(12) United States Patent

Adusumilli et al.

US006701405B1

US 6,701,405 B1
Mar. 2, 2004

(10) Patent No.:
45) Date of Patent:

(54) DMA HANDSHAKE PROTOCOL

(75)

(73)

(21)
(22)

(51)
(52)

(58)

(56)

EP
EP
EP
EP
EP
EP
EP
EP

Inventors: Vijaya Pratap Adusumilli, San Jose,

Assignee:

Notice:

CA (US); Bernard Ramanadin, San
Jose, CA (US); Atsushi Hasegawa,
Sunnyvale, CA (US); Shinichi
Yoshioka, San Jose, CA (US);
Takanobu Naruse, Santa Clara, CA
(US)

Hitachi, Ltd., Tokyo (JP)

Subject to any disclaimer, the term of this
patent 15 extended or adjusted under 35

U.S.C. 154(b) by O days.

Appl. No.: 09/410,927

IP 3320796 A 12/1996
IP 8329687 A 12/1996
IP 0212358 A 3/1997
IP 9311786 A 12/1997
IP 10106269 A 4/1998
IP 10124434 A 5/1998
IP 10177520 A 6/1998
SG 55356 7/1997
WO WO 9§/13759 A 4/1998

OTHER PUBLICAITONS

York et al. “Real Time Debug for System—on—Chip
Devices,” ARM Ltd., Cambridge, UK available from http://
www.arm.com (1999).

Primary Examiner—I1m Vo
(74) Attorney, Agent, or Firm—Townsend and Townsend

Filed: Oct. 1, 1999 and Crew 11 P
Int. CL7 ..ooooovvrine GOG6F 13/36; GOGF 13/28 (57) ABSTRACT
US.CL ., 710/308; 710/22;7711(?//32(?6; A computer system having a simple handshake protocol for
_ implementing DMA transfers. A system bus 1s provided
Field of Searchcoooinh 710/308, 310, hElViIlg q plurality of pOI'tS for COllpﬁI]g to SYSt@IIl compo-
710722, 26 nents including memory, central processing unit(s) and
] peripherals. A direct memory access controller (DMAC) 1s
References Cited provided with a peripheral-independent interface coupled to
US. PATENT DOCUMENTS the system bus and communicates with the system bus using
_ system bus defined transactions. The DMAC comprises a set
g’gg’gﬂ : 13/ ggg %ubl{lfeld of registers. A central processing unit (CPU) configures teh
5 386 565 A 1?199 5 T;?jll(a of al DMAC by loading values into the DMAC registers. The
5 493 050 A 6/1995 Taylor et Al configured DMAC 1ssues an enable signal to a selected
5 434 804 A 7/1995 Bock et al. system component identified in the DMAC registers. A
7 | | peripheral request interface 1s associated with the selected
(List continued on next page.) system components and communicates with the system bus
FOREIGN PATENT DOCUMENTS using the system bus defined trangaetions. The selected
system component asserts a request signal to the DMAC. In
0165600 B 11/1991 response to the request signal, the DMAC implements a
0636976 B 2/1995 DMA transfer according to the values stored in the DMAC
0652516 A 5/1995 conilguration registers. Peripheral-specific signaling 1s pro-
8;%333 ﬁ % ggg vided to the system component by the peripheral request
0933926 A 8/1999 nterface
0945805 A 9/1999
0959411 A 11/1999 14 Claims, 5 Drawing Sheets
X 101
Ffé‘s*f/éﬁéﬁ“é 0o
)
203 }J oMAC
| ot 202 213
A EXTERNAL | - .
i MEMORY < ﬁ} PIO Y)
NTTTETV| INTERFACGE SBE :
215 B | I
KHK'E:DE PERE—IERAL / {‘q:l__w :I;E i ; >
(reovEs - o I g A
| /: _—;\ PCI E} % NTC K- >
7 : l
; A K=o roM (= >
N 204 '-ﬁh ______ f;i

US 6,701,405 B1

Page 2
U.S. PATENT DOCUMENTS 5,781,558 A 7/1998 Inglis et al.
5,796,978 A 8/1998 Yoshioka et al.

5,440,705 A 8/1995 Wang et al. 5,828.825 A 10/1998 Fskandari et al.
5,448,576 A 9/1995 Russell 5,832,248 A 11/1998 Kishi et al.
5,452,432 A 9/1995 Macachor 5835963 A 11/1998 Yoshioka et al.
5,455,936 A 10/1995 Maemura 5,838,993 A * 11/1998 Riley et al. 710/22
5,479,652 A 12/1995 Dreyer et al. 5848247 A 12/1998 Matsui et al.
5,483,518 A 1/1996 Whetsel 5.860,127 A 1/1999 Shimazaki et al.
5,485,624 A 1/1996 Steinmetz et al. 710/22 5862387 A 1/1999 Songer et al.
5,488,688 A 1/1996 Gonzales et al. 5,867,726 A 2/1999 Ohsuga et al.
5,530,965 A 6/1996 Kawasaki et al. 5,884,092 A 3/1999 Kiuchi et al.
5,570,375 A 10/1996 Tsat et al. 5,896,550 A 4/1999 Wehunt et al.
5,590,354 A 12/1996 Klapproth et al. 5,918,045 A 6/1999 Nishii et al.
5,596,734 A 1/1997 Ferra 5930523 A 7/1999 Kawasaki et al.
5,998,551 A 1/1997 Barajas et al. 5,930,833 A 7/1999 Yoshioka et al.
5,608,881 A 3/1997 Masumura et al. 5,033,654 A * 81999 Galdun et al. 710/22
5,613,153 A 3/1997 Arimilli et al. 5944841 A 8/1999 Christie
5,613,162 A 3/1997 Kabenjian 710/22 5,950,012 A 9/1999 Shiell et al.
5,627,842 A 5/1997 Brown et al. 5,953,538 A 9/1999 Duncan et al.
5,657,273 A 8/1997 Ayukawa et al. 5,956,477 A 9/1999 Ranson et al.
5,659,798 A 8/1997 Blumrich et al. 710/26 5,978,874 A 11/1999 Singhal et al.
5,682,545 A 10/1997 Kawasaki et al. 5978902 A 11/1999 Mann
5,704,034 A 12/1997 Circello 5,983,017 A 11/1999 Kerr et al.
5,708,773 A 1/1998 Jeppesen, III et al. 5983379 A 11/1999 Warren
5,724,549 A 3/1998 Selgas et al. 6,000,043 A * 12/1999 Abramson 714/44
5,737,516 A 4/1998 Circello et al. 6,111,592 A * 82000 Yagi ..c.cooovvvvrvrnvrennnn.. 345/511
5,751,621 A 5/1998 Arakawa 6,185,634 Bl * 2/2001 WILCOX weveeeeeeeereeannnn.. 710/26
5,768,152 A 6/1998 Battaline et al. 6,219,725 B1 * 4/2001 Diehl et al.ocoevene...... 710/26
5,771,240 A 6/1998 Tobin et al. 6,415,338 B1 * 7/2002 Habot .eeeeeeeeeeeeeeenn, 710/22
5,774,701 A 6/1998 Matsui et al.
5,778,237 A 7/1998 Yamamoto et al. * cited by examiner

..ll.lI.I_IIlll-lll"l'll'l_llllll‘.l_I..I.llrl.l.l..l.......l..ll.ll..l.--l.-'-l.-ll. lll

US 6,701,405 B1

col
ITT e AYOW3NW

% JOVHOLS SSYW TYNYILX3
= R
1 i
3 —
i A O/l YHOMLIN _ﬂ Il

U
z 707 m
o\ m | :
o5 A olany Ol N - -

- v01

U.S. Patent

US 6,701,405 B1

Sheet 2 of 5

Mar. 2, 2004

U.S. Patent

N

/ oz 4\ _
|
< _N
:
. |
: |
" .L 10d
_
|
_
—N
JIOV44dd1NI
A “ / /1 1S3N0D3IY
| IvddHdlddd
/
(T av GOz
- GLZ
: |
- JOVAYILNI
. _L wv AHOWIW
W \w\ | TYNYILXT
€12 .z/wbm &\1ra\

60¢ S3049NOSIY

— NOILNDTX3 o7
1x\m\ /AHOVD _
oL —

£0cl

¢ Iid

T EE Il I E =N FW O W S YW . W i IS i BB BB BB O B BN BN R B B R AN AN S B BN O B o A B e ol A BN o s bk ol omlr B O O O B O B B N O B o O B O O R O e O O O O O R O O B e B O B G ol B ol B o mle B B O o O B A O O B O B A B R O O O O B e B e ol O ol mle ol oh wh ol e ok sk e e mh ae ae e e aw e sl e e e sk Ew

US 6,701,405 B1

Sheet 3 of 5

Mar. 2, 2004

U.S. Patent

L0V
ISNOASTY

13)0Vd
3ISNOJSIY

60€

JTNAON £0¢

ONIONOJSdH

13X0Vd 1S3N03Y

G0t

dd1N0d 1IMOVd

0g— —

13XOVd 1S3N03Y

_‘Om\\R

_l.l.l..l.._l.lll-l.l..l..l..ll.l.l.l.ul__lll_l._l..l-l‘.l..‘I....-..I.Ilull|r.|-..l.|1|||I-I-...l.ul-l-|l1.u|||||l||||J

S
0t

00¢

13X0Vvd

ASNOdSId

& OId

L3NOVd 1S3N03Y

10¢€

J1NA0ON
ONILSINOIY

*

US 6,701,405 B1

Sheet 4 of 5

Mar. 2, 2004

U.S. Patent

(N.82ZX0) + 0£X0

(N-82ZX0) + 82X0

(N.8ZX0) + 0ZX0

(N.82ZX0) + 81 X0

(N-8ZX0) + 01 X0

y3LSIOTY snivig| SHvLs VA
43.1S193Y |
JOMLNOD 1dlo v
INNOD HIASNVML | |\
SS3¥AAQV
NOILYNILS3a N aVING
ss3yaav
3948N0S S YNG

80X0

00X0

NOILYdddO VNG NOWWOO VING

TOHINOD
NOISHdA

dON VING

SSJJdAyv 135440

NOILdIHOSHd FANVN d431S193d

i i

_ 2|qeus 1ajsuel) - s|geusdnuia)ul 10818S'90JN0Sa) | JUBWIDUIT)SSP _EmEEoc_.moSow

US 6,701,405 B1

5 » »

= 8 9OlId L "Old

5 e —————— e ——

M _lhotw.mmm_cvm _ pua-lajsues) A qu doy I_ awi Jod _ pi pouwl SJOA poul

o _ _ I R |
>— 108 ¥— 10.

-t

—

—

S

~

=

= G Old

SISA POl sbeyy Jlsw

U.S. Patent

sbey Lad

IIIIl

106G

US 6,701,405 B1

1
DMA HANDSHAKE PROTOCOL

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present mnvention relates in general to microprocessor
systems and, more particularly, to a system, method, and
mechanism providing direct memory access (DMA)
between system components and memory without imposing,
on the processor.

2. Relevant Background

Conventional computer architectures facilitate data move-
ment between input/output (I/O) devices and system
memory by providing a hardware mechanism that imple-
ments Direct Memory Access (DMA). DMA transfer allows
data to be read from an I/O device and written to a
designated location in memory, or read from a designated
location 1n memory and written to an I/O device without
involvement by a central processing unit (CPU). This func-
tionality takes advantage of the fact that hardware controlled
system data transfers are often faster than transfers involving
the CPU. Also, the CPU 1s free to perform other useful work
while the DMA transfer takes place. Direct memory access
(DMA) is a way for computer peripheral devices to com-
municate with working memory without involving the CPU.
DMA 1s a very fast way of transferring blocks of data when
no processing 1s required and 1s a conventional method by
which hard disks, soundboards and data acquisition equip-
ment send and receive data to and from memory.

A DMA transfer can be inmitiated by a peripheral or the
central processing unit (CPU) itself. A DMA controller
coupled to system bus actually manages DMA transfers. The
system bus 1s coupled directly or mdirectly to the CPU,
peripherals, and the main memory. Most DMA systems
provide multiple DMA “channels,” wherein each DMA
channel 1s assigned to a particular I/O device.

Current DMA 1mplementations involve a DMA controller
that 1s closely coupled to the peripherals and system bus. By
closely coupled 1t 1s meant that a relatively complex inter-
face exists between peripherals using DMA and the DMA
controller. This interface enables the peripheral and DMA
controller to exchange state mformation to make the DMA
exchange take place and cause the DMAC to 1ssue a DMA
transfer acknowledge. Usually this interface must be imple-
mented with a large number of signal wires to handle tasks
of 1nitiating, synchronizing, and performing DMA transfers.

These types of implementations are difficult to scale to
larce numbers of peripherals. The number of signal lines
required to implement the complex interface increases with
the number of peripherals. The length and complexity of
signal lines-becomes restrictive to large system-on-a-chip
designs. Moreover, the complex interface imposes a signifi-
cant overhead 1n terms of signaling hardware on the periph-
crals that use DMA. A need exists for a processor imple-
menting DMA and a DMA implementation method with
reduced hardware overhead that 1s readily scaleable and
readily implemented in DMA peripherals.

Another limitation of many DMA implementations 1s that
the close coupling of the DMAC with the peripherals makes
it difficult to reuse the circuit designs 1n other implementa-
fions. Design reuse 1s an increasingly important criteria,
especially 1n embedded system design. A need exists for a
mechanism and method for coupling DMA components to
implement DMA transfers using a general purpose system
bus for communication between the components.

10

15

20

25

30

35

40

45

50

55

60

65

2
SUMMARY OF THE INVENTION

The present invention involves a computer system having,
a simple handshake protocol for implementing DMA trans-
fers. A system bus 1s provided having a plurality of ports for
coupling to system components including memory, central
processing unit(s) and peripherals. A direct memory access
controller (DMAC) is provided with a peripheral-
independent interface coupled to the system bus and com-
municates with the system bus using system bus defined
transactions. The DMAC comprises a set of registers. A
central processing unit (CPU) configures teh DMAC by
loading values 1nto the DMAC registers. The configured
DMAUC 1ssues an enable signal to a selected system com-
ponent 1dentified m the DMAC registers. A peripheral
request 1nterface 1s associated with the selected system
components and communicates with the system bus using
the system bus defined transactions. The selected system
component asserts a request signal to the DMAC. In
response to the request signal, the DMAC implements a
DMA transfer according to the values stored in the DMAC
conflguration registers. Peripheral-speciiic signaling 1s pro-
vided to the system component by the peripheral request
interface.

To conduct the DMA transfer the DMAC 1initiates a
LOAD transaction request with a source peripheral specified
in DMAC registers. The LOAD transaction 1s associated
with a DMA acknowledge. The peripheral request interface
responds to the LOAD transaction request and the DMA
acknowledge by initiating peripheral-specific signaling to
access data specified by the LOAD request. The peripheral
request 1nterface completes the LOAD transaction by sup-
plying a LOAD response to the DMAC over the system bus.
The DMAC receives and buffers the LOAD response and
mnitiates a STORE transaction request to transfer the speci-
fied data to a destination system component specified by the

DMAUC registers.

The foregoing and other features, utilities and advantages
of the mvention will be apparent from the following more
particular description of a preferred embodiment of the
invention as 1llustrated 1n the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows 1n block diagram form a computer system
incorporating an apparatus and system 1n accordance with
the present invention;

FIG. 2 shows a processor 1n block diagram form incor-
porating the apparatus and method 1n accordance with the
present 1nvention;

FIG. 3 1llustrates a bus transaction 1n accordance with the
present 1nvention;

FIG. 4 shows a flow diagram 1llustrating shared memory
access operation 1n accordance with the present invention;
and

FIGS. 5-9 1llustrate exemplary register formats used 1n an
implementation of the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The preferred implementation of the present invention
comprises a system that may be implemented as a single
integrated circuit system-on-a-chip solution or as multiple
integrated circuits with varying levels of integration. In
cither case, sub-components of the system are intercon-
nected by a bus network that may comprise one or more
types of bus technologies. The bus network implements a

US 6,701,405 B1

3

fransaction set comprising a plurality of defined transactions
that can be communicated over the bus network. Each

fransaction comprises a request/response pair or a set of
request/response pairs.

In the particular implementation, the transaction set
includes memory transaction primitives that are combined to
implement a direct memory access (DMA) protocol. One of
the system components coupled to the bus network 1s a
central processing unit (CPU). A system may include mul-
tiple CPUs coupled to the system bus. DMA and non-DMA
peripherals are also coupled to the bus network. Main
memory 15 also coupled to the bus network and can be
accessed by the CPU and DMA peripherals through the bus

network.

The present invention provides a DMA controller
(DMAC) that has a peripheral-independent interface that
couples to the system bus and communicates with the
system bus using general purpose, system-bus defined trans-
actions. Glue logic, referred to herein as a peripheral request
interface, 1s associated with system components that support
DMA transfers to decode the system bus transactions and
implement peripheral-specific protocols with DMA periph-
crals. The present invention thus ensures that the DMAC
does not require any peripheral-specific logic or interfaces.
Accordingly, DMA peripherals and system components can
be easily added to the system by providing the peripheral
request 1nterface necessary to communicate with the system
bus.

The DMA protocol in accordance with the present inven-
tion enables a DMA controller (DMAC) to receive DMA
transaction specifications from the CPU and then execute a
DMA transfer according to the specifications. Significantly,
the DMA transaction specifications are transferred to the
DMAC using general purpose memory transactions similar
to transactions used by the CPU for a wide variety of bus
communication. Hence, the DMA peripherals do not require
a special DMA iterface with the DMAC. Similarly, the
DMAC has a request imterface that 1s independent of the
periperhals so that any peripheral can support DMAC opera-
tion with the help of the glue logic implementing the
peripheral request interface that provides a simple hand-
shake between peripherals.

Any system 1s usefully described as a collection of
processes or modules communicating via data objects or
messages as shown 1n FIG. 1. The modules may be large
collections of circuitry whose properties are somewhat
loosely defined, and may vary in size or composition sig-
nificantly. The data object or message 1s a communication
between modules that make up the system. To actually
connect a module within the system 1t 1s necessary to define
an 1nterface between the system and the component module.

The present mvention 1s illustrated 1n terms of a media
system 100 shown 1n FIG. 1. The present invention supports
systems requiring a number of components that use and
benefit from direct memory access, such as media system
100. Media processor 100 comprises, for example, a “set-top
box” for video processing, a video game controller, a digital
video disk (DVD) player, and the like. Essentially, system
100 1s a special purpose data processing system targeted at
high throughput multimedia applications. Features of the
present mvention are embodied 1n processor 101 that oper-
ates to communicate and process data received through a

high speed bus 102, peripheral bus 104, and memory bus
106.

Video controller 105 receives digital data from system bus
102 and generates video signals to display information on an

10

15

20

25

30

35

40

45

50

55

60

65

4

external video monitor, television set, and the like. The
generated video signals may be analog or digital. Optionally,
video confroller may receive analog and/or digital video
signals from external devices as well. Audio controller 107
operates 1n a manner akin to video controller 105, but differs
in that it controls audio information rather than video.
Network I/0 controller 109 may be a conventional network
card, ISDN connection, modem, and the like for communi-
cating digital information. Mass storage device 111 coupled
to high speed bus 102 may comprise magnetic disks, tape
drives, CDROM, DVD, banks of random access memory,
and the like. A wide variety of random access and read only
memory technologies are available and are equivalent for
purposes of the present mvention. Mass storage 111 may
include computer programs and data stored therein.

In a particular example, high speed bus 102 1s 1mple-
mented as a peripheral component interconnect (PCI) indus-
try standard bus. An advantage of using an industry standard
bus 1s that a wide variety of expansion units such as
controller’s 105, 107, 109 and 111 are readily available. PCI

bus 102 supports direct memory access components.

Peripherals 113 include a variety of general purpose 1/0
devices that may require lower bandwidth communication
than provided by high speed bus 102. Typical I/O devices
include read only memory (ROM) devices such as game
program cartridges, serial input devices such as a mouse or
joystick, keyboards, and the like. Processor 101 includes
corresponding serial port(s), parallel port(s), printer ports,
and external timer ports to communicate with peripherals
113. Additionally, ports may be included to support com-
munication with on-board ROM, such as a BIOS ROM,
integrated with processor 101. External memory 103 1is
typically required to provide working storage for processor
101 and may be implemented using dynamic or static RAM,
ROM, synchronous DRAM, or any of a wide variety of
equivalent devices capable of storing digital data 1n a
manner accessible to processor 101.

Processor 101 1s illustrated in a greater detail in the
functional diagram of FIG. 2. One module in a data pro-
cessing system is a central processor unit (CPU) core 201.
The CPU core 201 includes, among other components (not
shown), execution resources (€.g., arithmetic logic units,
registers, control logic) and cache memory. These functional
units, discussed 1n greater detail below, perform the func-
tions of fetching instructions and data from memory, pre-
processing fetched instructions, scheduling instructions to
be executed, executing the instructions, managing memory
transactions, and interfacing with external circuitry and
devices.

CPU core 201 communicates with other components
shown 1 FIG. 2 through a system bus 202. In the preferred
implementation system bus 202 1s a proprietary, high-speed
network bus using packet technology and 1s referred to
herein as a “super highway”. Bus 202 couples to a variety of
system components. Of particular importance are compo-
nents that implement interfaces with external hardware such
as external memory interface unmit 203, PCI bridge 207, and
peripheral bus 204. Each component coupled to bus 202 may
be a target of a transaction packet on bus 202 as specified by
an address within the transaction packet.

External memory interface 203 provides an interface
between the system bus 202 and the external main memory
subsystem 103 (shown in FIG. 1). The external memory
interface comprises a port to system bus 202 and a DRAM
controller. Direct memory access controller (DMAC) 209 is
coupled to system bus 202 and implements direct memory

US 6,701,405 B1

S

transfers between external memory interface 203 and any
other module, including CPU 201, that specifies and initiates
a DMA ftransfer 1n accordance with the present invention.

The organization of interconnects in the system illustrated
in FIG. 2 1s guided by the principle of optimizing each
interconnect for its specific purpose. The bus system 202
interconnect facilitates the integration of several different
types of sub-systems. It 1s used for closely coupled sub-
systems which have stringent memory latency/bandwidth
requirements. The peripheral subsystem 204 supports bus
standards which allow easy integration of hardware of types
indicated 1n reference to FIG. 1 through interface ports 213.
PCI bridge 207 provides a standard interface that supports
expansion using a variety of PCI standard devices that
demand higher performance that available through periph-
eral port 204. The system bus 202 may be outfitted with an
expansion port which supports the rapid integration of
application modules without changing the other components
of system 101.

FIG. 3 illustrates an exemplary transaction 300 compris-
ing a request packet 301 and a response packet 303 for
communication across superhighway 202. Packets 301 and
303 comprise a unit of data transfer through the packet-
router 305. Communication between modules 307 and 309
1s achieved by the exchange of packets between those
modules. Each module 307 and 307 1s assigned or negotiates
with packet router 305 for a unique address. In the particular
example, each address 1s an unsigned integral value that
corresponds to a location 1n the physical memory space of
processor 201. Some of the address bits indicate the desti-
nation module and some of the address bits (called “offset
bits”) indicate a particular location within that destination
module. The size of the physical address, the number of
destination bits, and the number of offset bits are implemen-
tation dependent selected to meet the needs of a particular
implementation.

Packet router 305 uses the destination bits to perform
routing. Packet router 305 1nspects the destination bits of a
received packet, determines the appropriate port to which
the packet 1s to be routed, and routes the packet to the
specified module. Packet router 305 may be implemented as
a bus, crossbar, packet routing network, or equivalent packet
transport mechanism to meet the needs of a particular
application.

A packet comprises a plurality of fields indicating infor-
mation such as the type of transaction, destination address of
the transaction, and/or data needed or produced by the
transaction. Each field has a number of possible values to
characterize that packet. Every packet contains a destination
field which 1s used by packet router 3035 to determine which
module the packet should be routed to. In the particular
implementation, every packet has a class and a type. A
packet’s class 1s either a request or a response. A response
packet class 1s subdivided into either an ordinary response or
an error response. A packet’s type indicates the kind of
transaction associated with that packet. The packet class and
type together form a packet opcode.

Each packet 1s associated with a source module and a
destination module. The source sends a packet 301 or 303
over a port 1nto a packet-router 305 within bus 202. Packet-
router 305 arranges for the packet to be routed to a p-port
connected to the destination. The destination then receives
this packet over that p-port from the packet-router. It is
possible for the source and destination to be the same
module. It 1s also possible for a packet to be decomposed
into multiple “cells” where each cell of the packet has the

10

15

20

25

30

35

40

45

50

55

60

65

6

same source and destination module and same packet type.
The multiple cells are combined into a packet at the desti-
nation.

A “transaction” 300, suggested by the dashed line box 1n
FIG. 3, 1s an exchange of packets that allows a module to
access the state of another module using the super highway
bus 202. A fransaction comprises a transfer of a request
packet 301 from a requesting module 307 (also called an
“Initiator”) to a responding module 309 (also called a
“target”), followed by a response packet 303 from that
responding module 309 back to the requesting module 307.
The request packet 301 initiates the transaction and its
contents determine the access to be made. The response
packet 303 completes the transaction and its contents indi-
cate the result of the access. A response packet 303 may also
indicate whether the request was valid or not. The response
packet 303 can be formatted as an ordinary response if the
request was valid or an error response if the request was
invalid.

In the preferred implementation there 1s a 1:1 correspon-
dence between request and response packets. The transac-
tion protocol 1n the preferred implementation 1s “split phase”
because the request packet 301 and response packet 303 are
a synchronous with respect to each other. A DMA transfer
may require multiple transactions and using the split phase
feature these transactions need not be conducted synchro-
nously. Requests can be pipelined in that a requesting
module 307 can generate multiple request packets 301
before any response packets 303 are received so as to
overlap latencies associated with transactions.

Responding 309 modules process requests 1 the order
received, and do not generate a response packet 303 until the
requested action 1s committed. In this manner, apart from
internal latency 1nside the destination module, the access is
completed as viewed by all modules coupled to bus 202
when a request packet 301 1s received. Any subsequently
received requests to that target module will act after that
access. This guarantees that time-ordering of access at a
destination can be imposed by waiting for the corresponding
response.

Packet types of particular importance to the present
invention include a memory transaction types associated
with writing data to and reading data from memory
addresses. Each module comprises memory mapped source
and destination registers. These registers own a specific
range of addresses within the system memory address space.
Accordingly, any memory access operation (read or write)
targeted at an address owned by the module 1s effectively an
access to the source/destination registers of the associated
module.

In the particular implementation, DMAC controller 209
occupies a single 16 Mbyte block of the physical memory
address space. The particular amount of memory space
occupied as well as the size of a single memory block are
implementation dependent features selected to meet the
needs of a particular application. In the specific examples
herein, DMAC 209 supports four independent DMA chan-
nels. Each channel 1s defined by values set 1n five registers
that are specific to each channel. In addition, DMAC 209
comprises two “global” registers that affect all of the defined
DMA channels. More or fewer channels may be defined to
meet the needs of a particular application. The 16 Mbyte
memory block of the specific implementation disclosed
herein, for example, provides ample memory space to 1imple-
ment tens of DMA channels.

A DMA channel 1s characterized by the values stored 1n
the five channel-specific registers. As shown in FIG. 4, these

US 6,701,405 B1

7

registers include a source address register (DMA.SAR), a
destination address register (DMA.DAR), a transfer count
register (DMA.COUNT), a channel control register
(DMA.CTRL), and a channel status register
(DMA .STATUS). The two global registers (DMA.VCR and
DMA.CONTROL) shown in FIG. 4 contain values indicat-
ing state information and error information generally appli-
cable to all DMA channels defined by a particular imple-
mentation.

In accordance with the present mmvention, a CPU uses
conventional memory transactions (e¢.g., LOAD and
STORE) defined for system bus 202 to store information to
these channel-specific registers prior to the request of a
DMA transfer. Each transaction packet includes an address
field corresponding to the assigned physical address space
that includes a destination portion and an offset portion. In
the particular example, the destination portion 1s formed by
the eight most 51gn1ﬁcant bits and the offset portion 1s
formed by the remaining least significant bits of the 32-bit
physical memory address. The offset portion 1s used to
specily the registers corresponding to a particular DMA
channel shown 1 FIG. 4.

Each DMA peripheral such as PCI bridge 207 shown in
FIG. 2 1s associated with logic to implement a peripheral
request interface 215. In the preferred examples, peripheral
request 1nterface 215 1s provided using “glue logic” that
implements a simple interface to handle the peripheral-
specific protocol expected by the DMA peripheral(s) and the
fransaction protocol expected by system bus 202. System
bus 202 ordinarily supports a set of transactions for per-
forming memory operations including memory LOAD and
STORE transactions. One of the benefits of the present
invention 1s that system bus 202 does not need to support
DMA-speciiic transactions. Moreover, a DMA. peripheral
does not need any specific knowledge of DMAC 209 as the

limited DMA-specific signaling 1s handled by peripheral
request mterface 215 rather than DMAC 209.

In a particular implementation, CPU 201 1nitiates a plu-
rality of memory transactions and generates a corresponding
plurality of transaction request packets for transfer on sys-
tem bus 202. Each memory transaction request packet
contains a destination address indicating the DMAC 209 and
an offset portion indicating a particular one of the channel-
specific registers. Each memory transaction 1s accompanied
by an corresponding response or acknowledge packet gen-

erated by DMAC 209 and addressed to CPU 201 to indicate
that the memory transaction is complete.

When the specified channel of DMAC 209 1s configured,
DMAC 209 generates an enable signal to the source periph-
eral. The enable signal 1s directed to the specified source
peripheral using the values stored in the DMA.SAR field. In
the particular examples herein each DMAC channel operates
in either an auto request mode or a peripheral module
request mode. The mode selection 1s made by setting a
“resource__select” field m the DMA.CTRL register 901,
shown 1n FIG. 9, for the channel. Transfer requests are
usually initiated at either the data transfer source or
destination, but they can also be i1ssued by a CPU 201 or
peripheral modules that are neither the source nor the

destination.

When there 1s no transfer request signal from an on-chip
peripheral module to request a transfer, the auto-request
mode allows DMAC 209 to automatically generate a trans-
fer request signal internally. This mode can be used by the
CPU to set up memory-to-memory moves. When a transer__

enable bit in the DMA.CTRL register for the channel and the

5

10

15

20

25

30

35

40

45

50

55

60

65

3

master__enable bit in the DMA.COMMON register are set
to 1, the transfer begins (provided the transfer end bit in
DMA.STATUS register for the channel and the nmi_ flag in
the DMA.COMMON ADCS register and the address

align__error bit in DMA.STATUS register for the channel
are all 0). request packet contains a destination address
indicating the DMAC 209 and an offset portion indicating a
particular one of the channel-specific registers. Each

memory transaction 1s accompanied by an corresponding
response or acknowledge packet generated by DMAC 209

and addressed to CPU 201 to indicate that the memory
fransaction 1s complete.

When the specified channel of DMAC 209 1s configured,
DMAC 209 generates an enable signal to the source periph-
eral. The enable signal 1s directed to the specified source
peripheral using the values stored in the DMA.SAR field. In
the particular examples herein each DMAC channel operates
in either an auto request mode or a peripheral module
request mode. The mode selection 1s made by setting a
“resource__select” field mn the DMA.CTRL register 901,
shown 1n FIG. 9, for the channel. Transfer requests are
usually 1nitiated at either the data transfer source or
destination, but they can also be 1ssued by a CPU 201 or
peripheral modules that are neither the source nor the
destination.

When there 1s no transfer request signal from an on-chip
peripheral module to request a transfer, the auto-request
mode allows DMAC 209 to automatically generate a trans-
fer request signal internally. This mode can be used by the

CPU to set up memory-to-memory moves. When a transer__
enable bit 1n the DMA.CTRL register for the channel and the

master__enable bit in the DMA.COMMON register are set
to 1, the transfer begins (provided the transfer end bit in
DMA.STATUS register for the channel and the nmi_ flag in
the DMA.COMMON ADCS register and the address
align__error bit in DMA.STATUS register for the channel
are all 0).

In the peripheral module request mode DMAC 209 sup-
ports a transier to be performed to any peripheral that may
be added onto the system. DMAC 209 treats all the periph-
erals same. DMAC hardware receives transfer requests from
any or all of these peripherals and performs the transfer after
receiving a transier request 1n the form of a request signal.
However when the transfer request 1s set to a particular
peripheral, the transfer source/destination should be that
peripheral’s memory mapped source/destination register
respectively.

In the preferred embodiment multiple DMA channels are
supported. When DMAC 209 receives simultaneous transfer
requests on two or more channels 1t selects one of the
channels according to a predetermined, user controllable

priority system. This mode 1s selected by a “priority” field in
the DMA operation register DMA.COMMON 601 shown 1n

FIG. 6.

In a “fixed mode” the relative channel priorities remain
fixed. In other words, the channel priorities are set such that
cach channel, except for the lowest priority channel, has a
superior priority to a unique subset of channels and each
channel, except the highest priority channel, has an inferior
priority to a unique subset of channels. All channels operate
in a “steal mode” meaning that a lower priority channel can
steal control from the higher priority channel(s) if the higher
priority channels are 1dle. The higher priority channel

regains control or loses control depending on the speed at
which the serviced unit requests the DMAC.

For example a particular four channel implementation
priory 1s assigned so that channel 0 has higher priority than

US 6,701,405 B1

9

channel 1. If channel 0 1s programmed to service i auto
request mode then channel 1 gets control only when transfer
on channel 0 1s completed. If channel 0 1s programmed to
service 1n on chip peripheral request mode control moves to
channel 1 1f a request interrupt 1s not 1ssued for channel 0
peripheral at the beginning of the next clock cycle.

Alternatively, channels can be selected 1n a “round robin
mode” In round robin mode, each time the transfer of one
transfer unit (i.e., 1, 2, 4, 8, 16 or 32 byte) ends on a given
channel, that channel 1s assigned the lowest priority level.
The order of priority in round robin mode immediately after
a reset 1s CHO—CH1—=CH2—=CH3. In the round robin
mode DMAC 209 does not wait for the transaction to be
complete but moves on to the other channel once the transfer
of one transfer unit 1s complete. If the channel has a
peripheral that does not request the DMAUC transfer, control
moves on to the next channel that has a request interrupt
from the peripheral.

Once the desired transfer conditions have been set DMAC
209 waits for a DMA request signal to be asserted (in
peripheral request mode). Each peripheral request interface
has a DMA request signal line coupled to the DMAC 209.
In the preferred implementation, DMAC 209 supports up to
seven modules resulting 1n seven signal lines to support the
DMA request signals. The DMA request signal may be
asserted by the module that specified the DMA transfer,
another module, or CPU 201. In contrast to prior DMA
systems, the single DMA request line from each peripheral
to DMAC 209 1s essentially the only hardware imposition at
a system level. More or fewer DMA modules and DMA
request signal lines may be provided to meet the needs of a
particular implementation.

DMAC 209 1s defined by the registers it implements. The
DMA.VCR register 501, shown in FIG. 5, contains the

following fields:

perr__tlags: this field contains the packet error flags
(p-error flags) which report the error status of the
interface between this module and the packet-router.

merr__{lags: this field contains module specific error flags
(m-error flags).

mod__vers: this field 1s provided to allow software to
distinguish different versions of a module. This allows
software to take appropriate action if there are differ-
ences between module versions.

mod_ 1d: this field 1s provided to allow software to
identify and distinguish different modules.

bot mb: 1if this module 1s associated with one or more
data blocks then this value indicates the destination
value for the data block with the lowest address. If this
module 1s associated with zero data blocks then this
value will be the destination value for the control block
of this module.

top_ mb: if this module 1s associated with one or more
data blocks then this value indicates the destination
value for the data block with the highest address. It this
module 1s associated with zero data blocks then this
value will be the destination value for the control block
of this module.

If a DMAC module 209 1s associated with multiple data
blocks, then these data blocks will be contiguous in the
address space. This allows ranges of data blocks to be
described as the inclusive range from the value of bot__mb
to value of top__mb.

Upon receipt of a DMA request signal, DMAC 209
checks to determine if a transfer is enabled. The DMA.
COMMUON register 601, shown 1n greater detail in FIG. 6

10

15

20

25

30

35

40

45

50

55

60

65

10

includes an enable field indicating whether all of the DMA
channels are enabled or disabled and the DMA.CTRL field
901 shown 1n FIG. 9 includes an enable field (transfer.enable
in FIG. 9) indicating whether the specific channel is enabled.
Other fields in DMA.COMMON 601 include a priority field
that speciiies the manner and order 1n which channels are
handled when multiple DMA channels are implemented and
int.status that indicates the status of interrupts for each
implemented DMA channel.

When both the common and channel specific enables are
set, DMAC 209 maitiates a LOAD transaction with a source
peripheral specified by DMA.SAR to request transfer one
transfer unit of data. The size of a transfer unit i1s set by a
field 1n the channel specific DMA.CTRL register i the
particular example. The specified source device responds to
the LOAD request by accessing the requested data and
sending a response packet containing the requested data to
DMAC 209.

DMAC 209 stores or buffers the response packet and
mnitiates a STORE transaction request with the destination
device specified by the DMA.DAR value. The destination
device receives and implements the store request and gen-
erates a response or acknowledge packet back to DMAC
209. At this point the DMA transaction 1s essentially com-
plete.

Once DMAC 209 receives an acknowledge message for
the 1nitiated transfer request, the value stored in DMA.
COUNT 1s decremented by one for each transfer unit. A
transaction to transfer another transfer unit 1s initiated in
compliance with the channel priority policy 1n effect. When
split phase transactions are supported, DMAC 209 may
begin servicing another transaction on another DMA chan-
nel rather than initiating the next transaction of the current

channel. Transfers continue 1n this manner until the value of
DMA.COUNT reaches zero.

A DMA.STATUS register 801 shown 1n FIG. 1 includes
fields indicating status of the DMA transfer for the associ-
ated DMA channel. The transfer.end field indicates whether
the DMA transfer for the associated channel 1s complete.
The address.error field indicates whether the destination
address for a particular DMA channel 1s misaligned. Soft-
ware can read these status fields to determine if a DMA
transfer 1s complete or if an error occurred that interfered the
transfer. The present invention is readily extended to include
other status fieclds to meet the needs of a particular applica-
tion.

FIG. 9 shows an exemplary DMA.CTRL register in
accordance with the present mnvention. A transfer.size field
indicates the size of each transfer unit to be conducted by
DMAC 209. In a particular example, transfer units are
selected from 6 choices varying from one byte to 32 bytes,
although the particular transfer unit size, range of transfer
unit sizes, and increments between available transfer unit
sizes are a matter of choice. The source.increment and
destination.increment fields indicate the amount the source
or destination addresses are incremented for each transfer
unit. The resource.select field indicates which system com-
ponent will generate the transfer request and 1n the particular
example provides for a selection from among seven periph-
erals and a selection for auto request (described below). The
DMA.CTRL register also contains an interrupt.enable field
that controls whether an interrupt 1s sent after the number of
transters specified in the DMA.Count field 1s satisfied.

As noted above, the present invention can be 1mple-
mented with an automatic transter mode 1n which the DMA
transfer 1s 1nitiated as soon as the channel specific registers
are loaded and both the common and channel specific enable

US 6,701,405 B1

11

bits are set. An automatic transfer does not require one of the
DMA request signal lines to be asserted, although auto

request mode must usually be indicated by setting a field
value mn the DMA.CTRL field.

When the specified number of transfers have been com-
pleted the transter ends normally. DMAC 209 sets a bit in
the DMA.CTRL field, called the “DMA.CTRL.1nterrupt
enable bit” to indicate the transfer 1s complete. DMAC 209
checks to determine 1f the DMA.CTRL.interrupt.enable bit

1s set and 1f set generates an interrupt to the system interrupt
controller shown 1 FIG. 2. If the DMA requesting device
requires a peripheral-specific signal (as required in a PCI
DMA transfer, for example) that signal 1s generated by the
peripheral request mnterface, not by DMAC 209.

An address error on a channel can occur during a DMAC
fransaction 1n two ways. First, it can be because of a
misalignment 1 the address with the transfer size chosen.
Second, 1t can be because of an error response from the bus,
for e.g., when the bus doesn’t detect any peripheral that
DMAC 209 mitiates a request to. In the case of a misalign-
ment DMAC 209 sets a bit DMA.STATUS.address__align__
error=1 of the corresponding corrupt channel and stops

transfer on this channel. In the case of an error response
DMAC 209 sets a bit DMA.VCR.perr_ flags.err_rcv="1".

In addition to the above 1n both these cases DMAC 209 does
the following:

It suspends the transfers on that channel.

It flips the DMA.CTRL transfer__enable=0 for that chan-
nel.

It flags an interrupt DERR (DMAC Error).

The status of the SAR, DAR and COUNT of the corrupt

channel are left to their present state.

In this manner software can pin-point the problem chan-
nel by checking the control registers of the channels and the
software can reprogram the channels to behave properly.
Transfers on other channels will progress as programmed.

The status of a pending DMA transaction can be 1dentified
by using the interrupt enable which causes DMAC 209 to
issue an 1nterrupt when the DMA transfer 1s complete.
Alternatively, the DMA requesting module can wait and
initiate a read transaction to read the DMA.STATUS register
and check 1f count 1s zero. The status can be 1dentified by
two cases depending on what the programmer sets on the bit
DMA.CTRL.interrupt__enable when DMAC 209 1s config-
ured. When DMA.CTRL.interrupt__enable bit 1s set to 0 the
DMA.COUNT for that particular channel can be checked for
a zero value for request completion. Upon completion of a
transaction the DMAC hardware sets a 1 on the
DMA.STATUS.transfer__end field. The DMAC does not
interrupt the CPU 1n this case. When
DMA.CTRL.1nterrupt__enable bit 1s set to 1. The DMA
hardware sends an interrupt to the CPU. Also, when a
transaction 1s completed on a channel it 1s indicated by a 1
in the field DMA.STATUS.transfer _end. Only one interrupt
1s generated by DMAC 209 each time a transaction/
transactions 1s completed on the channel/channels.

In this manner the present invention provides DMA
instructions that are integrated into the basic transaction set
of bus 202. This feature enables any module coupled to bus
202 to implement DMA with minimal hardware overhead.
Corresponding logic in DMAC 209 responds to the memory
fransactions to set up a DMA transfer on behallf of the
requesting module. A single DMA request signal initiates a
DMA transfer.

The present mvention provides a direct memory access
system where the DMAC does not need to generate a
transfer acknowledge or any other peripheral-specific sig-

10

15

20

25

30

35

40

45

50

55

60

65

12

nals. Glue logic, namely peripheral request interface 2135,
decodes transaction packets from the system bus 202 and
based on the source field generates the peripheral-specific
signaling. This ensures that the DMAC does not need any
special purpose resources to support any of the peripherals.
In turn, the DMAC design can be readily reused 1n a wide
variety of systems with a wide variety of peripherals.

The present invention provides a DMA system that can
support multiple channels with interchannel switching
specified by two or more priority modes. This feature
provides flexible, programmable priority switching between
the peripherals connected to the system.

The request interface of DMAC 209 1s independent of the
peripherals so that any peripheral can support DMAC opera-

tion with the help of glue logic that implements a simple
handshake between peripherals. The DMAC 1s defined to be
ogeneral purpose and can be plugged onto a system that

provides a bus interface to the system and a signal line for
cach DMA peripheral to assert a DMA request signal. The
control registers within DMAC 209 do not contain any
peripheral specific information making 1t very scaleable,
adaptable, and reusable.

While the invention has been particularly shown and
described with reference to a preferred embodiment thereof,
it will be understood by those skills in the art that various
other changes 1n the form and details may be made without
departing from the spirit and scope of the invention. The
various embodiments have been described using hardware
examples, but the present invention can be readily imple-
mented 1n software. For example, it 1s contemplated that a
programmable logic device, hardware emulator, software
simulator, or the like of sufficient complexity could 1mple-
ment the present 1nvention as a computer program product
including a computer usable medium having computer read-
able code embodied therein to perform precise architectural
update 1n an emulated or simulated out-of-order machine.
Accordingly, these and other variations are equivalent to the
specific 1implementations and embodiments described
herein.

What 1s claimed 1s:

1. A computer system comprising a:

a system bus having a plurality of ports for coupling to
system components including memory, central process-
ing unit(s) and peripherals;

a direct memory access controller (DMAC) is coupled to
the system bus, the DMAC comprising a set of regis-
ters;

a CPU coupled to the system bus wherein the CPU 1s
configured to initiate a plurality of transactions with

cach transaction transferring a value to one of the
DMAUC registers;

an enable signal generated by the configured DMAC to a
specific peripheral 1dentified in the DMAC registers;

a request signal to the DMAC asserted by the peripheral
using an on-chip request interface; and

a sequence of DMA data transfers generated by the
DMAUC using the stored register values.

2. The computer system of claim 1 wherein the set of
registers within the DMAC do not contain any peripheral-
specific information.

3. The computer system of claim 1 wherein the peripheral
request 1nterface does not generate any peripheral-speciiic
DMA transfer signals.

4. The computer system of claim 1 wherein the peripheral
request 1nterface generates all peripheral-specific transfer
signals required by the associated peripheral by taking into
consideration the DMA acknowledge and the contents of the
system bus.

US 6,701,405 B1

13

5. The computer system of claim 1 wherein the set of
registers 1n the DMAC comprises a first set of general
registers and a second set of channel specific registers.

6. The computer system of claim 1 further comprising:

logic within the DMAC for defining two or more DMA
channels; and

a programmable channel priority system within the
DMAUC for selecting which of the two or more DMA

channels 1s handled by the DMAC at any given time.

7. The computer system of claim 1 further comprising,
logic within the DMAC generating a response addressed to
the DMA peripheral request interface on the bus mechanism
wherein the response acknowledges completion of the DMA

operation.
8. The computer system of claim 1 wherein the sequence

of DMA transfers comprises:

a LOAD transaction between the DMAC and a source
address;

a STORE transaction between the DMAC and a destina-

tion address.

9. The computer system of claim 1 wherein the system bus
implements a transaction set including a memory transaction
but not mncluding a transaction specific to direct memory
aCCeSs.

5

10

15

20

14

10. The computer system of claim 1 wherein each of the
peripherals, the CPU, and main memory are associated with
memory mapped addresses.

11. The computer system of claim 1 wherein the set of
registers 1n the DMAC further comprises a status register
and a control register holding values speciiic to a particular
DMA channel.

12. The computer system of claim 4 wherein the set of
registers 1n the DMAC comprises a first register holding a
value 1ndicating a source address and a second register
holding a value indicating a destination address, wherein the
source address and destination address correspond to spe-
cific ones of the memory mapped addresses.

13. The computer system of claim 6 wherein the pro-
crammable channel priority system 1s configured to switch
between the two or more DMA channels 1n the middle of the

sequence of DMA transfers.

14. The computer system of claim 12 wherein the set of
registers 1n the DMAC further comprises a third register
holding a value mdicating a count of a number of transfer

packets included 1n the sequence of transiers initiated by the
DMAC.

	Front Page
	Drawings
	Specification
	Claims

