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(57) ABSTRACT

A model characterizes an error pattern that 1s functionally
related to first and second patterns and to one or more model
parameters, which may be unknown. The error pattern may

be derived by deforming one or both of the first and second
patterns, such as by applying a generally smooth, non-
uniform deformation field. A likelihood for the model that
the error pattern 1s zero, given the second pattern, 1s deter-
mined. If the model parameter(s) is unknown, the likelihood
may be used to estimate (or infer) the parameter(s) that tend
to maximize the likelihood for a plurality of stored patterns.
The estimated parameters may, in turn, be employed to
determine the likelithood as a measure of similarity between
an observed pattern and the patterns that the model 1s
capable of generating. In addition, the likelihood may be
used to classify an observed pattern according to the like-
lihood that the observed pattern has relative to one or more
models.
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METHOD OF LEARNING DEFORMATION
MODELS TO FACILITATE PATTERN
MATCHING

TECHNICAL FIELD

The present invention relates to pattern recognition and,
more particularly, to a method of learning templates and
deformation models to facilitate pattern matching.

BACKGROUND OF THE INVENTION

Pattern recognition systems are employed 1n various areas
of technology to help classify and/or match a test pattern
relative to one or more known prototype patterns. Examples
of pattern recognition applications include 1mage analysis
and classification, handwriting recognition, speech
recognition, man and machine diagnostics, i1ndustrial
inspection, medical 1maging, etc.

In a pattern recognition system, it 1s common to store
larce amounts of data indicative of prototype patterns and
compare them to a given example or unknown input symbol
for identification. Several common algorithms may be uti-
lized to compare or measure similarities between patterns
such as K-nearest Neighbor (KNN), Parzen windows, and
radial basis function (RBF). A level of similarity may be
determined by generating a distance measure. By way of
example, a simple algorithm for comparing two patterns
and ¢ 1s to compute the Euclidean distance between them,
such as may be expressed as:

de(f,g8) = \/Z (flx, y)—glx, ¥)* = \/(f - g)*
A, ¥

where d_ denotes the Euclidean distance between two
patterns, and { and g are assumed to be 2 dimensional
patterns, indexed by x and y. An extension of the Euclidean
distance methodology to other dimensions 1s straightior-
ward.

The usefulness of the Euclidean distance algorithm 1s
limited, however, because if f and g are not perfectly
aligned, the Euclidean distance can vyield arbitrarily large
values. Consider, for mstance, a case where g 1s a translated
version of f, that 1s g(x, y)=f(x+1, y). In this case, the
Euclidean distance could yield a very large value, even
thought f and g may be virtually 1dentical except for a small
amount of translation in the x-direction.

One proposed comparison scheme to remedy the afore-
mentioned shortcoming associated with the traditional
Euclidean distance approach 1s to employ a tangent distance,
such as 1s disclosed in U.S. Pat. No. 5,422,961. This
comparison scheme 1s invariant with respect to a selected set
of small transformations of the prototypes. The small trans-
formations of interest are expressed by calculating a deriva-
five of the transformed 1mage with respect to the parameter
that controls the transformation. The directional derivative 1s
used to generate a computational representation of the
transformation of interest. The transformation of interest,
which corresponds to a desired 1invariance, can be efficiently
expressed by using tangent vectors constructed relative to
the surface of transformation. The tangent distance d, may
be expressed as:
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2

dr(f, g)* = min (f +lrar —g —l,a,)*
&:fﬂ;-’g

where L, and L, are matrices of tangent vectors for f and g
respectively, and a, and a_, are vectors representing the
amount of deformation along the tangent plane. An advan-
tage of tangent distance compared to the traditional Euclid-
can distance approach is that the tangent distance is less
affected by translation than the Euclidean distance because
if L,and L, contain a linear approximation of the translation
transformation, the tangent distance compares the translated
version of I and g. The tangent distance concept 1s explored
in greater detail 1n a paper entitled, “Efficient Pattern Rec-

ognition Using a New Transformation Distance,” presented
by Patrice Y. Simard, Yann LeCun and John Denker,
Advances 1n Neural Information Processing Systems, Eds.
Morgan Kaufmann, pp. 50-58, 1993.

A limitation of tangent distance approach, however, 1s that
the transformations to which 1t 1s invariant generally must be
known a-priori and precisely (e.g., translation, rotation,
scaling, etc.). Moreover, tangent distance has no mechanism
to specily loose constraints such as small elastic displace-
ments. Such mechanism would be useful because in many
cases, such as with speech or image patterns, it 1s not known
which transformations should be used, but it 1s assumed that
the problem exhibit some 1nvariance with respect to small
clastic displacements.

A desirable property of a pattern recognition machine 1s
that its output be invariant with respect to certain small
transformations of its input. That 1s, some transformations of
a meaningful pattern, such as an alphanumeric symbol, will
not affect the interpretation of the pattern by a human
observer. A comparison scheme that 1s 1nvariant to such
transformations can operate with greater economy and speed
than comparison schemes that require exhaustive sets of
prototypes. By way of example, transformations of alpha-
numeric patterns that are of interest in this regard may
include translation, rotation, scaling, hyperbolic
deformations, line thickness changes, and gray-level
changes. Any desired number of possible invariances can be
included 1 any particular recognition process, provided that
such 1nvariances are known a priori, which 1s not always
possible.

Many computer vision and image processing tasks benefit
from 1nvariances to spatial deformations in the i1mage.
Examples include handwritten character recognition, face
recognition and motion estimation 1n video sequences.
When the input images are subjected to possibly large
transformations from a known finite set of transformations
(e.g., translations in images), it is possible to model the
transformations using a discrete latent variable and perform
transformation-invariant clustering and dimensionality
reduction using Expectation Maximization as in “Topo-
oraphic transformation as a discrete latent variable” by Jojic
and Frey presented at Neural Information Processing Sys-
tems (NIPS) 1999. Although this method produces excellent
results on practical problems, the amount of computation
orows linearly with the total number of possible transior-
mations in the input.

A tangent-based construction of a deformation field may
be used to model large deformations 1n an approximate
manner. The tangent approximation can also be included in
generative models, such as including linear factor analyzer
models and nonlinear generative models. Another approach
to modeling small deformations is to jointly cluster the data
and learn a locally linear deformation model for each cluster,
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€.g., using expectation maximization in a factor analyzer as
in “Modeling the manifolds of 1mages of handwritten
digits,” by Hinton et al. published in IEEE Trans. on Neural
Networks, 8, 65—74. With the factor analysis approach,
however, a large amount of data i1s needed to accurately
model the deformations. Learning also 1s susceptible to local
optima that might confuse deformed data from one cluster
with data from another cluster. That 1s, some factors tend to
“erase” parts of the image and “draw” new parts, mstead of
just perturbing the 1mage.

SUMMARY OF THE INVENTION

The present mvention relates to a method for learning,
mixtures of smooth, non-uniform deformation models to
facilitate pattern recognition or matching. A generative net-
work 1s created to model one or more classes of patterns for
use 1n determining a likelihood that a pattern matches
patterns modeled by the network. The model 1s created to be
invariant to non-uniform pattern deformation.

The model 1s developed to describe an error pattern as a
difference between first and second patterns. In accordance
with an aspect of the present invention, at least the first
pattern 1s deformed by application of a deformation field.
The deformation field may be a smooth, non-uniform field,
such as may be constructed from low frequency wavelet
basis vectors and associated deformation coeilicients. Vari-
ous parameters 1 the model describe a set of pattern
prototypes and associated levels of noise. The parameters
further control the amount of deformation and correlations
among the deformations in different parts of the pattern. An
error pattern thus may be generated from the model by
sampling according to the probability distributions associ-
ated with different components of the model.

In accordance with an aspect of the present invention,
jomnt and conditional likelihoods for the model may be
evaluated. The model has a number of parameters that
govern different probability distributions, and a number of
intermediate variables that may not be observed 1n real
applications. By way of example, the deformation coefli-
cients are types of variables, for which a functional form of
their probability distribution may be known, but the exact
coellicients for each observed pattern may be unknown. To
deal with the non-observed, or hidden variables, a joint
likelihood of variables in the system, given the second
pattern, 1s evaluated assuming that the error pattern equals
zero. The joint likelihood may be employed to estimate (or
infer) parameters of the model that tend to maximize the
joint likelihood for stored patterns. After the parameters
have been estimated, a likelihood of observing a zero error
pattern, given the second pattern, may be computed, such as
by 1ntegrating over hidden variables in the model. In
essence, this produces a likelihood value as to whether the
first pattern 1s 1n accordance with the model. The likelihood
value may then be used in classification by evaluating
models for different classes of patterns.

To properly 1ntegrate out the hidden variables, the param-
eters of the associated conditional distributions need to be
known. However, the parameters are typically unknown,
while there are a number of labeled patterns available to
train the model. As a result, the model may be optimized in
accordance with an aspect of the present invention. For
example, hidden variables may be integrated out in an
iterative process, such as by increasing the likelihood of all
observed patterns in each iteration. In each iteration, the
current parameter estimates are used to infer hidden vari-
ables from the joint likelihood, which, in turn, may be
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4

utilized to re-estimate the parameters. This 1terative process
may be repeated for patterns until the estimated parameters
converge, thereby providing substantially optimized param-
cters for the model.

Provided that parameters of the model are known (or at
least estimated from a training set), the joint likelihood that
the error pattern equals zero, given the second pattern,
further may be employed to classily new patterns in accor-
dance with the present invention. The joint likelihood may
be computed by averaging over the hidden variables, taking
the dependencies among variables into account. The esti-
mated parameters of the model serve to properly regularize
the distance among patterns, and the integration technique
rewards the patterns that are easier to reach with the gen-
erative model. For example, 1f an observed pattern 1s close
to several prototype patterns, the likelihood computation
will naturally reward such a pattern with greater likelihood
than 1f the observed pattern 1s only remotely similar to one
of the prototypes.

In accordance with another aspect of the present
invention, the model may be designed also to deform the
second pattern. For example, a deformation field having
deformation coetlicients may be applied to form a deforma-
tion component that 1s added to the second patter to derive
a second deformed pattern. In a case where the second
pattern 1s deformed, the deformation coefficients of for the
second pattern may be correlated with the deformation
coellicients for the first pattern, such as being substantially
opposite. A covariance matrix parameter further may be
selected to capture a desired level of correlation between the
respective deformation coefficients for the first and second
patterns. Consequently, the resulting error pattern 1s the
difference between the deformed first pattern and the

deformed second pattern.

Another aspect of the present invention provides a method
for learning mixtures of models to facilitate pattern recog-
nition. The method includes providing a model having
model parameters, the model characterizing an error pattern
functionally related to a difference between two patterns. At
least a first of the two patterns 1s deformed by application of
an assoclated substantially smooth and non-uniform defor-
mation field. A joint likelihood 1n the model 1s determined
relative to the model parameters, given a stored pattern,
assuming that the error pattern equals zero. The model
parameters that tend to maximize the joint likelihood for a
plurality of stored patterns are determined. The methodol-
ogy may, 1n accordance with an aspect of the present
invention, be implemented as computer-executable mnstruc-
tions 1n a computer-readable medium.

Yet another aspect of the present mvention provides a
method for generating a model to facilitate pattern recogni-
fion. An error pattern 1s modeled based on a first pattern
relative to a second pattern, at least the first pattern being
deformed by application of a substantially smooth deforma-
tion field. The model has at least one parameter for charac-
terizing a set ol pattern prototypes and associated noise
levels and for controlling deformation of the first pattern. A
likelihood that an error pattern i1s zero, given the second
pattern, 1s characterized. The error pattern 1s functionally
related to the first pattern, the second pattern, and the
parameter. The parameter 1s estimated so as to tend to
maximize the likelihood for a plurality of stored second
patterns. The methodology may, 1n accordance with an
aspect of the present invention, be i1mplemented as
computer-executable instructions 1n a computer-readable
medium.

To the accomplishment of the foregoing and related ends,
certain 1llustrative aspects of the invention are described
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herein 1 connection with the following description and the
annexed drawings. These aspects are indicative, however, of
but a few of the various ways 1n which the principles of the
invention may be employed and the present invention 1is
intended to include all such aspects and their equivalents.
Other advantages and novel features of the invention will
become apparent from the following detailed description of
the invention when considered in conjunction with the
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s an example of a Bayesian network for modeling
a pattern matching system in accordance with the present
mvention;

FIG. 2 1s an example of a deformation field 1n accordance
with the present mmvention;

FIG. 3 1illustrates examples of resulting images from
application of different deformation fields to an 1mage;

FIG. 4 1s an example of a generative network derived
from the network of FIG. 1 1 accordance with the present
mvention;

FIG. § 1s an example of an operating environment that
may be employed to implement a process 1n accordance with
the present invention;

FIG. 6 1s a flow diagram 1illustrating a methodology for
optimizing a model and deriving a measure of similarity
between patterns 1n accordance with the present invention;

FIG. 7 1s a flow diagram 1illustrating a methodology for
deriving a measure of similarity between patterns 1n accor-
dance with the present invention; and

FIG. 8 illustrates an example of experimental results
obtained in accordance with the present invention.

NOTAITTON

The present system can be used for patterns of arbitrary
dimensionality that exhibit some type of spatial coherence
during deformation. In other words, 1t 1s believed that the
inherent dimensionality of the deformation 1s substantially
smaller than that of a pattern, due to the fact that the
deformation cannot change considerably among the neigh-
boring parts of the pattern. In case of 1images, for example,
if the part in a lower right comer 1s compressed, 1t 1s not
likely that the part right above it will be considerably
expanded. The deformations 1in 1mages are usually smooth.
Having said that, 1t also should be note that regardless of the
dimensionality of the pattern, the notation 1s considerably
simplified 1f the patterns are represented as vectors of values.
In case of MxN 1mages, for example, which are inherently
two-dimensional, the 1mages can be unwrapped 1nto a long
vector by stacking M-long 1mage columns on top of each
other (in fact, this is how the matrices of any dimensionality
are typically stored in memory ). This will result in a vector
with M*N elements. We will denote the pattern vectors with
bold face lower case letters, such as f and g¢. By way of
illustration, 1n case of 1mages, the number of elements 1n
these vectors 1s equal to the total number of pixels 1n the
image, and 1n case of speech/audio patterns, the number of
clements 1s equal to the number of samples or frames in the
time window. This simplification 1n notation allows describ-
ing operators acting on patterns of arbitrary dimensionality
to be characterized by two-dimensional matrices and the use
of simple linear algebra for derivations.

For example, 1n case of an 1image pattern I, an approxi-
mate dertvative 1n Y direction could be the matrix
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1 2 3... M M+1 ... MN
Go= 1 -1 0 00..00 0 0..0
0 1 -100..00 0 0..0 2
0 0 0 00..01 -1 0..0 M+1
0 0. I MN

The letters 1n the first row denote the column and the letters
in the last column denote the rows of the matrix. In this
example, the denivative 1s approximated by the difference
between the pixel and its immediate neighbor. This 1s
accomplished by placing 1 and -1 in the appropriate places
in each row. Since the 1mage 1s represented as a long vector,
care has to be taken at the M” row of G since the appropriate
pixel does not have the neighbor (edge of the image). Then
a spatial derivative can be computed by multiplying the
pattern { with the matrix G..

When we take the derivative 1n the other direction,
however, 1 and -1 values have to be M entries apart since
the neighbor 1n x direction 1s in the next column of an 1mage,
which 1s equivalent to being M entries apart 1n the vector
representation:

12 3... M M+l .. MN
G,= 1 000 0..0 -1 0 0..0 1

0 100 0...0 0 -1 0..0 2

0 0 ... 1 MN

Note, however, that other derivative approximations can
be described m similar way. It 1s to be understood and
appreciated that the above matrices have been provided for
purposes of illustration only, and the scope of this applica-
tion 1s not limited to these particular approximations. Those
skilled 1n the art will understand and appreciate that other
approximations could be utilized mn accordance with an
aspect of the present invention.

This 1llustrates that vector representation of the patterns
allows linear operations, even when they deal with different
dimensions of the pattern, to be expressed by matrix mul-
tiplications and thus all variables 1n our notation are at most
two-dimensional.

To make 1t easier to track the dimensionality of different
terms 1n equations presented in the following description,
lower case letters represent scalars (distance d, for example),
bold-face lower-case letters represent vectors (such as a
pattern f, or a vector of deformation coefficients a) and
bold-face capital letters represent matrices, such as the
above difference operators G, and G,

DETAILED DESCRIPTION OF THE
INVENTION

The present mvention provides a system and method
operable to jointly cluster data and learn mixtures of non-
uniform, smooth deformation fields to facilitate pattern
recognition or matching. The model further may be
employed to classily patterns by evaluating models for
different classes of patterns. In the following description, for
purposes of explanation, certain details are set forth in order
to provide a thorough understanding of the present inven-
tion. It will be evident to one skilled in the art, however, that
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the present invention may be practiced without these speciiic
details. In other 1nstances, well-known structures and func-
tional aspects are shown and described 1n block diagram
form 1n order to facilitate description of the present inven-
tion. Those skilled in the art will understand and appreciate
various ways to implement such examples, all of which are
contemplated as being within the scope of the present
invention.

By way of introduction, many pattern recognition and
pattern processing systems, such as for images, audio, and
other signal processing tasks, benefit from invariances to
spatial deformations in the 1image. Examples include hand-
written character recognition, face recognition, audio pattern
(c.g., speech) recognition and motion estimation in video
sequences. When an input pattern 1s subjected to possibly
large transformations from a known finite set of transior-
mations (€.g., translations in images), it is possible to model
the transformations using a discrete latent variable and
perform transformation-invariant clustering and dimension-
ality reduction using Expectation Maximization. Although
this method may produce satisfactory results on practical
problems, the amount of computation grows linearly with
the total number of possible transformations in the mput.

In certain cases, the deformations may be assumed rela-
tively small, such as due to dense temporal sampling of a
video sequence, from blurring the input, because of well-
behaved handwriters, etc. By way of illustration, suppose
(d,, d,) 1s a deformation field for an image pattern (a vector
field that specifies where to shift pixel intensity), where (d_,,
d, ;) is the two-dimensional real vector associated with pixel
1. Given a vector of pixel intensities f for an 1mage, and
assuming the deformation vectors are small, the deformed

image may be approximated by

) 3 f 3 f
f—f+ﬁﬂéx+aﬂéy

(Eq. 1)

where “o” denotes an element-wise product and d1/dx 1s a
oradient image computed by shifting the original image to
the right a small amount and then subtracting off the original
image. Suppose, for example, that d =0 and d =al, where a
1s a scalar. Then, the 1image deforms by shifting to the right
by an amount proportional to the vector a.

One type of deformation field that has been proposed 1s a
linear combination of uniform deformation fields for
franslation, rotation, scaling and shearing plus the non-
uniform field for line thickness. See Simard et al., Efficient
Pattern Recognition Using a New Transformation Distance.
S. J. Hanson, J. D. Cowan and C. L. Giles, Advances in
Neural Information Processing Systems 5, Morgan Kaufman
(1993). When the deformation field is parameterized by a
scalar a (e.g., x-translation),

adf Jdf
ﬁ{]dx + 6—yﬂdy

™

can be viewed as the gradient off with respect to a. Since the
above approximation holds for small a, this gradient 1s
tangent to the true 1-D deformation manifold of .

Eqg. 1 provides a base for creating a model, 1n accordance
with an aspect of the present invention, which may be
utilized to measure similarity between pattems f and g. For
purposes of simplicity of explanation, the patterns f and g
will be described as being 1mages, although it 1s to be
understood and appreciated that the present invention 1s
cqually applicable to other types of patterns. For example,
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3

the patterns may be audio patterns, radio frequency patterns,
patterns of electromagnetic energy, etc. Each of the image
patterns f and g is an N-dimensional vector (where N is a
positive integer) of a digital image in, for example, pixel
space having x and y components. Those skilled in the art
also will understand and appreciate that the principles
described below may be extended to numerous applications,
such as video coding, motion estimation, optical character
recognition, speech recognition, and video mosaic, to name
a few.

In accordance with an aspect of the present invention, a
deformation field (d,, d,) 1s constructed a non-uniform field
that 1s parameterized by smooth functional basis vectors
having associated deformation coefficients. The functional
basis may be an inverse wavelet transform, a fast Fourier
transform, or other suitable transform (e.g., sine or cosine)
operable to provide a substantially smooth deformation
field. For purposes of brevity, the following description
describes the functional basis vectors as wavelet basis
vectors, such as low frequency wavelet basis vectors. The
deformation field may be expressed 1n its component parts
as

d=R. a,, (Eq. 2)

dy:Ryﬂy!

where the columns of R contain low-frequency wavelet
basis vectors (R, R,), and

_ﬂx_

Ay |

are the deformation coefficients. It should be noted, that the
number of basis functions i1s considerably smaller than the
dimensionality of the vector describing the pattern (the total
number of pixels in the image), and thus the deformation,
which consists of as many values as the pattern, may be
described by a considerably smaller number of deformation
coellicients.

An advantage of wavelets 1s their space/frequency local-
ization. For example, low-frequency deformation coefl-
cients may be selected to capture global trends in the
pattern(s) being recognized, such as by utilizing a number of
deformation coeflicients that 1s a small fraction of the
number of pixels in the image f. The deformations localized
in smaller regions of the image can be expressed by more
spatially localized (e.g., higher frequency) wavelets. The

deformed 1mage f may be expressed as a linear approxima-
fion as

F=f+(G fo(Ra)+(G fo(Ra,), (Eq. 3)

where the derivatives in Eq. 1 are approximated by sparse
matrices G, and G, that operate on t to compute finite spatial
differences 1n the 1mage pattern.

It 1s to be appreciated that Eq. 3 1s bilinear in the
deformation coefficients (a, a,) and in the original image
That 1s, Eqg. 3 1s linear 1n { given a and 1t 1s linear 1n a given
f. The element-wise product thus may be rewritten as a
matrix product, such as by converting either the vector Gf or
the vector Ra to a diagonal matrix using the diag( ) function:

F=f+D{f)a, where D{f)=|diag(G /)R diag(Gyf)R]

f=1(a), where T(a)=I+diag(Ra I)Gx+diﬂg(Rﬂy)Gy'

(Eq. 4)
(Eq. 5)

It 1s to be appreciated that Eq. 4 appears as a typical linear
model, such as i1n factor analysis or principal component
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analysis. It should be noted, however, that the components
in this case need not be estimated, as they are based on the
deformation model D(f). Thus, the number of parameters is
considerably smaller.

Eq. 4 shows by applying a simple pseudo inverse, the
coellicients of the image deformation that transforms { into

f may be estimated:

a=D(f) (7)) (Eq. 6)

The low-dimensional vector of deformation coefficients

provided by Eq. 6 minimizes the distance |[f-f]|. Under easily
satisfied conditions on the differencing matrices G, and G,,
T(a) in Eq. 5 can be made invertible regardless of the image
f, so that f=T(a)™" f.

Given a test (or prototype) image g, the image f may be
matched relative to g by computing the deformation
coefficients, a=D(f)™ (g-f), that minimize |[f-g||. In accor-
dance with another aspect of the present invention the 1mage
o which may be an N-dimensional vector of a digital image
in the same space as the imager, also may be deformed. This
enables more extreme deformations to be successiully
matched 1n accordance with the present 1nvention.

The deformation of the 1mage ¢ may occur 1n substan-
fially the same manner as described above with respect to the
image I By way of example, the deformation field 1s applied
to the 1mage g¢. The deformation field, for example, 1s a
substantially smooth deformation field constructed from low
frequency wavelet basis vectors R, and R, and associated
detormation coeflicients b, and b,. The component parts of
the deformation field may be expressed as

d=RDb._, (Eq. 7)
d,=R,b,,
where (R, R,) are the wavelet basis vectors, and

_bx_
b=

by

are the deformation coetlicients. It 1s to be understood and
appreciated that, 1n many applications, 1t may be desirable to
make R, and R, the same for the two patterns f and g, e.g.
R =R =R.

The deformation field (d,, d,) 1s applied to a spatial
derivative of the image ¢ to form a deformation component
that 1s added to g to form a deformed 1mage. The deformed
image for the image g thus may be represented as

g=g+(G,g)o(Rb,)+(G g)o(RD), (Eq. 8)

where G, and G, are linear approximations of the spatial

derivatives of the image g provided by the partial derivative
functions.

As described above with respect to Eq. 4, the deformed
image g may in turn be represented as:

g=g+D(g)b, where D(g)=[diag(G, g)R diag(G g)R] (Eq. 9)

From Egs. 4 and 9 the difference between the deformed
images [ and g is

s

(Eq. 10)
f-&g=f—-g+[ D)

¥
-D(g) ][ b}

It is to be appreciated that the distance |[f-g|| could be
minimized by standard methods, such as quadratic optimi-
zation with respect to the deformation coefficients a and b.
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In accordance with an aspect of the present invention, one
or more cost functions may be employed to capture corre-
lations between different pixels in the respective 1mages {
and ¢ and/or to favor some deformation fields over others.
This results 1n a versatile distance between the 1mage
patterns { and ¢ indicative of a measure of the similarity
between the patterns (e.g., the distance therebetween), which
may be expressed as

z > Eq. 11
D(f’g)zzﬂ“{(f—é)%’l(f—§)+[£ bT]?lm} (e 1D

By way of example, the cost parameter W 1s a diagonal
matrix whose non-zero elements contain variances of appro-
priate pixels to enable different pixels to have ditferent levels
of 1mportance for purposes of matching. The diagonal
matrix W may be hand crafted to non-uniformly weight the
importance of each pixel so that more important aspects of
a pattern may be weighted more heavily in the pattern
recognition process. For example, if the 1images f and g are
images of a tree 1 the wind, the deformation coeflicients
should be capable of aligning the main portions of the
image, such as may include the trunk and large branches,
while the variability in the appearance of the leaves (e.g.,
higher resolution attributes) may be captured in the cost term
W

On the other hand, G 1s a full covariance matrix operable
to capture correlation between the deformation coefficients
a and b of the allowed deformations. The covariant matrix G
1s applied to the deformation coeflicients a and b to constrain
the deformation of the images { and g. This cost term G
allows capturing correlations among the deformation coef-
ficients. For instance, 1f the major component of a deforma-
fion 1s a rotation around the center, then the displacements
in X and y directions are strongly correlated. Similarly, when
deforming both 1mages, 1t 1s likely that the deformation
coellicients for the two 1mages are anti-correlated, e.g., one
1s deforming 1n the opposite direction of the other, so that the
minimal deformation 1s necessary 1 both 1mages. Those
familiar with statistics and covariance matrices can easily
construct matrices that produce cost terms that are lower
when these types of correlations are present 1n the defor-
mation coeflicients. While 1n theory, similar correlations can
be captured directly 1n the pixel domain, such as in the cost
term 1mvolving W, in practice 1t 1s difficult to incorporate
these due to high dimensionality of the data. Accordingly, 1t
1s easler to utilize a diagonal matrix that decouples the
clfects of different pixels 1n the appropriate cost term. In
contrast, the number of deformation coefhicients 1n vectors a
and b are small enough to make 1t possible to use non-
diagonal structures that capture correlations as we discussed.

Turning now to FIG. 1, a Bayesian network 10 1s 1llus-
trated that may be employed to compute a likelihood that
input patterns match the patterns modeled by the network 1n
accordance with an aspect of the present invention. For
classification, one of these networks 10 1s learned for each
class of data. The model 10 described below corresponds to
the relationship set forth with respect to Eq. 11.

The model 1s generated by clamping a test 1mage g,
indicated at 12. Then, an 1mage cluster index ¢, indicated at
14, is selected from P(c). Given c, a latent image f, indicated
at 16, 1s then drawn from a Gaussian distribution of the form,

Nt 1., q)c):ke—(f—#c)rdrc—l(f—#c)

(Eq. 12)

where k 1s a constant for the Gaussian function, ¢ 1s a
mean of the Gaussian function and F, is its (diagonal)
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covariance matrix. It may be possible to assume that for
a particular value of ¢, F_=0, so p(flc)=d(f-u ), where d
denotes a Dirac (impulse) function that is nonzero only
when f=u_. This assumption allows the use of exact EM
for learning the parameters of the model.

The modeling proceeds by selecting a deformation type
index 1 indicated at 18, according to p(llc). The index 1
determines a covariance matrix 7, ol deformation coelli-
cients a and b for both the latent image f and the test image
o respectively:

J-s(s}o

7., for example, could be a diagonal matrix with larger
clements corresponding to lower-frequency basis
functions, to capture a wide range of smooth, non-
uniform deformations. However, ‘?E could also capture
correlations among deformations 1n different parts of
the pattern. In accordance with an aspect of the present
imvention, the deformation coethicients a for the latent
pattern I and the coeflicients b for the observed pattern
o should be strongly correlated. Consequently, the joint
distribution of the deformation coeificients may be
modeled 1nstead of modeling a and b separately. The
correlation between a and b 1s schematically repre-
sented by the connection between deformation ele-
ments 20 and 22.

Alternatively, the model also may be generated to
describe a situation where only one of the patterns f or g 1s
deformed 1n accordance with an aspect of the present
invention. Those skilled in the art will understand and
appreciate that the equations set forth herein would be
modified accordingly to reflect only one set of deformation
coellicients. However, to accommodate more pronounced
transformations, both 1mages may be deformed. For pur-
poses of brevity, the following example relates to a model
where both patterns f and g are deformed.

By way of illustration, assuming that both patterns have
identical displacement basis functions, the deformation
coellicients of the image f may be set to be substantially the
opposite of the deformation coefficient of the image g (e.g.,

a-b). By placing such a requirement on the deformation
coellicients, 1t will be appreciated that the 1images f and g
will tend to deform toward each other, helping to minimize

the distance between the resulting deformed images f and g.
In addition, the size of the optimization problem may be
reduced and the allowable deformations may be further
constrained.

Once the deformation coefficients a, b have been gener-

ated at 20 and 22, respectively, a deformed latent pattern {,

indicated at 24, and a deformed prototype pattern g, indi-
cated at 26, are produced from f and g according to Egs. 3
and 8. Using the functions D( ) and T( ) introduced above
with respect to Egs. 4, 5, and 9, we have

(Eq. 13)

Pl @)=d(-f~-D(Ha)=d(F-1(a)y).
p(8lg b)=d(g-g-D(g)b)=d(g-1(b)g)

For purposes of 1llustration, examples of 1mage patterns
30 and 32 have been position adjacent the respective pat-
terns 12 and 16. While the particular image patterns 30 and
32 represent characters in the selected class ¢, those skilled
in the art will understand and appreciate that the model 10
1s equally applicable to other types of 1mages as well as to
other types of patterns. Each image pattern 30, 32 is

(Eq. 14)

(Eq. 15)
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deformed to produce a respective deformed 1mage, 1llus-
trated respectively as 34, 36. As mentioned above, the
deformed 1mages 34 and 36 are derived by application of
assoclated deformation fields to the image patterns 30 and
32. In particular, a deformation field having the coefficients
20 1s applied to the image 32 to produce the 1mage pattern
36. Similarly, another deformation field having the coeffi-
cients 22 1s applied to the image pattern 30 to produce the
deformed pattern shown at 34.

FIG. 2 1llustrates an example of a smooth, non-uniform
deformation field 38, which may be employed 1n accordance
with an aspect of the present mnvention. The example of the
deformation field 38 corresponds to both x and y compo-
nents that may be applied to deform a respective pattern 1n
two dimensions (e.g., an image in pixel space). Those skilled
in the art will understand and appreciated that a deformation
field, in accordance with present invention, may be extended
to patterns having a lesser or greater number of dimensions.

As an 1llustration of the generative process up to this
point, FIG. 3 illustrates several 1image patterns produced by
randomly selecting eight deformation coeflicients from a
unit-covariance Gaussian and applying the resulting defor-
mation field to an 1mage pattern, such as either pattern 30 or
32 (FIG. 1).

Referring back to FIG. 1, the last random variable 1n the
model 10 is an error pattern e (called a “reference signal
in control theory), indicated at 40. An example of an error
pattern € based on the image patterns 34 and 36 1s 1llustrated
as 42. The error pattern 40 may be formed, for example, by
adding a small amount diagonal
Gaussian noise to the difference between the deformed

images { and g:

plelf, gc)=N(e; J-5?.)

For relatively good model parameters, it 1s likely that one
of the cluster means can be slightly deformed to match a
slightly deformed observed pattern. However, due to the
constrained nature of the deformations, an exact match may
not be achievable. Thus, to facilitate an exact match, the
model 10 helps the pattern diff

(Eq. 16)

erence with a small amount of
non-uniform, cluster dependent noise, represented as ? . For
the example where the patterns f and g are 1mage patterns,
the term ?_ may be a diagonal matrix whose non-zero
clements contain the pixel variances. A natural place to
include cluster dependence 1s 1n the cluster noise parameter
F_,such as in Eq. 12. If the model 10 1s constructed such that
the cluster noise F . 1s collapsed to zero, cluster dependency
may be added 1nto the ?  parameter.

As described above, FIG. 1 illustrated an example of
sampling from the model 10 that resulted 1n an error pattern
fairly close to a zero pattern. By sampling from the model,
however, one will not always be fortunate to achieve such a
result. However, the mathematical model 1n the previous
equations can be used to evaluate how likely it 1s to achieve
a zero error pattern € by randomly selecting hidden variables
conditioned on their parents 1n accordance with an aspect of
the present mvention. If the model 10 has the right cluster
means, right noise levels, and the right variability in the
deformation coefficients a and b, then the likelihood p(e=
Olg) will be high. Thus, this likelihood can be used for
classification of patterns when the parameters of the models
for different classes are known. Also, an EM algorithm may
be utilized to estimate the parameters of the model 10 that
tend to maximize this likelihood for all observed 1images in
a training data set. A subtle point 1s that by conditioning on
e=0, we can transform the network 10 of FIG. 1 mto a
generative network 44, such as shown 1n FIG. 4, for those
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who find maximizing the likelihood of the data more prin-
cipled than maximizing the likelihood of matching the data.

After collapsing the deterministic nodes 1n the network,
the joint distribution conditioned on the input ¢ may be
expressed as

)
p(cﬂ' Ia i, ba Elg) — g?,{N(|: b :|, 0, ‘?] (Eq 17)

Nie; pc + D(uz)a—g —D(g)b, /)

By mtegrating out the deformation coefficients a and b Eq.
17 becomes

p(CJ z:f Elg)=Pc,}N(€; fuc_g*[?c_l_?c_lMcOc,M?c?_l]_l): (Eq 18)

where M_=[D(u.)-D(g)] and O_ ,=(?""+M?_.?_~'M_)™". This
density function can be normalized over c, 1 to obtain P(c,
lle, g). The likelihood can be computed by summing over the
class and transformation indices:

¢ L
1
plele) = >, >, Peul(es pe — g, [2" =2." M O M 22" 1), (Eq- 12)

c=1 I=1

By using this likelihood 1nstead of the distance measure
ogrven by Eq. 10, we are integrating over all possible defor-
mations 1nstead of finding an optimal deformation, such as
provided by Eq. 27. As a result, the interdependencies of the
model parameters are incorporated into the model.

If we have a number of examples of patterns g, 1n a
training set (where t=1, . . . , T) that our model should
capture, the likelihood of being able to match the whole set
of patterns may be defined as:

T
(Eq. 20)
ple; =0, r=1,... ,T|lg;,r1=1, ... ,T)=]_[ ple; = U|g)
=1

The likelihood provided by Eq. 20 assumes that the
patterns ¢ 1n the training set are independent, which 1s
usually true for OCR or image retrieval applications. If this
1s not the case, such as for analysis of deformations in a
video sequence, those skilled in the art will understand and
appreciate that Eq. 20 should be extended to include the
transition of deformation between successive frames. Hav-
ing defined the likelihood of a training set in Eq. 20, the
model may be optimized by employing the likelihood as a
function of model parameters that need to be maximized.
While almost any optimization technique could be used, in
accordance with an aspect of the present invention, the
following example 1s described with respect to the technique
called expectation maximization (EM). EM is well suited for
optimizing graphical models with hidden variables, such as
the pattern matching network 10 (FIG. 1).

The EM technique consists of iteratively computing a new
set of parameters (M step) and then recomputing the expec-
tations based on the updated parameters (E step) until the
likelihood 1n Eq. 20 stops changing significantly. This tech-
nique 1s known to consistently increase the likelihood of the
fraining data.

The EM algorithm i1s based on the usual optimization
criterion of setting the derivative of the joint likelihood with
respect to a model parameter 0 to zero. This derivative can
be expressed as:
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dpler, ... ,er|lgl, ... ,gr) Z (Eq. 21)

a6

SN
1) _1 : Za : ba
2 [ agioeple, L a, b, elg)le

!

To derive the M-step, the above expression 1s equated to
zero and solved 1 model parameters by fixing the expec-
tations. The expectations may be computed using previous
estimates of the model parameters. However, solving for
these parameters in M-step 1n general changes them and thus
requires re-computation of the expectations.

In the first iteration, the model parameters may be arbi-
trarily selected (e.g., the cluster means could be set to noisy
versions of the mean of all patterns, and the covariance
matrices could all be set to the identity matrix). Then, using
the selected parameters, expectations are computed 1n an
E-step and, 1n turn, used to solve the equations in the M-step
for new model parameters. These two steps are 1terated until
convergence 1s reached. The EM algorithm has been shown
to increase the likelihood of the data 1n each iteration.

Those skilled 1n the art will understand and appreciate that
the EM algorithm 1s well known. By way of illustration
details concerning the EM algorithm can be found 1n a paper
by Dempster and Laird entitled “Maximum likelithood from
incomplete data via EM algorithm,” published i Proc. of
Royal Statistical Society, vol. B-39, pp. 1-38, 1977. Of
course, the derivation of the algorithm for a given probabil-
ity model 1s, 1n general, not trivial.

In deriving the M-step for our model, both forms of the
deformation equations (4) and (5) are useful, depending on
which parameters are being optimized. Using <> to denote
an average over the training set, the update equations are:

Pc,!=<P(CJ z|"5‘?f=0:1 gz)} (Eq' 22)
fio = () P, le, =0, (Eq. 23)
EIT@'Y, ' T@le, 1, e, =0, 1) () Plc,
lle, =0, g)E[T(a) ¥ ' Th)gile, L, e, =0, g/1)
(Z P(c, lle; =0, gr)E{[ X ][a’ b e 1, e, =0, gr}) (Eq. =)
[ =
" (X Pc, lle; =0, g))
r (D Plelle = “ (Eq. 25)
A ] Ua gr)E[(f _gr)ﬂ(f _ Er)lca Z:- €r = Oa gr])
V. =diag

(2 Ple, lle; =0, g:))

The expectations needed to evaluate the above update

equations are given by (E-step):

a
ey = C{JV{[ " }l(ﬁ', [, e, =0, gr} = ([‘!_1 i M;W;lMﬂ)_l (Eq. 26)
a
Yol = E{[ , }Ic,. L e, =0, gr} = Q0 MY (e - 1) (g 27)
(Eq. 28)

&
E{[ 5 }[ﬂ; bf“":a [, e, =0, gr} = -Qt:,.-f "‘?’ﬂ,-f?’::,!

E[(F-8)1-8)lc, I e=0, gl=(u—g+My. ) (u—~g+M2y, )+diag(M-
E(OE,J)M?E) (Eq 29)
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Expectations in Eq. 23 may be computed using

T(@)¥;'T(a) = (Eq. 30)
¥.'+ ) Ghdiag(Ra¥,' + ) W' diag(Raq)Gy +
de(x,v) de(x, v)
Z Gy, ¥ ldmg Radl ag, R")Gdz
dl dzE X }?]
T(a)¥'T(b)g: = (Eq. 31)
V'g+ ), Gidiag(Ra¥ g+ ) ¥.'diag(Rba)Gag: +
de(x, v) delx, y)
Z Gd 1dmg Rﬂdl bd )Gdz g
dl dzE(I }’}

Then, the expectati()ns Ela] and E[b] are the two halves of
the vector vy, given by Eq. 27, while E[a, a', ]| and E[a,
l;’gdz] ford,, d, e{x, y}, are square blocks of t]he matrix in Eq

As noted before, the model 1s optimized by 1iterating E and
M steps until some criterion of convergence 1s satisiied, such
as small change 1n parameters or in joint likelithood of the
data. An optimized model can then be used to evaluate the
likelihood of a new observed pattern g, p, (e=0|g), where m
denotes the particular model. If models for several classes of
patterns have been trained on appropriate data, then ratios of
these likelihoods 1ndicate which models are better suited to
the pattern. In particular, the pattern can be classified as
belonging to the model with the largest likelihood, or a
probability for each model can be assigned by normalizing
the 1ndividual model likelihoods by their total sum.

The model can also be used for unsupervised learning. For
example, 1f the data 1s not labeled, all classes of the data
could be provided to the model, 1n which case one would
hope that the clusters would correspond to different classes
of the data, or at least that a single cluster does not provide
examples similar to two different classes. Then, the clusters
can be labeled approprately after training.

In order to provide additional context for the various
aspects of the present mvention, FIG. 5 and the following
discussion are intended to provide a brief, general descrip-
fion of a suitable computing environment 200 1n which the
various aspects of the present invention may be imple-
mented. While the invention has been described above 1n the
ogeneral context of computer-executable instructions of a
computer program that runs on a local computer and/or
remote computer, those skilled 1n the art will recognize that
the mvention also may be implemented in combination with
other program modules. Generally, program modules
include routines, programs, components, data structures, etc.
that perform particular tasks or implement particular abstract
data types. Moreover, those skilled 1n the art will appreciate
that the inventive methods may be practiced with other
computer system configurations, including single-processor
or multiprocessor computer systems, minicomputers, main-
frame computers, as well as personal computers, hand-held
computing devices, microprocessor-based or programmable
consumer electronics, and the like, each of which may be
operatively coupled to one or more associated devices. The
illustrated aspects of the invention may also be practiced in
distributed computing environments where certain tasks are
performed by remote processing devices that are linked
through a communications network. However, some, if not
all, aspects of the invention may be practiced on stand-alone
computers. In a distributed computing environment, pro-
oram modules may be located in both local and remote
memory storage devices.
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With reference to FIG. §, an exemplary system environ-
ment 200 for implementing the various aspects of the
invention includes a conventional computer 202, including
a processing unit 204, a system memory 206, and a system
bus 208 that couples various system components including
the system memory to the processing unit 204. The process-
ing unit 204 may be any of various commercially available
processors, including but not limited to Intel x86, Pentium
and compatible microprocessors from Intel and others,
including Cyrix, AMD and Nexgen; Alpha from Digital;
MIPS from MIPS Technology, NEC, IDT, Siemens, and
others; and the PowerPC from IBM and Motorola. Dual

microprocessors and other multi-processor architectures
also may be used as the processing unit 204.

The system bus 208 may be any of several types of bus
structure including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of
conventional bus architectures such as PCI, VESA,
Microchannel, ISA, and EISA, to name a few. The system
200 memory includes read only memory (ROM) 210 and

random access memory (RAM) 212. A basic input/output
system (BIOS), containing the basic routines that help to
transfer information between elements within the computer
20, such as during start-up, 1s stored in ROM 210.

The computer 20 also may include, for example, a hard
disk drive 214, a magnetic disk drive 216, e¢.g., to read from
or write to a removable disk 218, and an optical disk drive
220, e.g., for reading a CD-ROM disk 222 or to read from
or write to other optical media. The hard disk drive 214,
magnetic disk drive 216, and optical disk drive 220 are
connected to the system bus 208 by a hard disk drive
interface 224, a magnetic disk drive interface 226, and an
optical drive interface 228, respectively. The drives and their
assoclated computer-readable media provide nonvolatile
storage of data, data structures, computer-executable
instructions, etc. for the computer 20. Although the descrip-
tion of computer-readable media above refers to a hard disk,
a removable magnetic disk and a CD, it should be appreci-
ated by those skilled 1n the art that other types of media
which are readable by a computer, such as magnetic
cassettes, flash memory cards, digital video disks, Bernoulli
cartridges, and the like, may also be used 1n the exemplary
operating environment 200, and further that any such media
may contain computer-executable instructions for perform-
ing the methods of the present mvention.

A number of program modules may be stored in the drives
and RAM 212, including an operating system 230, one or
more application programs 232, other program modules 234,
and program data 236. The operating system 230 in the
illustrated computer 1s, for example, the “MICROSOFT
WINDOWS NT®” operating system available from
Microsoft Corporation, although it 1s to be appreciated that
the present 1nvention may be implemented with other oper-
ating systems or combinations of operating systems.

A user may enter commands and information into the
computer 202 through one or more user mput devices, such
as a keyboard 238 and a pointing device (¢.g., a mouse 240).
Other input devices (not shown) may include a microphone,
a joystick, a game pad, a satellite dish, a scanner, or the like.
These and other mput devices are often connected to the
processing unit 204 through a serial port interface 242 that
1s coupled to the system bus 208, but may be connected by
other interfaces, such as a parallel port, a game port or a
universal serial bus (USB). A monitor 244 or other type of
display device 1s also connected to the system bus 208 via
an 1nterface, such as a video adapter 246. In addition to the
monitor, a computer typically includes other peripheral
output devices (not shown), such as speakers, printers efc.
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The computer 202 may operate 1n a networked environ-
ment using logical connections to one or more remote
computers, such as a remote computer 260. The remote
computer 260 may be a workstation, a server computer, a
router, a peer device or other common network node, and
typically includes many or all of the elements described
relative to the computer 202, although, for purposes of
brevity, only a memory storage device 262 1s illustrated in
FIG. 5. The logical connections depicted 1in FIG. 5 include
a local area network (LAN) 264 and a wide area network
(WAN) 266. Such networking environments are common-
place 1n offices, enterprise-wide computer networks, intra-
nets and the Internet.

When used 1n a LAN networking environment, the com-
puter 202 1s connected to the local network 264 through a
network interface or adapter 268. When used in a WAN
networking environment, the computer 202 typically
includes a modem 266, or 1s connected to a communications
server on the LAN, or has other means for establishing
communications over the WAN 266, such as the Internet.
The modem 266, which may be internal or external, is
connected to the system bus 208 via the serial port interface
242. In a networked environment, program modules
depicted relative to the computer 202, or portions thereof,
may be stored i1n the remote memory storage device 262. It
will be appreciated that the network connections shown are
exemplary and other means of establishing a communica-
tions link between the computers 202 and 260 may be used.

In accordance with the practices of persons skilled i the
art of computer programming, the present invention has
been described with reference to acts and symbolic repre-
sentations of operations that are performed by a computer,
such as the computer 202 or remote computer 260, unless
otherwise 1ndicated. Such acts and operations are sometimes
referred to as being computer-executed. It will be appreci-
ated that the acts and symbolically represented operations
include the manipulation by the processing unit 204 of
clectrical signals representing data bits which causes a
resulting transformation or reduction of the electrical signal
representation, and the maintenance of data bits at memory
locations in the memory system (including the system
memory 206, hard drive 214, floppy disks 218, CD-ROM
222, and shared storage system 210) to thereby reconfigure
or otherwise alter the computer system’s operation, as well
as other processing of signals. The memory locations where
such data bits are maintained are physical locations that have
particular electrical, magnetic, or optical properties corre-
sponding to the data bats.

In view of the operating environment, algorithms and
models shown and described herein, a methodology, such as
may be implemented in accordance with the present inven-
tion on a computer, will be better appreciated with reference
to the flow diagrams of FIG. 6. While, for purposes of
explanation, the methodology 1s shown and described as a
series of blocks with respect to a tlow diagram illustrating
acts and/or events in connection with the present invention.
It 1s to be understood and appreciated that the present
invention 1s not limited by the number and/or order of
blocks, as some acts may, 1in accordance with the present
invention, occur in different orders and/or concurrently with
other acts from that shown and described herein. Moreover,
not all illustrated acts may be required to implement a
methodology 1n accordance with the present imvention.

Turning now to FIG. 6, the methodology begins at act 300
in which a stored data set 1s provided,.based on which a
model 1s to be trained, including learning model parameters,
in accordance with an aspect of the present invention. In
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accordance with an aspect of the present invention, the
model parameters govern the probability distributions for
the model and a number of intermediate, hidden variables
that are not observed in real applications (such as the
deformation coefficients). As mentioned above, the defor-
mation field may be constructed from wavelet basis vectors
and associated low-frequency deformation coefficients. The
functional form of the probability distribution for the defor-
mation coellicients may be known, but the exact coeflicients
for each pattern typically are not known and thus may need
to be determined.

Next, at act 310 a test pattern 1s added to the stored data.
The test pattern corresponds to a pattern for which the model
parameters are to be learned from the stored data set. From
act 310, the methodology proceeds to act 320 to begin
optimizing (or training) a model according to the stored data,
including the test pattern.

The optimization process, for example, may include the
previously described EM algorithm or its on-line version
(that updates the model parameters with each new pattern
added to the database) or another optimization technique.
The goal of an optimization process 1s to optimize the
assoclated parameters based on the stored data, in accor-
dance with an aspect of the present invention. While the
following acts relate generally to an EM approach to opti-
mize the unknown parameters, those skilled in the art will
understand and appreciate that other optimization tech-
niques also could be used to determine the model parameters
in accordance with an aspect of the present invention.

At act 320, initial parameters of the model are selected for
performing the optimization. The 1nitial parameters may be
selected arbitrarily or in a way that 1s expected to speed up
the algorithm (e.g., based on the mean and variance of the
training data). Also, the initial values of the hidden variables
used to infer the parameters may be based on previous
applications of the model. The methodology then proceeds
to act 330, in which the parameters from act 320 are
employed to infer (or estimate) the hidden variables assum-
ing that the error pattern 1s equal to zero. The inference of
the hidden variables (act 330) corresponds to the above
described expectation act, which estimates the distribution
over the hidden variables assuming that the current guess at
the model parameters 1s correct. Appropriate equations for
computing expectations, 1n accordance with an aspect of the
present mnvention are provided by Eq. 30 and Eq. 31. Then,
assuming now that the result of inference 1s correct, the
process proceeds to act 340 1n which the parameters are
updated using the maximization act (see, €.g., Eq. 23-Eq.
25).The process then proceeds to act 350.

At act 350, a determination 1s made as to whether the
previous and current estimated parameters substantially con-
verge. If the parameters have not substantially converged,
the methodology returns to act 330 for repeating the E step
and the M step of the EM algorithm. This 1terative process
may repeat until 1t 1s determined that the parameters sub-
stantially converge (act 350). If the parameters do converge,
from act 350, the methodology may then proceed to act 360
in which the model parameters are stored. The stored model
parameters define an optimized model having model param-
cters that characterizes a group of patterns to which the test
pattern belongs.

The above description 1s based on batch learning. For
example, 1f a new, previously unseen pattern 1s added to the
training data, the model 1s retrained based on the whole
dataset. However, those skilled in the art will recognize that
it 1s also straightforward to utilize the methodology, in
accordance with an aspect of the present invention, 1n
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situations when data 1s coming 1n incrementally, such as may
be 1implemented as an on-line version of the methodology,
including an appropriate EM algorithm. It 1s to be appreci-
ated that an on-line version of the EM algorithm may be
programmed to compute the effects of the new data on the
previously learned parameters, with an appropriate forget-
ting factor. Accordingly, the on-line version does not retrain
on the whole set, thus reducing the accuracy, but increasing
the speed.

As mentioned above, an optimized model can be used to
evaluate the likelihood that a new observed pattern belongs
to a particular model. That 1s, similar models could be
trained for each class of pattern of interest according to the
methodology of FIG. 6. Once models for several classes of
patterns have been trained on appropriate data, for example,
then ratios of these likelihoods may be employed to indicate
which models are better suited to the pattern. In particular,
the pattern can be classified as belonging to the model with
the largest likelihood, or a probability for each model can be
assigned by normalizing the individual model likelihoods by
their total sum.

FIG. 7 illustrates an example of a process that may be
employed to classily a test pattern ¢ in accordance with an
aspect of the present invention. The methodology begins at
act 370 in which a generative model, in accordance with an
aspect of the present invention, 1s provided. The model, for
example, may represent how an error pattern 1s derived from
a pair of patterns, one or both of which may be deformed,
such as shown and described with respect to FIG. 1.

For example, each pattern may be selected from a Gaus-
sian distribution of patterns. In accordance with an aspect of
the present imvention, the model includes a plurality of
parameters that govern the probability distributions for the
model and a number of intermediate, hidden variables that
are not observed in real applications (such as the deforma-
tion coefficients). The model parameters, for example, may
have been derived according to the methodology of FIG. 6,
although other parameter optimization techniques could be
utilized to derive appropriate model parameters. As men-
tioned above, the deformation ficld may be constructed from
wavelet basis vectors and associlated low-frequency defor-
mation coellicients. From act 370, the methodology then
proceeds to act 380.

At act 380, a joint likelihood of all the variables 1n the
model, given the test pattern g, 1s derived assuming that the
error pattern of the model equals zero, such as expressed
with respect to Eq. 17. Next at act 390, the joint likelihood
that the error pattern equals zero, given the observed pattern
o may be employed to classily new patterns 1n accordance
with an aspect of the present invention. The likelihood value
1s computed by averaging over the hidden variables, taking
the dependencies among the variables into account. In
essence, this produces a likelihood value as to whether the
first pattern 1s 1 accordance with the model, and this
likelihood value may then be employed 1n classification by
evaluating models for different classes of patterns.

This 1s 1n contrast with finding an optimum level of
deformation, which may be determined by minimizing a
deformation-invariant distance between two patterns. The
estimated parameters of the model serve to properly regu-
larize the distance among patterns, and the integration
technique rewards the patterns that are easier to reach with
the generative model. For example, 1if an observed pattern 1s
close to several prototype patterns, a likelihood computation
according to the present invention will naturally reward such
a pattern with greater likelihood than 1f the observed pattern
1s only remotely similar to one of the prototypes.

10

15

20

25

30

35

40

45

50

55

60

65

20

To verily the efficacy of the foregoing methodology, the
algorithm, 1n accordance with an aspect of the present
invention, was applied to 20x28 grayscale images of people
with different facial expressions and 8x8 grayscale 1images
of handwritten digits from the CEDAR CDROM (Hull,
1994). FIG. 8 illustrates an example in which deformation
fields have been estimated for matching two 1images 400 and
402 of a face of the same person but with different facial
expressions. In this example, deformation fields 404 and 406
have been derived from application of the algorithm to the
image patterns 400 and 402, respectively. The deformation
ficlds 404 and 406 operate on the image patterns 400 and
402 to produce respective deformed 1images 408 and 410. In
this case, the ? matrix has been set to 1dentity and the matrix
7 has been set by hand to allow a couple of pixels of
deformations.

To compare the method of the present invention with
other generative models, a training set of 2000 1mages was
used to learn 10 digit models using the EM algorithm and
tested the algorithms 1n a test set of 1000 digit images.

It has been determined that a mixture of diagonal Gaus-
sians (MDG) requires about 10-20 classes per digit to
achieve an optimal error rate of only about 8% on the
handwritten digit recognition task. See, e.g., Estimating
mixture models of 1mages and inferring spatial transforma-
tions using the EM algorithm; B. Frey and N. Jojic, Pro-
ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Ft. Collins, Colorado, IEEE Computer
Society Press, Los Alamitos, Calif. (1999). It is to be

appreciated that the network, 1n accordance with the present
mmvention, reduces to MDG when ? 1s set to zero.

It will be understood and appreciated by those skilled 1n
the art that a deformable 1mage matching network, in
accordance with the present invention, could be used for a
variety of computer vision tasks such as optical tlow
estimation, deformation invariant recognition and modeling
correlations 1n deformations. For example, our learning
algorithm could learn to jointly deform the mouth and eyes
when modeling facial expressions. It further will be appre-
ciated that 1t further may be extended to applications with
non-image based pattern matching or recognition processes,
such as audio, electromagnetic, etc.

What has been described above includes examples of the
present 1mnvention. It 1s, of course, not possible to describe
every conceivable combination of components or method-
ologies for purposes of describing the present invention, but
onc of ordinary skill in the art will recognize that many
further combinations and permutations of the present inven-
tion are possible. Accordingly, the present i1nvention 1is
intended to embrace all such alterations, modifications and
variations that fall within the spirit and scope of the
appended claims. Furthermore, to the extent that the term
“includes” and variants thereof or the term “having” and
variants thereof are used 1n either the detailed description or
the claims, such terms are intended to be inclusive 1n a
manner similar to the term “comprising.”

What 1s claimed 1s:

1. A method for learning mixtures of models to facilitate
pattern recognition comprising:

providing a model having model parameters, the model
characterizing an error pattern functionally related to a
difference between two patterns, at least a first of the
two patterns being deformed by application of an
associated substantially smooth and non-uniform
deformation field;

deriving a likelihood in the model relative to the model
parameters, given a stored pattern, assuming that the
error pattern equals zero; and
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estimating the model parameters that substantially maxi-

mize the likelihood for a plurality of stored patterns.

2. The method of claim 1, further comprising determining
a likelihood of observing a zero error pattern for one of the
two patterns, given the other of the two patterns, based on
the estimated model parameters.

3. The method of claim 2, wherein the act of determining
further comprises averaging over intermediate variables 1n
the model to determine the likelihood of observing a zero
error pattern, given the stored pattern.

4. The method of claim 3, wherein the intermediate
variables include deformation coeflicients of the deforma-

tion field.
5. The method of claim 1, further comprising optimizing,

the model as a function of at least one model parameter
relative to the likelihood.

6. The method of claim 5, wherein the model further
comprises Intermediate variables, the act of optimizing
further comprising:

inferring the intermediate variables based on the esti-
mated model parameters;

optimizing the model parameters based on the inferred
intermediate variables; and

repeating the acts of inferring and optimizing until the
model parameters substantially converge.

7. The method of claim 1 wherein the deformation field
associated with the first pattern includes deformation coef-

ficients that are applied to functional basis vectors to form
the deformation field, the deformation coethicients control
correlation among deformation in different parts of the first
pattern.

8. The method of claim 1, wherein each of the two
patterns are deformed by application of an associated sub-
stantially smooth and non-uniform deformation field.

9. The method of claim 8, wherein the model further
comprises intermediate variables that control deformations
in each of the two patterns.

10. The method of claim 9, wherein the intermediate
variables include first and second deformation coefficients
that are applied to functional basis vectors to form the
deformation fields for each of the respective two patterns 1n
the model.

11. The method of claim 10, wherein the first deformation
coellicients control correlation among deformation 1n dif-
ferent parts of the first pattern and the second deformation
coellicients control correlation among deformation 1n dif-
ferent parts of a second of the two patterns.

12. The method of claim 10, wherein the first and second
deformation coeflicients are correlated based on one of the
model parameters.

13. The method of claim 9, wherein the first pattern has
a pattern variance parameter that imposes class dependent
noise 1nto the model.

14. The method of claim 9, wherein the error pattern has
at least one pattern variance parameter operative to scale the
importance of various parts of each pattern 1n computing a
distance measure between the two patterns.

15. The method of claim 1, further comprising creating a
plurality of models, each of the plurality models having
optimized model parameters that have been estimated for a
respective class of patterns.

16. The method of claim 15, further comprising employ-
ing the estimated parameters to classify an observed pattern
according to which of the plurality of models the observed
pattern exhibits the highest likelihood for the observed
pattern.

17. A computer-readable medium having computer-
executable 1nstructions for:
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providing a model having initial model parameters, the
model characterizing an error pattern functionally
related to a difference between two patterns, at least a
first of the two patterns being deformed by application
of an associated substantially smooth and non-uniform
deformation field;

deriving a likelihood 1n the model relative to the model
parameters, given a stored pattern, assuming that the
error pattern equals zero; and

estimating the model parameters that substantially maxi-
mize the likelihood for a plurality of stored patterns.
18. A method for generating a model to facilitate pattern
recognition, comprising:
modeling an error pattern based on a {first pattern relative
to a second pattern, at least the first pattern being
deformed by application of a substantially smooth
deformation field, the model having at least one param-
eter for characterizing a set of pattern prototypes and
assoclated noise levels and for controlling deformation
of the first pattern;

characterizing a likelihood that an error pattern 1s zero,
oiven the second pattern, the error pattern being func-
tionally related to the first pattern, the second pattern,
and the at least one parameter; and

estimating the at least one parameter that tends to maxi-
mize the likelihood for a plurality of stored second
patterns.

19. The method of claim 18, further comprising repeating
the acts of characterizing and estimating for the plurality of
stored second patterns, so as to optimize the at least one
parameter according to the stored patterns.

20. The method of claim 18, wherein the deformation field
assoclated with the first pattern 1s a first deformation field,
the second pattern being deformed by application of a
second substantially smooth deformation field, the at least
one parameter characterizing a set of pattern prototypes and
assoclated noise levels and for controlling deformation of
the first and second patterns.

21. The method of claim 20, wherein the first and second
deformation fields have respective deformation coefficients
that are correlated according to a covariance matrix which 1s
a parameter of the model.

22. The method of claim 20, wherein the first pattern has
at least one pattern variance parameter that imposes class
dependent noise mto the model.

23. The method of claim 20 wherein the error pattern has
at least one pattern variance parameter to facilitate scaling of
the importance of the selected parts of each of the first and
second patterns 1n computing the distance measure.

24. The method of claim 18, further comprising deter-
mining a likelihood of observing a zero error pattern, given
the second pattern, based on the estimated model parameter
relative to the first pattern.

25. The method of claim 24, wherein the act of determin-
ing further comprises averaging over intermediate variables
of the model to determine the likelihood of observing a zero
error pattern, given the stored pattern.

26. The method of claim 25, wherein the intermediate
variables comprise deformation coetlicients that form part of
the deformation field.

27. The method of claim 18, further comprising optimiz-
ing the model as a function of the at least one model
parameter relative to the likelihood.

28. The method of claim 27, wherein the model further
comprises 1ntermediate variables, the act of optimizing
further comprising:
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inferring the intermediate variables based on the at least 32. A computer-readable medium having computer-

one estimated model parameter; executable 1nstructions for:

training the at least one model parameter based on the modeling an error pattern based on a first pattern relative

inferred intermediate variables; and to a second pattern, at least the first pattern being
repeating the acts of inferring and training until the at least . deformeq by application of a | substantially smooth
one model parameter substantially converges. deformation field, the model having at least one param-

29. The method of claim 28, wherein the intermediate eter for characterizing a set of pattern prototypes and
variables comprise deformation coefficients that form part of assoclated noise levels and for controlling detormation
the deformation field. of the first pattern;

30. The method of claim 18, wherein the method further 10° characterizing a likelihood that an error pattern is zero,
comprises creating a plurality of models, each of the plu- given the second pattern, the error pattern being func-
rality models having model parameters optimized for a tionally related to the first pattern, the second pattern,
respective class of patterns. and the at least one parameter; and

31. The method of claim 30, further comprising employ- estimating the at least one parameter that tends to maxi-
ing the plurality of models to classify an observed pattern 15 mize the likelihood for a plurality of stored second

according to which of the plurality of models the observed patterns.

pattern exhibits the highest likelihood for the observed
pattern. I T T T
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