be called

(perhaps multiple times) to specify various transforma-
tions that are to be executed on the resultant XML
documents. The transformations are specified by means of
XSL-T stylesheets. The caller may specily the URL of 1ts
own private stylesheet; for example, to remove or add a
column to a table’s metadata. Or, the caller may specify
‘DDL” which tells API 120 to generate creation DDL for
the object using its own stylesheets. In either case, a
transtorm handle 1s returned. This handle 1s different from
the handle returned by OPEN. It 1s used to further refine
the transform as described 1n the next step.

4. ‘SET_TRANSFORM_ PARAM’ may then be called
(perhaps multiple times) using the transform handle from
the previous step. This allows the caller to pass transform-
dependent runtime values to the XSL-T stylesheet. Some
of the various transform options that can be specified are:
‘Don’t include constraints’, ‘Don’t include storage or
tablespace clauses’, ‘Pretty print the output’, ‘Do/don’t
include the SQL terminator character (;)’, ‘Do/don’t
include package or type bodies with their specifications’.

5. Once the preliminary setup 1s complete, the calling
program will loop, calling one of the various ‘fetch’
functions to retrieve and output the metadata for objects
matching the selection criteria. The metadata will be
output either as an XML document or as creation DDL.

6. The fetch functions return NULL when there 1s no more
metadata for database objects that match the selection
criteria specified 1 the open and filter routines. The
CLOSE function should then be called with the handle
from step 1. API 120 will then clean up any currently
allocated resources.

An Example Program Using the Metadata
Agoregation API: FIGS. 2A-2C

FIGS. 2A-2C show a procedure get_ payroll_ tables 201
that 1s written 1n the PL/SQL language. get_ payroll__tables
201 retrieves table definitions for a user of the database
system. The table definitions belong to a schema associated
with the user, that 1s, a collection of objects 105 associated
with the user. In this case, the schema belongs to a user of
DBMS 103 for which a client 1s executing the procedure.
The procedure returns the metadata for all objects in the
client’s schema that have the class TABLE and whose names
begin with PAYROLL and the metadata for each table’s

indexes.

Beginning with FIG. 2A, at 203 are shown declarations

for variables representing handles for collections of data
produced or used by API 120. tableOpenhandle 1s the handle
for the table metadata that will be returned by the procedure;
indexOpenHandle 1s the handle for the index metadata that
will be returned by the procedure; tableTransHandle 1s the
handle for the transforms that will be used on the XML
ogenerated from the table metadata returned by the proce-
dure; and indexTransHandle 1s the handle for the transforms
that will be used on the XML generated from the index
metadata returned by the procedure. In both cases, the
transform will make DDL from the XML. At 205 are shown
declarations for character strings for storing schema and
table names returned by the procedure. At 207 are shown

US 6,708,186 Bl

9

declarations for objects that will be used to hold the DDL
and the list of mndexes produced by the procedure; at 209,

finally, there 1s a declaration for a character large object
(CLOB) which will hold the DDL for the indexes.

Continuing with the code, at 211, the output file which
will contain the DDL for the tables and mdexes whose
metadata are returned by the procedure 1s opened. At 213,
the open procedure of API 120 1s used to begin setting up

API 120. The ‘TABLE’ arcument used with open indicates
that the API 120 will be returning metadata for objects of the
TABLE class. open returns a handle, which 1s assigned to
tableOpenHandle. At 215, the first of the filters 1s specified.
The API’s set__count procedure specifies how the metadata
for the table objects 1s to be returned. In this case, 1t specifies
that the metadata will be returned one object at a time. At
217, the API’s set_ filter procedure specifies that metadata
for a table will be returned only 1if the table’s name starts
with the string PAYROLL. Further filters at 219 and 221
specily that each retrieved table’s schema and name will be
parsed out separately so that they can be used with API 120
to retrieve the indexes of the tables. Note that with all of
these procedures, the handle value in tableOpenHandle is
used to 1dentify the context in which the filter 1s to operate.

Next, the code speciifies the transforms. At 223, the main
fransform 1s specified, namely that the result 1s to be
transformed into DDL for the tables. Function add__
transform 223 1s invoked with the open handle value and a
specification, ‘DDL’, of the transform, and returns a handle
for the transform, which 1s assigned to tableTransHandle.
The transform handle 1s then used to further define the
transform at 225. Two invocations of API 120°s set
transform__param procedure specily that no physical storage
information 1s to be included 1n the DDL and that there will
be an SQL terminator on the DDL for each table. At this
point, the set up 1s completed and the information about the
tables may be fetched. The information will be fetched using
a query 119 that 1s made using the object specification from
open and the filters specified by set_ count, set_ filter, and
set_ parse_ 1tem. As the information 1s fetched, XML will be
generated from 1t and will then be transformed 1nto DDL as

specifled by add_ transform and set_ transform_ param.

The fetching and processing of the results 1s done in
FIGS. 2B and 2C. Beginning with FIG. 2B, a loop 227
(continued in FIG. 2C) repeatedly executes the API 120
function fetch_ ddl 229. Each time the function 1s executed,
it retrieves the metadata for a table that belongs to the
schema of the user for whom the client 1s executing the
oget__payroll__tables procedure and that conforms to the
restrictions specified 1n the filters, parses out the table’s
schema name and table name from the metadata, and trans-
forms the XML generated from the metadata into DDL as
specifled by the transforms. As shown at 231, the loop
terminates when there 1s no more metadata to be fetched for
tables that match the search criteria. Other fetch functions
will return the XML for the metadata itself or a CLOB that
contains either XML or DDL, depending on the transforms
applied to the XML.

As each 1nstance of table metadata 1s fetched, XML 1s
generated from 1t, and the XML 1s transformed into DDL.
Additionally, the metadata 1s parsed to obtain the table’s
name and schema name. The DDL made from the metadata
1s assigned to the variable tableDDLs, which 1s a collection
whose elements are DDL statements and a nested table of
any parse items specified using set_ parse. In the present
case, the collection will always have only 1 element. At 233,
this element 1s assigned to tableDDL. Next,

table DDL.ddItext, which contains the DDL made from the

10

15

20

25

30

35

40

45

50

55

60

65

10

XML resulting from the execution of fetch 1s output to the
output file. Then tableDDL.parsedltems, which contains the
parsed out schema and table names 1s assigned to a vector of
parsed items. Here, the vector will always only have two
elements, one for the table name and one for the schema
name. Since there 1s no guarantee of the order 1n which the
table name and schema name will appear 1n the vector, the
code at 235 checks and depending on what it finds, assigns
the name to schemaName or tableName.

FIG. 2C shows the portion of get_ payroll_tables which

ogets and processes the mndexes of the table which has just
been retrieved at 229. At 239, API 12(’s open function 1s
used as before, but this time, 1t specifies that the metadata
being retrieved 1s that for objects of the INDEX class. The
returned value 1s a handle for the index processing context.
Next, set_ filter 1s used at 241 and 243 to specily that the
index information be returned for the table belonging to the
schema (specified by schemaName) and having the table
name (specified by tableName) returned for the table

retrieved at 229. Then at 245-247, the transforms are
specified. The XML for the indexes for the table 1s to be
transformed 1nto DDL, again without data storage informa-
tion and with SQL terminators. Finally, at 251, a loop 1s
executed which uses the fetch_ clob variant of API 120°s
fetch function to fetch and transtorm each index value for
the table and output the transformed index value to the
output file. The loop terminates when there are no more
index values for the table. Thus, 1n the output file, the DDL
for each fetched table will be followed by the DDL for its
indexes. The close procedure at 253 frees the resources used
by API 120 and after that, the output file 1s closed.

As can be seen from the get_ payroll__tables procedure, a
client of a DBMS 103 that has metadata aggregation API
120 can obtain the creation DDL for a set of objects 1035
belonging to a given class without having any knowledge
whatever of the details of the actual arrangements for
specifying the metadata for the objects 1n system tables 107.
Moreover, the filters permit the client to specify exactly the
objects for which metadata will be retrieved. The
transforms, finally, permit the client to closely define the
DDL output. The API permits specification of multiple
filters and transforms, with the output of one transform
serving as the mnput to the next. Additionally, since API 120
actually produces an XML representation of the metadata
and produces the DDL output by applying an XSL-T style
sheet to the XML representation, other transforms can be
casily added to API 120 and the client can also take the XML
representation and apply its own XSL-T style sheets to 1it.
Finally, API 120 can easily be extended to handle different
models of metadata by adding new aggregation UDT’s 110
and aggregation object views 111, together with whatever
new filter specifications 113 are required for queries over the
new object views, and transform specifications 115 can be
added as needed to deal with the XML produced from
objects having the type of the new aggregation UDT.

Details of a Preferred Embodiment of Metadata
Ageoregation API 120: FIGS. 3-8

The following discussion will first provide a detailed
specification of the interfaces for the procedures and func-
tions employed 1n a preferred embodiment of API 120 and

US 6,708,186 Bl

11

of the operations which they perform and will thereupon
orve details of aggregation metadata 109 1n a preferred

embodiment and of XML and creation DDL produced using
API 120.

DBMS_METADATA.OPEN()

FUNCTION open
(object_type IN VARCHAR?2,
version IN VARCHAR2Z DEFAULI
"COMPATIBLE’,
model IN VARCHAR2 DEFAULI
"ORACLE’

) RETURN NUMBER;

OPEN specifies the class of object for which metadata 1s
to be retrieved, the version of its metadata, and the model for
the metadata. The return value 1s an opaque context handle
for the set of objects that will be returned with the metadata.

Parameters

object_type—the class of object for which metadata to be
retrieved. FIG. 3 lists the currently-valid class names and
their meanings. Most objects have names, belong to
schemas, and are uniquely identified within their
namespace by their schema and name. Some objects may
not be schema objects, for example objects that represent
users; other objects may not have names. These differ-
ences are relevant when choosing object selection criteria.
See SET__FILTER, below. As 1s apparent from the fore-
cgoing discussions, system 101 may be extended to

retrieve metadata for any class of objects used presently
or 1n the future in DBMS 103.

version—the version of metadata to be extracted. Database
objects or attributes that are incompatible with the version
will not be extracted. Legal values for this parameter are

‘COMPATIBLE’—(default) the version of the metadata

corresponds to the database compatibility level and the
compatibility release level for feature.

‘LATEST —the version of the metadata corresponds to
the version of DBMS 103.

A specific database version.

model—The API can support views corresponding to dif-
ferent metadata models such as Oracle proprietary,
ANSI99, Common Warehouse Metadata (CWM). model

specifies which ageregation UDTs 110 and aggregation
object views 111 will be used by fetch. The object and

model parameters together are thus the name with which
the aggregation UDTs and aggregation object views are
assoclated 1n the preferred embodiment.

Returns

an opaque handle to the class of objects. This handle 1s
used as mnput to the API functions and procedures
SET_FILTER, SET__COUNT, ADD_ TRANSFORM,
GET_QUERY, SET_PARSE_ITEM, FETCH_ xxx
and CLOSE.

5

10

15

20

25

30

35

40

45

50

55

60

65

12

Exceptions

Exception Description

INVALID__ARGVAL

A NULL or invalid value was supplied
for an 1nput parameter.

The error message text identifies the
parameter.

The version or model parameter was not
valid for the object__type.

INVALID__OBJECT__PARAM

DBMS_ METADATA.SET_FILTER()

PROCEDURE set filter

(handle IN NUMBER,
name IN VARCHAR?Z,
value = IN VARCHAR?);
PROCEDURE set_filter
(handle 1IN NUMBER,
name IN VARCHAR?2,
value IN BOOLEAN DEFAULT
TRUE);

SET_FILTER specifies restrictions on the objects to be
retrieved, e€.g., the object name or schema. There are two
versions of the procedure, one that uses a filter with a
Boolean value and another that uses a filter with a character
string value.

Parameters

handle—the handle returned from OPEN.

name—the name of the filter. FIG. 4 1s a table 401 that lists
for each filter the class of objects the filter applies to, the
filter’s datatype (text or boolean) and its meaning or effect
(including its default value, if any). FIG. § is a table 501
that lists the filters for the table class.

value—the value of the filter.

Exceptions

Exception Description

INVALID__ARGVAL

A NULL or invalid value was supplied for
an input parameter. The error message text
identifies the parameter.

The user called SET__FILTER after the
first call to FETCH__xxx for the OPEN
context. Once the first call to FETCH__xxx
has been made, no further calls to
SET__FILTER are permutted.

The filter name 1s not valid for the object
type associated with the OPEN context, or
the filter value 1s the wrong datatype.

INVALID _OPERAITON

INCONSISTENT__ARGS

Security

SET__FILTER allows the caller to specifty the schema of
objects to be retrieved, but security considerations may

US 6,708,186 Bl

13

override this specification. If the caller has the necessary
privileges, then any object may be retrieved; otherwise, only
(a) schema objects owned by the caller or (b) privileges
ogranted to or by the caller may be retrieved. If callers request
objects they are not privileged to retrieve, no exception 1s

raised; the object 1s stmply not retrieved, just as if 1t did not
exist.

DBMS_METADATA.SET_COUNTY()

PROCEDURE set count
(handle

value

IN NUMBER,
IN NUMBER);

SET__COUNT specifies the number of objects to be
retrieved 1n a single FETCH__xxx call. By default, each call
to FETCH__xxx returns one object. SET__COUNT allows
one to override this default. If FETCH__xxx 1s called from
a client, specilying a count value greater than one can result
in fewer server round trips and, therefore, improved perfor-
mance.

Parameters

handle—the handle returned from OPEN.
value—the number of objects to retrieve.

Exceptions

Exception Description

INVALID__ARGVAL A NULL or invalid value was supplied for
an 1nput parameter. The error message text
identifies the parameter.

The user called SET_COUNT after the first
call to FETCH__xxx for the OPEN context.
Once the first call to FETCH__xxx has been

made, no further calls to SET" COUNT
are permitted.

INVALID__OPERAITON

DBMS_ METADATA.GET_QUERY()

FUNCTION get__query
(handle IN NUMBER)
RETURN VARCHARZ;

GET_QUERY returns the text of the query (or queries)
that will be used by FETCH__xxx. This function 1s provided

o assist in debugging.

Parameters

handle—the handle returned from OPEN.

Returns

the text of the query (or queries) that will be used by
FETCH_ xxx.

Exceptions

Exception Description

INVALID__ARGVAL A NULL or invalid value was supplied for the
handle parameter

5

10

15

20

25

30

35

40

45

50

55

60

65

14
DBMS_METADATA.SET_PARSE_ITEM()

PROCEDURE set__parse__item
IN NUMBER,
IN VARCHAR?2);

(handle

name

SET_PARSE_ITEM (1) enables output parsing and (2)
specifles an object attribute to be parsed and returned.

Parameters

handle—the handle returned from OPEN.

A name—the name of the object attribute to be parsed and
returned. Table 601 1n FIG. 6 lists for each valid attribute

its name, the object class 1t applies to, and 1ts meaning.

Exceptions

FException Description

INVALID__ ARGVAL A NULL or invalid value was supplied for

an input parameter. The error message text
identifies the parameter.

The user called SET__PARSE__ITEM after
the first call to FETCH__xxx for the OPEN
context. Once the first call to FETCH__xxx
has been made, no further calls to
SET_PARSE__ITEM are permitted.

The attribute name 1s not valid for the object
type associated with OPEN context.

INVALID__OPERAITON

INCONSISTENT__ARGS

Usage

By default fetch. xml and fetch_ ddl simply return an
object’s metadata as XML or creation DDL. By calling
SET_PARSE_ITEM one can request that metadata
describing individual attributes of the object be returned as
well. This 1s useful when fetching objects based on the value
of a returned object, e.g., fetching 1indexes for a returned
table.

One can call SET__PARSE_ITEM multiple times to ask
for multiple items to be parsed and returned. Parsed items
are returned in the sys.ku$ parsed_ items nested table. For
a Tuller discussion of this topic see FETCH__xxx, “Usage,”
below.

DBMS_METADATA.ADD_TRANSFORM()

FUNCTION add transform
(handle

name
RETURN NUMBER;

IN NUMBER,
IN VARCHAR?2)

ADD__TRANSFORM specifies a transform that
FETCH_ xxx applies to the XML representation of the
retrieved objects. It 1s possible to add more than one
transform. See “Usage,” below.

US 6,708,186 Bl

15

Parameters

handle—the handle returned from OPEN.

name—the name of the transform. If name 1s “DDL” cre-
ation DDL will be generated using XSL-T scripts pro-
vided 1n transform specs 115. If name contains a period
(.), colon () or forward slash (/), it 1s interpreted as the

URL of a user-supplied XSL-T script.

Returns

an opaque handle to the transform. This handle 1s used as
mput to SET__ TRANSFORM_ PARAM. Note that this
handle 1s different from the handle returned by OPEN;
it refers to the transform, not the set of objects to be
retrieved.

Exceptions

FException Description

INVALID_ARGVAL A NULL or imnvalid value was supplied for
an input parameter. The error message text
identifies the parameter.

The user called ADD__TRANSFORM after
the first call to FETCH__xxx for the OPEN
context. Once the first call to FETCH__xxx
has been made, no further calls to

ADD__ TRANSFORM are permitted.

INVALID__OPERAITON

Usage

By default (i.e., with no transforms added) objects are
returned as XML documents. One can call ADD__

Exception

INVALID__ARGVAL

INVALID__OPERAITTON

INCONSISTENT_ARGS

TRANSFORM to specily an XSL-T script to transform the
returned documents.

One can call ADD_ TRANSFORM more than once to

specily that multiple transforms are to be applied to the
returned XML documents. FETCH_xxx will apply the
transforms in the order i which they were speciiied, the
output of the first transform being used as input to the second
and so on. Note that the output of the “DDL” transform 1s
not an XML document and that consequently no further
transforms of it are possible.

DBMS_METADATA.SET_TRANSFORM_ PARAM()

PROCEDURE set__transform_ param

(transform__handle IN NUMBER,
name IN VARCHAR?2,
value IN VARCHAR?2);

PROCEDURE set__transform__param
(transform__handle IN NUMBER,

10

15

20

25

30

50

55

60

65

16

-continued
name IN VARCHAR?2,
value IN BOOLEAN
DEFAULT TRUE);

SET__TRANSFORM_ PARAM speciiies parameters to
the XSL-T stylesheet identified by transtorm__handle. There
are two versions of the procedure: one for transform param-
cters having character values and one for transform param-
eters having Boolean values.

Parameters

transform__handle—either (1) the handle returned from
ADD__TRANSFORM, or (2) the enumerated constant

SESSION_ TRANSFORM which designates the “DDL”
transtform for the whole session. See “Usage,” below.
Note that the handle returned by OPEN 1s not a vahd
transform handle.

name—the name of the parameter. Table 701 1n FIG. 7 lists
the transform parameters defined for the “DDL” trans-
form. For each transform parameter, the table specifies
specifying the class of objects the parameter applies to,
the parameter’s datatype (always Boolean in table 701),
and its meaning or effect (including its default value, if

any).
value—the value of the transform.

Exceptions

Description

A NULL or 1nvalid value was supplied for an input

parameter. The error message text identifies the parameter.

The user called SET_TRANSFORM__PARAM after the first
call to FETCH__xxx for the OPEN context. Once the first call to
FETCH_ xxx has been made, no further calls to
SET_TRANSFORM__PARAM are permitted.

The transform parameter name 1s not valid for the object type
assoclated with the OPEN context.

Usage

XSL-T stylesheets may have parameters that are passed to
them at runtime. SET__ TRANSFORM_ PARAM 1s used 1n
API 120 to specity the value of a parameter of the stylesheet
identified by transform_ _handle. The most general way to

specily stylesheet parameter values 1s as text strings, but for
the “DDL” transform it 1s convenient to use Boolean values
to set parameters. Consequently, two variants of the proce-
dure are provided.
DBMS_METADATA.FETCH__ xxx()

A preferred embodiment includes the following versions
of the FETCH functions and procedures:

FUNCTION fetch_ xml (handle IN NUMBER)
RETURN XMLlype;

FUNCTION fetch_ ddl (handle IN NUMBER)
RETURN sys.ku$_ ddls;
See 807 and 809 in FIG. 8 for the specification of sys.ku$__
ddls.

FUNCTION fetch_ clob (handle IN NUMBER)
RETURN CLOB;

US 6,708,186 Bl

17

PROCEDURE fetch _clob (handle IN NUMBER,
xmldoc IN OUT NOCOPY CLOB);

FETCH_ xxx returns metadata for objects meeting the
criteria established by OPEN, SET__FILTER, etc.
Other embodiments may also include the following
variant:

FUNCTION fetch_ xml (handle IN NUMBER, parsed__
items OUT sys.ku$_ parsed_ items)

RETURN XMLlype;
See 803 and 805 in FIG. 8, for the specification of sys.ku$__
parsed__1items.
The different variants are discussed in “Usage,” below.

Parameters

handle—the handle returned from OPEN.

xmldoc (procedure fetch clob)—the document that con-
tains the metadata for the object(s) or NULL if all objects

have been returned. The form of the metadata 1n the
document depends on the transforms applied to the XML.

parsed__items (fetch_ xml)—a nested table containing the
items speciiied by SET_PARSED_ ITEM. NULL 1s
returned if (1) SET__PARSED__ITEM was not called or

(2) more than one object is being returned (i.e., SET _
COUNT was called specifying a count greater than 1).

Returns

the metadata for the object(s) or NULL if all objects have
been returned.

Exceptions

Most exceptions raised during execution of the query will
be propagated to the caller. Also, the following exceptions
may be raised.

FException Description

INVALID__ARGVAL

10

15

20

25

30

138

in XML; the other also returns a nested table of parsed
items as an OUT parameter.

FETCH__DDL returns the creation DDL in a sys.ku$__
ddls nested table; 1t assumes that the “DDL” transform
has been specified. Each row of the sysku$_ ddls
nested table contains a single DDL statement in the
ddl'Text column; if requested, parsed 1tems for the DDL

statement will be returned in the parsedltems column.
Multiple DDL statements can be returned (1) when the
user called SET__COUNT to specily a count greater
than 1 or (2) when the XML for the metadata is
transformed into multiple DDL statements (e.g., Meta-
data for a TYPE object can be transformed into both
CREATE TYPE and CREATE TYPE BODY state-
ments. Metadata for a TABLE object can be trans-
formed mto a CREATE TABLE and one or more
ALTER TABLE statements.)

FETCH__CLOB simply returns the object, transformed or

not, as a CLOB.

If SET_PARSE_ ITEM was called, FETCH_ XML and
FETCH__DDL return attributes of the object’s metadata (or
the DDL statement) in a sys.ku$ parsed items nested
table. For FETCH__ XML the nested table is an optional
OUT parameter; for FETCH__DDL 1t 1s a column 1n the
returned sys.ku$_ddls nested table. Each row of the
sys.ku$_parsed_ items nested table corresponds to an item
specified by SET__PARSE__I'TEM and contains the follow-
ing columns:
item—the name of the attribute as specified in the name

parameter to SE1T PARSE TTEM.
value—the attribute’s value, or NULL 1f the attribute 1s not

present 1n the object or DDL statement.
parent—Ior future use.

The order of the rows 1s undetermined; to find a particular

item the caller must search the table for a match on 1tem.

A NULL or invalid value was supplied for an input

parameter. The error message text identifies the parameter.

INCONSISTENT_OPERATTION

Fither (1) FETCH__XML was called when the “DDL”

transform had been specified, or (2) FETCH__DDL was
called when the “DDL” transform had not been specified.

Usage

These functions and procedures return metadata for
objects meeting the criteria established by the call to OPEN
that returned the handle and the subsequent calls to SET__
FILTER, SET__COUNT, ADD__TRANSFORM, ctc. Each
call to FETCH_ xxx returns metadata for the number of
objects specified by SET_COUNT (or less, if fewer objects
remain) until all metadata for the set of objects specified by
SET__FILTER has been returned. After metadata for the last
object 1n the set 1s returned, subsequent calls to FETCH__
xxx return NULL and cause the stream created by OPEN to
be transparently closed.

There are several different FETCH xxx functions and
procedures:

FETCH_ XML returns the XML metadata for an object as
an XMLType. It assumes that 1f any transform has been
specified, that transform will produce an XML docu-

ment. In particular, it assumes that the “DDL” trans-
form has not been specified. FETCH__ XML 1s over-
loaded: one variant stmply returns the object metadata

50

55

60

65

If SET PARSE_ITEM was not called (or if FETCH__
XML is returning multiple objects), NULL is returned as the
value of the sys.ku$_ parsed items nested table.

FETCH__CLOB comes 1n both function and procedure
variants. The procedure variant returns the object by refer-
ence 1n an IN OUT NOCOPY parameter. This 1s currently
faster than the function variants where LOBs are returned by
value, a practice that involves an expensive LOB copy. In
other embodiments, functions may return LOBs by

reference, rendering the procedure variant unnecessary.
All LOBs returned by FETCH__xxx are temporary LOBs

with CALL duration. If FETCH__xxx 1s invoked by a client
program via the Oracle Call Interface (OCI), output LOBs
are converted to SESSION duration before being transmitted
to the client. It 1s the client program’s responsibility to free
the LOB. The same applies to the XMLIype object.

In a preferred embodiment, 1t 1s expected that the same
variant of FETCH__xxx will be called for all objects selected
by OPEN, 1i.e., that clients will not intermix calls to
FETCH__ XML, FETCH__DDL and FETCH__CLOB using
the same OPEN handle. The effect of calling different

variants 1s undefined.

US 6,708,186 Bl

19

The metadata fetched for each object mm a preferred
embodiment 1s 1internally consistent with respect to on-going
DDL (and the subsequent recursive DML) operations
agamst dictionary 106. In some cases multiple queries may
be issued for performance reasons (¢.g., one query for heap
tables, one for index-organized tables, etc.) Consequently
the metadata returned by FETCH_ xxx calls may 1n fact
include mnformation fetched from different underlying cur-
sors and read consistency therefore cannot be guaranteed.

DBMS_METADATA.CLOSE()
PROCEDURE close (handle IN NUMBER);

Parameters

handle—the handle returned from OPEN.

Exceptions

FException Description

INVALID_ARGVAL The value for the handle parameter 1s NULL or
invalid.

Usage

This procedure mvalidates the handle returned by OPEN
and cleans up associated state. The caller may thereby
prematurely terminate the stream of objects established by

OPEN.

If a call to FETCH__xxx returns NULL indicating that
there are no more objects for which metadata will be

returned, a call to CLOSE will transparently be made on the

caller’s behalf. In this case, the caller may still call CLOSE
on the handle and not get an exception. (The call to CLOSE
is not required but 1t is safe.)

In the case where the caller knows that only one specific
object 1s to be returned, the caller should explicitly call

CLOSE after the single FETCH__ xxx call to free up the
resources held by the handle.

Simplified Interfaces Provided by API 120

In addition to the procedures and functions just described,
API 120 provides two simplified interfaces for use in
browsing metadata information for an object and for creat-
ing a new object from an XML description of 1ts metadata.
The first of these interfaces 1s the group of functions
denominated get_ xxx:

DBMS_METADATA.GET_ xxx()

FUNCTION get _xml (object__type IN VARCHAR?,

name IN VARCHAR?Z,

schema IN VARCHAR?Z DEFAULT
NULL,

version IN VARCHAR?2 DEFAULT
‘COMPATIBLE’,

model IN VARCHAR?2 DEFAULT
‘ORACLE’,

transform IN VARCHAR?Z DEFAULT
NULL)

RETURN CLOB;

FUNCTION get_ddl (object__type IN VARCHAR?,
name IN VARCHAR?Z,
schema IN VARCHAR?2 DEFAULT
NULL,

10

15

20

25

30

35

40

45

50

55

60

65

20

-continued

version IN VARCHARZ DEFAULT

COMPATIBLE’,

model IN VARCHAR? DEFAULT
‘ORACLE’,

transform IN VARCHAR?2 DEFAULI
‘DDL)

RETURN CLOB;

Parameters

object__type—the class of object to be retrieved. This
parameter takes the same values as the OPEN object
type parameter, above. In addition the following types
may be specified:

PACKAGE_SPEC—package specification (without
body)

PACKAGE_ BODY—package body
TYPE _SPEC—type specification (without body)

TYPE__BODY—type body

name—an object name (case-sensitive).

schema—a schema name (case-sensitive). The default is (a)
the current schema 1f object type refers to a schema
ob]ect (b) NULL otherwise.

version—the version of metadata to be extracted. This
parameter takes the same values as the OPEN version
parameter, above.

model—The metadata model to use. This parameter takes
the same values as the OPEN model parameter, above.

transform—the name of a transformation on the output. This

parameter takes the same values as the ADD__
TRANSFORM name parameter, above. For GET__ XML
this must not be “DDL.”

Returns

the metadata for the object as XML or DDL.

Exceptions

FException Description

INVALID__ARGVAL

A NULL or invalid value was supplied for
an input parameter. The error message text
identifies the parameter.

The specified object was not found 1n the
database.

OBJECT_NOT_FOUND

Usage

This function provides a simple way to return the meta-
data for a single object. Conceptually each GET__xxx call
comprises an OPEN, one or two SET_FILTER calls,
optionally an ADD_TRANSFORM, a FETCH_ xxx and a
CLOSE. The object type parameter has the same semantics
as 1n OPEN. schema and name are used for filtering. If a
transform 1s specified, schema-level transform flags are
inherited. These functions can’t retrieve metadata for objects
that do not have unique names. The GET__DDL function
defines an enumerated constant SESSION__ TRANSFORM
as the handle of the “DDL” transform at the session level.
The user can call SET__TRANSFORM_ PARAM using
SESSION__ TRANSFORM to set transform parameters for
the whole session. GET__DDL inherits these parameters
when 1t invokes the “DDL” transform. Note that in the

US 6,708,186 Bl

21

preferred embodiment, the enumerated constant must be
prefixed with the package name for API 120, 1.e.,
DBMS__METADATA.SESSION__ TRANSFORM

EXAMPLES

Example 1

Fetch the XML representation of the table definition
SCOTT.EMP:

SELECT DBMS_METADATA.GET_XML (‘TABLE’,
‘EMP’,SCOTT’) FROM DUAL;

Example 2

Fetch the DDL for all “complete” tables in the current
schema, filtering out nested tables and overtlow segments.
Use SET_TRANSFORM_ PARAM (with the handle
value=DBMS__ METADATA.SESSION__ TRANSFORM
meaning “for the current session™) to specify that storage
clauses are not to be returned 1n the SQL DDL. Afterwards,
reset the session-level parameters to their defaults.

execute DBMS__METADATA.SET__TRANSFORM__
PARAM(DBMS_ METADATA.SESSION __
TRANSFORM, ‘STORAGE’,false);

SELECT DBMS_METADATA.GET_DDL(‘TABLE’,
u.table_ name)
FROM USER__ALL TABLES u
WHERE u.nested="NO’
AND (u.iot_ type is null or
u.iot_ type=‘10T");

execute DBMS_METADATA.SET__TRANSFORM__
PARAM(DBMS_ METADATA.SESSION
TRANSFORM,‘DEFAULT");
SUBMIT function
Some embodiments of API 120 may include a SUBMIT
function that takes as its input XML that describes the
metadata for an object 105 and creates the object from the
input XML. In most cases, of course, the mput XML 1is
obtained using API 120.
DBMS_METADATA.SUBMIT()

FUNCTION submit (document IN XMLIype,
object__type IN VARCHAR?,
operation IN VARCHAR?2,
model IN VARCHAR?2 DEFAULT
ORACLE’,
transform IN VARCHAR2 DEFAULT
‘DDL)

RETURN sys.ku$_ SubmitErrors;

See 811 and 813 in FIG.8 for the specification of sys.ku$__

SubmitErrors.

Parameters

document—the XML document to be submitted.

object_ Type—the type of object represented by the docu-
ment. This parameter takes the same values as the OPEN
object__type parameter, above.

operation—the DDL operation to be performed. Valid values
arec ‘CREATE’, ‘DROP’, ‘GRANT’ and ‘REVOKE".

model—the metadata view for the document. This param-
cter takes the same values as the OPEN model parameter,
above.

transform—the SUBMIT function converts the XML docu-
ment to DDL before submitting 1t to the database. The
transform parameter designates the XSL script to perform

10

15

20

25

30

35

40

45

50

55

60

65

22

the transformation. This parameter takes the same values
as the ADD__TRANSFORM name parameter, above.

Returns

a table of error information if any errors occur, otherwise
NULL. Each entry 1n the table includes the SQL
statement that was being processed when the error
occurred and the errorNumber and errorString returned
by Oracle.

Exceptions

FException Description

INVALID__ARGVAL

A NULL or mnvalid value was supplied for an
input parameter. The error message text
identifies the parameter.

Usage

This function performs the specified XSL transform to
convert the XML document to a CREATE, DROP, GRANT

or REVOKE DDIL. command and then submits the DDL to
the database.

Details of Aggregation Metadata: FIGS. 9-15

As described above, API 120 retrieves metadata for
objects belonging to particular object classes, with the class
of object beimng specified in the open function called by a
client to begin mteraction with API 120. Each UDT, object
view, and filter spec 1n aggregation metadata 109 must
therefore be associated with an object class. In embodiments
in which API 120 retrieves metadata for a variety of different
metadata models, objects 1n aggregation metadata 109 are
assoclated with a model as well as a class. In a preferred
embodiment, this 1s done by means of five tables in aggre-
cation metadata 109. The tables are the following. Their
definitions are shown 1n detail in FIG. 9.

SYS.METAVIEWS 901: This table is used by API 120 to
determine which UDT 110 and view 111 to use for a
ogiven client’s request. Each row specifies a mapping
between a unique object__type 903, model 903, version
906 tuple and a row in SYS.METAVIEWS, and the row
specifies a UDT/view combination for the object class,
metadata model, and metadata version specified by
fields 903, 905, and 906. The API finds the row where
object__type/ model/version=the client-specified values
for those parameters and issues a query against the
UDT/view combination identified at 909 and 911.
xmltag 907 becomes the tag for the object i the
returned XML document. Each model supported by
API 120 has 1ts own set of UDTs and object views.

SYS.METAFILTERS 913: Each row in this table specifies
a mapping between a filter name 915 (used in the
SET_FILTER name parameter) and the name 919 of
its corresponding attribute 1n a UDT. This allows the
caller to use user-friendly names like “NAME” and
“SCHEMA” for filtering parameters, and hides the
details of how those parameters are encoded in the
UDT. At 917, the table row speciiies the filter’s prop-
erties.

SYS.METAXSLS$ 921: This table stores URI (universal
resource indicator) locators 925 for XSL transforma-
tion scripts 115. There 1s a row 1n table 921 for each

US 6,708,186 Bl

23

xmltag 907, transtorm 923, and model 905 tuple. xml
tag 907 relates rows in sys.metaxsl$ to classes of
objects 1n data dictionary 106, and there may be mul-
tiple transforms associated with a class of objects; ¢.g,
an object of class TABLE object may have XSL scripts
for making both creation DDL and “create a snapshot™
DDL. transform 923 designates the desired transform,
c.g., “DDL.” This approach allows the caller of OPEN
to use user-friendly names like “DDL” to refer to a
class of scripts, 1.e., the XSL script (whatever it is and

wherever it’s located) that convert this object’s XML to
DDL.

SYS.METAXSLPARAMS 927: This table stores the legal
transform parameters and their default values for trans-
forms defined in SYS.METAXSLS$ 921. There is a row

for each model 929, transform 931, type (class) 903,
param 933 tuple.

SYS.METASTYLESHEET 935: This table stores the
actual XSL transformation scripts for transforms
defined in SYS.METAXSLS$ 921. There is a row for

cach model 939 and stylesheet name 937 parameter,
and the row contains the stylesheet itself at 941.

An Example UDT 110: FIG. 10

FIG. 10 shows an example UDT 1001 for TABLE objects.
An object of UDT ku$_ table_t 1001 holds the metadata
returned by query 119 for an object of class TABLE. XML
generator 125 converts the contents of this object mto an
XML document containing the metadata for the object. As
can be seen from FIG. 10, object 121 collects an immense
amount of information from data dictionary about the
TABLE object. The following fields defined in UDT 1001
are of particular mterest to the present discussion:

Fields defined 1n FIG. 10A:

db_ version 1002, which contains the version of DBMS
103 that contains the TABLE object;

version numbers 1003 for user-defined data type 1001; As
will be explained in more detail, these are used to make
sure that UDT 1001 1s compatible with the data base it
1s being used with;

obj# 1005, which 1s the 1dentifier for the TABLE object in
the data base system;

schema__obj 1007, which has the UDT ku$__schemaobj__
t. Objects of this class aggregate information common
to objects which reside 1n schemas; the aggregated
information includes the object’s name, owner, creation
date, and object number;

storage 1009, which has the UDT ku$storage t. Objects

of this class aggregate 1information about an object’s
storage; here 1t 1s storage for the TABLE object;

Fields defined 1n FIG. 10B:

col_ list 1013, a list of the columns defined for the current
TABLE object;

con_ list 1015, a list of the constraints defined for the
current TABLE object;

part__oby 1017, a list of the partitions defined for the

current TABLE object 1f the table 1s partitioned.

Much of this information comes from the table tab$ in
system tables 107 in the Oracle 8 server; there 1s a row 1n
tab$ for each TABLE object in DBMS 103.

The other UDTs that appear in UDT 1001 are the follow-
ing. Objects with these UDTs receive information from
tables 1n system tables 107; For each of the UDTs, the
system table from which objects having the UDT receive
information appears in 1talics. These system tables are the

10

15

20

25

30

35

40

45

50

55

60

65

24

ultimate containers of the iformation that will be copied
into the relevant fields of an object that has UDT 1001 as its

type.
ku$_schemaobj_t: UDT for information common to
schema-based objects; based on obj$

ku$_storage t: UDT for storage characteristics of
objects; based on seg$

ku$ column_ t: UDT for colums; based on col$

ku$ column list t: UDT for a list of columns defined
as a nested table of ku$ column t

ku$ constraint t: UDT for table constraints; based on
con$ and cdef$

ku$ constraint list t: UDT for a list of columns;
defined as a nested table of ku$ constraint t

ku$_ part_ obj_t: UDT for partitioned objects; based on
partobj$

Details of an Aggregation Object View 110 that
Retrieves Data for the Fields of an Object Having

UDT 1001: FIG. 11

FIG. 11 shows the definition of aggregation object view
1101 1n a preferred embodiment. Aggregation object view
1101 1s an object view which defines a table whose rows are
aggregation objects of UDT 1001 for the TABLE class.
When a fetch function or procedure runs query 119 as
modified by SET__FILTER over aggregation object view
1101, API 120 returns the objects specified by query 119 as
specified 1 the SET_COUNT procedure. Each returned
object contains the metadata needed to describe a particular
object of the TABLE class. The returned object goes to XML
ogenerator 125, which generates XML from 1t. The XML may
in turn be modified 1n XML transformer 127 in accordance
with one or more transforms specified in ADD__

TRANSFORM.

The portion of FIG. 11 labeled 1102 specifies that the
view ku$_ table_ view 1101 is a view each of whose rows
contain an object 121 that has the UDT ku$_ table_ t. Each
row in ku$_table view must have a primary key, and the

OID function m 1102 specifies that the primary key will be
the value of the field obj__num 1005 in ku$_ table t 1001.

The select . . . from clause (1103, 1115) indicates what data
1s being ageregated by the view and how that data will be
mapped onto fields in an object of UDT ku$_ table_ t 1001.
from portion 1115 of the select . . . from clause specifies the
tables from which ku$_ table_ view 1101 obtains most of its
information; as will be seen later, some of the information
from the tables 1n the from clause 1s used to obtain infor-
mation from other tables. There are three such tables: the
system table tab$, represented by t in ku$_ table_ view
1101, and two other aggregation object views, ku$__
schemaobj_ view, represented by o in view 1101, and ku$__
storage_ view, represented by s.

where clause 1116 indicates the conditions under which a
row of view 1101 will contain information from rows of the
tables in the from clause. The (+) operator is an outer join
operator; 1t states that there will be a row 1n view 1101
corresponding to a row of the table on the left-hand side of
the (+) operator even if there is no corresponding row of the
table on the right-hand side of the (+) operator; if there is a
corresponding row, the row 1n view 1101 will contain fields
from both rows. Thus, the where clause at 1115 states that
there will be a row in view 1101 for every row in tab$ and
the row will contain fields from ku$_ schemaobj_ view if
there 1s a row 1n the latter view whose obj__num field
belonging to the obj__num column has the same value as the

US 6,708,186 Bl

25

value of the field belonging to the obj# column 1n the current
row 1n tab$ (1117). The four lines labeled 1119 indicate that
the row 1n view 1101 will also contain fields from ku$__
storage_ view if the system seg$ table underlying ku$__
storage__view has a row for the table specified by the current
row in tab$.

The lines labeled 1121, finally, are a security clause that
ensures that when API 120 1s being used by a non-privileged
client, it will return metadata only for those objects which
belong to the user. It specifies that the user ID (UID) of the
client invoking API 120 must be that of the owner of the
object that is represented by the row in tab$ or the UID is 0,
which 1s the system user ID, or the client has the SELECT__
CATALOG__ROLE, which permits the client to read the
entire data dictionary.

Continuing with the select portion 1103 of object view
1101, the values specified 1in portion 1103 correspond to field
names 1n UDT 1001 by order; thus, the constants at 1104 in
object view 1101 correspond to and are the values for the
fields db_ version, major_ version, and minor__version 1in
UDT 1001. The values at 1105, which are the object number

of t, the schema object, and the storage object, similarly go
into fields 1005, 1007, and 1009 of the ku$_ table_t object.

Getting the value for ts_ name field 1011 1s a bit more
complicated; it comes from another view, ku$tablespace__
view, and as specified 1n the where clause, 1t 1s located 1n that
view by means of the value of t.ts#. At 1109, the values for
the portion of the ku$_ table_ t object labeled 1107 are set
forth; they are all from fields of t.

The remainder of select clause 1103 1s devoted to obtain-
ing values for the three fields col__list 1013, con_ list 10135,
and part__oby 1017. The value of each of these fields 1s an
object of a UDT whose contents come from another aggre-
gate view 111; thus, col_list has the UDT ku$_ column__
list t and as indicated at 111, the values are to be selected
from a view ku$__column view where the object number in
the view 1s the same as the object number 1n t. In order to
give the values from ku$_ column_ view the proper UDT
for col_list,ku$_table_ view does a cast, that is, it arranges
the values as required for the UDT ku$ column_ list t.
The cast is necessary here because ku$__column__list._ tis a
nested table of column objects. It 1s necessary for the same
reason with regard to the value obtained at 1113 for con__list
1015. The value of part__obj 1017, on the other hand, has the
UDT ku$_ part_ obj_t, which is not a nested table, so no
cast 1S necessary.

Details of Aggregation Metadata 109 and its
Relationship to Tables 1n System Tables 107: FIG.
15

FIG. 15 shows details of how the table, view, and UDT

objects 1n aggregation metadata 109 relate to each other and
o tables 1 system tables 107. As explained above, meta-
view$ 901 associates an object class, metadata model,

metadata version tuple with a UDT and object view for that
class; shown at 1509 are the UDT 1001 and the object view

1101 for the TABLE class of objects; as further shown by the
arrows connecting box 1509 with tables 1n system tables
107, object view 1101 loads the fields of objects of UDT
1001 with metadata obtained from the tab$, ob;$, seg$, col$,
con$, cdef$, and partob;$ system tables, and thus aggregates

the metadata for a table object 1nto a single object of UDT
1001.

Each row in metaview$ 901 may be associated with one
or more rows in metaxsl$y 921. Each row in metaxsl$
represents one transtorm for a metadata model and includes
both the name of the transform and the location of the row

10

15

20

25

30

35

40

45

50

55

60

65

26

contaming the XSL for the transform 1n metastylesheet 9385.
Each row in metaxsl$ 921 is further associated with one or
more rows 1n metaxslparams 925, each row of which speci-
fles a parameter for an XSL style sheet specified by a
metadata model, transform name, and object type tuple.

metafilter$ 913, finally, associates an object class and meta-
data model with a named filter.

Notes on the 1implementation of UDTs and
TableViews for the TABLE class

While ku$ table t 1001 and ku$ table view 1101

show how data aggregation works 1n a preferred
embodiment, they are merely exemplary. The actual imple-
mentation of the UDTs and object views that aggregate
metadata for TABLE objects 1n the preferred embodiment 1s
substantially more complicated. Tables are the most com-
plex objects with respect to their metadata; 1., one could
have a sub-partitioned, index-organized table with LOB,
UDT, nested-table columns, etc. However, the vast majority
of tables defined by users of DBMS 103 are relational tables
with simple scalar columns. Gathering up all the metadata
for the complex case 1s performance intensive, so the
implementation defines a number of mutually exclusive
object views that add increasing complexity. The UDTs used
to aggregate the metadata of the vast majority of table
objects are found in the first and simplest object view, so
performance for the common path 1s good. Here are the table
views that the current implementation defines for the

TABLE class of objects:

ku$_ htable_ view—heap-organized relational tables: No
I0Ts, LOB, object, nested-table columns, no partitions

ku$_ phtable_ view—Same as above, but can be parti-
tioned.

ku$_ fhtable_ view—heap-organized with no column
type restrictions: can have LOB, object, nest-table cols,

no 101s

ku$_ pfhtable view—Same as above, but can be parti-
tioned.

ku$_ 1otable view—Index-Organized tables (IOTs): no
column restricitions: no partitions

ku$_ piotable_ view—Same as above, but can be parti-
tioned.
For a particular set of filters, the mdAPI knows which
view(s) must be queried to cover the full potential set of
objects to be returned.

An Example of Operation of System 101: FIGS.
12-14

The following example will show how system 101 uses
UDT 1001 and view 1101 for TABLE objects to retrieve

information about a table named SCOTT.BONUS,
expresses the information as an XML document, and uses an

XSL script to transform the XML document into creation
DDL for the table. FIG. 12 shows the creation DDL for

SCOTT.BONUS. DDL 1201 consists of a single CREATE
statement 1201; statement 1201 has two parts: at 1203 1s
seen a logical specification of the table; at 1211 1s seen a
specification of a set of attributes that specify how DBMS
system 103 1s to set up the table. Logical specification 1207
indicates that the table has four columns. There 1s a row 1n
the table for each employee; 1n a row, the field 1n the first
column of SCOTT.BONUS, named ENAME, is the employ-
ee’s name, the field in the second column, JOB, 1s for the
employee’s job code; the field 1n the third column, SAL, 1s
for the employee’s salary; the field in the fourth column,

US 6,708,186 Bl

27

COMM, 1s for the employee’s commission. As can be seen
at 1209, for each column, the data type of the value in the
column’s fields 1s specified.

When the information in creation DDL 1201 1s compared
with the fields in ku$_table t definition 1001, 1t 1s seen that
the mmformation in the definitions of the columns at 1207
corresponds to the field col_list 1013 of ku$__table_ t, that

the mformation at 1213 1n DDL definition 1201 corresponds
to the fields pct__free, pct__used, initrans, and maxtrans 1n
1012, that the information at 1213 corresponds to the field
storage 1009, and that the information at 1217 corresponds
to ts_ name 1011. In the preferred embodiment, the view
ku$ table_ view 1101 i1s used to collect this and other

information about the table SCOTT.BONUS from data
dictionary 106.

FIG. 13 shows a portion 1301 of the XML document
which XML generator 125 makes from the UDT ku$__
table_ t object which contains the information about
SCOTT.BONUS. Any XML document made from a ku$__
table__t object will resemble XML document 1301, differing
only as determined by differences in the information in the
ku$_table_t object. Turning to FIG. 13, XML employs
nested constructs. Each construct has the form

<construct__name> construct__content </construct__
name:

where construct__content may include other constructs.
Thus, 1n document 1301, the outermost construct 1s
<TABLE_T> ... </TABLE_T> 1303. Within construct
1303 are constructs corresponding to the fields of the
ku$_table_t object that have values; the contents of the
construct 1s the value of the field in SCOTT.BONUS. In FIG.
13, the constructs have been labeled with reference numbers
in parentheses indicating the corresponding fields in ku$__
table _t Thus, <DB_VERSION> . . . </DB_ VERSION>
construct (1002) contains the value of field 1002 of ku$__
table_ t.

Where a field has a user-defined type in ku$_ table_ t, all
of the fields of the user-defined type appear in the structure
in XML 1301 corresponding to the field; thus the
SCHEMA_OBlJ> ... </SCHEMA_OBJ> construct corre-
sponding to schema _oby field 1007, which has the UDT
ku$_ schemaobj_ t has nested in it constructs correspondmg
to the fields of the UDT ku$__schemaobj__t, and the same is
the case with the XML constructs corresponding to storage
1009 and to COL_LIST 1013. Since COL__LIST sUDT
ku$_ column_ list t is defined as a nested table of objects
that have the UDT ku$_ column_ t and that represent col-
umns 1n the table SCOTT.BONUS, there 1s nested 1in
<COL_LIST> . . . </COL__LIST> a structure <COL__
LIST_ITEM>...</COL__LIST_ ITEM:> for every column
in that table; in FIG. 13B, only the structure 1305 for the first
column 1s shown.

FIG. 14 shows a portion 1401 of the XSL-T stylesheet
which transforms the <COL__LIST> . . . </COL_LIST>
XML structure made from the ku$_ table_ t object contain-
ing the metadata for SCOTT.BONUS 1nto column definition
1207 1n the CREATE DDL for SCOTT.BONUS. Like XML,
XSL 1s made up of nested constructs, with the beginning of
a construct being marked by <construct__name> and the end
being marked by </construct_name>. The constructs
specily actions to be performed on constructs from the XML
document being transformed, 1n this case the XML construct
<COL__LIST> ... </COL_LIST> and the XML constructs
nested therein.

At 1403 1s seen the beginning and end of an XSL template
construct that processes <COL__ LIST> . . . </COL__LIST>.

The first nested construct, at 1405, 1s a text construct that

10

15

20

25

30

35

40

45

50

55

60

65

23

simply outputs the text it contains, in this case, “(”, the left
parenthesis for column list 1207 in CREATE DDL 1201.
The next nested construct, for-each, at 1407, 1s a loop which
processes each COL LIST_ITEM in the XML 1n turn. At
1409, the COL__LIST__ITEMSs are sorted by the value of the
XML COL__NUM item; then at 1411, the “that precedes the
column name 1n the DDL 1s output, followed by the value of
the XML NAME construct, which 1s the name of the
column, and the ” that follows the column name.

At 1415, a variable that indicates the class of object for
which the DDL 1s being generated 1s tested; as indicated at
1417, 1f the object has the class TABLE, the processing,
continues at the template for the XML TYPE__NUM con-
struct. The beginning and end of the template have the
reference number 1421. At 1423, what 1s done depends on
the value 1n the XML TYPE__NUM construct, which 1s 1 for
the first column. The value 1 indicates that the column has
the VARCHAR2 data type, so that keyword 1s inserted into
the DDL, as shown at 1425. At 1427, processing 1s trans-
ferred to a template 1429 for either the XML PRECISION__
NUM construct or the XML LENGTH construct. The latter
construct contains the value that specifies the length of the
VARCHAR?2 data item, here 10 characters. Template 1429 1s
found at the bottom of FIG. 14B. At 1431, the left paren-
thesis for the length expression 1s output; at 1433, the value
of the LENGTH construct itself 1s output; at 14385, the right
parenthesis. When template 1429 1s completely executed,
processing 1s transferred back to template 1421, which also
finishes execution, transferring control back to template
1403, which outputs the comma following the length speci-
fier and thereby finmishing the first column specification in
1207, namely “ENAME” VARCHAR?2 (10),. Template 1421
then processes the other three columns, with processing
being performed generally as just described. When all of the
columns have been processed, template 1421 outputs the
right parenthesis for column definition 1207 at 1439. XSL-T
scripts are used 1n generally the same fashion to transform
constructs from XML document 1301 1nto the rest of CRE-
ATE DDL 1201. For example, the part of CREATE 1201
labeled 1213 1s transformed from the portion of XML
document 1301 labeled (1012), the part labeled 1215 1is
transformed from the portion of XML document 1301
labeled (1009), and the part labeled 1217 is transformed
from portion (1011) of XML document 1301.

As can be seen from the foregoing, system 101 can handle
any kind of metadata. User-defined types and object views
provide a completely general mechanism for reading meta-
data from objects 1n any repository of metadata, an XML
document can be generated from the contents of any object
that contains metadata, and an XSL stylesheet can be made
which will transform the XML document into any form that
1s desired. Where a transform 1s particularly useful, as 1s the
transform to creation DDL, it may be provided as part of
system 101 and system 101 may provide the client with the
output of the transform; otherwise, system 101 will provide
the XML document and the client can apply any transform
it wishes to the XML document. Moreover, as previously
pointed out, the principles employed in the design and
implementation of API 120 may be employed not only to
ageregate metadata, but to aggregate any class of informa-
fion that i1s stored 1n a number of objects 1n a database
system.

Conclusion

The foregoing Detailed Description has disclosed to those
skilled 1n the arts to which the invention pertains how to
make and use an application program interface that simpli-

US 6,708,186 Bl

29

fies the collection of data that 1s stored 1n a plurality of
objects and has showed how the application program inter-
face may be used to collect metadata for objects belonging
to a particular class of objects from the data dictionary of a
database system, to generate an intermediate representation
of the metadata, and to transform the intermediate represen-
tation. The Detailed Description has further disclosed the
best mode presently known to the mventors for making such
an application program interface.

As will be immediately apparent to those skilled in the
arts to which the invention pertains, there are many ways of
implementing an application programming interface that
incorporates the principles of the present invention. For
instance, many of the details of the implementation dis-
closed 1n the Detailed Description are artifacts of the fact
that the implementation 1s designed for use 1n an Oracle9i
server. The invention may, however, be 1mplemented 1in
other database systems, and the details of such 1implemen-
tations will retlect the peculiarities of the database systems
in which they are implemented. Many other details of the
disclosed 1implementation further reflect the fact that the
disclosed implementation 1s used to retrieve and transform
metadata from a data dictionary. The 1nvention is, however,
by no means limited to such an application, but its principles
can be applied wherever there 1s a need to retrieve 1for-
mation that 1s contained in a number of different base tables
of the database system. The use of XML as an intermediate
form for the retrieved information and of XSL style sheets
to transform the retrieved information 1nto a desired form 1s
particularly advantageous, but other embodiments may
employ other intermediate forms and/or other transforma-
fion techniques.

The open-fetch-close paradigm used for the API 1n the
present 1implementation 1s also particularly advantageous,
but the API may employ other paradigms, as 1s shown by the
browsing interface of the present application. Different APIs
may further not provide filtering capabilities or transforming
capabilities or may provide filtering and transforming capa-
bilities that are different from the ones disclosed herein.

For all of the foregoing reasons, the Detailed Description
1s to be regarded as being 1n all respects exemplary and not
restrictive, and the breadth of the invention disclosed here 1n
1s to be determined not from the Detailed Description, but
rather from the claims as interpreted with the full breadth
permitted by the patent laws.

What 1s claimed 1s:

1. Apparatus for retrieving metadata for an object 1n a
database system that has a data dictionary, the metadata for
the object being stored 1n a plurality of objects belonging to
the data dictionary and

the apparatus comprising:

a definition 1n the data dictionary for an aggregation
object that aggregates the metadata for the object
from the plurality of objects belonging to the data
dictionary; and

an application program interface that includes a fetch
interface that causes execution of a query which
returns the metadata for the object in an aggregation
object made according to the definition.

2. The apparatus set forth 1n claim 1 wherein:

cach object 1n the database system has a class; and

the definition for the aggregation object 1s associated with
a given one of the classes and aggregates the metadata

for any object belonging to the class.
3. The apparatus set forth 1n claim 2 wherein:

the application program interface further includes an open
interface which specifies the given class and causes the

10

15

20

25

30

35

40

45

50

55

60

65

30

fetch interface to execute a query which fetches the
metadata for an object of the specified class.
4. The apparatus set forth 1n claim 3 wherein:

the application program interface further includes a filter
interface that specifies a set of objects of the given class
and causes the fetch interface to execute a query that
fetches metadata for the specified set of objects.

5. The apparatus set forth 1n claim 4 wherein:

the application program interface further includes a count
interface that causes the fetch interface to returns
metadata for a number of objects 1n the set as specified
by the count interface.

6. The apparatus set forth in claim 4 wherein:

the data dictionary includes a filter specifier object;
the filter interface specifies a filter from the filter specifier
object; and

the fetch interface employs the specified filter in fetching
the set of objects.
7. The apparatus set forth 1n claim 1 wherein:

the fetch interface causes an imtermediate form to be
generated from the returned metadata.
8. The apparatus set forth 1n claim 7 wherein:

the application program interface further mcludes a trans-
form interface which specifies a transform of the inter-
mediate form and causes the fetch interface to trans-
form the intermediate form as specilied by the
transform interface.

9. The apparatus set forth in claim 8 wherein:

the data dictionary further includes a transform object that
speciflies the transform;

the transform interface specifies a transform from the
transform object; and

the fetch interface employs the specified transform in
fetching the set of objects.
10. The apparatus set forth 1 claim 9 wherein:

the application program interface further includes a trans-

form parameter mterface which specifies a parameter

for a specified transform and causes the fetch interface

to transform the mtermediate form as specified by the
parameter for the specified transform.

11. The apparatus set forth in claim 10 wherein:

the data dictionary includes a transform parameter object;

the filter interface specifies a transform parameter from
the transform parameter object; and

the fetch mterface employs the specified transform param-
cter 1n transforming the intermediate form.
12. The apparatus set forth 1n claim 8 wherein:

the intermediate form 1s an XML document; and

the transform 1s an XSL-T stylesheet for the XML docu-
ment.
13. The apparatus set forth 1 claim 1 wherein:

the fetch interface causes a definition for the object that
permits creation thereof by a particular database system
to be generated from the returned metadata.

14. The apparatus set forth 1 claim 13 wherein:

the generated definition 1s creation DDL for the object.
15. The apparatus set forth in claim 1 wherem the
apparatus further comprises:

an object view associated with the aggregation object
definition; and

the query 1s a query over the object view.
16. Data storage apparatus, the data storage apparatus
being characterized in that:

US 6,708,186 Bl

31

the data storage apparatus contains code which, when
executed by a processor, implements the apparatus set
forth 1n claim 1.

17. Apparatus for retrieving metadata for a set of objects
in a database system, each object in the database system
belonging to a class of a plurality thereof including an object
view class and a user-defined type class, the database system
having a data dictionary wherein the metadata for objects of
a given class 1s stored 1n a plurality of objects, and the
objects 1n the set of objects all having the same class,

the apparatus comprising:

a plurality of aggregation user-defined types, each
ageregation user-defined type of the plurality being
assoclated with a given class and defining an aggre-
gation object 1nto which 1s ageregated metadata for
an object having the given class from the plurality of
objects wherein the metadata 1s stored;

a plurality of aggregation object views, each aggrega-
tion object view of the plurality being associated
with a given class; and

an application program interface that includes a fetch
interface that causes execution of a query over an
aggregation object view assoclated with a particular
class, the query returning a set of aggregation objects of
the aggregation user-defined type associated with the
particular class and each aggregation object containing,
metadata for an object 1n a set of objects belonging to
the particular class.

18. The apparatus set forth in claim 17 wherein:

the application program interface further includes an open
interface which specifies the particular class.
19. The apparatus set forth in claim 17 wherein:

the application program interface further includes a filter
interface that specifies the set of objects of the particu-
lar class.

20. The apparatus set forth in claim 17 wherein:

the application program interface further includes a count
interface that specifies a number of objects in the set for
which the metadata is to be returned per call to the fetch
interface.

21. The apparatus set forth in claim 17 wherein:

the application program interface generates an XML
document from the metadata in the set of aggregation
objects.

22. The apparatus set forth in claim 21 wherein:

the application program interface further includes a trans-
form interface which specifies an XSL-T stylesheet that
transforms the XML document and the application
program 1nterface transforms the XML document as
specified by the XSL-T stylesheet.

23. The apparatus set forth 1in claim 22 wherein:

the application program interface further includes a trans-
form parameter interface which specifies a parameter

for the specified XSL-T stylesheet.
24. The apparatus set forth in claim 17 wherein:

the application program interface further produces cre-
ation DDL for an object 1n the set of objects from the
metadata for that object.

25. Data storage apparatus, the data storage apparatus
being characterized 1n that the data storage apparatus con-
tains code which, when executed by a processor, implements
the apparatus set forth 1 claim 17.

26. Apparatus for aggregating data stored 1n a plurality of
objects 1n a database system, the database system being of
a type that permits definition of user-defined types, of
objects 1n the database having the user-defined types, and of

10

15

20

25

30

35

40

45

50

55

60

65

32

object views associated with the user-defined types, an
object view mapping data stored in the database into an
object of the associated user-defined type, and

the apparatus comprising;:

a user-defined type associated with a kind of data to be
agoregated that deflnes an object for containing
ageregated data of the kind;

an object view assoclated with the kind of data to be
agoregated that specifies the locations of the data to
be ageregated 1n the plurality of objects; and

an application program interface that includes a fetch
interface that causes the database system to make a
query over the object view associated with the kind

that obtains the data to be aggregated from the
plurality of objects and returns an object of the

user-defined type associated with the kind that con-
tains the aggregated data.
27. The apparatus set forth i claim 26 wherein:

there 1s a plurality of instances of the aggregated data to
be aggregated in the plurality of objects; and

the application program interface further includes a filter
interface associlated with the kind of aggregated data
that specifies a set of the instances of the data to be
agoregated and that causes the fetch interface to fetch
the mstances belonging to the set.

28. The apparatus set forth i claim 27 wherein:

the application program interface further includes a count
interface that causes the fetch interface to return per
call to the fetch interface a number of 1nstances of the
objects of the user-defined type associated with the
kind as specified by the count interface.

29. The apparatus set forth i claim 26 wherein:

the fetch interface causes an intermediate form to be
generated from the returned aggregated data.
30. The apparatus set forth 1 claim 29 wherein:

the application program interface further mncludes a trans-
form 1nterface which speciiies a transform of the inter-
mediate form and causes the fetch interface to trans-
form the intermediate form as specilied by the
transform interface.

31. The apparatus set forth i claim 30 wherein:

the mtermediate form 1s an XML document; and

the transform 1s an XSL-T stylesheet for the XML docu-
ment.
32. The apparatus set forth i claim 26 wherein:

there are a plurality of kinds of aggregated data;
a given kind of aggregated data 1s associated with a name;

the user-defined type and the object view for the given
kind are associated with the name therefor; and

the fetch interface responds to the name by causing the
data base system to make the query over the object
view assoclated with the name and return an object of
the user-defined type associated with the name.

33. Data storage apparatus, the data storage apparatus
being characterized in that: the data storage apparatus con-
tains code which when executed be a processor, implements
the apparatus set forth 1n claim 26.

34. A method of retrieving metadata for a target object 1n
a database system that has a data dictionary, the metadata for
the target object being stored in a plurality of objects
belonging to the data dictionary, the data dictionary includ-
ing a definition for an aggregation object that ageregates the
metadata for the target object from the plurality of objects
belonging to the data dictionary, and

US 6,708,186 Bl

33

the method comprising the steps of:
invoking a fetch operation via an application program
interface wherein the invocation 1s associated with
the target object; and
during the fetch operation, executing a query which
returns the metadata for the target object 1n an
agoregation object made according to the definition.
35. The method set forth 1n claim 34 wherein:

cach object 1n the database system has a class;

the definition for the aggregation object 1s associated with
a given one of the classes and aggregates the metadata
for any object belonging to the class;

the step of 1nvoking the fetch operation, the 1nvocation
1s associlated with the target object via the target
object’s class; and

1n

in the step of executing the query, the query returns the
metadata 1n an aggregation object associlated with the
target object’s class.

36. The method set forth in claim 35 further comprising
the step of:

prior to the step of invoking the fetch operation, invoking
an open operation via the application program
interface, the open operation specitying the target
object’s class.
J7. The method set forth in claim 34 further comprising
the step of:
prior to the step of invoking the fetch operation, invoking
a filter operation via the application program interface,
the filter operation specitying a filter for the query that
returns the metadata.
38. The method set forth in claim 34 further comprising
the steps of:
prior to the step of invoking the fetch operation, invoking
a transform operation via the application program
interface, the transform operation specilying a trans-
form for the metadata 1n the aggregation object and

following the step of executing the query, using the
specified transform to transform the metadata in the

aggregation object.
39. The method set forth 1n claim 38 wherein:

the specified transform transforms the metadata mnto cre-
ation DDL.

40. Data storage apparatus, the data storage apparatus
being characterized 1n that the data storage apparatus con-
tains code which, when executed by a processor, causes the
processor to perform a method of retrieving metadata for a
target object 1n a database system that has a data dictionary,
the metadata for the target object being stored 1n a plurality
of objects belonging to the data dictionary, the data dictio-
nary including a definition for an aggregation object that
agoregates the metadata for the target object from the
plurality of objects belonging to the data dictionary, and

the method comprising the steps of:

invoking a fetch operation via an application program
interface wherein the 1nvocation 1s associated with
the target object; and

during the fetch operation, executing a query which
returns the metadata for the target object 1n an
agoregation object made according to the definition.

[

41. A method of aggregating data stored 1n a plurality of

[

objects 1n a database system, the database system being of

[

a type that permits definition of user-defined types, of
objects 1n the database having the user-defined types, and of
object views assoclated with the user-defined types, an
object view mapping data stored in the database into an
object of the associated user-defined type, and the user-

defined types including a user-defined type associated with

10

15

20

25

30

35

40

45

50

55

60

65

34

a kind of data to be aggregated that defines an object for
containing aggregated data of the kind and the object views

including an object view associated with the kind of data to
be aggregated that specifies the locations of the data to be
aggregated 1n the plurality of objects,

the method comprising the steps of:

invoking a fetch operation via an application program
interface wherein the 1nvocation 1s associated with
the user-defined type; and

during the fetch operation, executing a query over the
object view associated with the user-defined type
that obtains data to be aggregated from the plurality
of objects and returns an object of the user-defined
type that contains the aggregated data.

42. The method set forth in claim 41 wherein there 1s a
plurality of instances of the data to be aggregated in the
plurality of objects and the method further comprises the
step of:

prior to the step of invoking the fetch operation, invoking
a filter operation of the application program interface,
the filter operation specilying a filter for the query.

43. The method set forth 1n claim 42 further comprising,
the step of:

prior to the step of invoking the fetch operation, invoking
a count operation of the application program interface,
the count operation specitying how many instances of
the object of the user-defined type that contains the
ageregated data are to be returned per 1nvocation of the
fetch operation.

44. The method set forth 1n claim 41 further comprising,
the step of:

prior to the step of invoking the fetch operation, invoking
a transform operation of the application program
interface, the transform operation specifying a trans-
form of the intermediate form; and

following the step of executing the query, using the
specified to transform to transform the ageregated data.
45. The method set forth in claim 44 wherein:

the specified transform transforms the aggregated data
into an XML document.

46. Data storage apparatus, the data storage apparatus
being characterized 1n that the data storage apparatus con-
tains code which, when executed by a processor, causes the
processor to perform a method of aggregating data stored in
a plurality of objects 1n a database system, the database
system being of a type that permits definition of user-defined
types, of objects 1n the database having the user-defined
types, and of object views associated with the user-defined
types, an object view mapping data stored in the database
into an object of the associated user-defined type, and the
user-defined types including a user-defined type associated
with a kind of data to be aggregated that defines an object for
containing ageregated data of the kind and the object views
including an object view associated with the kind of data to
be aggregated that specifies the locations of the data to be
aggregated 1n the plurality of objects,

the method comprising the steps of:

invoking a fetch operation via an application program
interface wherein the invocation 1s associated with
the user-defined type; and

during the fetch operation, executing a query over the
object view associated with the user-defined type
that obtains data to be aggregated from the plurality
of objects and returns an object of the user-defined
type that contains the aggregated data.

	Front Page
	Drawings
	Specification
	Claims

