US006694509B1
a2 United States Patent (10) Patent No.: US 6,694,509 Bl
Stoval et al. 45) Date of Patent: Feb. 17, 2004
(54) AUTOMATED REGRESSION TESTING OF 5,784,553 A * 7/1998 Kolawa et al. 714/38
WORKSTATION SOFTWARE 6,071,317 A * 6/2000 Nagelcccovvvvvveevnn.., 717/128
6,118,447 A * 9/2000 Harel ...ocoveeveereeveenn.. 717/131
(75) Inventors: William M. Stoval, Mt. Prospect, IL g?gg?gi E * ;gggi Eims et ﬂl-t PR 4?@%2
_ . - 279, 1 * rouwer et al. 1
Eggg David P. Kdwards, Highland, UT 6.349.393 Bl * 2/2002 COX ovovoeooeoeoeon 714/38
6,415,396 B1 * 7/2002 Singh et al. 714/38
: . 6,513,154 B1 * 1/2003 Porterfield 717/101
(73) Assignee: GE Medical Systems Global 6,523,027 Bl * 2/2003 Underwood 707/4
Technology Company LLC, Waukesha, 6,536,036 Bl * 3/2003 Pavelacococoevn...... 717/125
WI (US)
OTHER PUBLICATTONS
(%) Notice: Sub]ect. o any dlSClEllII]GI‘,: the term of this TITLE: Empirical Evaluation of the Textual Differencing
patent is extended or adjusted under 35 Regression Testing Technique, author: Vokolos et al, IEEE
U.S.C. 154(b) by 0 days. 1958 : 5 qHe; ' ’ ’
TITLE: The Use of Regression Methodology for the Com-
(21) Appl. No.: 09/473,869 promise of Confidential Information in Statistical Database,
(22) Filed: Dec. 28, 1999 author: Palley et al, ACM, 1987.*
TITLE: Regression containment through source change 1so-
(51) INt. Gl oo, GO6F 9/44 lation, author: Ness et al, IEEE, Aug_ 19Q7 *
(52) US.CL ..o, 717/124; 717/126; 717/128; A Visual Test Development Environment for GUI Systems,
717/110; 717/113; 707/205; 715/514 Ostrand et al., pp. 82-92.
(58) Field of Search 717/126, 127, + cited by examiner
717/132, 136, 137, 143, 144, 114, 155, Y
163, 124, 128, 133, 156, 109, 113; 714/2, Primary FExaminer—Chameli C. Das
38, 25; 715/203, 516, 514; 707/205 (74) Attorney, Agent, or Firm—Quarles & Brady LLP; Carl
Horton
(56) References Cited

U.S. PATENT DOCUMENTS

5,022,028 A 6/1991 Edmonds et al.
5,218,605 A 6/1993 Low et al.
5,634,002 A 5/1997 Polk et al. 395/183.14
5634098 A * 5/1997 lJanniro et al. 714/38
5,673,387 A 9/1997 Chen et al.
5,694,540 A 12/1997 Humelsine et al.
5,761,408 A * 6/1998 Kolawa et al. 714/38
5,778,169 A 7/1998 Reinhardt
54
SOURCE
CODE
LIBRARY
07

o0

PROGRAM
USER EDITOR

REGRESSION

TEST
SCRIPTS

03

(57) ABSTRACT

A workstation 1ncludes a regression testing program which
tests application programs developed on the workstation
using stored test scripts. A test directory tree 1s maintained
to mirror a source code directory tree, and the test directory
tree 1s employed to select the test scripts to be used in testing
any newly compiled application programs.

13 Claims, 4 Drawing Sheets

08
COMPILER
SOURCE

DIRECTORY

TREE

EXECUTABLE

TEST CODE

DIRECTORY

TREE

REGRESSION
TEST
ENGINE

o4

REGRESSION
TEST
RESULTS

U.S. Patent Feb. 17, 2004 Sheet 1 of 4 US 6,694,509 B1

10 12

20
PROCESSOR

34
22 24 36
GRAPHICS
MEMORY CONTROLLER
26

KEYBOARD & | 32
ETHERNET
CONTROLLER

PCI EIDE

CONTROLLER

28 30

l CD_ROW l DISC
DRIVE DRIVE
FlG. 2

U.S. Patent Feb. 17, 2004 Sheet 2 of 4 US 6,694,509 B1

SOURCE
CODE
LIBRARY 56

COMPILER

SOURCE
DIRECTORY

TREE
EXECUTABLE
TEST CODE

DIRECTORY
TREE

o0

PROGRAM
USER EDITOR

REGRESSION
TEST
ENGINE

REGRESSION

TEST
SCRIPTS

64

REGRESSION
TEST
RESULTS

FIG. 3

U.S. Patent Feb. 17, 2004 Sheet 3 of 4 US 6,694,509 B1

FIG. 4 e

COMPILE
SOURCE

CODE

107 104

CREATE HEADER

FILE N
TEST DIRECTORY

TEST TREE
COMPLETE
?

CREATE DEFAULT
TEST SCRIPT

PRODUCE ERROR YES
MESSAGE
117
DELETE OR
RENAME ORPHAN 114

CREATE
"TESTALL”

ORPHAN

TESTS
?

NO

FILE

END

U.S. Patent Feb. 17, 2004 Sheet 4 of 4 US 6,694,509 B1

d
)
D
-
O
i -
- X
(O
. S
Q0
- g .
4 = S
Lal adoed
= B0 L
et
P
QD
-
=
LS
QL
L
O

O

o
O
(S
) -
00

SRC
pvtk
FIG.

US 6,694,509 B1

1

AUTOMATED REGRESSION TESTING OF
WORKSTATITION SOFTWARE

BACKGROUND OF THE INVENTION

The field of the invention is the testing of workstation
hardware and software using regression testing techniques.

Computer programs used for testing software applications
exist which can receive input data, such as key strokes,
which are recognized by the software application. Upon
receipt of the input data, these computer programs have the
ability to store the input data (into files called test scripts),
and to replay them such that the software application func-
fions as though a user were actually typing the mput data
into the software application. In this way, input data can be
repeatedly fed into the software application, with a user
creating a test script by entering the input data only once.

By using such a computer program, a software application
can be executed using a prepared test script, so as to verily
that the software application performs as expected. This can
be accomplished by comparing previously stored results
with results which were subsequently acquired by replaying
the test script through the software application. The fact that
the software application performs as expected can also be
used as an indication that the hardware on which the
software application runs 1s performing as expected.

Regression testing involves providing a program with
many different tests. The tests provide the program with
different input. These tests exercise the specific functions,
data structures, and features of the program. To perform
regression testing, a computer executes the program a num-
ber of times. Each execution uses a different one of the
regression tests 1n the script as input. The regression test
results indicate which of the tests passed and which failed.

Different programmers modify different parts of the
source code during application program development.
Typically, the programmer compiles the program with just
his/her changes. Before the programmer releases the
changes, the programmer performs a number of tests on the
changes. (The programmer “releases” changes by allowing
others 1n the development team to use the changed source
code.) Ideally, the testing includes running the regression
tests on the newly compiled program. The regression testing
shows whether the program changes cause some of the
regression tests to fail.

One problem with requiring a programmer to run the
regression tests when a change 1s made, 1s that regression
testing may take hours or even days. Regression test script
libraries can be built up over months or years. The infor-
mation about what 1s tested by them can be lost or may not
be updated. Additionally, the volume of tests makes know-
ing which tests test which statements very ditficult. The tests
may be unsorted or unclassified as to which part of the
program they test. Even tests that are understood will
typically test other parts of the program than the target area.
Therefore, it 1s very difficult for a programmer to know
which of the regression tests will test a particular part of the
program.

During the development of a computer system many
application programs are typically created and modified by
one or more programmers over an extended period of time.
After the product is released, maintenance activities become
an 1mportant factor over the life of the product. Studies have
found that more than 50% of development effort 1n the life
cycle of a software system 1s spent in maintenance, and of
that, a large percentage 1s due to testing. Except for the rare

10

15

20

25

30

35

40

45

50

55

60

65

2

event of a major rewrite, changes to a system 1n the
maintenance phase are usually small and are made to correct
problems or incrementally enhance functionally. Therefore,
techniques for selective software retesting can help to reduce
development time and maintenance time.

A test script library, which 1s used to test a software
system, typically consists of many test scripts, each of which
exercises or covers some subset of the entities of the system
under test. A test script must be re-run 1f and only 1f any of
the program entities it covers has changed. Information
relating the test scripts to the various software entities 1n the
computer system greatly facilitate regression testing. Keep-
ing such information up-to-date during the active develop-
ment period and the extended maintenance period of the
product 1s very difficult.

SUMMARY OF THE INVENTION

The present mvention 1s a method and means for main-
taining a library of test scripts for use in regression testing
application programs. More particularly, a test directory tree
1s maintained which 1s a mirror 1image of a source directory
tree that 1s used to compile the executable code for the
application program. The test directory tree indicates the test
scripts which are to be used in regression testing executable
code compiled from corresponding entries 1n the same
directory trees. If no mirror entry exists in the test directory
tree, one 1s automatically created and a corresponding
default test script 1s created and stored in the library.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a perspective view of a workstation which has
been modified to practice the preferred embodiment of the
mvention;

FIG. 2 1s an electrical block diagram of the workstation of
FIG. 1;

FIG. 3 1s a block diagram which illustrates the software
and data structures in the workstation of FIG. 1 used to
create and test application programs for use on the work-
station;

FIG. 4 1s a flow chart of the steps carried out 1n accor-
dance with the preferred embodiment of the invention to
compile and test an application program for use on the
workstation;

FIG. § shows an exemplary source code directory tree;
and

FIG. 6 shows an exemplary test directory tree.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

The preferred embodiment of the invention 1s employed
in a workstation. As shown i FIG. 1 the workstation
includes a mini-tower 10 which houses a processor and
assoclated circuitry, memory, and peripheral interface cir-
cuits. One of the peripheral devices 1s a commercially
available CRT monitor 12 which connects to a graphics
circuit housed 1n the mini-tower 10, and another peripheral
device 1s a keyboard and mouse 14 that connects to a
PClI-based controller 1in the mini-tower 10. An operator may
input data through the keyboard and control the position of
a cursor on the monitor display 12 using the mouse. The
workstation 10 may operate as a stand alone graphic display
system, or 1t may be connected to receive digitized image
data directly from a medical 1imaging system such as an
x-ray system, x-ray C1 system, MRI system, PE'T scanner
system or nuclear medicine system. The workstation 10

US 6,694,509 B1

3

typically contains application programs which perform
image processing functions, such as, filtering the medical
images, transforming the size and orientation of the medical
images and adding textual information to the medical
Images.

Referring particularly to FIG. 2, the workstation mcludes
a processor 20 which executes instructions stored i1n a
memory 22. The processor 20 1s a commercially available
device sold by Sun Microsystems, Inc. under the trademark
UltraSPARC-111. It incorporates on-chip memory and I/O
control to facilitate system integration. It 1s a superscalar
processor implementing the SPARC-V9 64-bit RISC archi-
tecture and executing the instruction set sold commercially
under the trademark “VIS”. It also includes an integral PCI
bus driver which provides a direct interface with a 32-bit
PCI bus 24. It also includes integral memory management
circuitry for handling all external memory 22.

The PCI bus 24 1s an mndustry standard bus that transfers
32-bits of data at 33 MHz between the processor 20 and a
number of peripheral controller cards. These include a PCI
EIDE controller 26 which provides a high-speed transter of
data to and from a CD ROM drive 28 and a disc drive 30.
An Ethernet controller 32 supports data transfer with a
number of peripheral devices, including input from the
keyboard and mouse 14 and communication with Ethernet
ports on medical imaging equipment. And finally, a graphics
controller 34 couples the PCI bus 24 to the CRT monitor 12
through a standard VGA connection 36.

Referring particularly to FIG. 3, a number of programs
and data structures are stored in the disc drive 30 and used
to create, modily and test application programs for use on
the workstation. Such an application program might be, for
example, a program for retrieving a medical 1mage and
filtering the medical image to remove artifacts caused by
patient motion or the like. It can be appreciated that while
only a smgle user 50 1s shown 1n FIG. 3, many users, each
operating separate program editor software 52, may develop
application programs for the workstation.

The source code for application programs developed with
the editor 52 1s stored 1n memory as part of a source code
library 54. Also stored 1n the memory 1s a source code
directory tree 56 which contains information about each
source code program file 1n the library 54. The source code
director tree 56 1denfifies which source code files 1n the
library 54 form a particular program and indicate how those
program {iles are linked to each other. This information 1s
used by a compiler program 38 to retrieve the proper source
code files from the library 54, compile them into executable
program code, and properly link the program code together
to form executable code 60.

The user 50 may direct that a set of regression tests be
performed on the executable code 60 to determine 1if 1t 1s
operating properly. This 1s accomplished by a program
called a regression test engine 62 which may be run each
fime new source code 1s compiled. In the preferred embodi-
ment the regression test engine 62 1s run each evening and
the results are produced as a report 64 that 1s available the
next morning.

The regression test engine 62 accesses stored regression
test scripts 66, and uses those test scripts 66 to verify that the
executable code 60 performs as expected. As 1s well known
in the art, the regression test scripts 66 direct the regression
test engine 62 to operate the executable code 60 and provide
input data to test the operation. The results produced by the
executable code 60 are compared with the results expected
by the regression test script 66, and a pass or fail indication

10

15

20

25

30

35

40

45

50

55

60

65

4

1s produced on the report 64. The report 64 1s thus a list of
the tests performed on the executable code 60 and an
indication whether each test passed or failed.

The management of the regression test script library 66
and the proper selection of the regression test scripts therein
for use with the regression test engine 62 1s the problem
addressed by the present invention. As will be described 1n
more detail below, the solution to this problem employs a
test directory tree 68, which 1s a data structure that is
maintained during the program compilation procedure. It
“mirrors” the source directory tree 56 and 1t indicates to the
regression test engine 62 which test scripts in the library 66
are to be used to test the executable code 60.

Referring particularly to FIG. 4, when source code 1n the
library 54 1s to be compiled a program 1s run as indicated at
process block 100. The source code directory tree 56 1s used
to 1dentify each of the source code files that must be
compiled and linked. As 1llustrated 1n FIG. 5, for example,
a source code file “gvtk” 1s compiled along with two linked
source code files “display” and “graphic”. As explained
above, this compilation and linking process produces
executable code 60.

The test directory tree 68 1s then checked as indicated at
decision block 102. This 1s accomplished by searching the
test directory tree 68 for “test” header files corresponding to
those 1n the compiled source directory tree. As illustrated 1n
FIG. 6, for example, a complete test tree has the header files
“ovtktest”, “displaytest” and “graphictest”. If any of the
corresponding test header files are not found, a new test
header file 1s created as indicated at process block 104. This
test header file 1s given the same name as its corresponding
source code file with the appended text string “test”. A
default test script for this new test header i1s then added as
indicated at 106 to the regression test script library 66. The
default script 1s comprised of a “runTest” portion which 1s a
standardized script for all programs and a “reportTest”
portion which indicates whether or not the test has been
implemented, and if so, whether the test passed or failed. For
automatically generated test files the tests are not performed
and will indicate “not implemented” on the test result report

64.

To maintain the test directory tree 68, a check 1s made at
decision block 108 to determine if any test header files
therein have been orphaned. An “orphaned” file 1s a test file
whose corresponding code file has been removed. This 1s
done by reading each test header {ile 1n the test directory tree
68 and secarching for its corresponding {file 1n the source
directory tree 56. If an orphan is found, an error message 1s
produced as indicated at process block 110 and the user 50
may cither delete the orphan test header file or rename 1t as
indicated at process block 112. In any case, the result 1s a test
directory tree 68 which 1s maintained as a mirror image of
the source directory tree 56.

The final step 1 the compilation process 1s the creation of
a “TESTALL” file as indicated at process block 114. This
testall file 1s used by the regression test engine 62 to
determine which regression test scripts in the library 66 are
to be used 1n testing the newly compiled executable code 60.
It 1s formed by listing the test header files from the test
directory tree 68 which correspond to the source files from
the source directory tree 56 used to compile the program. In
the example depicted in FIGS. 5 and 6, the testall file 1s a list
of the file names” gvtktest; displaytest; and graphictest.

The automatic maintenance of the test tree directory
ensures that test scripts are produced for all source code files
listed 1n the source code directory tree 56. Unused, or

US 6,694,509 B1

S

orphaned, test scripts are i1dentified and the user 1s allowed
to delete or rename them. When regression testing 1s per-
formed on a periodic basis and a number of compilations are
performed between tests, the testall file accumulates the test
scripts that are to be performed for all the compilations.
Duplicate entries 1n the testall file are deleted to avoid
running test scripts more than once.

The 1nvention enables an automatic test system that can
be run periodically during software development. The sys-
tem can operate automatically from start to finish, determin-
ing which test scripts are to be run, running the test scripts,
and generating a report which indicates whether tests failed
or passed.

What 1s claimed 1s:

1. In a workstation used to develop application programs,
the system comprising:

a program editor for enabling a user to create an appli-
cation program;

a source code library for storing the application program;

a source directory tree for storing names of files which
store the source code that collectively form the appli-
cation program;

a test tree directory which stores the names of test files

that correspond to the source code files named 1n the
source directory tree;

a regression test script library for storing test scripts
corresponding to the test files named 1n the test tree
directory;

a regression testing program responsive to test scripts
selected using the test directory tree to perform regres-
sion testing on executable code produced from source
code selected using the source directory tree; and

means for automatically checking file names 1n the source
directory tree and test file names 1n the test directory
tree to determine if there 1s a test file named 1n the test
directory tree corresponding to each file named 1n the
source directory tree.
2. In a workstation used to develop application programs,
the system comprising:

a program editor for enabling a user to create an appli-
cation program;

a source code library for storing the application program;

a source directory tree for storing names of files which
store the source code that collectively form the appli-
cation program;

a test tree directory which stores the names of test files

that correspond to the source code files named 1n the
source directory tree;

a regression test script library for storing test scripts
corresponding to the test files named in the test tree
directory;

a regression testing program responsive to test scripts
selected using the test directory tree to perform regres-
sion testing on executable code produced from source
code selected using the source directory tree;

means for creating a new regression test script for storage
in the regression test script library for each file 1 the
source directory tree which does not have a correspond-
ing test file named 1n the test directory tree; and

means for creating a new test file name 1n the test tree
directory which corresponds to the new regression test
script.

3. The workstation as recited in claim 2 in which the new

regression test script 1s a default test script.

10

15

20

25

30

35

40

45

50

55

60

65

6

4. The workstation as recited in claim 2 1n which the new
test file name mncludes a text string which 1s the same as a
text string 1n the corresponding file name 1n the source
directory tree.

5. In a workstation used to develop application programs,
the system comprising:

a program editor for enabling a user to create an appli-

cation program;

a source code library for storing the application program;

a source directory tree for storing names of files which
store the source code that collectively form the appli-
cation program;

a test tree directory which stores the names of test files
that correspond to the source code files named 1n the
source directory tree;

a regression test script library for storing test scripts
corresponding to the test files named 1n the test tree
directory;

a regression testing program responsive to test scripts
selected using the test directory tree to perform regres-
sion testing on executable code produced from source
code selected using the source directory tree; and

means for checking test file names 1n the test directory
tree to i1dentify orphan test files which do not have
corresponding file names 1n the source directory tree.

6. The workstation as recited 1in claim § which further
includes means for indicating to a user that an orphan test
file has been found 1n the test directory tree.

7. The workstation as recited in claim 6 which further
includes means for deleting orphan test files from the test
directory tree and the corresponding test scripts from the
regression test script library.

8. The workstation as recited in claim 6 which further
includes means for changing the name of orphaned test files
in the test tree directory.

9. A method for producing and testing programs on a
programmable system, the steps comprising:

a) creating source code programs using an editor;

b)storing the source code programs in a source code
library;
¢) storing source code file names in a source directory tree

which correspond with source code programs in the
source code library;

d) producing a test tree directory which mirrors the source
directory tree and includes test file names which cor-
respond with the source code file names;

¢) producing a regression test script library for storing test
scripts corresponding to the test file names in the test
tree directory;

f) testing a program produced from source code programs
corresponding to selected source code file names in the
source code directory tree using test scripts from the
test script library corresponding to the test files that
have test file names corresponding with the selected
source code file names;

g) searching for orphan test file names in the test tree
directory which do not have corresponding source code
file names 1n the source directory tree; and

h) visually indicating the presence of an orphan test file.
10. The method as recited 1in claim 9 which includes:

inputting directions from a user indicating that the orphan
test file 1s to either be deleted or changed 1n name.
11. The method of claim 9, further comprising automati-
cally updating the test tree directory whenever a change to
the source directory tree 1s made.

US 6,694,509 B1

7

12. A method for producing and testing programs on a
programmable system, the steps comprising;

a) creating source code programs using an editor;

b) storing the source code programs in a source code
library;

¢) storing source code file names in a source directory tree
which correspond with source code programs in the
source code library;

d) producing a test tree directory which mirrors the source
directory tree and includes test file names which cor-
respond with the source code file names;

¢) producing a regression test script library for storing test
scripts corresponding to the test file names 1n the test
tree directory; and

f) testing a program produced from source code programs
corresponding to selected source code file names in the

10

3

source code directory tree using test scripts from the
test script library corresponding to the test files that
have test file names corresponding with the selected
source code file names; and

g) updating the test tree directory, wherein the updating of
the test tree directory includes (1) creating a new
regression test script for storage in the regression test
script library for each file in the source directory tree
which does not have a corresponding test file named 1n
the test directory tree, and (i1) creating a new test file
name 1n the test tree directory which corresponds to the
new regression test script.

13. The method of claim 12, further comprising generat-

15 1mg a report as to whether the program passed the tests.

	Front Page
	Drawings
	Specification
	Claims

