US006675353B1

US 6,675,353 B1
Jan. 6, 2004

(12) United States Patent

Friedman

(10) Patent No.:
45) Date of Patent:

(54) METHODS AND SYSTEMS FOR
GENERATING XML DOCUMENTS

Junichi Suzuki, ‘Managing the software design documents

with XML’, Annual ACM Conference on Systems Docu-

mentation, ACM Press, 1998, pp. 127-136.%

(75) Inventor: Gregory S. Friedman, Redmond, WA

(US) * cited by examiner

(73) Assignee: Microsoft Corporation, Redmond, WA

(US) Primary Fxaminer—Stephen S. Hong

: . : Assistant Examiner—Matthew Ludwig
Subject to any disclaimer, the term of this _
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm—L.ee & Hayes, PLLC

U.S.C. 154(b) by 0 days. (57) ABSTRACT

(*) Notice:

(21) Appl. No.: 09/360,766 Methods and systems are described for generating an XML

document that do not require a hierarchical tree structure to

(22) Filed: Jul. 26, 1999 be built and stored 1n memory 1n order for the document to
(51) Int. CL7 oo GO6F 13/00: GO6F 15/00 be built. In one embodiment, a request object 1s provided and
(52) US.CL ..ocoevven 715/513; 715/500.1; 715/506: 1s used to receive information from a client that desires to
709/246; 709/226 generate an XML document and to organize the information

(58) Field of Searchcccooooocere.. 707/513, 506; 1Et° an XMmeC“me dm-hlﬂf‘matfm 1Sdﬁf5t accumulated by
_ ’ ’ the request object and then transformed 1nto an appropriate

7151513, 500.1, 506; 7097246, 226 XML document. The information that 1s accumulated by the

(56) References Cited request object includes the namespaces or namespace values
that are to be incorporated into the request. All of the

U.S. PATENT DOCUMENTS namespaces or namespace values are collected and orga-

5581760 A * 12/1996 Atkinson et al. 717/108 nized mto a data structure. Prefixes are assigned to and

stored with each namespace value that 1s placed 1n the data

6,012,098 A * 1/2000 Bayeh et al. 709/246

6,240,429 B1 * 5/2001 Thornton et al. 707/500 structure. Some of the namespace values can be reserved and
6,249,844 Bl * 6/2001 Schloss et al. 711/122 have predefined or reserved prefixes that serve to support
6,463,440 B1 * 10/2002 Hind et al. 707/102 legacy servers. Anamespace arbiter object can be utilized by

the request object to manage and oversee maintenance of the
data structure that contains the namespace values and their
prefixes. Additional objects are provided and manage asso-
clations of the namespace prefixes, properties and, 1n some

OTHER PUBLICAITONS

World Wide Web Consortium Working Draft, Namespaces
in XML, May 18, 1998, pp. 1-3.*

E. James Whitehead, Jr., World Wide Web Daistributed
Authoring and Versioning [WebDAV]: An Introduction,
1997, pp. 3-8.%

John Cowan, ‘John Cowan’s XML Index’, Archived 1998,
pp. 1-0.7

Tim Bray, Namespaces in XML, World Wide Web Consor-
tium, Jan. 14, 1999, pp. 1-13.*

embodiments, property values. An XML document 1s gen-
crated using the data structures that hold the namespace
name values, their prefixes, properties, and property values
without having to build and store a hierarchical tree structure
to represent the XML document.

67 Claims, 11 Drawing Sheets

100 -

- Create Request Object]

¥ -
102 a{ Generate request to add J

namespace

-, R —

104 —., ‘
* Send request to Request Object]

106 —_ {

Add namespace veg

-|-

PR L A
108 Generate request regarding
namespace property for specilied
namespace

¥

110 -
\< Send requast to Request Object J e

R
- .

e

.'___._-..-" .
" More .

W

R

112 —

M- e

More

]

116 —._ . ..
~ Generate XML request body]

U.S. Patent Jan. 6, 2004 Sheet 1 of 11 US 6,675,353 Bl

trans:orders

trans:order

dsig:digital-
signature

Gns:sold-to

trans:sold-on

person:.name "1997-03-17" "1234567890"

)

cg. {

U.S. Patent Jan. 6, 2004 Sheet 2 of 11 US 6,675,353 Bl

Application ; O . Request Object

XML Document

1 v91 291 09 ~ 8S
swelboid Emoﬁmxl — e1eq I/,mw_:nos_ “swesboid LwaysAg
co__mg_&ﬁf ﬁn J L] weboid oyl0 | uoneonddy | Bugesado

TR = I .
BLL ™ =S
— ﬂ HIOMISN — 25
= Baly OPIAM WSPOW

US 6,675,353 Bl

[. m wm W . m = W T
- - P — - - a - " - - -_— e =™ = -
- - - .. - - B -

Sheet 3 of 11

Jan. 6, 2004

-_.:::: o
| h b9l
T el , ejeq wesboid)
| 17451 T g1 — =
(” 29} sa|npo
081 80B}I9JU| weibold Jeyio 'n
9oBaU| 3SNON
NIOMIaN HOMIBN \Emonmwx\ k
paly |B307 < —< .
A /1 0Ll m
SNy / B _..
m oL — o
” 091 sweiboid
m uoneolddy ,
8G 1
_m waysAg bunesado
g - (vt
" " . SOIg _
. _“ o) |
! — Kol waisAs

Nt\

U.S. Patent

U.S. Patent Jan. 6, 2004 Sheet 4 of 11 US 6,675,353 Bl

10

Client
len >

-; Application I
| / 14 /_ .0

| | Transport Object rFsemer

TCP/ Response data stream
Parser P
Request (XML document)

18—/ 16/

| /-
S~

U.S. Patent Jan. 6, 2004 Sheet 5 of 11 US 6,675,353 Bl

100 g I
\ Create Request Object

.
h 4

102 SN Generate request to add
namespace

h 4

104]]
N\ Send request to Request Object

h 4

106 i]
N Add namespace Yes

* g
h 4

108 ~. Generate request regarding
namespace property for specified

namespace

110 —_ [g
N Send request to Request Object I Yes

112

More
amespaces’s

No

114

More
roperties?

No

v

110 .
N\ Generate XML request body |

U.S. Patent Jan. 6, 2004 Sheet 6 of 11 US 6,675,353 Bl

200
\f
Request Object
202
(" /-
; Namespace Arbiter
Information for XML Request P XML Request Body
Body
204 —\

206 — Allocated Namespaces — 208 210 212
N par=> e e
Moniker Expanded Prefix Use status

namespace
ns1 FOO T X
ns2 DOO 2 X

Zig. 6

U.S. Patent Jan. 6, 2004 Sheet 7 of 11 US 6,675,353 Bl

200 BN
g

Request Object 202

-

nf F o for XML R ’\ Namespace Arbiter
nformation for eques ‘
~ Body / ‘ XML Request Body

213
/

Property Collection
Object

N _
- \ 214
Allocated Properties (prefix: property)
"1 :-category" | l

" 1:subject’

H " 2.category”

204 \‘ 1 _"_Q:isread"

Y
2006 \Allocated Namespaces/— 208 /— 210 s 212
Moniker n?;ﬁzgsaese Prefix Use status

ns1 FOO R X
ns2 DOO 2 |) _x

U.S. Patent Jan. 6, 2004 Sheet 8 of 11 US 6,675,353 Bl

200
BN

'Request Object
202
/_

, \ Namespace Arbiter
Information for XML Reque? \ XML Request Body

Body

216
/

Add/Remove Property
Object

218

222 Add Value 224
_\ /’

Prefix: property Value

" 2.1sread” read

e p

Remove Value

222
N Prefix: property

204 \
h 4
2006 —\Allocated Namespaces/' 208 e 210 s 212
Moniker Expanded Prefix Use status
namespace
ns1 .- FOO R X
ns2 DOO 2 X

U.S. Patent

\

A
RESERVED

4

204
N\

Jan. 6, 2004 Sheet 9 of 11

US 6,675,353 Bl

200 Allocated Namespaces 208 210 212
~& paces - e
Moniker EXpande Prefix Use status

namespace
1 DAV D T
hitp://
7 schemas.microsoft.com/ 1 F
hotmail
3 urn:schemas:httpmail; him F
4 urn;schemas:mailheader: m F
5 urn:schemas:contacts: C F
9 FOO] X
4 DOO 2 X
3

U.S. Patent Jan. 6, 2004 Sheet 10 of 11 US 6,675,353 Bl

300 — [
N Emit XML header I

302 —_ |)
™\ Call namespace arbiter to emit
namespace declarations

>

304

306
AN

- Emit namespace using the form
Yes—m :
"xmins:[prefix]=[namespace]

Reserved and specified
namespace?

Yes

No

308 ™~ h

" Emit namespace using the form
"xmins:[prefix]=[namespace]

310
N

Feq. (O

More
namespaces?

No

v

312 f
N Emit "><D:prop>" I

) 4

314 i I
N\ Process property requests

U.S. Patent Jan. 6, 2004 Sheet 11 of 11 US 6,675,353 Bl

314
N\
(310
’ Emit ll<ll
\ 4
! 318

Emit property name in the form
"[namespace prefix]:[property name]"”

v

Yes (320
Emit "/>"

322

More properties?

NO

v

324
Emit "</D:prop></D:propfind>"

US 6,675,353 Bl

1

METHODS AND SYSTEMS FOR
GENERATING XML DOCUMENTS

TECHNICAL FIELD

This invention relates to methods and systems for gener-
ating Extensible Markup Language (XML) documents.
More particularly, the invention concerns generating XML
documents without building and saving 1n memory a hier-
archical tree structure that represents the XML document.

BACKGROUND

Extensible Markup Language (XML) is a meta-markup
language that provides a format for describing structured
data. XML 1s similar to HTML 1n that 1t 1s a tag-based
language. By virtue of its tag-based nature, XML defines a
strict tree structure or hierarchy. XML 1s a derivative of
Standard Generalized Markup Language (SGML) that pro-
vides a uniform method for describing and exchanging
structured data 1n an open, text-based format. XML utilizes
the concepts of elements and namespaces. Compared to
HTML, which 1s a display-oriented markup language, XML
1s a general purpose language for representing structured
data without including information that describes how to
format the data for display.

XML “elements” are structural constructs that consist of
a start tag, an end or close tag, and the information or content
that 1s contained between the tags. A “start tag” 1s formatted
as “<tagname>"" and an “end tag” 1s formatted as
“</tagname>"". In an XML document, start and end tags can
be nested within other start and end tags. All elements that
occur within a particular element must have their start and
end tags occur before the end tag of that particular element.
This defines a strict tree-like structure. Each element forms
a node 1n this tree, and potentially has “child” or “branch”™
nodes. The child nodes represent any XML elements that
occur between the start and end tags of the “parent” node.

XML accommodates an infinite number of database sche-
mas. Within each schema, a “dictionary” of element names
1s defined. The dictionary of element names defined by a
schema 1s referred to as a “namespace.” Within an XML
document, element names are qualified by namespace 1den-
fifiers. When qualified by a namespace identifier, a tag name
appears 1n the form “|namespace |;[tagname |[’. This model
cnables the same element name to appear 1 multiple
schemas, or namespaces, and for instances of these duplicate
clement names to appear 1n the same XML document
without colliding. Start tags can declare an arbitrary number
of “attributes” which declare “property values” associated
with the element being declared. Attributes are declared
within the start tag using the form “<[tagname] [attributel |,
[attribute2]. . . , [attributeN]>", where an attribute1 through
attributeN are declarations of an arbitrary number of tag
attributes. Each attribute declaration 1s of the form
“[attributeName |=[attributeValue |’ where each attribute is
identified by a unique name followed by an “=" character,

followed by the value of the attribute.

Within an XML document, namespace declarations occur
as attributes of start tags. Namespace declarations are of the
form “xmlns:|prefix|=[uri]’. A namespace declaration indi-
cates that the XML document contains element names that
are defined within a specified namespace or schema. Prefix
1s an arbitrary designation that will be used later 1n the XML
document as an indication that an element name 1s a member
of the namespace declared by ur1. The prefix 1s valid only
within the context of the specific XML document. “Ur1” or

10

15

20

25

30

35

40

45

50

55

60

65

2

umversal resource indicator 1s either a path to a document
describing a specific namespace or schema or a globally
unique 1dentifier of a specific namespace or schema. Uri 1s
valid across all XML documents. Namespace declarations
are “inherited”, which means that a namespace declaration
applies to the element 1n which i1t was declared as well as to
all elements contained within that element.

Namespace mheritance within an XML document allows
non-qualified names to use “default” namespaces. Default
namespaces are explicitly declared as attributes of start tags.
Default namespace declarations are of the form “xmlns=
luri]”. Note that the declaration of a default namespace is
equivalent to the declaration of a non-default namespace but
the prefix 1s omitted. A namespace specification within an
XML document 1s said to have a “scope” which includes all
child nodes beneath the namespace specification.

One exemplary usage of XML 1s the exchange of data
between different entities, such as client and server
computers, 1n the form of requests and responses. A client
might generate a request for information or a request for a
certain server action, and a server might generate a response
to the client that contains the information or confirms
whether the certain action has been performed. The contents
of these requests and responses are “XML documents”,
which are sequences of characters that comply with the
specification of XML. In many cases, the process of gener-
ating these XML documents involves the building, in
memory, of a hierarchical tree structure. Once the hierar-
chical tree structure 1s built, 1n 1ts entirety, the actual XML
document 1n proper syntactic form can then be assembled.
Consider the following exemplary XML code:

--<trans:orders
xmlns:person="http://www.schemas.org/people”
xmlns:dsig= “http://dsig.org”
xmlns:trans="http://www.schemas.org/transactions” >
<trans:order>
<trans:sold-to>
<person:name:
<person:last-name>lLayman</person:last-name>
<person:first-name>Andrew</person:first-name>
</person:name:
</trans:sold-to>
<trans:sold-on>1997-03-1"7<«/trans:sold-on>
<dsig:digital-signature>1234567890</ds1g:digital-
signature>
</trans:order>
</trans:orders>

This code includes three XML namespace declarations
that are each designated with “xmlns”. The declarations
include a prefix, e.g. “person”, “dsig”, and “trans”
respectively, and the expanded namespace to which each
prefix refers, e.g. “http://www.schemas.org/people”, “http://
dsig.org”, and “http://www.schemas.org/transactions”
respectively. This code tells any reader that i1f an element
name begins with “dsig:” its meaning 1s defined by whoever
owns the “http://www.dsig.org” namespace. Similarly, ele-
ments beginning with the: “person:” prefix have meanings
defined by the “http://www.schemas.org/people” namespace
and elements beginning with the “trans” prefix have mean-
ings defined by the “http://www.schemas.org/transactions”
namespace. It 1s important to note that another XML docu-
ment that incorporated elements from any of the namespaces
included 1n this sample might declare prefixes that are
different from those used 1n this example. As noted earlier,
prefixes are arbitrarily defined by the document author and
have meaning only within the context of the specific element
of the specific document 1in which they are declared.

US 6,675,353 Bl

3

Namespaces ensure that element names do not contlict,
and clarify who defined which term. They do not give
instructions on how to process the elements. Readers still
need to know what the elements mean and decide how to
process them. Namespaces simply keep the names straight.

FIG. 1 shows how the structure of the above code can be
represented 1n a hierarchical tree structure. In FIG. 1, all of
the elements or nodes are set out 1n an exemplary tree that

represents the XML document. Such a structure 1s typically
constructed 1n memory, with each node containing all data
necessary for the start and end tags of that node.

It has been typical in the past to build the entire tree
structure, such as the one shown m FIG. 1, before generating
the XML document 1tself. For large XML documents, this
can consume a great deal of memory and processor time.
Thus, 1t would be desirable to avoid this process if at all
possible.

Accordingly, this invention arose out of concerns associ-
ated with providing improved methods and systems for
generating XML documents that do not require or need a
hierarchical tree structure to be built and stored in memory
in order for the actual body of the XML document to be
ogenerated. This mnvention also addresses the algorithms and
data representations 1nvolved 1n managing and coordinating
the generation of namespace declarations and prefix alloca-
fions 1nvolved 1n generating an XML document.

SUMMARY

Methods and systems are described for generating an
XML document that do not require a hierarchical tree
structure to be built and stored in memory in order for the
document to be built. These include methods and systems
for managing and coordinating the generation of namespace
declarations and prefix allocations involved 1n generating an
XML document. Aspects of the invention are particularly
suited for use 1n the context of client/server architectures.
Applicability of the inventive aspects, however, can extend
outside of this client/server architecture.

In the described embodiment, a “request object” 1s pro-
vided and 1s used to receive information from a client that
desires to generate an XML request and to organize the
information mnto an XML request. Information 1s first accu-
mulated by the request object and 1s then transformed 1nto an
appropriate XML document. The information that 1s accu-
mulated by the request object includes the namespaces that
are to be incorporated into the request. All of the namespaces
are collected and organized 1nto a data structure. Prefixes are
assigned to and stored with each namespace value that 1s
placed 1n the data structure. Some of the namespace values
are reserved and have predefined or reserved prefixes that
serve to support specific legacy servers. These speciiic
legacy servers have non-compliant XML parsers that require
specific, non-arbitrary, namespace prelixes to be used to
identify specific namespaces or schemas.

In one embodiment of this mmvention, a client computer
generates and sends a request to server computer requesting
information about objects that exist on the server.
Specifically, the client requests values of properties such as
author, last modification date, or subject, associated with
documents on the server. The body of the request sent by the
client to the server 1s an XML document that specifies the
properties the client wishes to retrieve. The properties may
be elements 1n one or more namespaces. In this case the
request object 1s specialized to generate a specific type of
XML document that 1s a request for property values.

In the described embodiment, a “namespace arbiter” 1s
utilized by the request object to manage and oversee main-

10

15

20

25

30

35

40

45

50

55

60

65

4

tenance of the data structures that contain the namespace
values and their prefixes. When a client wishes to generate
a request for property values 1t provides the names of all the
namespaces (also referred to as “namespace values™) to the
namespace object. The process of providing the namespaces
involves the client invoking a method in the request object
once per namespace to be added. The result of each method
invocation 1s a moniker, returned from the request object to
the client, which uniquely i1dentifies the namespace. The
moniker represents the namespace value and 1s unique for
cach namespace that 1s to appear 1n the request. The moniker
1s then used by the client for additional calls to the request
object. Once the client has added all of the namespaces to the
request object, and recerved a moniker for each namespace,
the client will invoke methods 1n the request object to add
the properties, such as author, etc., to the request. For each
property requested, the client will provide the moniker
identifying the namespace in which the element exists as
well as the name of the property requested.

The specified properties are maintained in a data structure
that organizes the properties and the prefixes that are asso-
cilated with the namespace to which the property pertains. In
the described embodiment, data structures can be defined for
adding new properties or for modifying property values of
existing properties.

Thus, a collection of namespaces, associated prefixes, and
assoclated properties 1s defined prior to building the XML
document. The data structures are flat structures. Once all of
the mnformation has been collected by the request object, 1t
can be rendered into an XML document by the request
object and sent to an appropriate server for processing.

BRIEF DESCRIPITION OF THE DRAWINGS

FIG. 1 1s diagram of a hierarchical tree structure that
represent an XML document.

FIG. 2 1s a conceptual diagram of a request object and
shows 1ts interaction with a client application and an XML
document.

FIG. 3 1s a computer system that 1s suitable for use 1n
implementing embodiments of the invention.

FIG. 4 1s a block diagram that shows an exemplary
client/server architecture 1n accordance with an embodiment
of the 1nvention.

FIG. 5 15 a flow diagram that describes steps in a method
1n accordance with one embodiment of the invention.

FIG. 6 1s a conceptual diagram of a request object 1n
accordance with one embodiment of the invention.

FIG. 7 1s a conceptual diagram of a request object 1n
accordance with one embodiment of the 1invention.

FIG. 8 1s a conceptual diagram of a request object 1n
accordance with one embodiment of the invention.

FIG. 9 shows a data structure 1n accordance with one
embodiment of the invention.

FIG. 10 1s a flow diagram that describes steps 1n a method
1n accordance with one embodiment of the invention.

FIG. 11 1s a flow diagram that describes steps 1n a method
1In accordance with one embodiment of the mvention.

DETAILED DESCRIPTION

Overview

Various embodiments of the invention described below
enable an XML document to be generated without the need
to generate and maintain a hierarchical tree structure that

US 6,675,353 Bl

S

represents the XML document. This results 1n overhead
savings 1nsofar as memory use and consumption 1S con-
cerned.

In the described embodiment, a request object 1s used to
receive information from a client application that desires to
generate an XML document. FIG. 2 shows a request object
that 1s a C++ object. This 1s not, however, intended to limit

the request object to only C++ objects. The client application
sends information to the request object 1n the form of a series
of calls that it makes to the object. Responsive to the
application’s calls, the request object provides mformation
back to the application. Accordingly, the application can
orve the request object all of the information 1t needs to
generate a syntactically correct XML document.

Information that 1s provided by the application 1s first
accumulated by the request object and then transtormed 1nto
an appropriate XML document. The information that is
accumulated by the request object includes the namespaces
or namespace values that are to be incorporated into the
document. For purposes of this document, the terms
“namespace” and “namespace value” are used interchange-
ably. All of the namespaces or namespace values are col-
lected and organized into a data structure. Prefixes are
assigned to and stored with each namespace value that 1s
placed 1n the data structure. Some of the namespace values
are reserved and have predefined or reserved prefixes. In the
described embodiment, a namespace arbiter (also referred to
as a “namespace object”) is utilized by the request object to
manage and oversee maintenance of the data structure that
contains the namespace values and their prefixes. When a
client, such as a software application, wishes to build an
XML document, it provides the namespaces (also referred to
as “namespace values”) to the namespace object. The
namespace object then returns one moniker to the client for
cach namespace the client adds. Each moniker uniquely
identifies the associated namespace value. The moniker can
then be used by the client 1n additional calls to the request
object. For example, 1n one embodiment additional calls are
made to specily the specific properties 1n which the client is
interested. Thus, the client uses the individual monikers to
specily the properties for the mndividual namespaces that are
to appear 1n the document.

In addition to accumulating data related to namespaces,
the request object also accumulates additional information
that 1s pertinent to the XML document the client is 1n the
process of generating. The speciiic content of the additional
information 1s dependent on the type of document the client
desires. In one exemplary case, a client uses this invention
to generate an XML document that will be sent to a “server”
fo request 1nformation about “resources” that exist on the

server. One example of this use 1s the internet protocol
“WebDAV”. WebDAV 1s a set of extensions to the internet

protocol “HTTP” (HyperText Transfer Protocol). HTTP, as
referred to herein, refers to any standard of HTTP, as
described by the HT'TP working ogroup and available on the
website “http:/ www.w3.org”. WebDAYV, as referred to
herein, refers to any standard of WebDAV such as the
version described 1n the reference E. James Whitehead, Jr.,
Word-Wide-Web Distributed Authoring and Versioning,
(WebDAV): An Introduction, in StandardView, Vol 5., No. 1,
March 1997, pages 3—8. The portion of WebDAV which
describes the ability of a client to retrieve or set properties
is described in the reference Internet Task Force (IETF)
Request for Comment (RFC) 2518, entitled HI'TP Exten-
sions for Distributed Authoring, by Y. Goland, E.
Whitehead, A. Faizi, S. Carter and D. Jensen, and dated
February 1999. The WebDAYV extensions to HT'TP enable a

10

15

20

25

30

35

40

45

50

55

60

65

6

client computer to exercise granular control over resources
that exist on a server computer.

HTTP 1s a “verb-based” protocol wherein requests sent
from clients to servers are of the form “verb object”. The
verb 1ndicates the action the server 1s to carry out, and the
object 1s the target of that action. HT'TP defines a limited set
of verbs that include “GET”, “PUT”, and “POST”. These
verbs allow clients to retrieve objects from servers or to
place objects on servers. WebDAYV extends the set of verbs
provided by HT'TP by adding, among others, verbs to enable
client computers to retrieve granular values of speciiic
resource-based properties and to set granular properties on
resources. Specifically, the verb PROPFIND can be used to
retrieve property values, and the verb PROPPATCH can be
used to set property values. In both the PROPFIND and the
PROPPATCH case, the client provides an XML document to
the server that describes the set of properties the server
should act on. Similarly, 1n both cases, the server’s response
to a PROPFIND or a PROPPATCH 1nvocation 1s an XML
document that contains the values of properties requested,
information about the success or failure of the request, or a
combination of both types of data.

In one embodiment of this invention, a request object 1s
specialized to generate the XML document associated with
a PROPFIND request. In another embodiment, a request
object 1s specialized to generate the XML document asso-
clated with a PROPPATCH request. In both the PROPFIND
and PROPPATCH embodiments, the request object accu-
mulates information that pertains to the different propertles
that are associated with the namespaces that are to appear in
the XML document. For example, the client might be
interested 1n a set of properties that are associated with a first
namespace, and a completely ditferent set of properties that
are assoclated with a second namespace. These properties
are provided to the request object through calls that are made
by the client to the object. The calls preferably specify a
namespace ol interest by using its assigned moniker and
assoclating with the moniker the properties of interest.

The specified properties are maintained 1n a data structure
that organizes the properties and the prefixes that are asso-
cilated with the namespace to which the property pertains. In
the described embodiments, data structures can be defined
for adding new properties (such as in a PROPFIND request)
or for modifying property values of existing properties (such
as in a PROPPATCH request).

Thus, a collection of namespaces, associated prefixes, and
assoclated properties 1s defined prior to building the XML
document. The data structures are flat structures or tables
that are much different from the hierarchical tree structures
that are utilized in the prior art. Once all of the information
has been collected by the request object, 1t can be rendered
into an XML document by calling a rendering method 1n the
request object. The XML document 1s sent as a data stream
to an appropriate server for processing.

Exemplary Computer System

FIG. 3 shows a general example of a computer 130 that
can be used 1n accordance with the invention. Various
numbers of computers such as that shown can be used 1n the
context of a distributed computing environment.

Computer 130 includes one or more processors or pro-
cessing units 132, a system memory 134, and a bus 136 that
couples various system components including the system
memory 134 to processors 132. The bus 136 represents one
or more of any of several types of bus structures, including
a memory bus or memory controller, a peripheral bus, an

US 6,675,353 Bl

7

accelerated graphics port, and a processor or local bus using
any of a variety of bus architectures. The system memory

134 1includes read only memory (ROM) 138 and random
access memory (RAM) 140. A basic input/output system
(BIOS) 142, containing the basic routines that help to
transfer information between elements within computer 130,
such as during start-up, 1s stored in ROM 138.

Computer 130 further includes a hard disk drive 144 for
reading from and writing to a hard disk (not shown), a
magnetic disk drive 146 for reading from and writing to a
removable magnetic disk 148, and an optical disk drive 150
for reading from or writing to a removable opftical disk 152
such as a CD ROM or other optical media. The hard disk
drive 144, magnetic disk drive 146, and optical disk drive
150 are connected to the bus 136 by an SCSI interface 154
or some other appropriate interface. The drives and their
assoclated computer-readable media provide nonvolatile
storage of computer-readable instructions, data structures,
program modules and other data for computer 130. Although
the exemplary environment described herein employs a hard
disk, a removable magnetic disk 148 and a removable
optical disk 152, it should be appreciated by those skilled in
the art that other types of computer-readable media which
can store data that 1s accessible by a computer, such as
magnetic cassettes, flash memory cards, digital video disks,
random access memories (RAMs), read only memories
(ROMs), and the like, may also be used in the exemplary
operating environment.

A number of program modules may be stored on the hard
disk 144, magnetic disk 148, optical disk 152, ROM 138, or
RAM 140, including an operating system 1358, one or more
application programs 160, other program modules 162, and
program data 164. A user may enter commands and infor-
mation 1nto computer 130 through nput devices such as a
keyboard 166 and a pointing device 168. Other input devices
(not shown) may include a microphone, joystick, game pad,
satellite dish, scanner, or the like. These and other input
devices are connected to the processing unit 132 through an
interface 170 that 1s coupled to the bus 136. A monitor 172
or other type of display device 1s also connected to the bus
136 via an 1nterface, such as a video adapter 174. In addition
to the monitor, personal computers typically include other
peripheral output devices (not shown) such as speakers and
printers.

Computer 130 commonly operates 1n a networked envi-
ronment using logical connections to one or more remote
computers, such as a remote computer 176. The remote
computer 176 may be another personal computer, a server,
a router, a network PC, a peer device or other common
network node, and typically includes many or all of the
clements described above relative to computer 130, although
only a memory storage device 178 has been illustrated 1n
FIG. 3. The logical connections depicted 1in FIG. 3 include
a local area network (LAN) 180 and a wide area network
(WAN) 182. Such networking environments are common-
place 1n offices, enterprise-wide computer networks,
intranets, and the Internet.

When used 1n a LAN networking environment, computer
130 1s connected to the local network 180 through a network
interface or adapter 184. When used 1n a WAN networking
environment, computer 130 typically includes a modem 186
or other means for establishing communications over the
wide area network 182, such as the Internet. The modem
186, which may be internal or external, 1s connected to the
bus 136 via a serial port interface 156. In a networked
environment, program modules depicted relative to the
personal computer 130, or portions thereof, may be stored in

10

15

20

25

30

35

40

45

50

55

60

65

3

the remote memory storage device. It will be appreciated
that the network connections shown are exemplary and other
means of establishing a communications link between the
computers may be used.

Generally, the data processors of computer 130 are pro-
crammed by means of mstructions stored at different times
in the various computer-readable storage media of the com-
puter. Programs and operating systems are typically
distributed, for example, on floppy disks or CD-ROMs.
From there, they are installed or loaded into the secondary
memory of a computer. At execution, they are loaded at least
partially into the computer’s primary electronic memory.
The invention described herein includes these and other
various types of computer-readable storage media when
such media contain 1nstructions or programs for implement-
ing the steps described below in conjunction with a micro-
processor or other data processor. The invention also
includes the computer itself when programmed according to
the methods and techniques described below.

For purposes of illustration, programs and other execut-
able program components such as the operating system are
illustrated herein as discrete blocks, although it 1s recog-
nized that such programs and components reside at various
times 1n different storage components of the computer, and
are executed by the data processor(s) of the computer.

Exemplary Architecture

FIG. 4 shows an example of an architecture that 1s suitable
for use 1n connection with various embodiments of the
imvention. In this architecture, a client 10 includes a software
application 12, a transport object 14, a TCP/IP module 16
and a parser 18. Although these components are shown as
being grouped within the client 10, they can be implemented
apart from client to application 12. An exemplary client or
application 1s one that generates requests for XML data and
receives responses o 1ts requests in the form of XML data
streams. One specific example of an application 1s
Microsoft’s Outlook Express.

Transport object 14 1s a program module that 1s used 1n
connection with sending and recerving XML documents. In
the described embodiment, the transport object 1s a Distrib-
uted Authoring and Versioning (WebDAV) transport object
that 1s designed to work in connection with DAV requests
and responses. Specific examples of these are given below.
In operation, application 12 typically generates a request
that 1s sent through the transport object 14 and the TCP/IP
module 16 to a server 20. The server receives the request,
processes 1t, and returns an XML data stream to the client.
The XML data 1s received into the TCP/IP module 16 and
the transport object 14. The transport object 14 then begins
pushing the data into the parser 18. The parser 18 then
begins to operate on the XML data stream by parsing 1t and
providing the resulting data to the application 12. In this
example, parser 18 1s a so-called “push-model” parser
because XML data 1s pushed into it by the transport object
14. Aspects described below are associated with the pro-
cessing that takes place to build the XML request that 1s sent
by the client or application 12 to the server 20.

Process Overview

FIG. 5 shows a flow diagram that describes exemplary
steps for generating an XML document. In this example, the
request object 1s a C++ object and the client or application
has the ability to generate a request by making a series of
calls into an application programming interface (API) of the
request object. The series of calls include those that are

US 6,675,353 Bl

9

assoclated with adding one or more namespaces and one or
more properties that are associated with the namespaces.
This enables the request to be represented as an abstract
collection of namespaces and properties within those
namespaces. Finally, when all of the namespaces and their
assoclated properties have been collected, the client makes
a single call to the request object which then generates a
well-formed XML document that incorporates the
namespaces and their associated properties.

Referring now specifically to FIG. 5, step 100 creates or
instantiates a request object. The request object can be
created by the application (see FIG. 2) when it wants to build
an XML document. Step 102 generates a request to add a
namespace that will ultimately appear in the XML document
that 1s to be built by the request object. Here, the application
ogenerates the request. Step 104 sends the application’s
request to the request object. Where the request object 1s a
C++ object, step 104 1s implemented by the application by
calling an interface in the request object that has a method
for adding a namespace. Step 106 adds the namespace that
is specified by the client. Here, the request object (FIG. 2)
adds the namespace. Step 108 generates a request regarding
a namespace property for a specified namespace. This
request 1s generated by the application. Step 110 sends the
application’s request regarding the namespace property to
the request object. This 1s accomplished by calling an
interface 1n the request object that has a method operating
upon the specified property. In the example that 1s given
below, properties can be added, or property values can be
modified. Step 112 checks to see whether there are any
additional namespaces to be added to the document. If there
are, the method loops back to step 102. If there are no
additional namespaces to be added, step 114 checks to see
whether there are any additional properties that are to be
added to the document. If there are, then the method loops
back to step 108. If there are not, then the request object
generates (step 116) the XML document. The XML docu-
ment 15 generated after all of the namespaces and their
assoclated properties are collected by the request object.
Where the request object 1s implemented as a C++ object,
such 1s accomplished by calling an API 1n the request object
that has a method that uses the collected information and
processes 1t 1nto the XML document.

Request Object

In the described embodiment, the request object 1s a C++
object that collects information that 1s provided by the client,
and renders 1t into an XML document. FIG. 6 shows an
exemplary request object 200 that has been instantiated by
a client application that 1s 1n the process of creating an XML
document. One of the functions of the request object 200 1s
to receive information from the client and organize the
information so that 1t can later be used to generate the
appropriate XML document. One of the ways that the
request object 200 can do this i1s through the use of a
namespace arbiter object 202. Another of the ways request
object 200 can do this 1s through the use of other objects that
manage and organize properties that are to be incorporated
into the document.

Namespace Arbiter Object

One of the functions of the namespace arbiter object 202
1s to manage a collection 204 of allocated namespaces.
Collection 204 defines a data structure that 1s used to manage
and organize the namespaces or namespace values that are
specified by a client 1n the client’s request to the request

10

15

20

25

30

35

40

45

50

55

60

65

10

object 200. Collection 204 has a plurality of fields that
include a moniker field portion 206, an expanded namespace
field portion 208, a prefix field portion 210, and a use status
portlon 212. The moniker field portion 206 holds a moniker
that 1s assigned to each namespace that 1s to be added to the
document. The expanded namespace field portlon 208 holds
the expanded namespace name value that 1s specified by the
client, the prefix field portion 210 holds a prefix that is
assigned by the request object 200 to the specified
namespace, and the use status field portion 212 holds a value
that indicates whether a prefix or namespace 1s in use. The
latter field 1s used 1n connection with legacy applications in
which prefixes and namespaces are reserved or predefined.
This 1s discussed 1n more detail below.

One of the first things that happens when a client builds
an XML document 1s that it specifies the namespaces that are
to appear 1n the XML document. This corresponds to steps
102 and 104 1n FIG. 5. When the request object 200 receives
such a request, namespace arbiter 202 creates a new entry in
collection 204, produces a moniker (similar to a handle) that
1s assoclated with the namespace that 1s specified by the
client, and returns the moniker to the client. The client can
then use the moniker when making additional calls to the
request object 200 that are associated with the associated
namespace’s propertics. For example, consider that the
client wants to add the namespaces “FOO” and “DOO” to an
XML document. The client would first specity “FOO” 1n a
call to the request object 200. This might take the following
form:

request object—=Addnamespace (“FOO”),

where “Addnamespace” 1s a method 1n the request object
200 for adding a namespace. Responsive to receiving the
request, the namespace arbiter 202 creates a moniker, here
“nsl”, and returns 1t to the client. Additionally, the prefix
“ 17 1s assigned to the “FOO” namespace. At this point,
with the moniker having been returned to the client, the
client 1s free to provide information that will be used to add
properties or to change property values 1n the XML docu-
ment. Alternately, the client can request to add another
namespace. In this example, the client has added another
namespace “DOO”. Accordingly, when the client request 1s
received, another entry 1s allocated 1n collection 204 and a
moniker “ns2” 1s assigned to the “DOO” namespace and
returned to the client. A prefix “_ 27 1s also assigned to the
“DO0O” namespace. The purpose for the prefixes will
become apparent below. Preliminarily, however, the prefixes
assist 1n so-called namespace aggregation which 1s a way of
representing fully expanded namespaces 1n a manner that
reduces the text that ultimately appears in the XML docu-
ment.

Property Management Objects

The request object can make use of other objects to assist
in generating an XML document. In one specific example,
such other objects comprise so-called property management
objects. The property management objects are very speciiic
types of objects that are used in connection with WebDAV
requests. Accordingly, 1t will be appreciated that objects
other that property management objects can be utilized to
assist the namespace arbiter. The various property manage-
ment objects are used to organize and manage properties that
are associated with the namespaces that are managed by the
namespace arbiter. The property management objects come
into play when a client adds a property or desires to change
a property value that 1s associated with a particular property.
In order to do so, the client calls an appropriate method in
the request object and specifies both the moniker that is

US 6,675,353 Bl

11

associated with the namespace of interest, and the property
that 1s associated with that namespace.

Property Collection Object

FIG. 7 shows a property collection object 213 that enables
properties to be added that are to be included i the XML
document 1n the PROPFIND embodiment. An exemplary
call to the request object 200 might have the form:

request object—=AddProperty(nsl, “category”)

request object—AddProperty(nsl, “subject”).

Here, the “nsl” moniker 1s used 1n the argument to
designate the “FOO” namespace. In this example, two
properties are being added for the “FOO” namespace—
“category” and “subject”. When the “AddProperty” methods
are called, property collection object 213 takes the “nsl”
moniker and looks up the assigned prefix for that moniker 1n
collection 204 that 1s managed by the namespace arbiter 202.
An entry 1s then made 1n an allocated properties collection
214. In this example, the entry 1s a data configuration that
associates the prefix ascertained from collection 204 and the
property or properties with which 1t 1s associated. This data
conilguration 1s later incorporated directly mto the XML
document. Accordingly, in this example, two entries are
made 1n the allocated properties collection 214—mnamely
“_ 1l:category” and “_ 1:subject”. Similarly, the properties
“category” and “isread” can be added for the “DOO”

namespace by making the following calls in the request
object 200:

request object—=AddProperty(ns2, “category”)

request object—=AddProperty(ns2, “isread”).

Here, the property collection object 213 uses the specified
moniker “ns2” to look up the prefix in collection 204 that 1s
assigned to the “DOO” namespace. Finding the “_ 27 prefix,
the property collection object 213 then makes appropriate
entries 1n the allocated properties collection 214 to reflect
that these properties have been added. In this example, two
more entries have been added-namely “_ 2:category” and
“_ 2:1sread”.

Upon completion of the above processing, all of the
information that is necessary to generate an XML document
has been collected and organized by the request object 200.
First, all of the namespaces or namespace values have been
specified and assigned unique prefixes. The unique prefixes
have been used to build a collection of properties that are to
appear 1n the XML document. In this manner, all of the
namespaces have been coalesed 1n that they never have to
appear 1n the XML document more than once. Specifically,
and using the example above, with the prefixes having been
assigned to the expanded namespaces, when XML
namespace declarations are made 1n the XML document,
they can be 1 the form “xmlns:_ 1=FOO”, and “xmlns:__
2=DO0O” for the “FOO” and “DOO” namespaces respec-
fively. Likewise, when the XML document 1s generated for
the property tags that specily the properties that were added
by the client, the entries from the allocated properties
collection 214 can be used, 1.e. “__1:category”,
N 7, ¢ 2:category”, and “_ 2:1sread” and directly

_ 1:subject”,
incorporated into the XML document.

Add/Remove Property Object

FIG. 8 shows an add/remove property object 216 that 1s
used when a property value 1s to be modified. Property
values can be changed by adding a value or removing a
value. The add/remove property object 216 organizes infor-
mation that 1s provided by the client so that the information
can then be rendered into an XML document. In this

10

15

20

25

30

35

40

45

50

55

60

65

12

example, 1t does so through the use of two data structures
shown as an add value collection 218 and a remove value
collection 220. The collection 218220 has two fields—a
“prefix:property” field 222, and a value field 224. The
“prefix;property” field holds a data configuration that is
associated with the prefix (ascertained from collection 204)
and the property that 1s associated with the prefix. The value
field 224 holds a new value or outcome value that 1s used to
modify the current property value. The collection 220 has
onc field—a “prefix:property” field 222. When a client
desires to change the value of a property, 1t calls an appro-
priate method 1n the request object to do so. As an example,
consider that a client may want to change the “isread”
property of the “DOO” namespace from “not read” to
“read”. The appropriate call to the request object 200 might
take the following form:

request object—=ChangePropValue (ns2, “isread”, read).

Here, the moniker “ns2” 1n the argument identifies the
namespace “DOO” and the “isread” designates the “isread”
property for the “DOO” namespace. The “read” 1s the value
that 1s to replace the current value for the “isread” property
in the “DO0O” namespace. When this method 1s called, the
add/remove property object 216 takes the “ns2” moniker and
scarches the allocated namespaces collection 204 to find the
prefix that i1s associated with that moniker. In this case, the
prefix “_ 27 1s found for the “DOO” namespace. When the
prefix 1s ascertained, an entry 1s made 1n the appropriate
collection (either 218 or 220). The form of the entry is
shown 1n FIG. 8 for the example given above. There, the
“prefix:property” field 222 holds the entry “_ 2:isread”
which designates the “isread” property for the namespace
that 1s associated with the prefix “_ 2”—here the “DOO”
namespace. The value field 224 holds the value “read”
which 1s to replace the current value of the “isread” property
for the “DOO” namespace.

Thus, 1n this manner, generation of the XML document
has not required a hierarchical tree to be built. Rather, flat
data structures or lists which, in some instances can simply
be tables, are used to pre-organize, format, and manage the
information that 1s provided by the client that 1s to ultimately
end up 1n the XML document. This results 1in substantial
saving 1nsofar as memory overhead and consumption 1is
concerned. In addition, XML documents can be more
quickly generated because of the processing time reductions
that are associated with less memory overhead.

Legacy Support

Legacy support can also be provided by defining a set of
known namespaces for which there are specified, defined
prefixes. The reason for this 1s to support legacy servers that
have taken some shortcuts in 1mplementation. Specifically,
some legacy servers have eliminated the need to do any
namespace mapping operations by specifically assigning
certain prefixes to certain namespaces. Then, when a certain
defined prefix 1s used, by convention, the associated
namespace can be inferred. Without addressing these legacy
i1ssues, a reserved namespace or prefix might be adopted
inadvertently. Additionally, legacy servers would be unable
to parse the XML document sent by the client, since they
would not understand the namespace prefixes used.

FIG. 9 shows an expansion of the allocated namespace
collection 204 that 1s managed and organized by namespace
arbiter 202. In this collection 204 there are five rows that are
designated as “reserved”. These rows include the expanded
namespaces of the reserved or predefined namespaces
(expanded namespace field 208) and their associated

reserved or predefined prefixes (prefix field 210). In the

US 6,675,353 Bl

13

specifically 1illustrated example, the reserved namespaces
and prefixes are those that have been reserved for use 1n
connection with Microsoit’s Outlook Express and Hotmail
products which are described 1n more detail below. The use
status field 212 also contains a value that indicates whether
the specifically reserved namespaces have been designated
for inclusion 1n the document. In this example, a Boolean
value (either true or false) is used to designate the use status.
If a “T” appears in this column, then the namespace and
assoclated prefix are to be included 1n the document. In this
example, the “DAV” namespace has been designated for use
in the document.

Outlook Express and Hotmail XML Documents

In one implementation, generation of XML documents
take place 1n connection with Microsoft’s Outlook Express
and Hotmail products. Briefly, Hotmail 1s an email delivery
system that concentrates most or all of the email function-
ality on the server side and not the client side. Hotmail 1s
accessible by either a web browser, such as Microsoft
Internet Explorer, or by mail clients that understand a
specific version of the WebDAV protocol. Microsoft Out-
look Express 1s a mail client that has been designed to use
WebDAV to enable access to email via WebDAV. The Hot-
mail system makes use of an array of web servers. When a
user logs 1n, they communicate with one of the servers of the
array. The web servers are configured to serve web pages or,
in the case of WebDAYV, to serve XML documents, and do
not contain any user data. The web servers can either pull
HTML files off a storage disk, run a program to generate an
appropriate HI'ML file, pull an XML file off of a storage
disk, or run a program to generate an XML file. The file 1s
then provided to a user browser or email client executing on
a user machine that requested the HITML or XML file and 1s
assembled by the browser or email client at the user
machine.

The Hotmail system also includes one or more user
database servers. All user or recipient data resides on these
user database servers. This 1ncludes, for each account, all
emaill messages, contact lists, personal preferences,
passwords, and all other 1tems typically associated with an
email account. In practice, the user database servers are
implemented by SUN Ultra Enterprise 4500-class servers.
Each server stores from between 750,000 to 2,000,000 user
accounts.

An 1nternal database server 1s provided and includes a list
of all Hotmail users in memory, as well as the location of
their user data on the user database servers. When a user
contacts the Hotmail system, a web server of the web server
array contacts internal database server to ascertain the
location of the user’s data on one of the user databases
servers. The mternal database server returns the location to
the web server which then can either assist a user in
retrieving their email messages or assist a user in sending
email messages.

When an email message 1s read by a user who 1s using a
web browser, the list of email messages are pulled by a web
server or web server array. An appropriate web page 1s
generated to appear as an email 1nbox. Links are embedded
in the web page for the particular email messages. The web
page 1s then sent to the user and assembled by the user’s
browser. The links retrieve the particular email messages for
a USer.

When email 1s sent, a user clicks on an appropriate
composition page which brings up a web page that looks like
an email page. The user types a message and clicks send.

10

15

20

25

30

35

40

45

50

55

60

65

14

The email message 1s packaged as an http web request that
1s received by a server of the server array. The web server
then contacts the internal database server to ascertain the
location of the intended recipient. If the recipient exists, then
their location 1s returned to the web server which then
deposits the email message 1n the appropriate account. This
process 1s utilized for the users that are within the Hotmail
system. That 1s, these users are subscribers to the Hotmail
email service. Email messages can, however, be received
into the Hotmail system from outside of the system.

To address this situation, the Hotmail system also includes
an array of SM'TP mail servers that perform essentially the
same as the server array mentioned above. That 1s, when an
email message 1s received from outside of the system, a
server of SMTP mail server array contacts the internal
database server to ascertain a recipient location among the
user databases, and then deposits the email message at one
or more of the appropriate locations.

In the context of the Hotmail system, consider again FIG.
4. In this example, application 12 comprises an email
program such as Microsoft’s Outlook Express and server 20
comprises the Hotmail system. Unlike a web browser, which
communicates with Hotmail using HI'TP and HTML, Out-
look Express communicates with Hotmail using WebDAV.
When a user clicks on an appropriate folder 1n their email
directory, the application 12 detects the click on the folder
and knows from a previous session that the folder maps to
a specilic URL on the server 20. For that folder, there 1s a
valid URL that contains all of the mail messages in the
folder. By clicking on the folder, the user enables the
application 12 to build an appropriate XML request (here, a
PROPFIND request) that gets sent the server that requests
all of the messages in the folder and their properties.
Example properties include the subject, date, from, read,
attachments and the like. The application 12 builds a list of
the mail that may not contain the actual messages. A user
selects a message to be read by double clicking on the
displayed list. This tells the application to generate a request
asking for the body of the message. The message body 1s
then sent to the user and can be stored for later reading.
Double clicking on the message also serves to enable the
application 12 to check to see whether the message 1s
unread. That 1s, the application 12 checks the “read” prop-
erty of the message. If the message 1s unread, then the
application 12 must change the “read” property from unread
to read. It does this by generating an appropriate XML
request (here a PROPPATCH request) that is sent to the
server so that the server can change the message’s “read”
property.

It 1s to be understood that use of the inventive request-
generating techniques are not to be limited to the
Microsoit’s Outlook Express and Hotmail products.
Specifically, techniques of the various embodiments can be
used 1n connection with generating any suitable XML data
without departing from the spirit and scope of the 1nvention.

Use of the PROPFIND and PROPPATCH DAV
Commands

One of the arcas of application within Microsoft’s Out-
look Express and Hotmail products 1s the use of WebDAV
commands 1n the XML documents that are generated. Web-
DAYV 1s an extension to the HT'TP/1.1 protocol that allows
clients to perform remote web content authoring operations.
This extension provides a coherent set of methods, headers,
request entity body formats, and response entity body for-
mats that provide operations for properties and collections.

US 6,675,353 Bl

15

For properties, WebDAYV gives the ability to create, remove,
and query information about Web pages, such as their
authors, creation dates, etc. Also, WebDAYV gives the ability
to link pages of any media type to related pages. For
collections, WebDAV gives the ability to create sets of
documents and to retrieve a hierarchical membership listing
(like a directory listing in a file system). Many articles have
been written on WebDAV. For further information, the
reader 1s referred to the following articles: “WEBDAV: IETF
Standard for Collaborative Authoring on the Web” authored
by Whitehead and Wiggins, and appearing in the September/
October 1998 1ssue of IEEE Internet Computing; and “Dis-
tributed Authoring and Versioning”, authored by Kaiser and
Whitehead, and appearing in the March/April 1997 1ssue of
IEEE Internet Compuiing.

Two pertinent WebDAV commands or methods are the
PROPFIND and PROPPATCH commands. The PROPFIND
command or method retrieves properties that are defined on
a resource 1dentified by the request-URI. A URI (Uniform
Resource Identifier) 1s a compact string of characters for
identifying an abstract or physical resource, if the resource
does not have any internal members, or on the resource
identified by the request URI and potentially 1ts member
resources, 1f the resource 1s a collection that has internal
member URIs. A client can submit a PROPFIND XML
clement 1n the body of the request methods that describes
what information 1s being requested. It 1s possible to request
particular property values, all property values, or a list of the
names of the resource’s properties. The PROPPATCH com-
mand or method processes instructions speciiied in the
document to set and/or remove properties defined on the
resource 1dentified by the request-URI.

Generating an XML Document

In one i1mplementation, the PROPFIND request 1is
expressed as a C++ object with “public” methods that are

invoked by its clients. The public application programming
interface (API) of the PROPFIND object is as follows:

class CPropFindRequest

{
HRESULT AddNamespace(LLPCSTR pszNamespace, DWORD
*pdwNsld);
HRESULT GetNamespaceld(LPCSTR pszNamespace, DWORD
*pdwNsld);
HRESULT GetNamespacePrefix(DWORD dwNsId, LPSTR
*ppszNsPrefix);

HRESULT AddProperty(DWORD dwNslId, LPCSTR pszPropName);
HRESULT Generate XML(LPSTR *ppszXML);

13

The client of the CPropFindRequest object makes a series
of calls to AddNamespace to add all of the namespaces that
will appear 1n the request. Each namespace 1s assigned an
arbitrary “ID”. The client then adds the properties that will
appear 1n the request, and includes the associated namespace
ID each time a property 1s added. An exemplary arbitrary 1D
1s the moniker discussed above.

In addition, the PROPPATCH request object 1s similar to
the PROPEIND object but differs slightly:

10

15

20

25

30

35

40

45

50

55

60

65

16

class CPropPatchRequest

{
HRESULT AddNamespace(LLPCSTR pszNamespace, DWORD
*pdwNsld);
HRESULT GetNamespaceld(LPCSTR pszNamespace, DWORD
*pdwNsld);
HRESULT GetNamespacePrefix(DWORD dwNsld, LPSTR
*ppszNsPrefix);

HRESULT SetProperty(DWORD dwNsld, LPCSTR pszPropName,
LPCSTR pszPropValue);
HRESULT RemoveProperty(DWORD dwNsld, LPCSTR
pszPropName);

HRESULT Generate XML(LPSTR *ppszXML);
b

Internally, the PROPFIND and PROPPATCH request

objects use an instance of the namespace arbiter 202—here
“CDAVNamespaceArbiter” to manage the namespaces. The
API for the “CDAVNamespaceArbiter” 1s as follows:

Class CDavNamespaceArbiter

1

HRESULI AddNamespace(LLPCSTR pszNamespace, DWORD
*pdwNsld);

HRESULT GetNamespaceld(LPCSTR pszNamespace, DWORD
*pdwNsld);

HRESULT GetNamespacePrefix(t DWORD dwNsId, LPSTR
*ppszNsPrefix);

LPSTR AllocExpandedName(DWORD dwNslId, LPCSTR
pszPropName);

HRESULT WriteNamespaces (IStream *pStream);
b

The process of generating an XML request body for a
PROPFIND request 1s shown 1n FIGS. 10 and 11. In this
example, a PROPFIND request 1s going to be generated for
the mformation that was provided by the client and shown
in FIGS. 7 and 9.

Step 300 1n FIG. 10 emits a so-called boilerplate XML
header to an output data stream in the form that i1s shown
below:

“<7xml version="1.0"7>

<D:propfind”

Step 302 calls a method 1n the namespace arbiter 202 and
asks 1t to emit all of the namespace declarations to the output
data stream. Responsive to the step 302 call, the namespace
arbiter 202 checks to see whether any of the namespaces that
arc specified by the client that appear in the allocated
namespace collection 204 are reserved (step 304). Recall
that certain namespaces are reserved and have predefined
prefixes. In this example, and using the allocated namespace
collection of FIG. 9, the namespace arbiter would identily
the “DAV” namespace as being reserved and specified. It 1s
speciflied by virtue of the “T” appearing in the use status field
212. All of the other reserved namespaces have an “F” 1n the
use status field indicating that the particular namespaces are
not to be included 1n this particular XML document. Having
identified the reserved and specified namespaces, step 306
emits the namespace using the form “xmlns:|[prefix]=
Inamespace]|”. In this example, the emitted namespace
would look as follows:

“xmlns:D="DAV””

If the namespace 1s not reserved, then step 308 emits the
namespace using the same form as that which 1s specified
above. In this example, there are two namespaces that are

not reserved, namely “FOO” and “DOO”. Thus, these

US 6,675,353 Bl

17

namespaces would be emitted 1n the same form as the
“DAV” namespace:

“xmlns: 1=“FOQO”

“xmlns:_ 2="D0O0O™”

Step 310 checks to see whether there are any more
namespaces. If there are not, then step 312 emits a
“><D:prop>"" and step 314 processes the property requests.
Processing of the property requests 1s shown 1n more detail
in FIG. 11. Thus, at this point, the following XML document
has been emitted:

<!xml version=*1.0"7>
<D:propfind
xmlns:D=“"DAV”’
xmlns: 1 =“FOQO”
xmlns:_ 2=“D0O0O">
<D:prop>

FIG. 11 shows the processing that takes place for the
property requests generally at 314. Step 316 emits a “<”
which delimits the beginning of the property requests. Step
318 emits a property name in the form “[namespace prefix|]
[property name[”. In the present example, each property
that 1s to be added to the document can be ascertained from
the allocated properties collection 214 (FIG. 7). Notice that
the properties are already in the prescribed form so that they
can be directly emitted to the output data stream. After
emitting the first property name (i.e. “_ 1l:category”), step
320 emats a “/>" and step 322 check to see whether there are
any more properties. In this example, there are three more
properties so the method loops back to step 316. After
picking up all of the properties from the allocated properties
collection 214, step 324 emits “</D:prop></D:propiind>".
The final product of this XML document generation example
1s as follows:

<?xml version=“1.0"7>
<D:propfind
xmlns:D="DAV”
xmlns:__1 =“FOO”
xmlns:_ 2=“DO0O”>
<D:prop>
<_ l:category/>
<_ 1:subject/>
<_ Z:category/>
<_ 2:1sread/>
</D:prop>
</D:propfind>

The processing described above enables an XML docu-
ment to be generated without the necessity of building and
storing a hierarchical tree structure to represent the XML
document. In the described embodiment, data 1s received
that describes namespace name values and properties that
are to appear 1n an XML document. The data 1s organized 1n
one or more flat lists that are then used to generate the XML
document. Examples of flat lists include one that holds an
assoclation of namespace name values and prefixes that are
assigned to the namespace name values; and another that
holds an association of prefixes that are assigned to the
namespace name values and one or more properties that are
assoclated with the prefixes. This can greatly save on the
memory resources that are required to generate XML
requests.

Although the 1nvention has been described 1n language
specific to structural features and/or methodological steps, it

5

10

15

20

25

30

35

40

45

50

55

60

65

138

1s to be understood that the invention defined in the
appended claims 1s not necessarily limited to the specific
features or steps described. Rather, the specific features and
steps are disclosed as preferred forms of implementing the
claimed 1nvention.

What 1s claimed 1s:

1. A method for building an extensible mark up language
(XML) document comprising:

receiving a client request to add an XML namespace to an
XML document that 1s being built by the client, the
client request comprising a namespace name value;

producing a moniker responsive to receiwving the client
request;

assoclating the moniker with the XML namespace name
value;

returning the moniker to the client; and

further comprising using the moniker to make a second
client request that 1s associated with the moniker’s
namespace name value.

2. The method of claim 1, wherein the second client
request relates to adding a property of the namespace name
value.

3. The method of claim 1, wherein the second client
request relates to modifying a property value of the
namespace name value.

4. One or more computer-readable media having
computer-readable instructions thereon which, when
executed by one or more processors, cause the one or more
processors to implement the method of claim 1.

5. A method for building an extensible mark up language
(XML) document comprising:

receiving a client request to add an XML namespace to an
XML document that 1s being built by the client, the
client request comprising a namespace name value;

producing a moniker responsive to receiwving the client
request;

associating the moniker with the XML namespace name
value;

returning the moniker to the client; and further compris-

Ing:

assigning a prefix value to the namespace name value;
and

using the moniker to make a second client request that
1s associated with the moniker’s namespace name
value, the second client request producing an out-
come value; and further comprising associating the
prefix value for the namespace name value with the
outcome value produced by the second client
request.

6. The method of claim 5, wherein the second client
request relates to modifying a property value of the
namespace name value.

7. One or more computer-readable media having
computer-readable 1instructions thereon which, when
executed by one or more processors, cause the one or more
processors to implement the method of claim 5.

8. A method for building an extensible mark up language
(XML) document comprising:

creating a request object that 1s configured to process
client requests 1into an XML document;

calling a first method 1n the request object for adding an
XML namespace and responsive to calling said first
method:
creating a moniker; and
assoclating said moniker with an XML namespace
name value for the namespace that 1s to be added;

US 6,675,353 Bl

19

calling at least one other method 1n the request object that
1s associated with at least one property of the XML
namespace; and

generating an XML document after said callings; and

further comprising using said moniker to call said at least

one other method.

9. The method of claim 8, wherein said at least one other
method 1s associated with adding a property to the XML
document.

10. The method of claim 8, wherein said at least one other
method 1s associated with changing a property value that 1s
associated with a property that 1s to appear in the XML
document.

11. One or more computer-readable media having
computer-readable 1nstructions thereon which, when
executed by one or more processors, cause the one or more
processors to implement the method of claim 8.

12. A method for building an extensible mark up language
(XML) document comprising:

creating a request object that 1s configured to process
client requests mto an XML document;

calling a first method 1n the request object for adding an
XML namespace;

calling at least one other method 1n the request object that

1s assoclated with at least one property of the XML
namespace;

generating an XML document after said callings; and

wherein said calling of the at least one other method
comprises defining a data configuration that 1s to be
incorporated mto the XML document, the data con-
figuration being defined for adding a property of an
XML namespace name value.

13. One or more computer-readable media having
computer-readable instructions thereon which, when
executed by one or more processors, cause the one or more
processors to implement the method of claim 12.

14. A method for building an extensible mark up language
(XML) document comprising:

creating a request object that 1s configured to process
client requests mto an XML document;

calling a first method 1n the request object for adding an
XML namespace;

calling at least one other method 1n the request object that
1s assoclated with at least one property of the XML
namespace;

generating an XML document after said callings; and

wherein said calling of the at least one other method
comprises defining a data configuration that 1s to be
incorporated into the XML document, the data con-
figuration being defined for modifying a value that 1s
associated with a property of an XML namespace name
value.

15. One or more computer-readable media having
computer-readable 1nstructions thereon which, when
executed by one or more processors, cause the one or more
processors to implement the method of claim 14.

16. A method for building an extensible mark up language
(XML) document comprising:

creating a request object that 1s configured to process
client requests mto an XML document;

calling a first method 1n the request object for adding an
XML namespace;

calling at least one other method 1n the request object that
1s assoclated with at least one property of the XML
namespace;

10

15

20

25

30

35

40

45

50

55

60

65

20

cgenerating an XML document after said callings, and

further comprising:

defining a namespace arbiter that 1s configured to
manage namespace name values that are to be added
to the XML document, and to assign a prefix value
to at least some of the namespace name values;

managing namespace name values that are to be added
to the XML document with the namespace arbiter;
and

assigning prefix values to at least some of the
namespace name values that are to be added to the
XML document with the namespace arbaiter.

17. The method of claim 16 further comprising creating at
least one property object that maintains an association of
assigned prefix values that are assigned by the namespace
arbiter and one or more properties that are to be added to the
XML document.

18. The method of claim 17, wherein the property object
maintains a new value for at least one of the properties that
it maintains, the new value being useable to modify the one
property’s value.

19. One or more computer-readable media having
computer-readable 1nstructions thereon which, when
executed by one or more processors, cause the one or more
processors to 1mplement the method of claim 16.

20. Amethod for building an extensible mark up language
(XML) document comprising:

assigning a preflx value to one or more XML namespace

name values, each namespace name value having a
unique prefix value;

assoclating each prefix value with one or more properties;
and

generating an XML document that contains the one or
more namespace name values, their associated prefixes,
and the one or more properties;

maintaining a collection of XML namespace name values
and their associated prefix values; and

wherein said maintaining comprises building a table of
XML namespace name values and their associated
prefix values.

21. The method of claim 20, wherein the assigning of the
prefix value comprises receiving a specified namespace
name value and assigning the prefix value responsive to said
receiving.

22. One or more computer-readable media having
computer-readable 1nstructions thereon which, when
executed by one or more processors, cause the one or more
processors to implement the method of claim 20.

23. Amethod for building an extensible mark up language
(XML) document comprising:

assigning a preflx value to one or more XML namespace
name values, each namespace name value having a
unique prefix value;

assoclating each prefix value with one or more properties;
and

generating an XML document that contains the one or
more namespace name values, their associated prefixes,
and the one or more properties;

wherein said associating further comprises associating at
least one prefix value with a property whose value 1s to
be modified.

24. The method of claim 23, wherein the assigning of the
prefix value comprises receiving a specified namespace
name value and assigning the prefix value responsive to said
receiving.

25. The method of claim 23 further comprising maintain-
ing a collection of XML namespace name values and their
assoclated prefix values.

US 6,675,353 Bl

21

26. The method of claim 25, wherein said maintaining
comprises building a table of XML namespace name values
and their associated prefix values.

27. One or more computer-readable media having
computer-readable instructions thereon which, when
executed by one or more processors, cause the one or more
processors to implement the method of claim 23.

28. A method for building an extensible mark up language
(XML) document comprising:

assigning a prefix value to one or more XML namespace
name values, each namespace name value having a
unique prefix value;

assoclating each prefix value with one or more properties;
and

generating an XML document that contains the one or
more namespace name values, their associated prefixes,
and the one or more properties; and

wherein the document 1s a PROPFIND request body.

29. The method of claim 28, wherein the assigning of the
prefix value comprises receiving a specified namespace
name value and assigning the prefix value responsive to said
receiving.

30. The method of claim 28 further comprising maintain-
ing a collection of XML namespace name values and their
assoclated prefix values.

31. The method of claim 30, wherein said maintaining
comprises building a table of XML namespace name values
and their associated prefix values.

32. One or more computer-readable media having
computer-readable instructions thereon which, when
executed by one or more processors, cause the one or more
processors to implement the method of claim 28.

33. A method for building an extensible mark up language
(XML) document comprising:

assigning a prefix value to one or more XML namespace
name values, each namespace name value having a
unique prefix value;

assoclating each prefix value with one or more properties;
and

generating an XML document that contains the one or
more namespace name values, their associated prefixes,
and the one or more properties;

wherein the document 1s a PROPPATCH request body.

34. The method of claim 33, wherein the assigning of the
prefix value comprises receiving a specified namespace
name value and assigning the prefix value responsive to said
receiving.

35. The method of claim 33 further comprising maintain-
ing a collection of XML namespace name values and their
assoclated prefix values.

36. The method of claim 35, wherein said maintaining
comprises building a table of XML namespace name values
and their associated prefix values.

37. One or more computer-readable media having
computer-readable 1nstructions thereon which, when
executed by one or more processors, cause the one or more
processors to implement the method of claim 33.

38. An extensible mark up language (XML) generator
embodied on a computer-readable medium comprising:

a request object configured to receive client requests to
build an XML document, individual requests contain-
Ing a namespace name value; and

a namespace arbiter associated with the request object and
configured to maintain an associlation between
namespace name values and individual prefixes that are

5

10

15

20

25

30

35

40

45

50

55

60

65

22

assigned to each namespace name value, the prefixes
being configured for use 1 generating the XML docu-
ment.
39. The XML generator of claim 38 further comprising a
data structure that 1s managed by the namespace arbiter, the
data structure comprising;:

a namespace name value portion for storing namespace
name values that are contained in requests received by
the request object; and

a prefix portion for storing a prefix for each namespace
name value that 1s stored 1n the namespace name value
portion.

40. The XML generator of claim 38 further comprising a

data structure that 1s managed by the namespace arbiter, the
data structure comprising:

a moniker portion for storing a moniker that 1s associated
with a namespace name value; and

a namespace name value portion for storing namespace
name values that are contained in requests received by
the request object.

41. The XML generator of claim 38 further comprising a

data structure that 1s associated with the namespace arbiter,
the data structure comprising:

a property name portion for storing a prefix that 1s
assoclated with each namespace name value and a
property that 1s associated with each prefix; and

a value portion for storing a value that 1s associated with
a property that i1s stored 1n the property name portion.
42. The XML generator of claim 38 further comprising a
data structure that 1s associated with the namespace arbater,
the data structure comprising a property name portion for
storing a prefix that 1s associated with each namespace name
value and a property that 1s associated with each prefix.
43. The XML generator of claim 38 further comprising,
first and second data structures that are associated with the
request object;

the first data structure comprising:

a namespace name value portion for storing namespace
name values that are contained in requests received by
the request object; and

a preflx portion for storing a prefix for each namespace
name value that 1s stored 1n the namespace name value;

the second data structure comprising;:

a property name portion for storing a prefix that 1s
assoclated with each namespace name value and a
property that 1s associated with each prefix.

44. The XML generator of claim 38 further comprising a

data structure that 1s managed by the namespace arbiter, the
data structure comprising:

a namespace name value portion for storing predefined
namespace name values; and

a prelix portion for storing a predefined prefix for each
predelined namespace name value that 1s stored 1n the
namespace name value.

45. The XML generator of claim 44, wherein the data
structure further comprises a use status portion for tracking
a use status of the predefined namespace name value.

46. The XML generator of claim 38, wherein the request
object 1s a PROPFIND request object.

47. The XML generator of claim 38, wherein the request
object 1s a PROPPATCH request object.

48. A data structure embodied on a computer-readable
medium, for use 1n generating extensible mark up language
(XML) documents comprising;:

an XML namespace name value portion conifigured to
hold one or more namespace name values; and

US 6,675,353 Bl

23

a prefix portion configured to hold a prefix for each
namespace name value that 1s held mm the XML

namespace name value portion.
49. The data structure of claim 48, wherein the XML

namespace name value portion 1s configured to hold at least
some namespace name values that are predefined; and
wherein the prefix portion 1s configured to hold a predefined
prefix for each of the predefined namespace name values.

50. The data structure of claim 48 further comprising a
property name portion for storing a prefix that 1s associated
with each namespace name value and a property that 1s
assoclated with each prefix.

51. The data structure of claim 48 further comprising;:

a property name portion for storing a prefix that is
associated with each namespace name value and a
property that 1s associated with each prefix; and

a value portion for storing a value that 1s associated with

a property that 1s stored 1n the property name portion.
52. The data structure of claim 48, wherein the XML

namespace name value portion 1s configured to hold at least
some namespace name values that are predefined; and
wherein the prefix portion 1s configured to hold a predefined
prefix for each of the predefined namespace name values;

and further comprising a property name portion for storing
a prefix that 1s associated with at least some of the
namespace name values and a property that 1s associated
with each prefix.

53. The data structure of claim 48, wherein the XML
namespace name value portion 1s configured to hold at least
some namespace name values that are predefined; and
wherein the prefix portion 1s configured to hold a predefined
prefix for each of the predefined namespace name values;
and further comprising:

a property name portion for storing a prefix that is
associated with at least some of the namespace name
values and a property that is associated with each
prefix; and

a value portion for storing a value that 1s associated with

a property that 1s stored 1n the property name portion.

54. A method of defining a data structure for use in

creating an XML extensible mark up language (XML)
document comprising:

creating a namespace name value portion that 1s config-
ured to hold one or more namespace name values;

creating a prefix portion that is configured to hold a prefix
for each namespace name value that 1s held 1n the
namespace name value portion;

placing at least one namespace name value in the
namespace name value portion; and

placing a prefix that 1s associated with the at least one
namespace name value 1n the prefix portion

wherein the placing of the at least one namespace name
value comprises placing at least one reserved
namespace name value 1n the namespace name value
portion.

55. One or more computer-readable media having
computer-readable instructions thereon which, when
executed by one or more processors, cause the one or more
processors to implement the method of claim 54.

56. A method of defining a data structure for use in
creating an XML extensible mark up language (XML)
document comprising;:

creating a namespace name value portion that 1s config-

ured to hold one or more namespace name values;

creating a prefix portion that is configured to hold a prefix
for each namespace name value that 1s held 1n the
namespace name value portion;

10

15

20

25

30

35

40

45

50

55

60

65

24

placing at least one namespace name value 1n the
namespace name value portion; and

placing a prefix that 1s associated with the at least one
namespace name value 1n the prefix portion;

wherein the placing of the prefix comprises placing a

reserved prefix 1n the prefix portion.

57. One or more computer-readable media having
computer-readable 1nstructions thereon which, when
executed by one or more processors, cause the one or more
processors to implement the method of claim 56.

58. A method of defining a data structure for use 1n
creating an XML extensible mark up language (XML)
document comprising:

creating a namespace name value portion that 1s config-
ured to hold one or more namespace name values;

creating a prefix portion that 1s configured to hold a prefix
for each namespace name value that 1s held 1 the
namespace name value portion;

placing at least one namespace name value 1n the
namespace name value portion; and

placing a prefix that 1s associated with the at least one
namespace name value 1n the prefix portion; and further
comprising:
creating a property name portion for storing a prefix
that 1s associlated with a namespace name value and
a property that 1s associated with each prefix.

59. One or more computer-readable media having
computer-readable instructions thereon which, when
executed by one or more processors, cause the one or more
processors to implement the method of claim 56.

60. A method of generating an XML document compris-
ng:

receiving data that describes namespace name values and

properties that are to appear in an XML document;

organizing the data 1n one or more flat lists; and

using the flat lists to generate an XML document.

61. The method of claim 60, wherein one of the flat lists
holds an association of namespace name values and prefixes
that are assigned to the namespace name values.

62. The method of claim 60, wherein one of the flat lists
holds an association of prefixes that are assigned to the
namespace name values and one or more properties that are
assoclated with the prefixes.

63. The method of claim 60, wherein:

one of the flat lists holds an association of namespace
name values and prefixes that are assigned to the
namespace name values; and

another of the flat lists holds an association of prefixes that
are assigned to the namespace name values and one or
more properties that are associated with the prefixes.

64. One or more computer-readable media having
computer-readable instructions thereon which, when
executed by one or more processors, cause the one or more
processors to implement the method of claim 60.

65. A method of generating an XML document compris-
ing generating an XML document without storing a hierar-
chical tree structure that represents the XML document.

66. The method of claim 65, wheremn said generating
comprising doing so without building a hierarchical tree
structure.

67. The method of claim 65, wheremn said generating
comprises building one or more flat lists that contain data
and data associations and generating the XML document
from the one or more flat lists.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,675,353 Bl Page 1 of 1
DATED : January 6, 2004
INVENTOR(S) : Friedman

It Is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Column 8,
Line 35, delete “to” between “client” and “application”.

Column 14,
Line 14, mnsert -- to -- between “sent” and “the”.

Column 15,
Line 67, replace “PROEIND” with -- PROFIND --.

Column 24,
Line 30, replace “claim 56 with -- claim 58 --.

Signed and Sealed this

Eighteenth Day of May, 2004

o WD

JON W. DUDAS
Acting Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

