US00669437sB1
a2 United States Patent (10) Patent No.: US 6,694,378 Bl
Lortz 45) Date of Patent: Feb. 17, 2004
(54) EXTENSION OF DEVICE DRIVER OBJECTS OTHER PUBLICATIONS
(75) Inventor: Victor B. Lortz, Beaverton, OR (US) Bryan Walters, Mastering OLE 2 1995, pp. 15-17, 22-24

and 169-170.%

(73) Assignee: Intel Corporation, Santa Clara, CA * cited by examiner

(US)
Primary Fxaminer—John Follansbee
(*) Notice: Subject to any disclaimer, the term of this Assistant Examiner—The Thanh Ho
patent 1s extended or adjusted under 35 (74) Attorney, Agent, or Firm—Schwegman, Lundberg,
U.S.C. 154(b) by 0 days. Woessner & Kluth, PA.
(21) Appl. No.: 09/218,919 (57) ABSTRACT
(22) Filed: Dec. 22, 1998 Extending 4r1ver objects, SllC'h as d‘evwe dr{ver ob].ects. In
onc embodiment, a system including a driver object, an
(51) Int. CL7 .o, GO6F 13/10 auto-aggregator object, and a driver extension object. The
(52) US.Cl oo, 709/321; 709/328 driver object has a set of at least one standard mterface. The
(58) Field of Searchccccooveveeni... 709/315, 316, Aauto-aggregator object 1s aggregated to the driver object by

709/321, 327, 331, 332, 328 a blind aggregation mechanism. The driver extension object

1s aggregated to the driver object by an auto-aggregation

(56) References Cited mechanism 1mnvoked by the auto-aggregator object to provide
a custom 1nterface for the driver object. In another

U.S. PATENT DOCUMENTS embodiment, an aggregation map 1s used to map the driver

5970252 A * 10/1999 Buxton et al. 717/166 ~ ©bject to the driver extension object.
6.108.661 A * 872000 Caron et al. ...o.oooo... 707/102
6.243.764 Bl * 6/2001 Leach et al. .oooovovv.... 709/316 15 Claims, 2 Drawing Sheets

CLIENT APPLICATION
108 -~ [UNKNOWN

We 1om

() ISTANDARDINTERFACE AW
gg.IJ\EECRT () IUNKNUWN JAV/

AGGREGATION WAP
W -

AGGREGATOR

(INTERFACE)->MYCLSID

U.S. Patent Feb. 17, 2004 Sheet 1 of 2 US 6,694,378 Bl

100

CLENT APPLICATION
\08 () IUNKNOWN

02 yon

(J ISTANDARDINTERFACE 10
DRIVER 10
OBJECT () {UNKNOWN
104 AGGREGATION MAP
ATO-
AGGREGATOR
(INTERFACE)->MYCLSID

in
100
_ » N
108 <O IUNKNOWN CLIENT APPLICATION
192 08 ‘
DRIVER (Y ISTANDARDINTERFACE \10
OBJECT CS IUNKNOWN |
DRIVER 202 AUTO-
AGGREGATOR
EXTENSION (3 ICUSTOMINTERFACE
104

20

V7%

U.S. Patent Feb. 17, 2004 Sheet 2 of 2 US 6,694,378 Bl

400

INSTANTIATE
0BJECT

402

QUERY
HOR
INFERFACES

404

BLIND
AGGREGATE

AUTO-AGGREGAIOR
OBJECT

415

AUTO
AGGREGATE

EXTENSION
OBJLCT

4038

RETURN
INTERFACES

A

30 302

300

RIA 304

fip o

US 6,694,375 Bl

1
EXTENSION OF DEVICE DRIVER OBJECTS

FIELD OF THE INVENTION

This 1nvention relates generally to device driver software
components (objects), and more particularly to extending
such objects with new capabilities.

BACKGROUND OF THE INVENTION

Operating system and device driver vendors currently
provide standard device drivers enabling application pro-
orams to control the operation of computer peripherals.
However, the software components, or objects, comprising
the driver usually have limited extensibility. For example, a
driver object may only be able to expose to other objects and
application programs a standard predefined interface.

Object architectures such as Microsoft Corp.’s Compo-
nent Object Model (COM) sometimes provide a mechanism
by which these objects can be extended with custom inter-
faces. However, this usually entails modifying the original
driver object 1tself, so that it knows to expose a desired
custom 1nterface. Thus, it 1s generally not possible for third
parties to add additional custom software interfaces for a
driver without modifying the driver’s code in some way.

Thus, clients wishing to use custom interfaces for a
particular device that are not part of the original driver or its
framework must have some ad hoc mechanism to find
objects implementing those interfaces for the desired device.
For these and other reasons, there 1s a need for the present
invention.

SUMMARY OF THE INVENTION

The mvention provides for extending driver objects. In
one embodiment, a system includes a driver object, an
auto-aggregator object, and a driver extension object. The
driver object has a set of at least one standard interface. The
auto-ageregator object 1s aggregated to the driver object by
a blind aggregation mechanism. The driver extension object
1s aggregated to the driver object by an auto-aggregation
mechanism 1mnvoked by the auto-aggregator object to provide
a custom interface for the driver object. In another
embodiment, an aggregation map 1s used to map an interface
identifier to a driver extension class.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 and FIG. 2 show block diagrams of a system
according to one embodiment of the 1nvention;

FIG. 3 shows a flowchart of a method according to an
embodiment of the invention; and,

FIG. 4 shows a diagram of a computer in conjunction with
which embodiments of the mmvention may be practiced.

DETAILED DESCRIPTION

In the following detailed description of exemplary
embodiments of the i1nvention, reference 1s made to the
accompanying drawings which form a part hereof, and 1n
which 1s shown by way of illustration specific exemplary
embodiments in which the invention may be practiced.
These embodiments are described in sufficient detail to
enable those skilled in the art to practice the invention, and
it 15 to be understood that other embodiments may be utilized
and that logical, mechanical, electrical and other changes
may be made without departing from the spirit or scope of
the present invention. The following detailed description is,

10

15

20

25

30

35

40

45

50

55

60

65

2

therefore, not to be taken 1n a limiting sense, and the scope
of the present invention i1s defined only by the appended
claims.

Some portions of the detailed descriptions which follow
are presented 1n terms of algorithms and symbolic repre-
sentations of operations on data within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to
most effectively convey the substance of their work to others

skilled in the art. An algorithm is here, and generally,
conceived to be a self-consistent sequence of steps leading
to a desired result. The steps are those requiring physical
manipulations of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or
magnetic signals capable of being stored, transferred,
combined, compared, and otherwise manipulated. It has
proven convenient at times, principally for reasons of com-
mon usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers, or the like. It should be
borne 1n mind, however, that all of these and similar terms
are to be associated with the appropriate physical quantities
and are merely convenient labels applied to these quantities.
Unless specifically stated otherwise as apparent from the
following discussions, throughout this document, terms such
as “processing’ or “computing’ or “calculating” or “deter-
mining~ or “displaying” or the like, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the com-
puter system’s registers and memories mto other data
similarly represented as physical quantities within the com-
puter system memories or registers or other such informa-
fion storage, transmission or display devices.

Referring first to FIGS. 1 and 2, a system according to an
embodiment of the invention 1s shown. In FIG. 1, a diagram
of a client application 100 having a driver object 102 and an
auto-aggregator object 104 1s shown, before a driver exten-
sion object 1s aggregated to the driver object 102. The client
application 1n one embodiment 1s a computer program
including a collection of machine-executable instructions
executable on a processor and organized into different
software components, or, objects, as known within the art.
Each of the objects 102 and 104 1s 1n one embodiment an
object 1n accordance with the Component Object Model
(COM) architecture provided by Microsoft Corp. for ver-
sions of 1ts Microsoit Windows operating system; the inven-
tion 1s not so limited, however.

The driver object 102 1s an object 1n one embodiment that
relates to device-specific software used to provide an Appli-
cation Programming Interface (API) or a control interface
for a device. The 1invention 1s not so limited, however. For
example, 1n other embodiments of the mnvention, the term
“driver object” 1s inclusive of any arbitrary object.

The driver object 102 mcludes a standard interface 106,
which mn COM parlance 1s called “IStandardInterface.” This
1s an 1nterface that provides the ability for other objects to
communicate with the driver object 102. The driver object
102 differs from objects known 1n the prior art 1n that 1t 1s
modified to blind aggregate the auto-aggregator object 104.
Blind aggregation 1s a term known 1n the art, and 1s provided
by mechanisms within architectures such as COM. Blind
aggregations means that the driver 102 knowingly aggre-
gates the auto-ageregator object 104 component, and blindly
forwards all query interface requests for unknown interfaces
thereto. The term unknown interfaces refers to iterfaces not
known by the driver object 102—that 1s, not equal to its
standard interfaces 106.

US 6,694,375 Bl

3

Thus, any interface request of the driver object 102 that
does not match one of the standard interfaces 106 1s for-
warded to the auto-aggregator object 104. In other words,
the unknown interfaces are passed along to the auto-
ageregator 104, via a Querylnterface call on the unknown

interface 110 of the auto-aggregator object 104 (known in
COM as “IUnknown”).

Instantiation of the driver object 102 thus yields the object
102 with the standard interface 106 and the unknown
interface 108. When a query 1s made of an interface not part
of the standard interface 106, the auto-aggregator object 104
1s nstantiated and blind-aggregated to the driver object 102.
The auto-aggregator object 104 then 1s asked for the
unknown 1nterfaces.

To provide any unknown interfaces, the auto-aggregator
object 104 instanfiates and auto-aggregates a driver exten-
sion object (not shown in FIG. 1) to the driver object 102.
To accomplish this, the auto-ageregator object 104 looks in
an aggregation map 112, which maps a set of interface
identifiers to a corresponding set of driver extension classes,
such that an object of this class can be instantiated. The
driver extension classes can be identifiable by a CLSID,
GUID, Moniker, or ProgID, as known within the art. The
invention 1s not so limited, however; any interface identifier
can be used. The map 112 may be a table stored in the
memory of a computer, although the mvention 1s not so
limited. In one embodiment, information as to where the
class for this object resides 1s stored 1n a Registry file, as
known within the art. The instantiated driver extension
object then provides a custom 1nterface that 1s responsive to

the 1nterface query previously unknown by the driver object
102.

The result of the aggregation of a driver extension object
to the driver object 1s shown 1n FIG. 2. The driver object 102
still 1implements the standard interfaces 106, and 1t still
passes unknown interface queries to the auto-aggregator
object 104. However, a driver extension object 200 has now
been auto-aggregated by the auto-ageregator object 104 to
the driver object 102.

The driver extension object 200 has a custom interface
202 that provides the 1nterface that was previously requested
of but unknown to the driver object 102. In COM parlance,

the custom interface 202 1s known as “ICustomlInterface”.

The auto-aggregator 104 1s able to auto-aggregate the
driver extension object 200 to the driver object 102 via an
auto-ageregation mechanism, as 1s known within the art and
as present in architectures such as COM. (In another
embodiment, the auto-aggregator caches a pointer to the
ageregated custom interface and returns that cached pointer
in response to subsequent requests for the same custom
interface.) The auto-aggregator object queries the newly
created driver extension object for the desired interface and
returns the result as 1ts own Querylnterface return value, 1n
one embodiment of the mvention. Auto-aggregation refers to
the ability to aggregate one object with an already instanti-
ated object. Note that although only one driver extension
object 200 1s shown 1n FIG. 2, the mmvention 1s not so limited.
Insofar as other unknown interface queries are made to the
driver 102 specifying interfaces that have counterparts in the
aggregation map (not shown in FIG. 2), other driver exten-
sion objects may also be aggregated to the driver object 102.

As has been described 1n relation to FIG. 1 and FIG. 2, at
least some embodiments of the invention provide advan-
tages over the prior art. For example, a preexisting driver
object only needs to have 1ts specific code modified 1nsofar
as to pass along unknown interface queries to an auto-

10

15

20

25

30

35

40

45

50

55

60

65

4

aggregator object that 1t instantiates. The object does not
necessarily have to be modified 1n any other way. Once such
a driver object has been so modified, however, different
interfaces can be easily added to the driver object via new
driver extension objects. To add the interfaces, an entry is
only needed to be added into the aggregation map mapping
the new interface and the driver object to the class of the new
driver extension object. When this interface 1s then queried
for, the auto-aggregator object instantiates the new driver
extension object providing the interface and auto-aggregates

it to the driver object.

Referring next to FIG. 3, a method 1n accordance with an
embodiment of the invention 1s shown. The method 1is
desirably realized at least 1n part as one or more programs
running on a computer—that 1s, as a program executed from
a computer-readable medium such as a memory by a pro-
cessor of a computer. The programs are desirably storable on
a computer (or machine)readable medium such as a floppy
disk or a CD-ROM, for distribution and installation and
execution on another computer. Each program desirably
includes machine-executable 1nstructions, as known within
the art.

In 400, a driver object, such as has been described, 1s
instantiated. In 402, a query 1s made to the driver object for
all of 1ts interfaces, including any standard interfaces and
any nonstandard or unknown interfaces. To determine the
non-standard, unknown interfaces, the driver object in 404
instantiates an auto-aggregator object and blind aggregates
the object to 1tself, as has been described. In turn, the driver
object 1n 406 looks up all the mterfaces for the driver object
in a table or a map, and instantiates the driver extension
objects found corresponding to the driver object 1n the table.
The driver object 1n 406 also auto-aggregates these driver
objects to the driver object. The driver extension objects
have custom interfaces for the driver object, 1in effect extend-
ing the standard interfaces of the driver object. Finally, 1n
408, 1n response to the query of 402, the auto-aggregator
queries the driver extension object for the originally
requested non-standard interface and returns that pointer to
the original caller.

Referring finally to FIG. 4, a diagram of a computer in
conjunction with which embodiments of the invention may
be practiced 1s shown. The computer comprises bus 300,
keyboard interface 301, external memory 302, mass storage
device 303 and processor 304. Bus 300 can be a single bus
or a combination of multiple buses. Bus 300 can also
comprise combinations of any buses. Bus 300 provides
communication links between components 1n the computer.
Keyboard controller 301 can be a dedicated device or can
reside 1n another device such as a bus controller or other
controller. Keyboard controller 301 allows coupling of a
keyboard to the computer system and transmits signals from
a keyboard to the computer system. External memory 302
can comprise a dynamic random access memory (DRAM)
device, a static random access memory (SRAM) device, or
other memory devices. External memory 302 stores infor-
mation from mass storage device 303 and processor 304 for
use by processor 304. Mass storage device 303 can be a hard
disk drive, a floppy disk drive, a CD-ROM device, or a flash
memory device. Mass storage device 304 provides informa-
tion to external memory 302. Processor 304 can be a
microprocessor and may be capable of decoding and execut-
ing a computer program such as the client application
program described above, or an operating system with
instructions from multiple 1nstruction sets.

Extending driver objects has been described. Although
specific embodiments have been 1illustrated and described

US 6,694,375 Bl

S

herein, 1t will be appreciated by those of ordinary skill 1n the
art that any arrangement which 1s calculated to achieve the
same purpose may be substituted for the specific embodi-
ments shown. For example, while one embodiment has been
described with respect to objects in accordance with the
COM architecture; the mnvention 1s not so limited. This
application 1s intended to cover any adaptations or variations
of the present invention. For example, the invention 1is
amenable to applications under other object models and
architectures. Therefore, it 1s manifestly intended that this
invention be limited only by the following claims and
equivalents thereof.

I claim:

1. A system comprising:

a driver object having a set of at least one standard
interface;

an auto-aggregator object aggregated to the driver object
by a blind aggregation mechanism; and,

a driver extension object ageregated to the driver object
by an auto-aggregation mechanism invoked by the
auto-aggregator object to provide a custom interface for
the driver object.

2. The system of claim 1, further comprising an aggre-
gation map to map an interface 1dentifier of the driver object
to the driver extension object.

3. The system of claim 2, wherein the interface identifier
1s selected from the group essentially consisting of: CLSID,
GUID, Moniker, and ProgID.

4. The system of claim 1, wherein each of the driver
object, the auto-aggregator object, and the driver extension
object comprises a Component Object Model (COM) object.

5. The system of claim 4, wherein the blind aggregation
mechanism 1s provided by the Component Object Model
(COM).

6. The system of claim 4, wherein the auto-aggregation
mechanism 1s provided by the Component Object Model
(COM).

7. A method comprising:

querying a driver object for a non-standard interface;

blind ageregating an auto-aggregator object to the driver
object by a blind aggregation mechanism; and,

5

10

15

20

25

30

35

40

6

auto aggregating a driver extension object to the driver
object by an auto-aggregation mechanism invoked by
the auto-aggregator object to provide a custom inter-
face for the driver object.

8. The method of claim 7, wherein blind aggregating the
auto-aggregator object comprises first instantiating the auto-
aggregator object.

9. The method of claim 7, wherein auto aggregating the
driver extension object comprises looking up the driver
extension object by the auto-aggregator object 1n a table for
the driver object.

10. The method of claim 7, wherein auto ageregating the
driver extension object comprises first instantiating the
driver extension object.

11. The method of claim 7, wherein each of the driver
object, the auto-aggregator object, and the driver extension
object comprises a Component Object Model (COM) object.

12. A machine-readable medium storing processor
instructions for execution by a processor to perform a
method comprising:

querying a driver object for interfaces of the driver object;
and,

receiving the interfaces of the driver object comprising:
standard interfaces of the driver object;
custom 1nterfaces for the driver object as returned by a
driver extension object auto-aggregated to the driver
object by an auto-aggregator object blind ageregated
to the driver object.

13. The machine-readable medium of claim 12, wherein
the method also initially comprises instantiating the driver
object.

14. The machine-readable medium of claim 12, wherein

cach of the driver object, the auto-aggregator object, and the

driver extension object comprises a Component Object
Model (COM) object.
15. The machine-readable medium of claim 12, wherein

the medium 1s selected from the group essentially consisting
of: a floppy disk, a CD-ROM.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

