US006668362B1
a2 United States Patent (10) Patent No.: US 6,668,362 B1
Mcllwain et al. 45) Date of Patent: Dec. 23, 2003
(54) HIERARCHICAL VERIFICATION FOR 5497334 A * 3/1996 Russell et al. ..ooo......... 716/5
EQUIVALENCE CHECKING OF DESIGNS 6,026,222 A * 2/2000 Gupta et al. 716/5
6,212,669 Bl * 4/2001 JAIN eeveeereeeeereeereeeeereannns 716/7
(75) Inventors: Lisa Mcllwain, Portland, OR (US); 6,336,206 B1 * 1/2002 Lockyearcccocvev.... 716/7

Demosthenes Anastasakis, Tigard, OR

* cited by examiner
(US); Slawomir Pilarski, Beaverton,

OR (US) Primary FExaminer—Vuthe Siek
Assistant Examiner—Brandon Bowers
(73) Assignee: Synopsys, Inc., Mountain View, CA (74) Attorney, Agent, or Firm—Bever, Hoffman & Harms,
(US) LLP; Jeanette S. Harms
(*) Notice: Subject to any disclaimer, the term of this (57) ABSTRACT

patent 15 extended or adjusted under 35

U.S.C. 154(b) by 70 days. A method and apparatus for determining equivalence

between two i1ntegrated circuit device designs. Functional
blocks and compare points within a first design are com-

(21) Appl. No.: 10/043,737 pared with functional blocks and compare points 1n a second
(22) Filed: Jan. 9, 2002 design to determine compare points that are matched. The

integrated circuit designs are traversed net-wise and cut
(51) Int. CL7 ..o, GO6k 17/50 points are inserted at compare points that are matched and
(52) US.CL .o, 716/5; 716/5; 716/3 that are not determined to be constant. As each design 1s
(58) Field of Searchcccccccoceo...... 716/3, 4,5 traversed, the design is flattened such that flat copies of both

integrated circuit designs are obtained (that include the
(56) References Cited inserted cut points). The flat copies of the integrated circuit

designs are then compared to determine equivalence.
U.S. PATENT DOCUMENTS

5,249,133 A * 9/1993 Batracceeiiviiinininnn, 716/5 20 Claims, 5 Drawing Sheets

IDENTIFY LOGIC CONES
501

IDENTIFY CONSTANT HIERARCRHICAL
POINTS

MATCH FUNCTIONAL BLOCKS AND
HIERARCHICAL POINTS
_ 503

TRAVERSE AND FLATTEN DESIGNS, INSERTING
CUT POINTS AT HIERARCHICAL POINTS THAT
ARE MATCHED AND THAT ARE NOT CONSTANT

204

CREATEMITER |
505
— [SELECTIVELY REMOVE
SOLVE MITER _ SOME CUT POINTS
206 508

YES

ANY CUT
POINTS
REMAINING?

509

SUCCESSFUL
VERIFICATION?

207

NO

NO
GENERATE MESSAGE THAT | GENERATE MESSAGE THAT
INDICATES THAT VERIFICATION WAS INDICATES THAT VERIFICATION
SUGCCESSFUL ; FAILED
511

| 210

U.S. Patent Dec. 23, 2003 Sheet 1 of 5 US 6,668,362 Bl

R AR PP RS BRI R F T AR AR N a R T R R T VRS A AT TR R A R PP T SRR IR P T A RES AR Y AR AR R R R T T T A A R T A L A S AR T T RSN P TSt P A A B T e A RN T T W R R PNk T T o e B et el N gy

CENTRAL VOLATILE | | NON-VOLATILE | | DATA STORAGE
PROCESSOR UNIT}{| MEMORY MEMORY DEVICE
14 16 18 20

COMPUTER 10

TATPHANUWERICY ™ CURSOR ™ { SIGNAL INPUTIOUTRUT
D'SPLAY DEVICE "\ oyt DEVICE }} CONTROL DEVICE COMM DEVICE
22 24 % 28

..II'--..'.’..-.-."--"---'i.ﬁ-i‘ ---l*-i--‘---"lﬂ--".-I'-.--l--l"---. --

U.S. Patent Dec. 23, 2003 Sheet 2 of 5 US 6,668,362 Bl

Reference Implementation
Design A Design B

E DESIGN <>

transformation |¢———— 202

203

Equivalence Checker

204 Does A = B?

"Equivalent” or "Not-Equivalent’
209

¢ b4

US 6,668,362 Bl

Sheet 3 of 5

Dec. 23, 2003

00¢
L0E
Buiosy)) aoueeAInb3
€20t
60€E 4ot ubisaQ)
920¢ LiE PZO% e
e O S
—— — U) a— —
00 buposyYd
sisAjeuyy Buiwij 0nBlS 2audjeainb3
GOt
POt €0t

LONE(NWIS
114

LONBIBUD)
Jouag-1sa).

' L0t
—= ubiss@

90UBJ3J9Y

U.S. Patent

U.S. Patent Dec. 23, 2003 Sheet 4 of 5 US 6,668,362 Bl

MATCH FUNCTIONAL BLOCKS AND COMPARE POINTS
401

PARTITION
402

TRAVERSE AND FLATTEN DESIGNS, INSERTING CUT
POINTS AT COMPARE POINTS THAT ARE MATCHED AND
THAT ARE NOT CONSTANT
403

COMPARE DESIGNS FOR DETERMINING EQUIVALENCE
404

Fig. 4

U.S. Patent Dec. 23, 2003 Sheet 5 of 5 US 6,668,362 Bl

IDENTIFY LOGIC CONES
201

IDENTIFY CONSTANT HIERARCRICAL

POINTS
902

MATCH FUNCTIONAL BLOCKS AND
HIERARCHICAL POINTS
203

500
TRAVERSE AND FLATTEN DESIGNS. INSERTING
CUT POINTS AT HIERARCHICAL POINTS THAT

ARE MATCHED AND THAT ARE NOT CONSTANT

904

CREATEMITER |
502
SELECTIVELY REMOVE
SOWEOM‘TER SOME CUT POINTS
506 508
YES

ANY CUT
POINTS
REMAINING?

200

SUCCESSFUL
VERIFICATION?

207

e
GENERATE MESSAGE THAT

GENERATE MESSAGE THAT
INDICATES THAT VERIFICATION WAS
SUCCESSFUL
511

INDICATES THAT VERIFICATION
FAILED

210

Fig. 5

US 6,663,362 Bl

1

HIERARCHICAL VERIFICATION FOR
EQUIVALENCE CHECKING OF DESIGNS

FIELD OF THE INVENTION

The present mvention pertains to the field of semicon-
ductor design verification. More specifically, an embodi-
ment of the present invention relates to a method and
apparatus for determining equivalence of integrated circuit
device designs.

BACKGROUND ART

Advances 1n semiconductor technology have led to sub-
stantial increases 1n gate count for mtegrated circuit devices
such as Application Specific Integrated Circuit (ASIC)
devices. This has significantly increased the run time for
semiconductor design verification processes and 1n
particular, equivalency checking processes.

Equivalence checking during verification uses either flat
processes or hierarchical processes. Flat verification pro-
cesses conslder the design as a whole and do not consider
heirarchical boundaries at all. Flat verification processes
have a relatively quick setup process. However, with large
design sizes, memory capacities are strained, impacting
whether the design completes verification. In addition,
extracted logic cone sizes can become unyieldingly large,
leading to longer run times and indeterminate or hard
verifications. This consumes valuable hardware, software
and human resources. Moreover, as devices continue to be
more complex and as gate counts continue to increase the
fime demands of flat verification processes will continue to
WOTSEN.

Hierarchical verification processes partition a design hier-
archically into functional blocks. A determination 1s then
made as to whether the implementation design implements
all of the functional blocks of the reference design. This
simplifies verification by controlling cone size and
complexity, resulting 1n substantial performance 1mprove-
ments over flat veriication processes. In addition, hierar-
chical verification processes require less memory because
they verily one functional block at a time.

However, traditional hierarchical verification may require
complex setup information or simply fail to prove
equivalence, producing a “false negative” result. This 1s due
to changes that blocks undergo during the design process.
For example, boundary optimization pushes logic into other
levels of hierarchy, which causes verification failures unless
the differences are accounted for. Block name changes
throughout the design flow can adversely affect module
name mapping. Clock tree msertion with clock lines that
cross hierarchical boundaries cause unmatched clock pins,
producing mapping problems.

When {failures occur 1in traditional hierarchical
verification, the faillures must then be debugged to determine
whether the designs are 1n fact equivalent if their complete
context 1s considered. In some hierarchical processes, when
failures occur, the results of the hierarchical verification
processes are analyzed by flattening out the design where the
failure 1s found. However this often does not provide sui-
ficient information to determine equivalence. Moreover, 1n
some cases, the design 1s flattened completely and verifica-
fion must be run 1n flat mode, causing loss of the advantages
of hierarchical verification.

What 1s needed 1s a method and apparatus that provides
quick analysis and verification of a semiconductor design. In

10

15

20

25

30

35

40

45

50

55

60

65

2

addition, a method and apparatus 1s needed for determining,
equivalence of integrated circuit designs that does not pro-
duce false negative results.

SUMMARY OF THE INVENTION

The present 1nvention includes an equivalence checker
that gives quick analysis and verification of a semiconductor
design. In addition, the method and apparatus of the present
invention allows for determining equivalence of integrated
circuit device designs and does not produce false negative
results.

A method for determining equivalence between two 1nte-
orated circuit device designs 1s disclosed 1n which functional
blocks within a first integrated circuit design (the reference
design) are matched with functional blocks in a second
integrated circuit design (the implementation design) to
determine compare points that are matched. In one
embodiment, only registers, top-level primary outputs and
pins at hierarchical boundaries are compared and matched.
However, alternatively, other points could be compared.

During verification, the entire designs are considered (not
individual blocks) but cut points are inserted at hierarchical
pins that are matched. In one embodiment, each integrated
circuit design 1s divided into collections of logic cones.

As each design 1s traversed, the cones are tflattened such
that a tlat copy of both the reference design and the 1mple-
mentation design are obtained (that include the inserted cut
points). In the present embodiment, cut points are not
inserted at compare points that are determined to be con-
stant.

The flat copies of the reference design and the implemen-
tation design are then compared to determine equivalence. In
the present embodiment, equivalence 1s determined by cre-
ating a miter and solving the miter to determine whether the
reference design 1s equivalent to the implementation design.
In the present embodiment, the equivalence checker evalu-
ates whether the logic function at a given compare point 1n
one design 1s equivalent to the matching compare point in
the other design as indicated by the inserted cut points.

In one embodiment of the present invention, when the
comparison determines that the reference design and the
implementation design are not equivalent, some of the cut
points are selectively removed and the two designs are again
compared. This process 1s repeated, continuing to remove
cut points and compare designs, until the comparison 1ndi-
cates that the two integrated circuit device designs are
equivalent, or no cut points remain.

The method and apparatus of the present invention allows
for comparisons of versions of the design, both register
transfer level to gate level, and gate level to gate level.
Verification can be performed throughout the design cycle to
maintain complete functional equivalence during every
stage of the process flow.

The method and apparatus of the present invention rec-
ognizes the complete function of compare points (registers
and top-level primary outputs) as in traditional flat verifi-
cation processes. This eliminates false-negative results with-
out requiring the extensive setup of prior art hierarchical
verification process. The method and apparatus of the
present mvention verifies every compare point considering
its entire (flat) context; however, it also automatically limits
the size and complexity of cones by selectively verilying
matched hierarchical pin boundaries, when appropriate. The
intelligent selection of hierarchical cut points results in
performance levels similar to those of prior art hierarchical
verification processes. However, the method and apparatus

US 6,663,362 Bl

3

of the present mvention gives accuracy and ease of setup of
a traditional flat verification process.

Other features and advantages of the invention will
become apparent from the following detailed description,
taken 1n conjunction with the accompanying drawings,
illustrating by way of example the principles of the 1mnven-
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and form a part of this specification, illustrate embodiments
of the mvention and, together with the description, serve to
explain the principles of the invention:

FIG. 1 1s a block diagram illustrating an exemplary
computer system 1n accordance with one embodiment of the
present mvention.

FIG. 2 shows an exemplary system for verification of a
design 1 accordance with one embodiment of the present
invention.

FIG. 3 shows an exemplary system for verification of a
design and 1illustrates static verification at both the register
transter level and the gate level domain in accordance with
one embodiment of the present invention.

FIG. 4 1s a block diagram that illustrates a method for
determining equivalence of designs 1n accordance with one
embodiment of the present invention.

FIG. 5 1s a block diagram that 1llustrates a more detailed
method for determining equivalence of designs in accor-
dance with one embodiment of the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

Reference will now be made in detail to the preferred
embodiments of the mnvention, examples of which are 1llus-
trated in the accompanying drawings. While the mvention
will be described i1n conjunction with the preferred
embodiments, 1t will be understood that they are not
intended to limit the 1nvention to these embodiments. On the
contrary, the mvention 1s intended to cover alternatives,
modifications and equivalents, which may be 1included
within the spirit and scope of the invention as defined by the
appended claims. Furthermore, 1n the following detailed
description of the present invention, numerous speciiic
details are set forth in order to provide a thorough under-
standing of the present invention. However, 1t will be
obvious to one of ordinary skill in the art that the present
invention may be practiced without these specific details. In
other 1nstances, well-known methods, procedures,
components, and circuits have not been described 1n detail
so as not to unnecessarily obscure aspects of the present
invention.

Notation and Nomenclature

Some portions of the detailed descriptions that follow are
presented 1n terms of procedures, logic blocks, processing,
and other symbolic representations of operations on data bits
within a computer memory. These descriptions and repre-
sentations are the means used by those skilled 1n the data
processing arts to most effectively convey the substance of
their work to others skilled in the art. In the present
application, a procedure, logic block, process, or the like, 1s
conceived to be a self-consistent sequence of steps or
instructions leading to a desired result. The steps are those
requiring physical manipulations of physical quanfities.
Usually, although not necessarily, these quantities take the
form of electrical or magnetic information capable of being

10

15

20

25

30

35

40

45

50

55

60

65

4

stored, transferred, combined, compared, and otherwise
manipulated in a computer system. It has proven convenient
at times, principally for reasons of common usage, to refer
to these information as transactions, bits, values, elements,
symbols, characters, fragments, pixels, or the like.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the following discussions, it 1s appreciated
that throughout the present invention, discussions utilizing
terms such as “analyzing,” “flattening,” “calculating,”
“comparing,” “inserting” or the like, refer to actions and
processes of a computer system or similar electronic com-
puting device. The computer system or similar electronic
computing device manipulates and transforms data repre-
sented as physical (electronic) quantities within the com-
puter system memories, registers or other such information

storage, transmission or display devices.

Exemplary Computer System

In general, computer system 10 of FIG. 2, used by an
embodiment of the present invention, comprises an address/
data bus 12 for communicating information and one or more
central processor unit 14 coupled with bus 12 for processing
information and instructions. Central processor unit 14 may
be a microprocessor or any other type of processor. Com-
puter system 10 also includes data storage features such as
a computer usable volatile memory unit 16 (e.g., random
access memory, static RAM, dynamic RAM, etc.) and
non-volatile memory unit 18 that are coupled with bus 12 for
storing information and instructions for processor(s) 14.
System 10 also includes optional signal mput and output
communication device 28 coupled with bus 12 for enabling
computer system 10 to interface with other electronic
devices. In one embodiment of the present invention, input
and output communication device 28 1s a serial communi-
cation port, but could also use any number of well known
communication standards and protocols, ¢.g., Universal
Serial Bus (USB), Ethernet, FireWire (IEEE 1394), parallel,
small computer system interface (SCSI), infrared (IR)
communication, Bluetooth wireless communication, etc.

Computer system 10 also includes a data storage device
20 (“disk subsystem”) such as a magnetic or optical disk and
disk drive coupled with the bus 12 for storing information
and 1nstructions. Data storage device 20 can include one or
more removable magnetic or optical storage media such as
disk drives, magnetic tape, Computer Disks (CD’s), Digital
Video Disks (DVD’s), etc.

Optionally, computer system 10 can include a display
device 22 that 1s coupled to bus 12 for displaying graphics
and/or video. It should be appreciated that optional display
device 22 may be a cathode ray tube (CRT), flat panel liquid
crystal display (LCD), field emission display (FED), or any
other display device suitable for displaying video and/or
oraphic 1mages and alphanumeric characters recognizable to
a user. Furthermore, system 10 can include an optional
alphanumeric mput device 24 including alphanumeric and
function keys coupled to the bus 12 for communicating
information: and command selections to the central
processor(s) 14. Additionally, the computing device 10 of
FIG. 2 can include an optional cursor control device 26
coupled to the bus 12 for communicating user information
and command selections to the central processor(s) 14.

Exemplary Verification

Referring now to FIG. 2, an exemplary system 200 1s
shown that includes equivalence checker 204 for static

US 6,663,362 Bl

S

verification of a design by performing an equivalence check.
An original design commonly referred to as a “reference
design” 1s stored 1n database A. The original design can be
a system on a chip design such as, for example, an Appli-
cation Specific Integrated Circuit (ASIC) device design.
Design transformation processes are performed on the ref-
erence design to obtain an implementation design that is
stored 1n database B.

Continuing with FIG. 2, equivalency checker 204 finds
implementation errors by determining whether reference
design that 1s stored in database A i1s equivalent to the
implementation design that 1s stored in database B. The
output, shown by block 205 indicates that the designs are
equivalent or that the designs are not equivalent.

In the present embodiment, equivalency checker 204 can
check VHDL, Verilog, mixed VHDL and Verilog files, EDIF
files and Synopsys Data Base (DB) files, etc. However,
alternatively, other file formats could also be checked.

Referring now to FIG. 3, an exemplary system 300 1s
shown for performing static verification of implementation
design 302a—e 1 accordance with one embodiment of the
present 1nvention. Conventional functional verification 1s
then performed at the register transfer level as shown by
blocks 303-304. More particularly, register transfer level
simulation 303 and test-bench generation 304 are performed
on reference design 301. Also, static timing analysis 1s
performed as shown by block 320.

In the present embodiment, design compiler 305 gener-
ates implementation design 3024 that 1s stored 1n a database.
Equivalence checking 1s performed as shown by blocks
306-307. Also, static timing analysis can be performed as

shown by block 320.

Continuing with FIG. 3, equivalence checking can be
performed on the 1nitial 1mplementation design 3024 and
can be performed on subsequent versions of the implemen-

tation design, shown as implementation design versions
302614 302¢. For example, equivalence checking can be
performed on implementation design 3025 formed by per-
forming scan process 308 produces implementation design
3026. Equivalence checking can also be performed on
implementation design 302¢ formed by performing place
process 309 on implementation design 302b. Equivalence
checking can also be performed on 1implementation design
302d formed by performing clock tree process 310 on
implementation design 302c¢. Final sign-off 1s then achieved
by performing equivalence checking on i1mplementation
design 302¢ formed by performing a routing process 310 on
implementation design 302d.

Method for Determining Equivalence

Referring now to FIG. 4, a method 400 for determining,
equivalence 1s shown. In one embodiment, method 400 is
performed using software implemented 1n a computer sys-
tem such as computer system 10 illustrated in FIG. 1.
Alternatively, hardware or firmware can be used to perform

method 400.

The designs are segmented at hierarchical boundaries 1nto
functional blocks. As shown by step 401, functional blocks
and compare points (pins, ports and registers) within the
reference design are then compared to functional blocks and
compare points 1n the implementation design to identily
functional blocks and compare points that match. In the
present embodiment, only registers, top-level primary
inputs, top-level primary outputs, and hierarchical bound-
aries are matched. In the present embodiment, matching 1s
performed using the object names to determine functional
blocks and compare points that are matched. However, other
methods can also be used to match some or all compare
points. Thus, for example, when both the reference design
and the implementation design include a functional block
named ALU that includes a pin called bus,, 1, the two pins
are matched.

10

15

20

25

30

35

40

45

50

55

60

65

6

As shown by step 402, the design 1s partitioned into
top-level partitions. Any of a number of known partitioning
methods can be used. By partitioning the design, individual
partitions can be processed separately, reducing memory
requirements and processor load. However, it 1s appreciated
that partitioning may not be required when the designs being
tested for equivalence are not large.

For each top-level partition, the design 1s traversed net-
wise as shown by step 403 and 1s flattened to create a flat
design copy that includes cut points. The cut points are
inserted at compare points that were matched 1n step 402,
that are not constant, and that have not already failed
verification 1n a previous partition. In addition, in the present
embodiment, multiply-driven nets are resolved, registers are
normalized and combinational logic cycles are eliminated as
needed to perform verification.

As shown by step 404, the flat reference design 1s then
compared to the flat implementation design i1n order to
determine equivalence. In the present embodiment, a veri-
fication engine 1s used to determine equivalence. The veri-
fication engine can be implemented in either hardware or 1n
software. The verification engine processes miter logic that
1s created within the flat design for determining whether the
implementation design 1s equivalent. If the implementation
design 1s determined to be equivalent, the design 1s deemed
to be “verified.” If the implementation design 1s not deter-
mined to be equivalent, the design 1s deemed to be “not
verified.”

In comparison step 404 the insertion of cut points at
matched, non-constant compare points provides for com-
parison using a hybrid approach that includes both hierar-
chical and flat characteristics. More particularly, the method
and apparatus of the present invention, when looking at a
cone of logic between two registers or between registers and
primary inputs at the top level of the design does not
consider the design either exclusively hierarchically or flat.
Rather, the entire flat cone 1s used for verification, with the
cone cut using cut points where the hierarchical boundaries
are matched (for compare points that are not constant). At
functional boundaries where compare points are not
matched, no cut points are created such that the cone of logic
1s completed all the way out to include the flat design up to
the next matched hierarchical boundaries or the entire flat
design. Thus, the designs are compared for matching func-
tionality using the inserted cut points and the remainder of
the designs are compared using flat processes (taking full
functionality into account). This avoids the false negative
problem that arises from viewing the design completely
hierarchically and avoids the performance requirements of
viewling the design entirely flat.

FIG. 500 shows a more detailed method for determining,
equivalence 1n accordance with one embodiment of the
present invention. First, as shown by step 501 the circuit 1s
segmented 1nto logic cones with boundaries represented by

source points and end points. In the embodiment shown 1n
FIGS. 23, both the circuits of reference design 301 and the
circuits of 1implementation design 302 are segmented into
logic cones. The term “logic cone” as the term 1s used 1n the
present application includes the combinational (non-
stateholding) logic between registers and primary inputs and
outputs.

As shown by step 502 constant compare points are
identified. More particularly, compare points (registers or
input/output pins) within each logic cone that maintain a
constant zero or a constant one are 1dentified. In the embodi-
ment shown 1n FIGS. 2-3, both the circuits of reference
design 301 and the circuits of implementation design 302 are
scarched to 1dentily compare points that maintain a logical
zero or a logical one.

As shown by step 503, functional blocks and compare
points are matched. More particularly, functional blocks and

US 6,663,362 Bl

7

compare points (pins, ports and registers) within the refer-
ence design are compared to functional blocks and compare
points 1n the implementation design to i1dentily functional
blocks and compare points that match. In the embodiment
shown 1n FIG. 2, the circuits of reference design 201 are
compared to the circuits of implementation design 202 to
find matching functional blocks and compare points.

For each logic cone, the design 1s traversed net-wise as
shown by step 504 and 1s flattened to create a flat design
copy that includes cut points. The cut points are inserted at
compare points that were matched 1n step 503 and that were
not determined to be constant 1n step 502. For example, extra
clock lines 1n an 1implementation design that do not have a
match 1n the reference design are not matched, therefore no
cut points will be created for these extra clock lines. Also, no
cut pomts will be created for compare points that have
constant value.

A miter 1s created as shown by step 503. In the embodi-
ment shown 1n FIG. 2, the circuits of reference design 201
and the circuits of implementation design 202 are flattened
(step 504) to create flat design copies. These flat design
copies are then used to create the miter (step S085).

The miter 1s then solved as shown by step 506. In the
present embodiment a verification engine 1s used to solve the
miter. The verification engine can be 1implemented 1n soft-
ware or hardware of a computing device (e.g., computer 10
of FIG. 1). In the embodiment shown in FIG. 3, the miter
performs a formal verification that compares the functional
equivalency of the register transfer level source (reference
design 301) to the post-synthesis gate-level netlist of imple-
mentation designs 302a—-302¢. The output from step 506
indicates whether the verification was successtul as shown

by block 507.

When a successtul verification results, the process ends as
shown by step 511 with a message that indicates that
verification was successiul.

However, when the wverification 1s not successtul, as
shown by steps 507-508, cut points are selectively removed
and a new miter 1s created and run that does not include the
cut points removed 1n step 508. Steps 506—508 are repeated
until a successtul verification results or until no cut points
remain as shown by steps 509-510. When all cut points have
been removed such that no cut points remain, as shown by
block 510, the process ends and a message 1s generated that
indicates that verification failed.

Because matching step 503 includes matching of compare
points at functional boundaries, and because only some
compare points will match, only some functional elements
will be represented hierarchically. The remainder of the
design will be represented flat. Accordingly the method and
apparatus of the present invention, when looking at a cone
of logic between two registers or between registers and
primary 1nputs at the top level of the design the design 1s not
looked at either exclusively hierarchically or flat. This
avolds the false negative problem that arises from viewing
the design completely hierarchically and avoids the perfor-
mance requirements of viewing the design entirely flat.

In one embodiment, method 500 of FIG. § 1s performed
on partitioned data. That 1s, the data 1s partitioned prior to
performing step 501 and steps 501-508 are performed on
cach set of partitioned data with individual partitions pro-
cessed sequentially. However, partitions could also be pro-
cessed 1n parallel.

The method and apparatus of the present invention allows
for comparisons of versions of the design, both register
transier level to gate level, and gate level to gate level. This
verification 1s used throughout the design cycle to maintain
complete functional equivalence at the gate level during
every stage of the flow. Thus, for example, 1n the embodi-

10

15

20

25

30

35

40

45

50

55

60

65

3

ment shown 1n FIG. 3, verification 1s used after scan chain
insertion 308, after in-place optimization 309, after clock-
tree synthesis 310, after routing 311, after manual netlist
edits, etc. This eliminates the need to perform time consum-
ing gate-level simulations throughout the design cycle.
Accordingly the method and apparatus of the present inven-
tion allows an engineer to run multiple verifications 1n a
single day, as opposed to completing one turn a day (or one
turn every two to three weeks for larger designs).

Instead of verifying blocks “upwards” as occurs in prior
art processes, the method and apparatus of the present
invention recognizes the top-cells as in traditional flat veri-
fication processes. This eliminates false-negative results
without requiring the setup of hierarchical verification. The
method and apparatus of the present invention verifies every
compare point considering its entire (flat) context; however,
it also automatically limits the size and complexity of cones
by selectively verifying matched hierarchical boundaries,
when appropriate. The intelligent selection of hierarchical
boundaries results 1n performance levels similar to or better
than those of prior art hierarchical verification processes.

However, the method and apparatus of the present invention
orves accuracy and ease of setup of a traditional flat verifi-
cation process. In addition, the method and apparatus of the
present invention has memory consumption levels similar to
those of hierarchical verification methods.

The preferred embodiment of the present invention, a
method and apparatus for determining equivalence 1s thus
described. While the present invention has been described in
particular embodiments, 1t should be appreciated that the
present invention should not be construed as limited by such
embodiments, but rather construed according to the below
claims.

What 1s claimed 1s:

1. A method for determining equivalence between a first
integrated circuit device design and a second integrated
circuit device design comprising;:

comparing functional blocks and compare points within

said first integrated circuit device design with func-
tional blocks and compare points in said second inte-
orated circuit device design to determine compare
points that are matched;

inserting cut points at compare points within said first
integrated circuit design and within said second inte-
orated circuit design that are matched;

flattening said first integrated circuit device design and
said second integrated circuit device design such that a
flat copy of said first integrated circuit device design
and a flat copy of said second integrated circuit device
design are obtained that include said cut points; and

comparing said flat copy of said second 1ntegrated circuit
device design to said flat copy of said first integrated
circuit device design to determine equivalence.

2. The method of claim 1 wherein said first integrated
circuit device design and said second integrated circuit
device design are partitioned into a plurality of partitions
and wherein said partitions are separated into logic cones.

3. The method of claim 2 wherein said partitions are
separated 1nto logic cones.

4. The method of claim 1 wherein mserting cut points at
compare points that are matched further comprising not
Inserting cut points at compare points that are determined to
be constant.

5. The method of claim 4 wherein said step of comparing
functional blocks and compare points within said first inte-
orated circuit design with functional blocks and compare
points 1n said second integrated circuit device design to
determine compare points that are matched further com-
prises matching only registers, top-level primary outputs,
and pins at hierarchical boundaries.

US 6,663,362 Bl

9

6. The method of claim 4 wherein comparing said flat
copy of said second mtegrated circuit device design to said
flat copy of said first integrated circuit device design further
COmMprises:

creating a miter; and

running said miter to determine whether said first inte-
orated circuit device design 1s equivalent to said second
integrated circuit design.

7. The method of claim 5 wherein, when said comparison
determines that said first integrated circuit device design is
not equivalent to said second integrated circuit design, ones
of said cut points are selectively removed and said flat copy
of said first integrated circuit device design i1s again com-
pared to said flat copy of said second integrated circuit
device design to determine whether said first integrated
circuit device design 1s equivalent to said second integrated
circuit design.

8. In a computer system including a processor coupled to
a bus, and a memory unit coupled to the bus for storing
information, a computer-implemented method for determin-
ing equivalence between a first integrated circuit device
design and a second integrated circuit device design com-
Prising;

comparing functional blocks and compare points within

said first integrated circuit device design with func-
tional blocks and compare points in said second inte-
orated circuit device design to determine compare

points that are matched;

inserting cut points at compare points within said first
integrated circuit design and within said second inte-
orated circuit design that are matched;

flattening said first integrated circuit device design and
said second 1ntegrated circuit device design such that a
flat copy of said first integrated circuit device design
and a flat copy of said second 1ntegrated circuit device
design are obtained that include said cut points; and

comparing said flat copy of said second integrated circuit
device design to said flat copy of said first integrated
circuit device design to determine equivalence.

9. The computer-implemented method of claim 8 wherein
said first integrated circuit device design and said second
integrated circuit device design are partitioned 1nto a plu-
rality of partitions.

10. The computer-implemented method of claim 8 said
partitions are separated mnto logic cones.

11. The computer-implemented method of claim 8
wherein 1nserting cut points at compare points that are
matched further comprises hot inserting cut points at com-
pare points that are determined to be constant.

12. The computer-implemented method of claim 11
wherein comparing functional blocks and compare points
within said first integrated circuit device design with func-
tional blocks and compare points in said second integrated
circuit device design to determine compare points that are
matched further comprises comparing only registers, top-
level primary outputs, and pins at hierarchical boundaries.

13. The computer-implemented method of claim 12
wherein said step of comparing said flat copy of said second
integrated circuit device design to said flat copy of said first
integrated circuit device design further comprises:

creating a miter; and

solving said miter to determine whether said first inte-
grated circuit device design 1s equivalent to said second
integrated circuit device design.

14. The computer-implemented method of claim 12
wherein, when said comparison determines that said first
integrated circuit device design 1s not equivalent to said

10

15

20

25

30

35

40

45

50

55

60

65

10

second 1ntegrated circuit device design, ones of said cut
points are selectively removed and said flat copy of said first
integrated circuit device design 1s again compared to said
flat copy of said second integrated circuit device design to
determine whether said first integrated circuit device design
1s equivalent to said second integrated circuit device design.

15. A computer-readable storage medium storing instruc-

tions that, when executed by a computer, cause the computer
to perform a method for determining equivalence between a
first integrated circuit device design and a second integrated
circuit device design comprising;:
comparing functional blocks and compare points within
said first integrated circuit device design with func-
tional blocks and compare points 1n said second inte-
orated circuit device design to determine compare
points that are matched;

traversing said first integrated circuit device design and
said second integrated circuit device design net-wise;

inserting cut points at compare points that are matched as
said first integrated circuit device design and said
second 1ntegrated circuit device design are traversed;

flattening said first integrated circuit device design and
said second 1ntegrated circuit device design as said first
integrated circuit device design and said second inte-
orated circuit device design are traversed such that a
flat copy of said first integrated circuit device design
and a flat copy of said second integrated circuit device
design are obtained that include said cut points; and

comparing said flat copy of said second integrated circuit
device design to said flat copy of said first integrated
circuit device design to determine equivalence.

16. The computer-readable storage medium of claim 15
wherein said first integrated circuit device design and said
second 1ntegrated circuit device design are partitioned into a
plurality of partitions and wherein said partitions are sepa-
rated into logic cones.

17. The computer-readable storage medium of claim 15
wherein 1nserting cut points at compare points that are
matched further comprising not 1nserting cut points at com-
pare points that are determined to be constant.

18. The computer-readable storage medium of claim 17
wherein comparing functional blocks and compare points
within said first integrated circuit device design with func-
tional blocks and compare points 1n said second integrated
circuit device design to determine compare points that are
matched further comprises comparing registers, top-level
primary outputs, and pins at hierarchical boundaries.

19. The computer-readable storage medium of claim 18
wherein said step of comparing said flat copy of said second
integrated circuit device design to said flat copy of said first
integrated circuit device design further comprises:

creating a miter; and

solving said miter to determine whether said first inte-
orated circuit device design 1s equivalent to said second
integrated circuit device design.

20. The computer-readable storage medium of claim 19
wherein, when said comparison determines that said first
integrated circuit device design 1s not equivalent to said
second 1ntegrated circuit device design, ones of said cut
points are selectively removed and said flat copy of said first
integrated circuit device design 1s again compared to said
flat copy of said second integrated circuit device design to
determine whether said first integrated circuit device design
1s equivalent to said second integrated circuit device design.

¥ ¥ H ¥ H

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 6,668,362 B1 Page 1 of 1
DATED : December 23, 2003
INVENTOR(S) : Mcllwain et al.

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Column 9,
Line 48, “comprises hot inserting” 18 replaced with -- comprises not inserting --

Signed and Sealed this

Twenty-ninth Day of June, 2004

o WD

JON W. DUDAS
Acting Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

