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DEVICE AND METHOD FOR PERFORMING
MULTIPLE MODULUS CONVERSION USING
INVERSE MODULUS MULTIPLICATION

BACKGROUND

The 1nvention relates generally to mathematical algo-
rithms for data transmissions, and, more particularly, to
algorithms for performing modulus conversions of transmit-
ted data.

Conventional computer systems transmit data using
modems connected to telephone lines or other communica-
tion media. Generally, there are two types of modem 1n such
a system, server modems and client modems. Signal direc-
fions are generally referred to in this area as downstream,
from server modems to client modems, and upstream, from
client modems to server modems. Server modems are gen-
erally used by Internet service providers (ISPs) for trans-
mitting signals downstream to and receiving signals
upstream from client modems. Similarly, client modems are
ogenerally used by customers of ISPs, and are configured to
send signals upstream to and receive signals downstream
from ISP server modems.

Each type of modem typically uses an analog to digital
converter and a digital to analog converter, (A/D-D/A
converter) typically combined into a single device called a
CODEC. This CODEC converts incoming analog signals to
digital signals that can be processed by a signal-processing
unit and converts digital signals from a signal processing,
unit to outgoing analog signals that can be transmitted on a
communication medium such as a telephone line. In many
cases, server modems do not have theirr own CODECs, but
rely on the CODECs within the telephone network to do the
conversions. The signal processing unit, sometimes referred
to as a “data pump,” 1s conventionally a dedicated chip
known as a Digital Signal Processor (DSP), which is pre-
programmed with algorithms for converting the digital sig-
nals mnto mformation bits and vice versa.

The modem may also include a second dedicated chip,
sometimes called the “controller,” which 1s a microcontrol-
ler preprogrammed to control the DSP, convert the imfor-
mation bits from the DSP into data usable by the computer
system, and convert data from the computer system into
information bits for the DSP. The controller may implement
certain schemes to correct errors 1n the information baits, and
may also implement certain schemes to compress the 1nfor-
mation bits for more efficient transmission. Some modems
climinate the dedicated controller chip by performing the
control functions on the host computer system. These
modems are commonly referred to as controllerless
modems. Other modems may perform some or all of the
signal processing functions on the host computer system

using techniques commonly referred to as Host Signal
Processing (HSP.)

Modem modulation schemes used in modem communi-
cation systems are typically defined in terms of analog
signals. Many modulation schemes operate by altering the
characteristics of a simne wave, the frequency of which 1s
referred to as the carrier frequency. For example, Quadrature
Amplitude Modulation (QAM) operates by altering the
amplitude and phase of a carrier frequency at a fixed rate.
Other modulation schemes operate without a carrier. For
example, Pulse Coded Modulation (PCM) operates by
directly altering the level of a signal at a fixed rate. In either
case, this fixed rate 1s known as the baud frequency or
symbol frequency. Since most modern modems use digital
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2

signal processing techniques, these analog signals must be
converted to digital form using a sampling rate, which 1is
often a multiple of the baud frequency. Thus, an integer
number of samples can be thought of as representing a
“baud” or “symbol.” Depending on the modulation scheme
and the sophistication of the algorithms 1t uses, the symbols,
cither individually or 1n groups, represent a certain number
of information bits. The relationship between the 1nforma-
tion bits and the transmitted symbols 1s determined by a
mapping scheme. The average number of information bits
transmitted per second 1s commonly called the “data rate” or
“bit rate.”

Standard protocols for modem modulation schemes have
been developed to improve compatibility 1in the telecommu-
nications industry. The International Telecommunications
Union (ITU), formerly the International Telegraph and Tele-
phone Consultative Committee (CCITT), for example, has
developed standard recommendations that evolve with the
changing technology in the modem industry. Earlier recom-
mendations such as V.21, V.22 and V.23 use frequency
division multiplexing (FDM) for duplex communication.
Newer recommendations such as V.32bis, V.34, V.90 and
V.92 use echo cancellation for duplex communication. V.90
and V.92 describe duplex communication using PCM modu-
lation 1n at least one direction. Modems designed according
to V.90 or V.92 are sometimes called 56 kbps modems,
referring to the maximum bit rate specilied in the down-
stream direction. All modems implementing a particular
recommendation must use specified modulation and map-
ping schemes when transmitting data across the data trans-
mission system, 1n order to ensure interoperability among
multiple vendors® products.

Modulation schemes typically define sets of allowable
symbol parameters known as constellations. Mapping meth-
ods provide ways to represent information bits to be trans-
mitted 1n terms of available points in the constellations. In
both the V.90 and V.92 recommendations, multiple modulus
conversion (MMC) is employed as a mapping scheme in
order to map long frames of information bits onto multiple
constellations of different sizes. In particular, the V.90

recommendation specifies MMC to be used 1n the down-
stream direction, from the server modem to the client
modem. The V.92 recommendation specifies MMC to be
used 1n both directions.

In conventional applications of MMC, 1nput data 1s used
to form a quotient, which 1s successively divided by a set of
known moduli. The remainders of each division are used as
the output of the process. This process 1s a great burden on
a modem processor, because typically division operations
require multiple cycles to perform. Also, typically the input
data 1s larger than the modem processor can handle with one
operation. To address these problems, several techniques
have been developed to perform such calculations. One
commonly used method uses a long division algorithm,
whereby the incoming quotient is partitioned into several
segments, each requiring a separate division operation.

In general, the MMC algorithm takes as mnput a number
Qq, a non-negative integer. In addition, the algorithm takes
as input a plurality of moduli Y, where 1=1=M, which are
all positive integers. Typically, Y.=2 and Q <Y, *Y,* . ..
Y ,,. The output of the algorithm 1s a set of values Q; and R,
all non-negative integers, such that the following math-
ematical relationships hold:
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Q=Y "0 +R,

Q=Y O, +R,

Q, =Y Q+K,
where
0<R,<Y,

Equivalently, Q, can be expressed 1n terms of the remain-
ders produced by the MMC process and the respective
moduli, Y

Q=R AR Y ARY, Y 4. . . +R,Y,Y, ... Y, +0,Y,Y,. .. Y,,

Note that if Q,<Y,*Y,* .. .Y,,, as 1s typically the case
in a communication system, then Q,,=0.

This algorithm requires that a division operation be done
for each modulus, resulting in an output quotient and
remainder for each modulus. The division corresponding to
the final modulus Y,, may be skipped if the input 1s limited
as described above, so that QQ,, 1s known 1n advance to be O.
In that case, 1t can be shown that R,,=Q,, ..

The following example 1illustrates the mathematical con-
cept of MMC. All values are expressed 1n decimal format. In
this example, the mput Q,=933, and there are four input
modul1l: Y,=5, Y,=6, Y.=7, and Y _,=8. Here are the steps 1n
the process:

1. Receive the input value of 933.

2. Divide the input by first modulus, 5. 933/5=quotient
186, remainder 3.

3. Divide new quotient by second modulus, 6. 186/6=
quotient 31, remainder O.

4. Divide new quotient by third modulus, 7. 31/7=quotient
4, remainder 3.

5. Divide new quotient by fourth modulus, 8. 4/8=
quotient 0, remainder 4.
In an MMC process, the final outputs are 3, 0, 3 and 4
respectively. Note that the final division could have been
skipped, since Q,<Y,Y,Y.Y, (933<1680) and therefore
(Q,=0. The final remainder, R, 1s equal to the next-to-last
quotient, Q.

In a conventional implementation of MMC, there are
several system constraints. Typically, a device implementing
MMC operates on values, 1n the binary, or Base 2, number
system. However, MMC calculations can be implemented 1n
any Base B number system. For example, the decimal
number system (B=10) could be used. Typically, the device
1s constrained to perform arithmetic operations on values
with a limited number of digits in the Base B numbering,
system. Since Q, may typically be represented with more
digits than the device can handle 1n one calculation, “long
division” methods are typically used to calculate the division
result.

Long division 1s an iterative technique well known 1in
mathematics. In A course of mathematics, by Charles
Hutton, published 1n 1816, this type of division 1s described
as follows: “. . . the dividend is resolved 1nto parts, and by
trial 1s found how often the divisor i1s contained in each of
those parts, one after another, arranging the several figures
of the quotient one after another, into one number.” (pp.
18-19.) These days, long division is generally taught in
clementary school as a pencil-and-paper method for doing
division of large numbers (i.e., numbers that are difficult to
divide in one’s head.)
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Long division 1s also well known 1n the art of computer
science as a method for computing divisions of “large”
numbers, defined as numbers with precision greater than can
be accommodated 1n single registers or single calculations
on the target computer. For example, in The Art of Computer
Programming,2nd ed., by Donald Knuth, published in 1981,
a computer algorithm 1s presented to solve the general
problem of long division. (pp. 255-260.) As in the pencil-
and-paper method, computer long division requires parti-
fioning one or more large numbers 1nto a series of smaller
numbers. Knuth’s algorithm allows for these smaller num-
bers to be 1n any arbitrary base, so they could be the digits
of a Base 10 number (as in the pencil-and-paper method
taught by Hutton) or they could be in a Base that is a power
of two, which 1s more likely since computers are typically
designed for binary arithmetic. For example, the smaller
numbers could be 4-bit short words (equivalently, digits in
Base 16.)

MMC could be implemented using Knuth’s long division
algorithm directly. However, some simplifications can be
made due to the nature of MMC. For example, Knuth’s
algorithm allows both the divisor and dividend to be large
numbers, which are partitioned into smaller numbers.
However, in MMC, the divisors are typically small enough
to be handled by the computer directly, so only the dividends
nced to be partitioned. Also, 1n Knuth’s algorithm the
intermediate quotients are estimates that may have some
error. Therefore, the intermediate remainders need to be
tested to make sure they fall 1in the valid range. In a MMC
application, the divisors and the partitions of the dividends
can be constrained so that this test can be eliminated. One
example of a MMC method using a simplified long division
algorithm can be found 1n U.S. Pat. No. 6,065,030, Method
and Apparatus for Implementing Short-Word Division Tech-
niques in a Multiple Modulus Conversion Context, disclosed
by Xuming Zhang.

To implement MMC using Zhang’s technique, Q,, 1s first
partitioned 1nto k+1 segments as follows:

0=00.o+0, 1$BH(D)+QD 2$B”(D)+H(1)+. . O, k$Bn(D)+n(1)+. .. +n(k—1)

where n(j) 1s the number of digits in the base B numbering
system used to represent Q, 7

The division of Q, by the first modulus Y, can be done by
successively dividing each Q, ; by Y, as represented 1n the
following pseudo-code:

R1=.;tt:+1=[:I
For (j=k;j=0;j—)

{Q1,j=ﬂ'301'((QD,j+R1,j+1$BHU))/Y1) Rl,j=QD,j_Q1,j$ 1}

The floor( ) function is defined as the greatest integer less
than or equal to its argument. The result of this division is
a quotient and a remainder, as follows:

Q=01 +01 1" BH(D)+QL2=+= pr(@+n(), Oy 4" Br{(O)n(1) +. ..
+n(ﬁ.:)—1)

R1=R1,D
The remaining moduli Y, can be divided 1n a similar fashion:
Rz‘,k+1=0
For (j=k;j=0; j—)

{Qi,j=ﬂﬂﬂr((Qf—1,j+Ri,j+1$Bﬂ (D)/ Y;)
R.i, j=Q.i—1, j—Q.ff 1}
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The final quotients and remainders are then expressed as:

O=0; 0+0; 1$BH(D)+Q52$BH(D)+H(1)+- . - Q.iﬁBH(D)m(l) +ee ekl )

R.i=R.i,D

Zhang also suggests that the long division loop (or, as he
calls it “short word division”) can be skipped whenever the
quotient 1s small enough to be handled in a single conven-
fional division operation.

Returning to the previous example where Q,=933,Y,=5,
Y,=6, Y,=7, and Y, =8, assume the following constraint
exists: for conventional division operations, the quotient is
limited to 2 digits and the divisor 1s limited to 1 digit. The
steps of Zhang’s MMC process, constrained according to the
above assumption, are as follows. First, Q,, 933, 1s

expressed as (9*100)+(3*10)+3. Then, long division is used
to divide the mput by a first modulus, 5.

a. Dividing 9 by 5, gives a quotient of 1, and remainder
of 4.

b. next, 4*10 1s added to 3, giving 43
c. Dividing 43 by 5, gives a quotient of 8, remainder 3

d. next, 3*10 1s added to 3, giving 33

¢. Dividing 33 by 5, gives a quotient 6, remainder 3

f. The new quotient 1s then formed from the quotients,
(1*100)+(8*10)+6=186

o, The final remainder 1s 3.

This 1s the true quotient and remainder of 933/5, which 1s
186, remainder 3.

Next, long division 1s used to divide new quotient by a
seccond modulus, 6, the quotient, 186, 1s expressed as
(1*100)+(8*10)+(6*1).

a. First, 1 1s divided by 6, giving a quotient of 0, remainder

1

b. Next, 1*10 1s added to 8, giving 18.
c. Dividing 18 by 6, gives a quotient of 3, remainder 0.
d. Next, 0*10 1s added to 6, giving 6.

¢. Dividing 6 by 6, gives a quotient of 1, remainder O.
f. The new quotient 1s formed, (0*100)+(3*10)+1=31

o, The final remainder 1s O.

This 1s the true quotient and remainder of 186/6, which 1s 31,
remainder O.

Since last quotient of 31 has only 2 digits, conventional
division can be used to divide the quotient by a third
modulus, 7. Dividing 31 by 7, gives a quotient of 4,
remainder 3.

Similarly, since the last quotient of 4 has only 1 digit,
conventional division can be used to divide it by fourth
modulus, 8. Dividing the quotient 4 by &, gives a final
calculated quotient of 0, remainder 4.

In this conventional method, the process checks the new
quotient before doing the long division procedure. If the
resultant quotient 1s less than a threshold, 1t does a conven-
tional divide. This saves some divide instructions for the
later divisions. The check, however, adds yet more process-
ing cycles to the process.

The final remainders, which are the outputs of the MMC,
are 3, 0, 3 and 4 respectively. So, Zhang’s method results 1n
the correct answer for this example.

Referring to the MMC parameters as specified in both
V.90 and V.92 recommendations, M, the total number of
moduli, also represents the number of symbols that are
fransmitted 1n a single data frame. For the downstream
transmitter m V.90 and V.92, M=6. For the PCM upstream

transmitter i V.92, M=12. For the downstream transmaitter
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6

in V.90 and V.92, the values of Y, represent the number of
signal point magnitudes contained in the signal point con-
stellation that is associated with the i”* phase of the data
frame. For the PCM upstream transmitter in V.92, the values
ol Y, represent the number of equivalence classes associated
with the i”* phase of the data frame. Each equivalence class
has one or more associated signal point magnitudes in the
signal point constellation.

The problem with using the long division method 1n
conventional systems, such as a 56 kbps based modem
system, 1s that 1t requires a large number of divide operations
to get to the final result. Performing binary division 1is
typically extremely inefficient, depending on the processor
used 1n the system. According to the V.92 recommendation
in particular, MMC operations are required on the transmis-
sion operations of both server modems and client modems.
Thus, now all devices that transmit data must be capable of
performing MMC encoder operations to be compliant with
the V.92 recommendation. The complexity of performing
many division operations greatly burdens the system pro-
cessors. For example, 1n an Intel™ Pentium™ processor, a
32-bit mnteger divide requires 46 cycles by the processor to
perform the operation. A floating-point divide requires 39
cycles by the Pentium™ processor to perform the operation.
This 1s 1 sharp contrast to other mathematical operations
that can be performed on data bits in such processors.

Therefore, there exists a need 1n the art of modem system
design to develop devices and methods for more efficiently
performing multiple modulus conversion calculations. As
will be seen, the invention accomplishes this 1n an elegant
manner.

SUMMARY OF THE INVENTION

A method and device are provided for use 1n a commu-
nication system having means configured to map frames of
information bits onto predetermined communication signal
parameters that allow computation of multiple modulus
conversion (MMC) outputs using little or no division opera-
tions. The mvention enables the representation of an input as
a plurality of sub-quotients, the performing of a multiplica-
fion operation to multiply at least one of the sub-quotients by
a multiplicand and the determining of an index value asso-
ciated with the multiplicand, the index value being respon-
sive to the inverse modulus multiplication operation. Unlike
conventional methods, instead of using burdensome division
operations, multiplication and logical shift operations are
used to produce pseudo-quotients and pseudo-remainders,
which may be corrected m a final step to produce correct
MMC outputs. This allows for more ellicient
implementation, since division 1s typically less efficient than
multiplication and logical shift. The method and device
operate on MMC 1nputs that may be partitioned into sub-
quotients of varying numbers of digits in any numbering
system.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a diagrammatic view of a modem system
coniigured with MMC encoders according to the invention;

FIG. 2 1s a diagrammatic view of certain modem hardware
according to the invention;

FIG. 3 1s a flow diagram 1llustrating the MMC process
according to the mvention; and

FIG. 4 1s a flow diagram 1illustrating the 1nverse modulus
multiplication in pseudo code according to the invention.

DETAILED DESCRIPTION

Briefly, the invention provides a device and method for
performing multiple modulus conversion using a new
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method of inverse modulus multiplication. It 1s a well known
fact 1n mathematics that division by a number 1s equivalent
to multiplication by the inverse of that number. However,
practical systems that implement MMOC operations are
always limited to finite precision, and are generally not able
to represent the exact inverses of all the moduli to be used.
Therefore, 1t 1s generally not possible to get the correct
quotients and remainders using straightforward multiplica-
tion operations. The invention provides a way to correct
errors 1n the final remainders, without requiring corrections
after each multiplication operation. The invention 1s
described below i1n the context of an 1implementation 1n a
modem communication environment. However, the inven-
fion 1s mntended to have broader application, and 1s not
limited by the embodiments described herein, and the scope
of the mvention 1s defined by the claims below and their
equivalents.

The method includes receiving an integer represented as
a data mput having a number of digits. The digits are then
represented as a number of sub-quotients. At least one
multiplicand 1s obtained, which 1s related to the estimated
mverse of a modulus value. As described above, the modu-
lus 1s typically a positive mteger =2. The mverse modulus
1s calculated 1n finite precision, so it may not be exactly
equal to the true inverse of the modulus. Next, inverse
modulus multiplication 1s performed by multiplying the
inverse modulus by the individual sub-quotients. This step
generates a “pseudo-remainder” associlated with the modu-
lus. A pseudo-remainder R' 1s defined by the following
relationship between an input quotient Q. an output
“pseudo-quotient” Q' , and a modulus Y:

00, Y+R

This 1s similar to the relationship between the true output
quotient and true remainder of a division operation, except
that the true remainder is required to be in the range [0,Y),
whereas the pseudo-remainder 1s not. Due to possible error
in the estimate of the inverse modulus, the pseudo-
remainder may be outside of this range. Therefore, an
additional step may be used to check the pseudo-remainder,
and adjust 1t 1f 1t falls outside the valid range. As mentioned
above, only some of the multiplication operations require
this check. The multiplication operations that must have this
check are those corresponding to the least significant sub-
quotients. The other multiplication operations may or may
not have the check. The device may include storage for
storing a plurality of moduli, for accessibility to the moduli
and/or mverse moduli for the MMC calculations. The device
further includes a data processor configured to represent the
data digits as a number of sub-quotients, and to perform the
inverse modulus multiplication method.

As discussed above, 1n conventional devices and methods,
the MMC algorithm requires that a division operation be
done for each modulus, resulting 1n a quotient and remainder
for each modulus. According to the mmvention, a method and
apparatus 1s provided to obviate the division operations by
performing a series of 1nverse modulus multiplications.
These multiplication operations require substantially less
processing time than division operations, and thus greatly
improve the etficiency of the MMC calculation operations.

In general, multiplication 1s more efficient on a DSP than
division. For example, 1n practice, multiplication by a DSP
employing the invention may require as few as a single cycle
to multiply two 16-bit numbers. Division of a 16-bit number
using conventional DSP methods requires 1 cycle for each
bit 1n the dividend. As a result, at least 16 cycles would be
required for 16-bit dividends. In a system using the Intel ™
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Pentium ™ processor, integer multiplication requires only 10
cycles. Using newer Pentium™ processors with MMX
instructions, integer multiplication can take even fewer
cycles. As discussed above, integer division in the same
processor requires 46 cycles, and a floating point divide
requires 39 cycles. On these types of platforms, MMC
calculations performed according to the invention are much
more elficient. MMC processes performed according to the
invention require little or no division operations, and there-
fore consume less processing time.

In one embodiment of the mnvention, the moduli values Y,
are stored 1n a table located 1n a storage location accessible
in or by the device. The mverse moduli values are calculated
using a division operation each time before performing the
inverse modulus multiplication. In another embodiment of
the invention, the moduli values Y, are stored 1n a first table,
the 1nverse moduli are calculated at the beginning of a
communication session using division operations, and the
inverse moduli are stored 1n a second table for use through-
out the communication session. In yet another embodiment
of the invention, the inverse estimates for all possible moduli
may be pre-calculated and stored 1n a first table. At run-time,
the moduli values Y, are stored 1n a second table. At the
beginning of a communication session, the mverse moduli
arc obtained by taking the values at Y, offset from the
beginning of the first table, and stored 1n a third table. The
inverse moduli values can then be used to convert the data
inputs to index values throughout the communication ses-
sion. Thus, a device embodying the invention may perform
MMC conversion operations with little or no division opera-
fions.

Referring to FIG. 1, a diagrammatic view of a 56 kbps
communication system 100 embodying the invention 1is
shown. The figure 1illustrates the data paths between two
devices configured with modems for sending and receiving
data symbols according to the invention. Server equipment
such as that operated by an Internet service provider (ISP)
102, communicates within the communication system via
ISP modem 104, also known 1n the art as a server modem.
The ISP modem includes a transmission circuit (Tx) 106 for
transmitting frames of data through the system to receiving
devices. The Tx includes a MMC encoder circuit 108 for
performing MMC operations with inverse modulus multi-
plication according to the invention. The ISP modem further
includes receiving circuit (Rx) 110 configured to receive
frames of data from other transmission devices. The Rx
circuit includes MMC decoder circuit 110 configured to
decode transmissions of data frames destined for the ISP.

The ISP 1s digitally connected to the public switched
telephone network (PSTN) 114 via the ISP modem 104. The
PSTN communicates through a central office 116 that typi-
cally includes a CODEC 118 for processing pulse code
modulated (PCM) signals. These signals are transmitted to
and received from devices communicating with the PSTN,
such as the client modem 120, via a local loop. The client
modem 1s typically an analog modem housed 1n a personal
computer, laptop, personal data device (PDA), or other
device configured to communicate with the PSTN. The
client modem 1ncludes interface 122 that communicates with
the local loop to transmit and receive communications to and
from the PSTN 114 via the line card 116. The interface 1s
configured to route the received signals to the client
modem’s receiver circuit (Rx) 124. The receiver circuit
includes an MMC decoder circuit 126 configured to decode
incoming frames of data. The interface also routes outgoing
signals from the transmission circuit 128, which includes an

MMC encoder 130. According to the invention, the MMC
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encoder 1s configured to perform MMC operations, much
like the ISP modem’s MMC encoder 108. Both the Rx and
Tx circuits communicate with a processor 132. The proces-
sor may be a DSP that 1s integrated as part of a modem card
and that 1s configured to process data received by the client
modem.

It will be appreciated by one skilled 1n the art that the
system 1llustrated in FIG. 1 1s applicable to the PCM
upstream mode of the V.92 recommendation. As discussed
above, the V.90 recommendation requires that the server
modem only be capable of performing MMC encoder opera-
tions for the mapping algorithm. V.92 PCM upstream mode
requires that both client and server modems be capable of
performing MMC encoder operations. The MMC operations
addressed by the invention may be utilized on either a server
modem or a client modem.

Referring to FIG. 2, a more detailed diagrammatic view of
a modem encoder 200 1ncorporating the MMC encoder 108
1s 1llustrated. This particular example 1s modeled after the
encoder used for V.90/V.92 downstream transmission. Data
Dq: D, , 1s transmitted from the data scrambler 202 to bit
parser 204. The bit parser transmits the scrambled bits B,:
B, , to the modulus encoder 206 and bits S,: S__, to the
spectral shaping circuit 208.

The mvention 1s directed to the MMC conversion process,
which 1s not dependent on values generated 1n the spectral
shaping circuit 208, and may occur 1n the generation of data
frames for either upstream or downstream transmissions
depending on which standard 1s used, whether it be V.90,
V.92, or other future recommendations. Accordingly, the
invention 1s not limited to any particular standard
confliguration, and may be adapted to any number of con-
figurations and applications. In this example, the MMC
encoder does not operate on all the bits to be transmitted.
The invention may be directed towards this situation, as well
as others where the MMC encoder does operate on all the
bits to be transmitted.

The encoding circuitry further includes inverse modulus
storage 210 configured to store inverse modulus values.
Inverse modulus values are derived from modulus values.
These modulus values may be determined during an adap-
five 1nitialization process between the ISP modem and the
client modem. Accordingly, the signal parameters for the
constellations associated with the moduli may also be estab-
lished during initialization. The manner 1n which modulus
values are selected depends on a number of factors. For
example, the number of modulus values may vary depend-
ing on the application. In the V.90 and V.92
recommendations, for example, 6 PCM symbols generated
from 6 moduli are required for each data frame for down-
stream transmissions. Unlike V.90, however, V.92 requires
MMC conversion for upstream transmissions, where each
data frame 1s comprised of 12 PCM symbols, therefore 12
moduli are required. The invention 1s not restricted to a
particular number of moduli, or to any particular moduli
values.

In one practical implementation embodying the invention,
cach modulus 1s converted to an inverse value. Thus, each
division by Y. 1s transformed to a multiplication operation
by an estimate of 1/Y ;. This value 1s used to encode the data
symbols 1nto mndex values. In a preferred embodiment, the
input 1nteger Q4 1s limited to N, digits in a Base B number
system, the input moduli Y, are all limited to N, digits in said
number system, and the inverse modul1 are all limited to N,
digits 1n said number system. Typically, N, 1s the maximum
number of digits that the device responsible for MMC can
handle 1n one operation. As discussed previously, Q5 typi-
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cally has more digits than this maximum, so N, 1s greater
than N;. Also, mn a preferred embodiment, N, should be
orcater than N.,.

To limit the mverse estimate to a N, digit representation
in the base B numbering system, the 1/Y, estimate 1is
calculated by the following floor function:

C=floor(B*°/Y)

The resulting value C, has N, digits, and can be inter-
preted as a fixed point fraction with all digits to the right of
the fixed point. Note that this calculation only applies if
Y.=2. If the value of Y ;=1 1s to be allowed, 1t can be handled
by one of two methods. In the first method, C; 1s set to
BY°-1, and the inverse modulus multiplication method is
used directly. In the second method, the mverse modulus
multiplication method 1s skipped for Y =1, and the values of
Q; and R, are set to Q.=Q. ,, and R =0.

Still referring to FIG. 2, according to the invention, 1n
operation, upon establishing modulus values and corre-
sponding inverse modulus values, the modulus encoder 206
may summons a look-up table stored in inverse modulus
storage 210. An inverse modulus value may then be
retrieved for conversion of symbols representing an integer
into index values. Each of these index values may then be
transmitted to point map circuitry 218, where each index
value 1s assigned a constellation point map 220-226. These
index values can then be transmitted over the PSTN to a
receiving device, such as a client modem. A system may
ogenerate any number of index values, depending on the
application. In V.90 and V.92, up to six index values are
produced and transmitted from an ISP. The index values are
then transmitted to sign assignment circuit 228 to establish
the polarity of the index values. The assignment circuit
outputs PCM. symbols to the multiplexer 230, which outputs
PCM octets of symbols 1n a serial manner for transmission
to a client modem.

It will be understood by those skilled in the art, that the
configuration illustrated in FIG. 2 1s an example of a circuit
designed for a server modem. Such a server modem, accord-
ing to the V.90 and V.92 recommendations, 1s required to
perform spectral shaping functions and other features that
are particular to server modem features. The MMC process,
however, 1s equally applicable to client modems for trans-
mitting symbols mapped using the MMC process as
described above. In operation, such a client modem would
include a modulus encoder similar to the modulus encoder
206 1n the ISP modem, for performing MMC operations
including the new inverse modulus multiplication method
according to the mvention.

Referring to FIG. 3, an MMC conversion process 300
configured according to the invention 1s illustrated. First,
initial MMC parameters are obtained in step 302. Such
parameters may mclude number of MMC bits per frame, the
bit length for either all of the sub-quotients or all but the
most significant of the sub-quotients, the number of seg-
ments to be utilized 1n the partitioning of the baits, the
number, M, of moduli or inverse moduli, and the values of
the actual moduli, Y, or inverse moduli, C.. A modulus
encoder 1 step 304 obtains an input of data bits Q,, and
initializes a modulus 1index counter 1. In the next step 306,
the mput value of the data bits 1s represented as a number or
plurality of sub-quotients. The total number of sub-quotients
1s k+1. The operation of dividing the data bits into sub-
quotients may be performed by performing a bit masking
routine, for example, to assign portions of the data bits to a
predetermined number of storage locations. The operation
may also simply access storage locations associated with
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Q. , to obtain sub-quotients of a predetermined length.
These sub-quotients may or may not be of equal length. In
a preferred embodiment, all but the most significant sub-
quotient are of equal length. In general, the relationship of
the mput quotient Q, to the sub-quotients Q, ; 1s as follows:
QO=QO?OQO?1*B”(O)+. .. +Q0?k*B”(O)+”(1)+' 7D where n(j)
represents the number of digits in the ;** sub-quotient. The
current modulus and 1inverse modulus values are obtained 1n
step 308. The inverse modulus may be obtained 1n step 308
from a look-up table stored in a storage device, or may be
obtained, computed or otherwise generated from a modulus
value obtained by other means. The current quotient, Q, .,
1s then multiplied in step 310 by the inverse modulus value,
using the inverse modulus multiplication method of this
invention. A new quotient Q; and a remainder R; are derived
from this operation. The remainder 1s one of the outputs of
the MMC process. In step 312, the modulus index counter 1
1s incremented. In step 314, a query 1s posed of whether the
last modulus value has been used to convert the mput data.
If 1t has not, the output quotient 1s then returned back to step
306 and associated with the next consecutive modulus value,
and the process 1s repeated. If the last modulus value has
been processed, then the process proceeds to step 316 where
the final remainder values are output, which are the values
of R, through R,, output by the modulus encoder 206 of
FIG. 2. The process then returns to step 304, where the next
input 1s obtained.

Referring to FIG. 4, a flow diagram 1s shown 1llustrating,
an mverse modulus multiplication process 400 according to
the 1nvention in pseudo code. The process illustrated is
cequivalent to step 310 of FIG. 3. In step 402, the quotient
Q. , represented as k+1 sub-quotients, the modulus Y, and
the 1nverse modulus estimate C; are obtained. The value of
C. 1s defined by the floor function described above. In the
inverse modulus multiplication process, each sub-quotient
has associated with 1t a pseudo-remainder and a pseudo-
quotient, as described previously. For simplicity in the
following discussion, no distinction 1s made 1n the notation
between true remainders and pseudo-remainders, or true
quotients and pseudo-quotients. In general, all the mterme-
diate R;; and Q,; values in the process are pscudo-
remainders and pseudo-quotients, unless the check has been
performed and the values corrected as necessary. The 1nitial
value of the pseudo-remainder 1s set at 0 1n step 404, since
the 1nitial input quotient has no remainder. In step 406, the
sub-quotient 1ndex j 1s 1nitialized to k, one less than the total
number of sub-quotients received 1n step 402. The process
then proceeds to the loop comprising steps 408, 410, 412,
and 414, where the sub-quotients representing the output
pseudo-quotient Q. are obtained from the 1nverse modulus
multiplication operation. In step 408, the j** sub-quotient of
the output pseudo-quotient Q. 1s obtained. First, the pseudo-
remainder of the previous sub-quotient operation R, ; 1S
multiplied by B, the base number system, to the power of
n(j), the length of the original j** sub-quotient. The result is
added to Q;_, ,, the i sub-quotient of the input quotient. The
result of this addition 1s then multiplied by the inverse
modulus estimate C.. Finally, the result of this multiplication
1s logically shifted to the right by N, base B digits, as
represented by the “>>" operator. The result 1s effectively
truncated, so that only the mnteger part of the quotient 1s left.
In a typical implementation, this truncation is inherent in the
logical shift operation. In step 410, the pseudo-remainder of
the j*** sub-quotient inverse modulus multiplication opera-
tion is obtained. First, the j* sub-quotient of the output
pseudo-quotient Q; ; is multiplied by the modulus value Y.

The result is subtracted from the sum of the j** sub-quotient
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of the input quotient, Q;_; ;, and the product of the pseudo-
remainder of the previous sub-quotient operation, R, ., ;, and
B to the power of n(j). In step 412, the value of j is queried
to see 1f 1t 1s 0. If not, the process continues with step 414,
where 7 1s decremented. After decrementing j, the process
proceeds to step 408 to process the next sub-quotient. If 1n
step 412 j 1s equal to 0, the process proceeds to step 416. Due
to possible maccuracy 1n the mverse modulus estimate C,,
the final sub-quotient pseudo-remainder R; , may be greater
than or equal to Y. As stated earlier, MMC requires that the
remainders be strictly less than Y. In step 416, the value of
R, 5 1s queried as to whether 1t is less than Y. If not, then the
process proceeds to step 418. In step 418, the final pseudo-
remainder 1s corrected by subtracting the value of the
modulus Y, from 1t. The last sub-quotient of the pseudo-
quotient Q; , 1s also corrected by adding 1 to 1t. Once the true
remainder and true quotient are obtained, either by passing
the query 1n step 416 or after the correction 1n step 418, the
process continues with step 420. In step 420, the true
remainder for the final sub-quotient is copied to the output
remainder R;. Next, in step 422, the output remainder and
output quotient represented by sub-quotients are returned by
the process 400.

In order for the inverse modulus multiplication process to
work correctly, certain constraints must be met related to the
length of the sub-quotients, the values of the moduli, and the
precision of the mverse moduli estimates. Some of these
constraints are inherent to the algorithm, and others may be
system dependent. The main algorithmic constraint results
from the assumption that the final pseudo-remainder
obtained 1n step 410 when 1=0, before correction 1n step 418,
falls in the range O0=R,; (<2*Y,. It can be shown that to meet
this condition, 1t 1s suflicient to satisfy the following inequal-

1Ly:

N,>N+n(j)

To express the condition 1n words, the number of digits used
in the mverse modulus estimate must be larger than the sum
of the number of digits in the largest modulus and the
number of digits in the longest sub-quotient. There are some
exceptions to this rule to be noted. First, the rule does not
apply to the length n(k) of the first (most significant)
sub-quotient, Q, ,. This is because R;;, ,=0. In this case, it
can be shown that the algorithmic constraint 1s as follows:

n(k)=N;

Another exception to the algorithmic constraint 1s the case of
Y =B"*. Although Y, has more than N, digits, the inverse
modulus estimation error 1s O as long as N, =N.,. So, where
the N, calculated from the algorithmic constraint would
normally imply that Y,<B"?, taking into account the excep-
tional case, the real constraint is Y,<B"~.

When the algorithmic constraints are violated, the
pseudo-remainders, R; ;, can no longer be guaranteed to fall
in the range [0,2*Y ). Therefore, the range check, as per-
formed 1n step 416 of FIG. 4, may need to be performed
multiple times. As the pseudo-remainders become larger, the
sub-quotients, Q,;, calculated in step 408 of FIG. 4 also
become larger, and substantially more digits may be required
to store the intermediate sub-quotients than were required to
store the mput sub-quotients. Typically, this means the
number of digits, n(j), in the input sub-quotients must be
fewer than if the algorithmic constraint described above
were used. Since the use of smaller sub-quotients typically
means that more sub-quotients are needed to represent a
given input (i.e., k must be larger), this may increase the




US 6,697,831 B2

13

number of calculations required. So, there 1s a tradeolil
between the number of digits, N, used to store the 1nverse
modulus estimates, C, and the number of calculations
required to perform the inverse modulus multiplication
process. In a practical system where 1t makes sense to violate
the algorithmic constraint described above, a minor varia-
tion of the invention may be used to get the MMC outputs.
This variation consists of performing the range check, as in
step 418 of FIG. 4, continuously until the pseudo-remainder,
R;, falls in the range [0, Y,). In this variation, the arrow
from step 418 to step 420 1s removed, and an arrow from
step 418 back to step 416 1s added.

In a practical system, the values of N,, N5, and n(j) may
have other additional constraints 1mposed upon them. For
instance, 1n many DSP systems the inputs to multiplication
operations are limited to 16 bits. In this type of system, the
constraint N; =16 would hold 1f the algorithm were to be
implemented with single multiplication operations for each
sub-quotient. In other systems, both the inputs to and the
products of multiplication operations are limited to 32 bits.
In such a system, the constraint N,+n(j) =32 would hold.

Returning to the previous example where Q,=933, Y, =5,
Y,=6, Y;=7, and Y =8, assume the following constraint
exists: for conventional multiplication operations, the inputs
are limited to 3 decimal digits and the products are limited
to 5 decimal digits. The largest number of decimal digits
used for the moduli1s 1, so N,=1. The maximum number of
multiplication mput digits can be used for the mverse moduli
estimates, so N;=3. To satisfy the algorithmic constraint,
n(j)=1 is chosen for ;=0 to k-1.

Although n(k) is not limited by this constraint, it is still
limited by the product constraint of 5 digits. Therefore,
n(k)=1 must be chosen as well. The estimates of the inverse
modul1 ¥, Y, 1%, and ¥s may be pre-computed using the
formula C.=floor(B"~/Y), where B=10, N.=3, and Yi={5, 6,
7, 8}. The resulting values are C,={200, 166, 142, 125}. In
one embodiment of the invention, the resultant inverse
moduli estimates are stored 1n a table for easy look-up access
by the modulus encoder 206 (FIG. 2) to generate index
values.

For contrast with the conventional method discussed
above, the value of Q,=933 will be converted using the
MMC conversion process according to the invention. First,
933 1s expressed as (9*100)+(3*10)+3.

Next, the value of Q, 1s effectively divided by the first
modulus, Y,=5. The inverse modulus estimate was calcu-
lated to be C,=200. According to the invention, the first

MMC value can be generated, using no division operations,
as follows.

a. First, multiplying 9 by 200, gives 1800, which, accord-
ing to the invention, i1s shifted by N,=3 digits and
truncated, giving a pseudo-quotient of 1. The pseudo-
remainder 1s calculated to be 4.

b. Next, 4*10 1s added to 3, giving 43.

c. Multiplying 43 by 200, gives 8600, which, according to
the 1invention, 1s shifted by N,=3 digits and truncated,

ogrving a pseudo-quotient of 8. The pseudo-remainder 1s
calculated to be 3.

d. Next, 3*10 1s added 3, giving 33.

¢. Multiplying 33 by 200, gives 6600, which, according to
the mvention, 1s shifted by N,=3 digits and truncated,
og1ving a pseudo-quotient of 6. The pseudo-remainder 1s
calculated to be 3. This 1s the final remainder before any
error check.

f. Next, according to the imvention, an error check 1s
performed to determine whether the final pseudo-
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remainder 1s greater than or equal to the first modulus
of 5, or whether 3=5. This 1s not the case, so no
adjustment 1s necessary.

g. Finally, the new quotient 1s formed, (1*100)+(8*10)+
6=186

h. The final remainder 1s 3.
Next, the mnverse modulus multiplication method 1s used
to effectively divide the quotient by a second modulus,

Y,=6. The inverse modulus estimate was calculated to be
C,=166.

a. Multiplying 1 by 166, gives 166, which, according to
the mvention, 1s shifted by N,=3 digits and truncated,
oiving a pseudo-quotient of 0. The pseudo-remainder 1s
calculated to be 1

b. Next 1*10 1s added to 8, giving 18.

c. Multiplying 18 by 166, gives 2988, which, according to
the mvention, 1s shifted by N,=3 digits and truncated,
oiving a pseudo-quotient of 2. The pseudo-remainder 1s
calculated to be 6.

d. Next, 6*10 1s added to 6, giving 66.

¢. Multiplying 66 by 166, gives 10956, which, according
to the invention, 1s shifted by N;=3 digits and
truncated, giving a pseudo-quotient of 10. The pseudo-
remainder 1s calculated to be 6. This 1s the final
pseudo-remainder prior to the final check.

. Finally, according to the mvention, there 1s a check to
determine whether the final pseudo-remainder is
oreater than or equal to 6, or whether 6= 6. In this case,
the answer 1s yes, so both the pseudo-quotient and
pseudo-remainder must be adjusted. In this case, since
the pseudo-remainder, 6, 1s equal to 6, the method adds
1 to pseudo-quotient, and subtracts 6 from pseudo-

remainder, resulting 1in a quotient of 11 and a remainder
of 0.

g. The new quotient is then formed, (0*100)+(2*10)+11=
31

h. The final remainder 1s O.

Next, the mnverse modulus multiplication method 1s used
to effectively divide the new quotient, 31, by a third modulus
of Y;=7. The inverse modulus estimate was calculated to be
C;=142.

a. Multiplying O by 142, gives 0, which, according to the

invention, 1s shifted by N;=3 digits and truncated,

oiving a pseudo-quotient of 0. The pseudo-remainder 1s
calculated to be O.

b. Next, 0*10 1s added to 2, giving 2.

c. Multiplying 2 by 142, gives 284, which, according to
the 1invention, 1s shifted by N,=3 digits and truncated,
ogiving a pseudo-quotient of 0. The pseudo-remainder 1s
calculated to be 2.

d. Next, 2*10 1s added to 11, giving 31.

¢. Multiplying 31 by 142, gives 4402, which, according to
the 1nvention, 1s shifted by N,=3 digits and truncated,
ogiving a pseudo-quotient of 4. The pseudo-remainder 1s
calculated to be 3.

f. Next, the final pseudo-remainder 1s checked to see
whether 1t 1s greater than or equal to the original
modulus value of 6, or whether 3=26. This 1s not the
case, so no adjustment 15 necessary.

g. Finally, the new quotient is formed, (0*100)+(0*10)+
4=4
h. The final remainder 1s 3.

Finally, the inverse modulus multiplication method 1s
used to effectively divide the new quotient by the fourth and
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final modulus, Y,=8. The inverse modulus estimate was
calculated to be C,=125.

a. Multiplying 0 by 125, gives 0, which, according to the
invention, 1s shifted by N;=3 digits and truncated,
ogrving a pseudo-quotient of 0. The pseudo-remainder 1s
calculated to be O.

b. Next, 0*10 1s added to 0, giving O.

c. Multiplying O by 125, gives 0, which, according to the
invention, 1s shifted by N,=3 digits and truncated,
orving a pseudo-quotient of 0. The pseudo-remainder 1s
calculated to be 0.

d. Next, 0*10 1s added to 4, giving 4.

¢. Multiplying 4 by 125, gives 500, which, according to
the 1nvention, 1s shifted by N,=3 digits and truncated,
ogrving a pseudo-quotient of 0. The pseudo-remainder 1s
calculated to be 4.

f. As above, the method checks whether the final pseudo-
remainder 1s greater than or equal to the original
modulus, 6, or whether 4=6. This 18 not the case, so no
adjustment 1s necessary.

o. The final remainder 1s 4.

The final outputs are 3, 0, 3 and 4, respectively. So, the
inverse modulus multiplication method results 1n the correct
MMC values, as calculated 1n the previous examples. Note
that the inverse modulus multiplication corresponding to Y,
could have been skipped, since 1t 1s known 1n advance that
Q,=0.

Now, consider the example of MMC as defined 1n ITU-T
Recommendation V.92, to be implemented using a binary
processor 1n which multiplication operates on 16 bit
operands, producing 32 bit results. For simplicity, 1t 1is
assumed that

n(0)=n(l)=. .. =n{k-1)=N;-N,-1, and n{(k)=N,.

Note that N,—N,-1 is the maximum value for n(j) under the
previously discussed algorithmic constraint Ny>N,+n(j).
In V.92, the largest possible modulus 1s 128, and there are
12 moduli. However, the maximum data rate 1s 48 kbps.
Since the MMC 1s done at the rate of 8000/12 per second,
the maximum input length 1s 48000%12/18000=72 bits. This

orves the following;:
B=2
N,=72
N,=7 (allowing the special 8-bit case of Y ,=128)

N,=16
The values for n(j) can be derived:
n(0), n(1), . . . n(k—-1)=8
n(k)=16
To process a 72 bit mput, k=8.
To 1illustrate the functioning of the above system, a

communication session with the following parameters is
provided:

Y,=0x3C, Y,=0x3D, Ys=0x3E, Y,=0x3F, Y=0xx40, Y =0=41 ,
Y.,=0=42, Yo=0=43, Y,=0=44, Y,,=0x45, Y,,=0=46, ¥,,=0x47;

and the 72-bit mput Q,=0x123456789ABCBA9876, where
“Ox” 1indicates hexadecimal notation. Those skilled 1n the art
will appreciate that hexadecimal notation 1s often used as
shorthand for binary numbers. Note that Q,<Y,Y,. .. Y.,
so the 1nverse modulus multiplication corresponding to Y,
can be skipped. The 16-bit inverse modulus estimates, C,,
have values equal to floor(2'°/Y,), and may be calculated
during the MMC process, calculated at the beginning of a
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communication session, or obtained 1in some other manner.
For the given values of Y, the corresponding C, values are
as follows:

C,=0x0444, C,=0x0432, C,=0x0421, C,=0x0410, C.=0x0400,
C =0x03FO0,

C=0x03FE0, Co=0x03D2, Ce=0x03C3, C,,=0x03B5, C,,=0x03AS,
C,,=0x039B

To perform the MMC operation according to the
invention, the following C-code may be used:

unsigned short invmult{unsigned short *x, unsigned short v,
unsigned int c);

#define M 12

#define N3 16

#define nj 8

unsigned short Y[M]= { 0x3c, 0x3d, Ox3e, Ox3f, 0x40, 0x41, 0x42,
0x43, 0x44, 0x45, Ox46, 0x47 };

unsigned short Q[8]= { 0x76, 0x98, Oxba, Oxbc, 0x9a, 0x78, 0x56,
0x1234 };

void main (void)

1

unsigned short C[M|, R|M];
int 1;
/* Calculate inverse modulus estimates
(done at beginning of session) */
for( i = 0; 1<M; i++ )
Cli] = (0 <<N3)/Y[i];
/* Calculate remainders of MMC operation using inverse
modulus multiplication

method */
for(i=0; i<M-1; i ++ )
R|i] = invmult (Q, Y[i], C[i]);
RIM-1] = Q[C};

h

unsigned short invmult (unsigned short *Q, unsigned short Y,
unsigned int C)

{

unsigned 1nt f;

unsigned short K;

int 1;

R =0;

for(i = 7;1 » = 0;i——) {
t = (Re<n))+Ql1];
Qli] = (t*C)>>16;
R = t-Q[i]*Y;

h

if (R>=Y) {
R —=
Q[0 [++;

;

return K;

First, Q, 1s represented as sub-quotients as follows:
0,=0x1234; 0x56; 0x78; O0x9A4; OxBC; OxBA; 0x98; 0x76

Next, inverse modulus multiplication 1s used to effectively
divide Q, by the first modulus, 0x3C. The result of this

operation, which can be confirmed by the C-code above, 1s
as follows:

(,=0x4D; OxAC; Ox16; Ox9C; Ox2D; OxCF; OxES; OxFO
R,=0x36

No correction 1s required 1n this step.

Next, inverse modulus multiplication 1s used to effectively
divide Q, by the second modulus, 0x3D. The result 1s as
follows:
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O,=0x01; 0x45; OxF7; Ox10F; Ox26; O0x85; O0x81; OxB8

R,=0x18

No correction 1s required 1n this step.

Next, inverse modulus multiplication 1s used to effectively
divide Q. by the third modulus, Ox3E. The result 1s as
follows:

Q,=0x00; 0x05; 0x41; OxEF; OxBA; 0x6D; 0x82; 0x17
R;=0x26

No correction 1s required 1n this step.
Next, inverse modulus multiplication 1s used to effectively
divide Q; by the fourth modulus, Ox3F. The result before

correction 18 as follows:

0., =069

Since R, ;Z20x3F, a correction 1s required. The correction 1s
as follows:

0., =0x69+1=0x6A
R, =0x40-0x3F=0x01

After correction, the output of the fourth inverse modulus
multiplication 1s as follows:

0 ,=0x00; O0x00; Ox15; Ox5D; 0x33; OxB8; 0x98; Ox6A

R,=0x01

Next, inverse modulus multiplication 1s used to effectively
divide Q, by the fifth modulus, Ox3E. The result 1s as
follows:

.=0x00; 0x00; 0x00; 0x55; 0x74; OxCE; OxE2; Ox61
R=0x2A

No correction 1s required 1n this step.

Next, inverse modulus multiplication 1s used to effectively
divide Q. by the sixth modulus, 0x41. The result 1s as
follows:

«=0x00; 0x00; 0x00; 0x01; 0x50; 0x90; OxF7; OxAA

R.=0x37

No correction 1s required 1n this step.

Next, inverse modulus multiplication 1s used to effectively
divide Q. by the seventh modulus, 0x42. The result 1s as
follows:

=0x00; 0x00; 0x00; 0x00; 0x05; 0x19; 0x77; O0x11D
1 R,=0x30

No correction 1s required 1n this step.

Next, inverse modulus multiplication 1s used to effectively
divide Q- by the eighth modulus, 0x43. The result 1s as
follows:

(.=0x00; Ox00; 0x00; 0x00; Ox00; Ox13; Ox7C; OxOF

R,=0x30

No correction 1s required 1n this step.

Next, inverse modulus multiplication 1s used to effectively
divide Qg by the ninth modulus, 0x44. The result 1s as
follows:
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1 Qg=0x00; 0x00; Ox00; 0x00; 0x00; 0x00; 0x49; 0x54

R,=0x27

No correction 1s required 1n this step.
Next, inverse modulus multiplication 1s used to effectively
divide Q, by the tenth modulus, 0x45. The result 1s as

follows:

(},,=0x00; 0x00; 0x00; 0x00; 0x00; 0x00; 0x01; 0x10

R, =0x0A

No correction 1s required 1n this step.

Next, inverse modulus multiplication 1s used to effectively
divide Q,, by the eleventh modulus, 0x46. The result 1s as
follows:

(),,=0x00; 0x00; 0x00; 0x00; 0x00; 0x00; 0x00; Ox03

R,,=0x3E

No correction 1s required 1n this step.
Next, since 1t 15 known 1n advance that Q,,=0, the final
remainder, R,,, can be directly set to the next-to-last
quotient, Q,,. The result 1s as follows:

(),,=0x00; 0x00; 0x00; 0x00; 0x00; 0x00; 0x00; 0x00

No correction 1s required 1n this step.

Although FIGS. 3 and 4 describe an inverse modulus
multiplication operation where each of the sub-quotients is
processed consecutively for each modulus, the procedure
may also be arranged such that each sub-quotient is pro-
cessed by each modulus consecutively before proceeding to
the next sub-quotient. In either case, only the pseudo-
remainders corresponding to the last sub-quotient need to be
corrected. The following C-code 1llustrates this variation of
the 1nverse modulus multiplication method:

unsigned short invmult__nocheck(unsigned short Q, unsigned short *Y,
unsigned short *C, unsigned short *R);

unsigned short invmult_check(unsigned short Q, unsigned short *Y,
unsigned short *C, unsigned short *R);

#define M 12

#define N3 16

#deflne nj 8

unsigned short Y[M] = { Ox3c, 0x3d, Ox3e, 0x3f, 0+40, 0x41, 0x42,

0x43, 0x44, 0x45, Ox46, 0x47 };

unsigned short Q[8] = { 0x76, 0x98, Oxba, Oxbc, 0x9a, 0x78, 0x56,

0x1234 };

void main{void)

unsigned short C[M], R|M];
int 1;
/* Calculate inverse modulus estimates
(done at heginning of session) */
for( 1= 0; i<M; i++ )
Cli] = (1<<N3)/Y[i];
/* Calculate remainders of MMC operation using inverse
modulus multiplication

method */
for( 1 = 0; 1<M; 1++ )
R[i] = 0;

for(1=7;1>=1;1—— )
Q1] = invmult__nocheck(Q]i], Y, C, R);
Q[0] = invmult__check(Q|0], Y, C, R);
h
unsigned short invmult__nocheck(unsigned short Q, unsigned short *Y,
unsigned short *C, unsigned short *R)
{
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-continued

unsigned int t;

int 1;

for(i = 0;i<M-1;i++) {
t = (R]i]<<n))+Q;
Q = (t*C|i])>>16;
Rli] = t-Q*Y]i]

;

R|M-1] = Q;

return Q;

h

unsigned short invmult__check(unsigned short Q, unsigned short *Y,
unsigned short *C, unsigned short *R)
1

unsigned int t;
int 1;
for(i = 0;i<M-1;i++) {
t = (R]i]<<n))+Q;
Q = (t*C|i])>>16;
R[i] = t-Q*Y]1];
if( R[i] >= Y][i]) {
Q++;
R[i] —= Yl[i};
y
;
R|M-1] = Q;
return Q;

In the inverse modulus multiplication procedures
described above, the pseudo-remainders for the least sig-
nificant sub-quotients are checked during the procedure, and
the pseudo-remainders and pseudo-quotients are modified 1f
necessary. In another variation, the inverse modulus multi-
plication procedure 1s done without any checks, producing,
M pseudo-remainders. At the end of the procedure, all
pseudo-remainders are then checked. At this point, it 1s too
late to update the pseudo-quotients, since they have already
been used 1n subsequent steps of the procedure. Instead,
whenever a pseudo-remainder 1s reduced by Y. the next
pseudo-remainder 1s mcremented by 1. If the algorithmic
constraint described above 1s followed, then each pseudo
remainder is in the range [0,2*Y;) before the check. Since
the check may result in incrementing the pseudo-remainder
again, the range 1s expanded. Therefore, the check should be
done continuously until the pseudo-remainder falls 1n the
range [0, Y;). The following C-code illustrates this variation

of the mmvention, using the same example mputs and moduli
as used previously:

unsigned short invmult{unsigned short *x, unsigned short v,
unsigned int c);

#define M 12

#define N3 16

#define n 8

unsigned short Y[M] = { 0x3c, 0x3d, Ox3e, Ox3f, 0x40, 0x41, 0x42,
0x43, 0x44, 0x45, 0x46, 0x47 );

unsigned short Q[8] = { 0x76, 0x98, Oxba, Oxbc, 0x9a, 0x78, 0x56,
0x1234 );

void main (void)

1

unsigned shoro C|M], R[M];
int 1;
/* Calculate inverse modulus estimates
(done at beginning of session) */
for( 1= 0; i<M; i++
Cl1] = (1<<N3)/Y]1];
/* Calculate remainders of MMC operation using imnverse modulus

multiplication

method */
for( 1 = 0; i<M-1; i++
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-continued

R|1] invmult(Q, Y]i], C[i] );
R[M-1] = Q[O];
/* Check all remainders */
for( i =0; i<M-1; i++ ) {
while( R[i] > Y][i] ) {
R[i] —= Y[il;
R|i+1 |++;

;
h
unsigned short invmult{unsigned short *Q, unsigned short Y,
unsigned int C)

{

unsigned 1nt f;

unsigned short K;

int 1;

R =0;

for(i = 7;i>0;i——) {
t = (Re<n))+Ql1];
Qli] = (t*C)>>16;
R = t-Q[i]*Y;

;

return K;

Although the mnverse modulus multiplication method has
been presented using the floor( ) function to calculate the
inverse estimate, those skilled 1n the art will appreciate that
other estimation techniques could be used. For example, the
following formula could be used:

C=ceil(B"°/Y))

where the ceil( ) function is defined as the smallest integer
orcater than or equal to i1ts argcument. In this case, the
pseudo-remainder could become negative, and the correc-
fion step becomes:

if(R; <0)
{Rf,D=Rf, otY;
Qi, D=Q:‘,D_ 1}

Another possible inverse estimate technique uses a rounding
function:

C=rnd(B">/Y))

where the rnd( ) function is defined as the nearest integer to
its argument. In this case, the pseudo-remainder correction
technique varies based on whether the nearest integer is
larger or smaller than the arcument. This can be handled by
performing both previously described checks every time,
determining which check to perform at run-time, or prede-
termining which check to perform for each inverse modulus.

The 1invention provides a device and method for perform-
ing multiple modulus conversion using a new method of
inverse modulus multiplication. The method includes
receiving an integer represented as a data input having a
number of digits, which are then represented as a number of
sub-quotients. The inverse modulus multiplication 1s per-
formed by multiplying an inverse modulus estimate by the
individual sub-quotients, generating an 1index value associ-
ated with the modulus. Unlike conventional devices and
methods that use multiple division operations to obtain
index values, the invention obviates the division operations
by performing a series of mverse modulus multiplications.
These multiplication operations require substantially less
processing than division operations, and thus greatly
improve the efficiency of the MMC calculation operations.
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The embodiments described herein are not intended 1n any
way limit the scope of the invention, which 1s established by
the following claims and their equivalents.

What 1s claimed 1s:

1. A multiple modulus conversion (MMC) method, for
obtaining a plurality of index values associated with a
plurality of moduli, for use 1n a communication system

having means configured to map frames of information bits
onto predetermined communication signal parameters, said

method comprising:
obtaining an input;
representing the mput as a plurality of sub-quotients;

performing a multiplication operation to multiply at least
one of the sub-quotients by a multiplicand;

determining an index value associated with the

multiplicand, the index value being responsive to the
inverse modulus multiplication operation; and

obtaining a multiplicand that relates to the estimated
inverse of a whole number, wherein performing a

10
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multiplication operation includes multiplying at least
one of the sub-quotients by the multiplicand, wherein
the multiplicand 1s calculated according to the follow-

ing formula: C,=floor(B °/Y,), where B is the base of
the numbering system, N, 1s the maximum number of
digits in the multiplicands, and Y, 1s the whole number.
2. A method according to claim 1, wherein a sub-quotient
of the output pseudo-quotient 1s obtained by multiplying a
portion of the input by the multiplicand C, according to the
following formula: Q; =((Q,_; +R,; JH*B”@)*CL—);-:»NB; and
wherein the output pseudo-remainder of the sub-quotient
calculation 1s obtained according to the following formula:
R; =(Q,_1,+R; J+1’*‘B”@)—(QL— ;7Y;) where B 1s the base num-
ber system.
3. A method according to claim 2, further comprising

producing an output remainder R; and new quotient Q;=Q;
O+Q_1$BH(O)+ o +Q_k$Bﬂ(O)+ﬂ(1)+. : ﬂ(k)—l)‘

x x * x x
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