(12) United States Patent

Kirkwood et al.

US006665662B1

US 6,665,662 Bl
Dec. 16, 2003

(10) Patent No.:
45) Date of Patent:

(54) QUERY TRANSLATION SYSTEM FOR
RETRIEVING BUSINESS VOCABULARY
TERMS

(75) Inventors: Michael Kirkwood, San Francisco, CA

(US); Sima Yazdani, Fremont, CA (US)

(73) Assignee: Cisco Technology, Inc., San Jose, CA

(US)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 313 days.
(21) Appl. No.: 09/823,662
(22) Filed: Mar. 30, 2001
Related U.S. Application Data

(60) Provisional application No. 60/252,378, filed on Nov. 20,
2000.

(51) Int. CL7 ..o, GO6F 17/30

(52) US.ClL e 707/3

(58) Field of Search 707/4, 100, 3,

707/5, 10, 101, 102, 104.1, 103 R, 203;
704/275; 709/217, 236; 715/513
(56) References Cited

U.S. PATENT DOCUMENTS

6,438,540 B2 * 8/2002 Nasretal.oeenenni. 707/3
6,480,860 B1 * 11/2002 Monday 7077102
6,510,434 B1 * 1/2003 Anderson et al. 707/100

OTHER PUBLICAITONS

Jon Anthony, “Ariadne White Paper: [-Synthesizer, Core
Technology Review”, Mar. 30, 2001, Version 1.1, Synquiry
Technologies, Ltd, pp. 1-36.

Susan Mael, “Synquiry Brings Context and Merchandising
to E—Commerce Sites”, The Online Reporter, Apr. 23-27,
2001, Issue No. 244, pp. 1-3.

* cited by examiner

Primary Fxaminer—Diane D. Mizrahi

Assistant Examiner—Apu M. Moliz

(74) Attorney, Agent, or Firm—Hickman Palermo Truong
& Becker LLP

(57) ABSTRACT

Techniques for translating queries for related concepts in a
database of concepts and relationships among concepts
include translating the query for related concepts 1nto a
markup language 1n a first document at a concept client. The
database 1s local to a concept server. A query originates from
a concept client. The first document 1s sent to a concept
server over a network, and a second document 1n the markup
language 1s received over the network from the concept
server. The second document includes results based on
responses from the concept server. The markup language in
the second document 1s translated into values of the related
concepts at the concept client. With these techniques,
retrievals of related concepts, which involve complex trans-
actions between a calling routine and the database, can be
performed largely at the concept server, sparing the network
much message traffic. Furthermore, by providing for a
client-side adapter library, the developer of the concept
client 1s spared the details of translating between the markup
language used 1n the first and second documents and the
queries and resulting values used by the client.

19 Claims, 10 Drawing Sheets

404
CLIENT 404
1\ NETWORK
o 40
SERVLET 402 -
WEB SERVER
408 406
CONCEPT CONCEPT
APPLICATION 403h WEB APPLICATION
SERVLET
A A
R v 410 VDS
432 —» 428

CONCEFT ACCESS AP CONCEPT

EXPORT

A

430 -] 426
RULE ENGINE CONCEPT
IMPORT
vy !

v v

—

424 DATABASE CONCEPT ACCESS APl
422 DATABASE ACCESS AP

420 CONCEPT DATABASE

_--II""'-Ill|

U.S. Patent Dec. 16, 2003 Sheet 1 of 10 US 6,665,662 B1

102
FIG. 1 ENTERPRISE

NETWORK DEVICE
105 PRODUCTS

112 114 116
PERSEUS HERCULES JASON

122 124 126
AlphaPERSEUS BetaPERSEUS GammaPERSEUS

132
BetaPERSEUS
1.0

142
BetaPERSEUS

2.0

152 154
BetaPERSEUS BetaPERSEUS
2.4 3.0

162
SuperPERSEUS

U.S. Patent Dec. 16, 2003 Sheet 2 of 10 US 6,665,662 B1

202
NETWORKING
FIG. 2A SOLUTIONS

2095

212 214 216
SINGLE SERVER WIDE AREA

LOCAL NET NET (2 sites)

PRIVATE WIDE AREA
NET (3 to 8 sites)

234
AlphaPERSEUS

232
GammaPERSEUS BetaPERSEUS 2.0
OR HIGHER

237
HERCULES

244
MANAGEMENT-
SOFTWARE
GUI UPGRADE

242
PEGASUS 3.3

SOFTWARE TOOLS

282
PRODUCT:
BetaPERSEUS 2.0

284

- 286
TECHNICIAN:

TECHNOLOGY:
PRIVATE
WIDE AREA NET

JANE

U.S. Patent Dec. 16, 2003 Sheet 3 of 10 US 6,665,662 Bl

FIG. 3
302
ENTERPRISE 301a 322
NETWORK DEVICE NETWORKING
PRODUCTS SOLUTIONS
301b 321a
300 304
BetaPERSEUS PERSEUS 324
PRIVATE WIDE AREA
NET (3 to 8 sites)
301¢ 391
S04 301d

BetaPERSEUS

10 321c

332
PEGASUS 3.3

SOFTWARE TOOLS

390
PRODUCT:

BetaPERSEUS 2.0

310 321d
391
BetaPERSEUS 346 3956

2.4 TECHNICIAN: TE%';'I\'\%"T%GY:
JANE

351b | WIDE AREANET
312 ' 341b

BetaPERSEUS
3.0

334

4
- MANAGEMENT

WIDE AREA
NETWORKS

344

TECHNICIANS SOFTWARE

GUI UPGRADE

351a” _

342 352
USERS | 341a TECHNOLOGIES

U.S. Patent Dec. 16, 2003 Sheet 4 of 10 US 6,665,662 B1

404
FIG. 4A CLIENT 101
NETWORK
403a
SERVLET 402
WEB SERVER

408 406
CONCEPT CONCEPT
APPLICATION 403b WEB APPLICATION

SERVLET

410 VDS

428
CONCEPT

EXPORT

432
CONCEPT ACCESS APl

430
RULE ENGINE

426

CONCEPT
IMPORT

424 DATABASE CONCEPT ACCESS AP
422 DATABASE ACCESS API

420 CONCEPT DATABASE

U.S. Patent Dec. 16, 2003 Sheet 5 of 10 US 6,665,662 Bl

FIG. 4B

405 PLATFORM

461 SERVER SIDE 401
ADAPTER LIBRARY NETWORK
402a
452 CLIENT SIDE
ADAPTER

WEB SERVER

406a
CONCEPT

460 GENERIC SERVER WEB APPLICATION
ADAPTER
451 CLIENT SIDE
407 PLATFORM ADAPTER LIBRARY

432 10 VDS

CONCEPT ACCESS API

U.S. Patent Dec. 16, 2003 Sheet 6 of 10 US 6,665,662 Bl

FIG. 5A

202
GENERATE AND STORE A LIBRARY OF

CLIENT SIDE ADAPTER ROUTINES
TO REQUEST AND OBTAIN VOCABULARY DATA

904
GENERATE AND STORE A LIBRARY OF

SERVER SIDE ADAPTER ROUTINES
TO PROCESS REQUESTS FROM CLIENT SIDE ADAPTER ROUTINES

206
GENERATE AND STORE A GENERIC SERVER ADAPTER

TO PROCESS REQUESTS FROM CLIENT SIDE ADAPTER ROUTINES
AS A WEB SERVLET

200
GENERATE AND STORE A CONCEPT WEB APPLICATION

TO USE VOCABULARY DATA

INCLUDING A CLIENT SIDE ADAPTER BASED ON
THE LIBRARY OF CLIENT SIDE ADAPTER ROUTINES

210
EXECUTE WEB SERVER WITH
GENERIC SERVER ADAPTER AS SERVLET

912
EXECUTE CONCEPT WEB APPLICATION

U.S. Patent Dec. 16, 2003 Sheet 7 of 10 US 6,665,662 Bl

FIG. 5B

522 512a

INVOKE ROUTINE OF CLIENT SIDE ADAPTER LIRRARY
FOR STARTING REQUESTS

224
CLIENT SIDE ADAPTER ROUTINE GENERATES

START OF XML DOCUMENT

926
INDICATE TARGET VOCABULARY DATA

BY CATEGORY OR CONCEPT OR RELATIONSHIP
BASED ON USER INPUT OR PREDETERMINED PROCESS

528
INVOKE ROUTINE OF CLIENT SIDE ADAPTER LIBRARY
CAPABLE OF PROVIDING INDICATED TARGET VOCABULARY DATA

\

930
CLIENT SIDE ADAPTER ROUTINE GENERATES REQUEST

FORMATTED FOR XML DOCUMENT

232
INVOKE ROUTINE OF CLIENT SIDE ADAPTER LIBRARY
FOR ADDING REQUEST TO XML DOCUMENT

236
INVOKE ROUTINE

OF CLIENT SIDE ADAPTER LIBRARY | nO
FOR ENDING REQUEST STREAM

' 234
ANOTHER REQUEST

038

CLIENT SIDE ADAPTER ROUTINE GENERATES END OF
XML DOCUMENT AND SENDS TO THE VDS VIA WEB SERVER

U.S. Patent Dec. 16, 2003 Sheet 8 of 10 US 6,665,662 Bl

FIG. 3C

240
INVOKE ROUTINE OF CLIENT SIDE ADAPTER LIBRARY

FOR RECEIVING RESPONSES TO REQUESTS

242
CLIENT SIDE ADAPTER ROUTINE PARSES THE XML DOCUMENT

AND GENERATES A SERIES OF EVENTS (E.G., EXCEPTION, START &
END OF: DOCUMENT; RESPONSES; RESPONSE: CATEGORY:
CONCEPT; ATTRIBUTE; RELATED CONCEPT)

BASED ON XML DOCUMENT

244
CLIENT SIDE ADAPTER ROUTINE FOR HANDLING EVENTS INVOKES

THE PROPER CLIENT SIDE ROUTINE BASED ON NEXT EVENT

246
PROPER CLIENT SIDE ROUTINE PROCESSES DATA ON INPUT
STREAM ASSOCIATED WITH EVENT

949
END NO

ANOTHER EVENT

’ YES

U.S. Patent Dec. 16, 2003 Sheet 9 of 10 US 6,665,662 Bl

FIG. SD

550
RECEIVE PACKETS ADDRESSED TO URL OF SERVLET

FOR INTERACTING WITH VOCABULARY DATA SERVER (VDS)

992
INVOKE GENERIC SERVER ADAPTER SERVLET
TO PROCESS PACKETS

294
GENERIC SERVER ADAPTER
ASSEMBLES REQUEST XML DOCUMENT FROM PACKETS

990
GENERIC SERVER ADAPTER PARSES XML DOCUMENT INTO

SEPARATE OPERATIONS SUPPORTED BY METHODS OF
THE CONCEPT ACCESS API OF THE VDS

298
GENERIC SERVER ADAPTER INVOKES A METHOD OF
THE CONCEPT ACCESS APl AND MOVES RESULT

INTO A RESPONSE XML DOCUMENT

902
GENERIC SERVER ADAPTER NO

GENERATES END OF

200
ANOTHER

OPERATION _—~Vrs

RESPONSE XML DOCUMENT

AND SENDS TO THE 564
CONCEPT WEB APPLICATION END

US 6,665,662 Bl

9¢9

Sheet 10 of 10

Dec. 16, 2003

8¢9

U.S. Patent

1SOH

44
AHOMLAN
1VI0T

0¢9

NI
NdOMLSN

0¢9
d3AGIS

—_ e, T e e —_— e — —_— ——

Te— s e e e e e T T I AT T T B . B S Bl el — — — — — ——y

U T T S S E— — e el sleleer T S T . E———— - e, e —— —— — —— — —— —
.

e e e ——— —— ——— — — — — — — — — — —] T TEEEE W EEEES SR W I EEEE I SIS S S S S S SR A —E BBl Btk — ——_——_——_———_— —_—— —————— ——

JOV4HILNI 709
NOILYIINAWINOD 40SSIN0¥d

f— - a .

T TTEE TEER T T S —S — e el el e Al mmls S SIS S NN S S BEREE B el e — — — — — - -

919

TOd1NQOD

d0SdNd

719

SNd

019 809 909
JOINIC AJOWIN

JOVHOLS NWOY NIVIA

- - —— i — — ——— i — — — — —— —— — — e EEET TEENE RS I IS IS IS SN S SIS SIS S S R B B A e e e e e e e e e . . e e —— e - —_— ke e e e e — — e — e e e e e e e

T T S —— I R S NS A . e — — ————— — — T E— = AN R e B —— — s — —]

30IA30 LNdNI

- cl9

AY1dSIQ

9 Ol

US 6,665,662 Bl

1

QUERY TRANSLATION SYSTEM FOR
RETRIEVING BUSINESS VOCABUILARY
TERMS

CROSS-REFERENCE TO RELATED
APPLICATTONS

This application 1s related to and claims domestic priority

from prior U.S. Provisional application Ser. No. 60/252,378,
filed Nov. 20, 2000, the enfire disclosure of which 1s hereby
incorporated by reference as if fully set forth herein.

This application 1s related to U.S. utility patent pending
application Ser. No. 09/823,819 filed on Mar. 30, 2001,

entitled “Business Vocabulary Data Storage Using Multiple
Inter-Related Hierarchies” filed on the same day herewith,
by mventors M. Kirkwood et al., which 1s hereby incorpo-
rated by reference 1n its entirety.

FIELD OF INVENTION

The present invention generally relates to data processing,
in the field of vocabulary management as applied to work-
flow management. The invention relates more specifically to
franslating queries from an external system for retrieving
vocabulary data from a vocabulary development server.

BACKGROUND OF THE INVENTION

Through economic growth, mergers and acquisitions,
business enterprises are becoming ever larger. Further, large
business enterprises 1n the field of high technology now offer
ever larger numbers of products and services that derive
from an increasingly large variety of technologies.

In this environment, managing the creation, use, and
maintenance of product names and technology names 1s an
acute problem. As an enterprise grows, maintaining consis-
tent usage of names of products and services throughout the
enterprise becomes even more challenging. When an enter-
prise derives 1ts business opportunities from resecarch and
development 1nto new technologies or improvements of
existing technologies, maintaining consistent usage of tech-
nology designations 1s a challenge, especially when there 1s
disagreement about the uses, advantages or benefits of a
particular technology.

Large enterprises that own or operate complex Web sites
or other network resources that contain product and tech-
nology information face a related problem. Specifically,
ensuring consistent usage of product names and technology
terms across a large, complicated Web site 1s problematic. A
particular problem involves maintaining consistent use of
terms when different parts or elements of the Web site are
authored by different individuals or groups.

Yet another problem 1n this context pertains to retrieving
product information and technology information. Visitors to
the large enterprise Web site do not necessarily know the
“official” name of a product or technology. As a result, new
visitors tend to query the Web site for product information
based on 1ncorrect terms, imprecise terms, related terms, or
names that are unofficial. When a visitor searches using the
wrong product name, the visitor 1s unable to retrieve the
desired product information, and the visitor may become
frustrated. However, this 1s undesirable from a promotional
standpoint; the customer should be able to 1ssue a “wrong”
query and yet still retrieve the correct information.

Based on the foregoing, there 1s a clear need for improved
ways to manage one or more vocabularies of product names
and technology terms. In particular, there 1s a need for a way
to structure name information so that it can be located and

10

15

20

25

30

35

40

45

50

55

60

65

2

navigated easily. There 1s also a need for a way to share and
propagate changes to name and terminology information.

There 1s a specific need for a clear and consistent way to
develop new product brands and names that promotes con-
sistency 1n terminology, style and presentation.

There 1s a need for a way to deliver information that 1s
relevant to a user query in response to non-standard or
alternative terms.

There 1s also a need for a simple, automated, unified and
consistent way to manage usage of product names and
technology terms 1n business documents and online
resources such as Web sites.

There 1s also a need for a workflow management system
that can control processes through which new product names
are created, control the format and style of the names, and
manage development of names and technology designations
by individuals who are distributed among many groups of a
large enterprise.

There 1s also need for a system that is extensible or
adaptable when new products and technologies are devel-
oped by diverse, distributed groups in a large business
enterprise.

SUMMARY OF THE INVENTION

The foregoing needs, and other needs and objects that will
become apparent from the following description, are
achieved 1n the present invention, which comprises, 1n one
aspect, a method of translating queries for related concepts
in a database of concepts and relationships among concepts.
The database 1s local to a concept server. A query originates
from a concept client. The method includes translating the
query for related concepts into a markup language 1n a first
document at a concept client. The first document 1s sent to
a concept server over a network, and a second document 1n
the markup language 1s received over the network from the
concept server. The second document includes results based
on responses from the concept server. The markup language
in the second document 1s translated into values of the
related concepts at the concept client.

In another aspect, the present invention includes a method
of translating queries for related concepts 1in a database of
concepts and relationships among concepts. The database 1s
local to a concept server. A query originates from a concept
client. The method includes receiving at a concept server
process over a network a first document from a concept
client. The first document includes the query for related
concepts that has been translated 1into a markup language. A
set of one or more operations performed by the concept
server process 15 determined based on the first document.
The set of operations are mnvoked. A second document in the
markup language 1s generated and stored. The second docu-
ment includes results based on responses from the opera-
tions that are invoked. The second document 1s sent to the
concept client over the network for translation into values of
the related concepts at the concept client.

In another aspect, the present invention 1includes a method
of obtaining related concepts 1n a database of concepts and
relationships local to a concept server at a remote concept
client. The method includes generating and storing a first
document at the remote concept client that ageregates mul-
tiple requests for related concepts 1n the database. The first
document 1s sent to a concept server over a network. A
second document 1s received from the concept server over
the network. The second document includes results based on
responses from the concept server. Values of related con-
cepts are extracted from the second document.

US 6,665,662 Bl

3

In another aspect, the present mnvention includes a method
of providing related concepts in a database of concepts and
relationships local to a concept server process to a remote
concept client process. The method includes receiving at a
concept server from a remote concept client over a network
a first document. The first document includes multiple
requests for related concepts in the database. A set of
operations performed by the concept server 1s determined
based on the first document. The set of operations are
invoked. A second document 1s generated and stored. The
seccond document aggregates results based on responses
from the operations invoked. The second document 1s sent to
the remote concept client over the network for retrieving
values of the related concepts at the remote concept client.

In another aspect, the present mnvention includes a method
of translating a query for concepts in a business vocabulary
database of concepts and relationships among concepts.

The method includes receiving at a client site on a
network, from a provider of the business vocabulary
database, a client-side adapter library of methods. The
client-side library includes a method for translating a query
for related concepts in the database into one or more
clements of a first document. The client-side library also
includes a method for extracting a set of values of the related
concepts from one or more elements of a second document.
A concept client process for the client site 1s developed
based 1n part on the client-side adapter library. The concept
client process generates a first query uses a first set of values
of related concepts. The concept client process 1s executed
to translate a particular first query imnto a particular first
document, to send the first document to a concept server
process, and to extract a particular set of values of related
concepts from a particular second document. The particular
second document includes results returned from the concept
SEIVEr Process.

In another aspect, the present mnvention includes a method
of translating a query for concepts 1n a business vocabulary
database of concepts and relationships among concepts. The
method includes generating a client-side adapter library of
methods and sending the client-side library from a provider
of the business vocabulary database to a client site on a
network. The client-side library includes a method {for
translating a query for related concepts in the database into
one or more elements of a first document. The client-side
library also includes a method for extracting a set of values
of the related concepts from one or more elements of a
second document. A concept server process 1s developed
based on a server-side adapter library of methods. The
server-side library includes a method for determining a set
of operations performed by a database server based on the
first document. The server-side library also includes a
method for generating and storing a second document that
aggregates results from the set of operations as one or more
clements. The methods of the client-side adapter library may
extract values from the second document. The concept
server process 1s executed to receive a particular first docu-
ment from a particular concept client process, to determine
a particular set of operations based on the particular first
document, to cause the database server to perform the
particular set of operations, to generate and store a particular
second document mncluding results based on responses from
the set of operations, and to send the particular second
document to the particular client process.

In other aspects, the invention encompasses computer
readable media, and systems configured to carry out the
foregoing steps.

These techniques allow remote and external applications
to efficiently query for business vocabulary terms related by

10

15

20

25

30

35

40

45

50

55

60

65

4

one or more relationships without requiring a knowledge of
the organization of the persistent storage for the vocabulary
database or the form of the markup language used in
documents sent over the network between the concept server
and the concept client. With these techniques, retrievals of
related concepts, which involve complex transactions
between a calling routine and the database, can be performed
largely at the concept server, sparing the network much
message traffic. Furthermore, by providing for a client-side
adapter library, the developer of the concept client 1s spared
the details of translating between the markup language used
in the first and second documents and the queries and
resulting values used by the client.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention 1s 1illustrated by way of example,
and not by way of limitation, 1n the figures of the accom-
panying drawings and 1n which like reference numerals refer
to similar elements and 1n which:

FIG. 1 1s a block diagram that illustrates a hypothetical
product type hierarchys;

FIG. 2A 1s a block diagram that illustrates a networking
solutions hierarchy including one or more concepts from the
product type hierarchy of FIG. 1;

FIG. 2B 1s a block diagram that 1llustrates a non-binary
relationship among concepts;

FIG. 3 1s a block diagram 1llustrating simultaneous mul-
tiple mter-related hierarchies involving a product type con-
cept;

FIG. 4A 1s a block diagram illustrating a vocabulary
development server and external applications;

FIG. 4B 1s a block diagram showing structures on the
platforms of applications mnvolved with remote clients;

FIG. 5A1s a flow chart illustrating a high level method for
developing a concept. client;

FIG. 5B 1s a portion of a flow chart illustrating details for
executing a concept client process;

FIG. 5C 1s a portion of a flow chart illustrating details for
executing a concept client process;

FIG. 3D 1s a flow chart illustrating details for executing a
concept Web server process; and

FIG. 6 1s a block diagram that illustrates a computer
system upon which an embodiment may be 1implemented.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

A method and apparatus are described for translating
queries from an external system to retrieve vocabulary data
from a vocabulary development server. In the following
description, for the purposes of explanation, numerous spe-
cific details are set forth 1n order to provide a thorough
understanding of the present invention. It will be apparent,
however, to one skilled 1n the art that the present invention
may be practiced without these specific details. In other
mstances, well-known structures and devices are shown 1n
block diagram form 1n order to avoid unnecessarily obscur-
ing the present invention.

1.0 Business Vocablary Data Processing

Business vocabulary terms are used to name products,
product lines, technologies, development efforts and other
business activities of an enterprise. Some of the vocabulary
terms are used only internally and some are used for
interaction with the public to establish brand name recog-
nition or to support precise communication of customer

US 6,665,662 Bl

S

interests and orders. Terms related 1n meaning or form are
used to associate related business products and activities in
the minds of the users of those terms. For example, a device
sold by an enterprise might be named Perseus, after a hero
of Greek mythology, and a software program for executing
on that device might be named Pegasus, after the winged
horse Perseus rode. Similarly, different models of the Per-
seus device might be called AlphaPerseus and BetaPerseus,
to show they are part of the same product line, while
different versions of each model may be numbered, such as
BetaPerseus 2.0 and BetaPerseus 2.4.

The present invention 1s based 1n part on a recognition that
the business terms of an enterprise constitute an important
type of business data that should be included in the auto-
mated data processing that the enterprise performs. This
vocabulary data about the products, services and activities of
a business 1s a form of metadata for the products, services
and activities of the enterprise. Those terms can be used to
categorize the products, services and activities and to
retrieve other data about those products, services and activi-
fies. The data structures employed to store, retrieve and
process this metadata should account for the associations in
meaning and form and support rapid associative or inferen-
tial search and retrieval.

2.0 Vocabulary Data Framework

According to the present invention, the various terms that
constitute the business vocabulary of an enterprise are
modeled as nodes 1n a hierarchy called the MetaData Frame-
work (MDF) or the Vocabulary Data Framework (VDF). In
this framework, any business term that 1s derived from
another particular business term 1s positioned 1n the hierar-
chy at a node that branches from the node of that particular
business term from which 1t 1s derived. When the hierarchy
1s embodied 1n stored data with appropriate data structures
and software programs, it 15 extremely useful 1n naming
products and associating products with product lines.

For example, FIG. 1 shows a hypothetical product type
hierarchy for a hypothetical enterprise that manufactures and
sells network devices. In this hierarchy, node 102 1s a root
node representing network device products sold by the
enterprise. Node 102 has three child nodes, 112, 114, 116
that are connected by arrows 105. The parent/child relation-
ship 1s denoted by an arrow pointing from parent to child 1n
FIG. 1. A relationship statement can be obtained reading
from arrow head to arrow tail by the words “1s a child of”
or read 1n the opposite direction by the words “is a parent
of.” Thus node 112 1s a child of node 102. Node 102 1s a
parent of node 112. In the product type hierarchy of FIG. 1,
arrow 105 represents the product type parent/child relation-
ship.

Node 112 represents the devices named “Perseus.” In this
embodiment, the content of node 112 includes “Perseus.”
Nodes 114, 116 represent devices named “Hercules” and
“Jason,” respectively. FIG. 1 shows that the Perseus device
comes 1n three models, “AlphaPerseus,” “BetaPerseus” and
“GammaPerseus,” represented by the three nodes 122, 124,
126, respectively. The BetaPerseus model has evolved over
time through versions 1.0, 2.0 and 3.0, represented by nodes
132,142, 154, respectively. The contents of these nodes hold
the names “BetaPerseus 1.0,” BetaPerseus 2.0,” and
“BetaPerseus 3.0,” respectively. BetaPerseus 2.0 also expe-
rienced some evolutions called “BetaPerseus 2.4” and
“SuperPerseus,” which are represented by nodes 152, 162,
respectively.

This hierarchy consists of binary relationships; that 1s,
cach relationship requires one parent and one child. The
product type relationships of FIG. 1 are constrained by a rule

10

15

20

25

30

35

40

45

50

55

60

65

6

that each child may have only one parent. There 1s no rule
restricting the number of children a parent may have 1n this
hierarchy.

Various applications use the immformation m the VDF
implementation to perform different functions for the enter-
prise. In one application, the VDF relationships in the
illustrated hierarchy are used to determine that the product
named “SuperPerseus” 1s actually a version of the BetaPer-
secus model that 1s based on version 2.4. In another
application, the VDF content 1s used to help provide names
for products as new products are developed by automatically
including the product type and model name and by prevent-
ing the re-use of an existing version number. Embodiments
of this application enforce a rule that each name shall be
unique. The enterprise uses the VDF with other embodi-
ments of such an application to enforce other naming rules,
such as requiring the model name shall be part of the device
name. In this case the ambiguous name “SuperPerseus” 1s
not allowed, and 1s discarded 1n favor of the automatic name,
“BetaPerseus 2.5”, or some allowed variation of that, which
1s stored as the content of node 162.

The vocabulary data framework (VDF) captures simulta-
necous multiple relationships among names, products,
solutions, services, documentation and activities for an
enterprise. In particular, the VDF allows other relationships
to be established between nodes simultaneously with the
product type relationship. Furthermore, the VDF allows any
of these new relationships to 1nvolve more than the two
nodes of the binary parent-child relationship already
described. For example, 1t allows a ternary relationship
among a father node, a mother node, and a child node. In
oeneral, the VDF allows N-ary relationships among nodes,
where N 1s any integer equal to or greater than one and
specifles the number of participants 1n the relationship.

In the more general realm of the VDE, the enterprise 1s
considered a data domain that includes many atomic con-
cepts that may be related. Atomic concepts include any data
item 1nvolved 1n the enterprise that is not subdivided into
separately referenced storage units. These atomic concepts
include the business vocabulary for the enterprise data that
1s the subject of the present mnvention. Concepts include
product type names, as 1 the above example, but also
comprise paragraphs, chapters, documents, images, multi-
media files, database records, database queries, network
resources, citations, and network addresses, among other
things. The concepts and relationships are captured 1n con-
ceptual graphs which are organized primarily by a partial-
order relationship, commonly known as a type hierarchy.
The concepts are nodes 1n the graph and the relationships are
connections between two or more nodes. Both concepts and
relationships have enumerated characteristics in some
embodiments.

The graph of FIG. 1 1s an example of a conceptual graph
ordered by its product type hierarchy of binary (parent-
child) relationships. Whereas this is one example based on
a product type hierarchy, the VDF allows for simultaneous
and inter-related multiple type hierarchies, as 1s explained 1n
more detail m the following sections.

2.1 Multiple Hierarchies

As seen above 1n FIG. 1, concepts are related 1n a graph
depicting product types. All the concepts 1n this graph are
assoclated with one category of information in the enterprise
data. That category 1s device product types, and that hier-
archy relates concepts for products that are related in devel-
opment history, structure or function. However, enterprise
data may include other categories or relationships. In
ogeneral, multiple categories encompass the enterprise data.

US 6,665,662 Bl

7

For example, some of the enterprise data for an enterprise
that manufactures and sells network devices are related to
cequipment solutions for common networking problems
encountered by customers of the enterprise. Products of the
enterprise that are unrelated by the hierarchy of FIG. 1
nevertheless may be useful to solve the same kind of
customer problem. Thus, such products relate to the same
solution. To retlect these relationships, enterprise data also
are placed 1n a category called networking solutions in one
embodiment, and are organized 1n a solutions hierarchy that
exists concurrently with the product type hierarchy.

FIG. 2A depicts an example hierarchy of concepts 1n a
networking solutions category. In this example, three solu-
tions expressed by the concepts “single server local net,”
“wide area net (2 sites)” and “private wide area net (3 to 8
sites)” are stored in the content of nodes 212, 214, 216,
respectively. All three nodes are children of the root node
202 having content “networking solutions” for this category
of concepts. In the solutions type hierarchy of FIG. 2A,
arrow 205 represents a networking solutions parent/child
relationship. All the relationships represented by arrows in
FIG. 2A are of this type. This relationship type differs from
the product type parent/child relationship represented by
arrow 1035 of FIG. 1. Both relationship types are parent/child
binary relationships, but they relate concepts in different
categories.

As shown m the example of FIG. 2A, the product
GammaPerseus, at node 232, 1s part of the equipment
solution for single server local networks of node 212. Both
AlphaPerseus, at node 234 and Jason at node 235 are part of
the equipment solution for wide area networks connecting
two sites, at node 214. BetaPerseus 2.0, at node 236, and
Hercules, at node 237, are part of the equipment solution for
private wide areca networks connecting three to eight sites
represented by node 216. Nodes 242 and 244 represent
software products Pegasus 3.3 and a graphical user interface
(GUI) upgrade that are installed on the BetaPerseus 2.0
device 1n addition to the default software that comes with
that device.

The concepts at nodes 202, 212, 214, 216 may be placed
in a category called networking solutions. The concepts 232,
234, 235, 236, 237 have already been placed in a category
called enterprise device products; but they may also be
placed 1n the category networking solutions. The concepts at
nodes 242, 244 may be placed 1n a category called software
products and also in the networking solutions category. FIG.
2A demonstrates that hierarchies of concepts in categories of
enterprise data may be defined 1n addition to the hierarchy
of concepts 1n the product type category, and demonstrates
that categories may overlap.

Alternatively, non-overlapping categories are used 1n
other embodiments. In such an embodiment, the relationship
represented by arrow 2085 1s expressed as a relationship of a
sub-component to a component of a networking solution, 1n
which the sub-component may be a different category than
the component. Rules can be expressed for the relationship.
One possible rule 1s: software can be a sub-component of
hardware, but not the other way around. Similarly, a product
can be a sub-component of a networking solution category
but not the other way around.

2.2 Non-Binery Relationships

FIG. 2B depicts a conceptual graph of an example non-
binary relationship. This ternary relationship (also called a
3-ary relationship or three participant relationship) is useful
for capturing the expertise of a person 1n the use of a product
in a technology area. In this example, this relationship is
used to state whether the expertise of a technician in the use

10

15

20

25

30

35

40

45

50

55

60

65

3

of a product device within a technology area 1s of a quality
that can assume values of “unknown,” “poor,” “average,”
“000d,” or “excellent.”

The characteristics of the relationship type describe the
number of participants and their category or categories. In
this example the relationship type includes characteristics
that indicate there are three participants, one from the user
category, one from the technology category and one from the
product device category. In addition, the characteristics of
this relationship include at least one relationship value for
storing the quality of expertise (unknown, poor, average,
good, excellent). More details on defining and storing con-
cepts and relationships are given 1n a later section.

The conceptual graph of this relationship in FIG. 2B
shows three nodes 282, 284, 286 representing the three
concepts, ¢.g., product BetaPerseus 2.0, technology private
wide area network, and technician Jane, respectively. The
three nodes are connected by a three-way, non-directional
link 290. The link 290 includes an attribute named “quality”
that takes on a value such as “good,” indicating that Jane’s
expertise 15 good for using BetaPerseus 2.0 1n private, wide
arca networks.

2.3 Documentation Category

Another category of concepts that 1s extremely useful to
an enterprise, for both internal and external users, 1s docu-
mentation concepts. Concepts within a documentation cat-
cgory 1nclude headings, sections, paragraphs, drawings, and
images, among others. Documentation concepts may be
organized 1n a hierarchy that facilitates automatically gen-
erating accurate, complete, up-to-date visual or printed
documentation pertaining to a particular product or service.
For example, a device, like the hypothetical Beta Perseus
2.0, can be linked by a relationship to a document concept
describing the device. As another example, a device, like the
Beta Perseus 2.0, can be linked by a relationship to a section
concept 1n a document hierarchy for a document concept
describing the networking solutions of which the device 1s a
component. More examples of document categories of con-
cepts are given 1n a later section.

2.4 Multiple Inter-Related Hierarchies

As seen 1n the above examples, a single concept, such as
the device product BetaPerseus 2.0 may appear 1n several
separate hierarchies. According to one embodiment, mfor-
mation defining the concept 1s stored only once 1n the VDF
and relationships are defined to all other nodes to which the
concept 1s adjacent in all the hierarchies.

Hierarchies may be implemented using object-oriented
programming techniques and database servers. One advan-
tage of this approach is that changes to the concept can be
made 1n only one location 1n the VDF and all hierarchies
immediately become up-to-date and reflect the changes.
Further, all information generated based upon the
hierarchies, such as documentation or screen displays, auto-
matically reflects the changes.

Another advantage 1s that applications that retrieve the
data can navigate one of the hierarchies to a particular
concept and then 1immediately find the other hierarchies in
which that concept occupies a node. Thus, a customer who
has purchased a particular device product for one network-
ing solution can determine other solutions that use that same
device. The customer follows the current solution to the
product and then reviews the relationships with other net-
working solutions of interest to the customer that utilize the
device. When a networking solution of interest 1s found
using the device, the newly found solution can be navigated
above and below the node representing the device concept in
order to determine what software and other devices, if any,

US 6,665,662 Bl

9

are components and sub-components of the new solution.
Further, the customer can search by solution and identily
multiple products that can satisty the solution. The customer
can then 1nspect each of the products, obtain 1its
documentation, and determine which product 1s best suited
to the customer’s particular needs.

FIG. 3 1s an example of a conceptual graph for multiple
inter-related hierarchies that are associated with the device
product BetaPerseus 2.0, based on the individual hierarchies
and relationships of FIG. 1, FIG. 2A and FIG. 2B. The
branch of the device product type hierarchy of FIG. I that
includes the BetaPerscus 2.0 device concept appears as
nodes 302, 304, 306, 308, 390, 310 and 312 linked by the
device product type, binary parent/child relationships 301.
The branch of the device networking solutions hierarchy of
FIG. 2A that includes the BetaPerseus 2.0 device appears as
nodes 322, 324, 390, 332 and 334 linked by the networking
solutions type, binary parent/child relationships 321. The
3-participant expertise relationship 391 links the node 390
for the BetaPerseus 2.0 to the concept “Jane” at node 346
and the concept “private wide area networks” at node 356.
Also shown 1s that the concept “Jane” at node 346 1s a child
of the concept “technicians’ at node 344 which 1s a child of
the concept “users” at node 342. These nodes are linked by
user type, binary parent/child relationships represented by
arrows 341. Also shown 1s that the concept “private wide
arca networks” at node 356 1s a child of the concept “wide
arca networks” at node 354 which 1s a child of the concept
“technologies” at node 352. These nodes are linked by
technology type, binary parent/child relationships repre-
sented by arrows 351.

The BetaPerseus 2.0 concept at node 390 1s linked to the
following nodes 1n multiple inter-related hierarchies. The
BetaPerseus 2.0 concept at node 390 1s a product type child
of the BetaPerseus 1.0 concept at node 308, as represented
by arrow. 301d. The BetaPerseus 2.0 concept at node 390 1s
a product type parent of the BetaPerseus 2.4 concept at node
310, as represented by arrow 301e, and the BetaPerseus 3.0
concept at node 312, as represented by arrow 301f. The
BetaPerseus 2.0 concept at node 390 1s further a solutions
type sub-component of the private wide area net (3 to 8 sites)
concept at node 324, as represented by arrow 321bH. The
BetaPerseus 2.0 concept at node 390 has solutions type
sub-components of the Pegasus 3.3 software tools concept at
node 332, as represented by arrow 321c¢, and the manage-
ment software GUI upgrade concept at node 334, as repre-
sented by arrow 321d. The BetaPerseus 2.0 concept at node
390 has two companion expertise type participants as rep-
resented by link 391; one at Jane represented by node 346
and one at private wide area networks represented by node
356. In all, the example concept at node 390 has 6 binary
relationships and one ternary relationship with eight nodes
in four hierarchies (product type, equipment solutions, users
and technologies). Each of the concepts and relationships
may be represented using stored data i a database or
appropriate programmatic data structures.

Many of the other nodes in FIG. 3 may have relationships
with other hierarchies in addition to the relationships shown.
These other relationships are omitted so that FIG. 3 and this
discussion are more clear. Multiple relationships similar to
the examples listed for node 390 may be defined for these
other nodes.

2.5 Root Concepts

At the top of each hierarchy for each category 1s a
category root node representing the category root concept
from which all the other concepts in the category branch. For
convenience 1n navigating from one category to the next,

10

15

20

25

30

35

40

45

50

55

60

65

10

cach of the category root nodes 1s made a child of an
enterprise data root node representing a top-level pseudo-
concept for the enterprise data. In one embodiment, the
pseudo-concept 1s “Vocabulary,” and every node related to
the Vocabulary concept by a direct “child of” relationship 1s
a root node representing a root concept for one category.
2.6 Implementation of the VDF

One embodiment uses a rule-base and declarative com-

putation approach to express the concepts, relationships and
rules of the VDE. This approach may be implemented using
a high level logical processing language such as PRO-
LOG™, The high level logical processing language trans-
lates statements declaring types and statements expressing
rules about combining types into another language, such as
the C programming language, that can be compiled and run
on a large variety of general-purpose computer platforms.

In this embodiment, the concepts, relationships, attributes
and logical implications (including integrity constraints and
general computations) are expressed as logical assertions.
There are two kinds of logical assertions, facts and rules. A
fact 1s a logical assertion that 1s considered unconditionally
true. Arule 1s a logical assertion whose truth or lack of truth
depends on the truth or lack thereof of other assertions. In
this 1implementation, concepts, relationships and attributes
are generally represented as facts, whereas logical implica-
fions are represented using rules.
2.6.1 Defining Concepts

For example, 1n one embodiment, a statement declaring
that the phrase BetaPerseus 2.0 1s a concept 1s presented in
a high level logical processing language by the expression:

(‘BetaPerseus 2.0°, isConcept)

Similar expressions are used to enter the other concepts 1n
the vocabulary.

The concept may have several attributes besides the
phrase that defines 1t. For example the concept may have a
creation date and an author. Aftributes of a concept are
presented with the following expression:

(‘BetaPerseus 2.0°, ‘creation’, ‘9/19/2000°, ‘author’,
‘John Smith’)
2.6.2 Defining Relationships
The relationships that constitute a hierarchy connect one
concept to one or more other concepts. Relationships are
defined with the following expression:

(r(‘ConceptX’, ‘ConceptY’, ‘ConceptZ’),relationship
(D))

where r 15 a name for the relationship type, ConceptX,
ConceptY and ConceptZ are the three concepts related by
this statement, making the relationship r a ternary
relationship, and this particular relationship has a unique
relationship 1dentification number rID. To ensure
uniqueness, the value of rID 1s supplied when the relation-
ship 1s defined by the system performing the logical pro-
cessing. Using this expression, the “product type child of”
relationship can be defined by the statement:

(product_child_of (‘BetaPerseus 2.0°, ‘BetaPerseus
1.0%)., relationship (rID2)).
According to this statement, the relationship rID2 links
BetaPerseus 2.0 to BetaPerseus 1.0 by a relationship of
relationship type “product__child_ of.”
The ternary relationship of FIG. 2B 1s defined, after each
of the mdividual concepts are defined, by the expression:

(expertise(‘BetaPerseus 2.0°, ‘Jane’, ‘wide area
networks’),relationship (rID3).
According to this statement, the relationship rID3 links the
concept BetaPerseus 2.0 with the concept ‘Jane’ and the
concept ‘wide area networks’ by a relationship of type
“expertise.”

US 6,665,662 Bl

11

Similarly, a marketing document stored as a Web page on
a network and 1dentified by 1ts universal resources Locator
(URL) address ‘http:///www.Enterprise.com/literature/
devices/catalog/Chap?2/” 1s related to the concept ‘BetaPer-
seus 2.0° by the expression:

(marketDoc(‘BetaPerseus 2.0°, ‘http:///
www.Enterprise.com/literature/devices/catalog/
Chap2/’) relationship (rID4))

The system returns a unique value for rID4, which 1s used
to reference this particular relationship of type marketDoc in
later statements.

The relationships defined above can also be given
attributes according to this embodiment. Typical relation-
ship attributes 1include the author of the relationship and the
date the relationship 1s created. These attributes are set for a
relationship having an unique 1dentification of rID1 with the
€XPressions:

(rID1, ‘creator’, ‘John Dow’)

(rID1, ‘date’, <10/10/2000°).
Relationships may have other attributes. For example, the
expertise relationship defined above has an attribute for the
quality of the expertise, which, 1n the instance of Jane on
wide areca networks for the BetaPerseus2.0, 1s good. This
attribute 1s expressed 1n this embodiment as follows

(rID3, ‘quality’, ‘good’)
where rID3 1s the unique identification for the expertise
relationship among Jane, BetaPerseus 2.0 and wide area
networks returned by the system when the relationship was
created, as described above.

A relationship can also be defined for other relationships.
For example, a relationship of type “revision” 1s used to
track changes 1n another relationship.

(revision (rID5, rID6) , relationship (rID7))

The use of the revision relationship i1s illustrated in the
following. If the marketing document for the BetaPerseus
2.0 1s changed to a different URL, ‘http:///
www.Enterprise.com/Hello/Chap2/°, a new relationship 1s
formed by the statement

(marketDoc(‘BetaPerseus 2.0°, ‘http:///
www.Enterprise.com/Hello/Chap2/’), relationship
(rID8))

To show that his new relationship with 1dentification rIDS 1s
just a revision of the old relationship with 1identification rID4
(see above), the revision relationship type is used as follows:

(revision (rID4, rID8), relationship (rID9))
Now, relationship rID9 associated with old relationship rID4
can be used to determine the new relationship rID8 that
replaces the old relationship rID4.
2.6.3 Defining Rules

The hierarchies that relate concepts may have to follow
certain rules. For example, as stated above, the product type
hierarchy requires that a child have only one parent. These
rules are enforced using logical constraints defined 1n a high
level logical processing language as rules. A constraint that
detects multiple parents in a set of expressions in the high
level logical processing language of one embodiment is
ogrven by the expression:

(constraint(ConceptC, multiparent (ConceptP 1,
conceptP2)))
if (ConceptC, childOf, ConceptP1l), (ConceptC,
childOf, ConceptP2), ConceptP1~=ConceptP2.
which reads, ConceptC has multiple parents ConceptP 1 and
ConceptP2 it ConceptC 1s a child of ConceptP1 and Con-
ceptC 1s a child of ConceptP2 and ConceptP1 1s not equal to
ConceptP2. A statement 1s inserted which throws an error 1f
the multiparent constraint 1s detected.

10

15

20

25

30

35

40

45

50

55

60

65

12

Another example of a rule that 1s enforced 1n the high
level logical language as a constraint 1s the rule that every
concept must be a descendent of a root concept. As
described above, a root concept 1s a concept that 1s a child
of the pseudo concept “Vocabulary.” A concept 1s a descen-
dent of the concept Vocabulary 1f the concept Vocabulary 1s
reachable from the concept by a succession of one or more
“child of” relationships. If the concept Vocabulary cannot be
reached from a given concept, then the given concept 1s an
orphan concept. Orphan concepts are a violation of the rules
for the product type hierarchy and generally result from
errors 1n concept definitions or are introduced when a parent
concept 1s deleted from the hierarchy. This constraint
depends on a definition of “reachable.” Reachable 1s defined
as follows:

(reachable(ConceptX,ConceptY)) if (ConceptX, childOf,
ConceptY)

(reachable(ConceptX,ConceptY)) if (reachable
(ConceptX,ConceptW)),
(reachable (ConceptW,ConceptY))

which reads, ConceptX reaches ConceptY either if Con-
ceptX 1s a child of ConceptY or if there 1s a ConceptW such
that ConceptX reaches ConceptW and ConceptW reaches
ConceptY. The constraint 1s then expressed as follows:

(constraint (ConceptC, orphanConcept)) if ~(reachable
(ConceptC,* Vocabulary’))

which reads, ConceptC 1s an orphan concept 1f ConceptC
does not reach the pseudo concept “Vocabulary.” A state-
ment 1s inserted which throws an error 1f the orphanConcept
constraint 1s detected.

As discussed above, the example expressions presented 1n
this section are processed by the high level logical process-
Ing system to generate code, such as C language code, that
implements the concepts, relationships and constraints
defined in these expressions. The C language code can then
be compiled and executed on any computer system with a C
compiler. Further, the C language code can be incorporated
in other application programs or compiled into libraries
having functions that are called from separate application
programes.

3.0 Vocabulary Database

A vocabulary database provides persistent storage for the
concepts, relationships, and rules of the vocabulary data
framework for the enterprise data.

3.1 A Relational Database Embodiment

One embodiment uses a relational database to store the
concepts and the relationships among concepts and the rules.
A relational database uses a schema to describe a series of
tables each made up of one or more rows, each made up of
onc or more fields. The schema names the table and the
fields of each row of the table. An example relational
database schema to implement the VDF according to one
embodiment 1s described below. In some embodiments the
relational database includes a unique row 1identification
number (rowlD) for each row in each table.

In this embodiment, a vocabulary table includes a row for
cach root concept in the VDEFE. The fields of each row include
the concept name, the concept description and the creation
date, as shown 1n Table 1. A unique rowlD may also be
included 1n each row but 1s not shown in the example tables.

US 6,665,662 Bl

13

Example root concepts are included 1n several rows of Table
1.

TABLE 1

The Vocabulary Table

Root Category Name Description Creation Date
Product Product category 4/12/2000
User User category 4/12/2000
Technology Technology Category 5/15/2000
Solution Networking Solutions 4/12/2000

Category

Each root concept 1n the vocabulary table has its own
table comprising one row for every concept within the
category. All concepts that are descendants of the root
concept via the “child of” relationship are stored 1n the table
defined by the root concept. Table 2 1s an example Table for
the Product root concept.

TABLE 2

The Product Category Table

Name Description Creation Date
Network Device Products Enterprise devices 4/12/00
Perseus router product 4/12/00
Hercules gateway product 4/12/00
Jason hub product 4/12/00
AlphaPerseus router product 4/12/00
BetaPerseus router product 6/16/00
BetaPerseus 1.0 router product 6/16/00
GammaPerseus router product 9/19/00
BetaPerseus 2.0 router product 9/19/00
BetaPerseus 2.4 router product 12/12/00
BetaPerseus 3.0 router product 1/01/01
superPerseus router product 2/01/01

Several tables are employed to store relationships. These
tables support N-ary relationships. The relationship type
table holds one row for each relationship type, as illustrated
in Table 3 for some sample relationship types described
above. The table rows include fields for the name of the
relationship type, as used i1n the high level language or
conceptual graphs, a fuller description of the relationship,
the number of participants and the creation date.

TABLE 3

The Relationship Types Table

Relationship Type Number of Creation
Name Description Participants Date
product__child__of product lineage 2 4/12/2000
solution__child__of solution lineage 2 4/12/2000
user__child__of user categories 2 4/12/2000
technology_child_of technology lineage 2 4/12/2000
expertise expertise of person 3 0/01/2001
with product in
technology
MarketDoc Marketing document 2 9/19/2000
for product
Revision track revisions in 2 2/01/01

concepts/relationships

The participant type table holds one row for each role of
a participant type 1n a relationship type, as illustrated 1n
Table 4 for the example relationships of Table 3. This table
has a row for each participant of each relationships type.
Each row has fields for the name of the relationship type, the
role of the participant in the relationship, and the participant

10

15

20

25

30

35

40

45

50

55

60

65

14

type, which 1s the category of the concept that may fill the
orven role 1n the relationship type.

TABLE 4

The Participant Types Table

Relationship Name Role Participant Type
product__child_ of child Product

product__child__of parent Product

solution__child__of child Networking Solution/Product
solution_ child_ of parent Networking Solution/Product
user__child_ of child User

user__child_ of parent User

technology__child__of child Technology

technology_ child_of parent Technology

expertise person User

expertise product Product

expertise technology Technology

marketDoc product Product

marketDoc document Document

old version
new version

revision
revision

Vocabulary/relationshipID
Vocabulary/relationshipID

The relationship instance table (Rinstance table) and the
participant instance table (Pinstance table) have entries for
every instance of the relationships as it 1s defined for the
enterprise data example Rinstance table 1s shown 1n Table 5
and an example Pinstance table 1s shown 1n table 6, for some
of the relationships described above. When a particular
relationship 1s defined between two or more concepts, a new
relationship identification (rID) is generated in one embodi-
ment the particular relationship ID, rID, is the unique rowlD
corresponding to the next row in the Rinstance table.

TABLE 5
The Relationship Instance (Rinstance) Table

rID Relationship Type Name Creation Date
5000 product__child_ of 9/19/2000
5001 marketDoc 9/19/2000
5002 product__child_ of 9/19/2000
5003 expertise 9/19/2000
5004 marketDoc 9/20/2000
5005 revision 9/20/2000

When a “product child of” relationship is created between
the BetaPerseus 2.0 and Beta Perseus 1.0 Sept. 19, 2060, an
entry 1s made 1nto a row of Table 5 and a unique rID of “000”
1s generated by the system. Then two rows are added to
Table 6 for the two concepts that participate in the “product
child of” relationship that has just been added to Table 5.
Those two rows each list 1n the rID field the rID value of
“5000” generated for this relationship. One row 1s generated
in Table 6 for the concept BetaPerseus 2.0 1n the participant
role of child for rID “5000.” A second row 1s generated 1n

Table 6 for the concept BetaPerseus 1.0 1n the participant
role of parent for rID “5000.”

TABLE 6
The Participant Instance (Pinstance) Table
rID role Participant
5000 child BetaPerseus 2.0
5000 parent BetaPerseus 1.0
5001 product BetaPerseus 2.0
5001 document http:///www.Enterprise.com/literature/devices/

catalog/Chap?2/'

US 6,665,662 Bl

15

TABLE 6-continued

The Participant Instance (Pinstance) Table

rlD role Participant

5002 child BetaPerseus 2.4

5002 parent BetaPerseus 2.0

5003 person Jane

5003 product BetaPerseus 2.0

5003 technology private wide area net

5004 product BetaPerseus 2.0

5004 document http:///www.Enterprise.com/Hello/Chap?2/
5005 old version 5001

5005 new version 5004

On the same date, 1n this example, the new product is
related to 1ts marketing document with the marketDoc
relationship that gets rID “5001.” Its participants are listed
in Table 6 the two rows having rID “5001.” Later that day
a new product_child_of relationship 1s generated for
BetaPerseus 2.4 and receives rID “5002.” Its participants are

listed 1n the two rows of Table 6 with rID of “5002.” Then

the expertise relationship of Jane using BetaPerseus 2.0 in
private wide area networking 1s established on the same day
and gets an rID of “5003.” The three participants of that
relationship are added to Table 6 1n the three rows with an
rID value of “5003.” The next day, on Sept. 20, 2000, a new
marketing document 1s assoclated with the product by
ogenerating a new marketDoc relationship that receives the
rID of*5004.” The product and document participants are
added to Table 6 1n the rows showing an rID value of
“5004.” Finally, the revision of the marketing document 1s
memorialized with the revision relationship, which receives
an rID of “5005.” The two participants of the revision
relationship are added as two rows to Table 6 having an rID
value of “5005” 1n Table 5. The two participants are the old
marketDoc relationship rID of*5001” and the new market-
Doc relationship rID of “5004.” Though participants are
listed 1n Table 6 with increasing values in the rID field, 1t 1s
not necessary that the value of rID increase monotonically
for the system to operate.

The “1s a” relationship 1s a common relationship that also
could be represented with entries 1n the Relationship Type,
Participant Type, Relationship Instance and Participant
Instance tables. However, better performance 1s achieved it
all mstances of an “is a” relationships are placed 1n an
“Is__A” table. For one embodiment, an example Is__A table
1s shown 1n Table 7. For this example, all “product child of”
relationships are kept in this Is__A table.

TABLE 7

[s__A Table.
Concept Name Parent Concept Creation Date
Enterprise Network Device Product 4/12/2000
Product
Perseus Enterprise Network Device 4/12/2000

Product

AlphaPerseus Perseus 4/12/2000

Attributes of concepts and relationships beyond those
already included 1n the above tables are kept in one or more
attributes tables. In one embodiment, all these additional
attributes of concepts are kept 1n a single concepts attributes
table. Similarly, all the additional attributes of relationships
are kept 1n a single relationships attributes table. Table 8 1s

10

15

20

25

30

35

40

45

50

55

60

65

16

an example concepts attributes table for the example con-
cepts described above.

TABLE 8

Concepts Attributes Table.

Concept Name Attribute Name Attribute Value

author John Smith

BetaPerseus 2.0

Table 9 1s an example relationships attributes table for the
example relationships described above. The expertise rela-
tionship was described above to include an attribute called
“quality” for indicating the quality of the expertise using one
of the values “unknown,” “poor”, “average,” “good,” and
“excellent. ” This relationship type occurred 1n the relation-
ship having rID of 5003 as shown above in Table 5.
Therefore the corresponding entry in the relationships

attributes table 1s given 1n Table 9.

TABLE 9

Relationships Attributes Table.

rID Attribute Name Attribute Value

5003 quality good

The rules that express general computations and con-
straints on the relationships are also stored 1n tables. In this
embodiment, the rules are stored as text for the high level
logical processing language. In this way, the stored rules can
be 1mported directly into a rules engine program of the high
level logical processing system. Table 10 1s an example rules
table 1ncluding the reachable rule described above.

TABLE 10

Rules Table

Rule Statement

Rule Name Sequence Number Rule Statement

reachable 1 reachable{ConceptX,ConceptY) if
(ConceptX, childOf, Concept Y)

reachable 2 reachable{ConceptX,ConceptY) if

reachable{ConceptX,ConceptW),
reachable{ConceptW, ConceptY)

3.2 Additional Relational Database Tables

One embodiment of the VDF allows multiple concepts
from different concept categories to have the same name.
The duplicate names are converted to unique 1dentifiers
called DuplDs and the unique identifiers are used in the
concept database. The duplicates table 1s used in the con-
version process. Table 11 1s an example duplicates table for
an embodiment in which a product concept and a technology
concept both use the name Perseus. In this case, the name
inserted 1nto the second row of Table 2 above would be

“1234” 1nstead of 7 “Perseus.”

TABLE 11

Duplicates Table

DuplD Name Category
1234 Perseus Product
2789 Perseus Technology

US 6,665,662 Bl

17

One embodiment of the VDF also allows raw terms to be
stored 1n the database. Raw terms are words or phrases that
may become a concept at a later time. Raw terms can
originate from a wide variety of sources, such as a trade
journal article reviewing a product or a customer order. The
raw terms are stored in this embodiment 1in a dedicated table.
Table 10 12 1s an example raw term table.

TABLE 12

The Raw Terms Table

Cate-
g0TY

Creation
Date

Raw Term

Name Description

SuperPerseus term for BetaPerseus 2.5 coined by 12/12/2000 Product
Reviewer A. Newman
Term for Perseus routers in

customer request from Company A

P-Routers 0/25/2000 Product

3.3 Normative and Alternative Concepts

Some embodiments of the VDF also allow alternatives for
concepts. This 1s implemented by designating one of the
concepts as the normative concept preferred to all alterna-
fives. The alternative concepts are then related to the nor-
mative concept by an “1s an alternative of” binary relation-
ship. A constraint on this relationship 1s that an alternative
concept can be related to only one normative concept. There
are no restrictions on how many alternatives a normative
concept can have.

For example, BetaPerseus 2.5 and SuperPerseus are both
used to refer to the same hypothetical device. The preferred
form, “BetaPerseus 2.5”7 1s designated the normative
concept, for example 1n the statement:

(“BetaPerseus 2.5, isNormative).
This 1s the normative form in this example because 1t follows
the rules for naming products such as including the model
name and a unique version number. The alternative concept
1s designated by the “is an alternative of ” relationship, for
example 1n the statement:

(is_ alternative_ of(‘SuperPerseus’, ‘BetaPerseus 2.5°) ,
relationship (rID10)).

which reads “SuperPerseus 1s an alternative of BetaPer-
seus.” The alternative concept 1s useful 1n this example
because, say, an article 1n a trade journal has used the
concept 1n association with the device and has thus cast on
potential customers some favorable impressions associated
with this alternative concept.
4.0 Vocabulary Development Server

The Vocabulary Development Server (VDS) is one or
more processes that provide management of and access to
the enterprise data in the vocabulary database to other
processes 1n an enterprise data processing system. Herein,
the vocabulary database i1s also called the VDS Concept
Database.
4.1 Vocabulary Development Server APIs

In the disclosed embodiment, the VDS includes several
object-oriented application program interfaces (APIs). Sev-
eral of the VDS APIs use function calls that are configured
to allow client processes to interact with the database
application without a need to know the organization of the
database implementation. This allows modifications to be
made to the database organization, such as adding relation-
ships or adding or deleting levels to one or more hierarchies,
without changing the client processes. All adjustments to
changes 1n the database are accommodated 1n the VDS APIs.

FIG. 4A 1s a block diagram showing the architecture of
the VDS 410 and 1ts relationship to some external processes.

The VDS Concept database 420 is described above. A

10

15

20

25

30

35

40

45

50

55

60

65

138

atabase access API 422 provides processes to operate on
e database rows and tables based on knowledge of the
atabase schema. These processes 1include connecting to the
atabase, starting a transaction, such as adding, deleting or
modifying a row 1n a table, committing the change in the row
to the persistent storage, aborting a transaction, and discon-
necting from the database. The database access API 422 also
provides processes for adding, deleting, and modifying a
raw term 1n the raw term table.

A database concept access API 424 provides processes for
manipulating concepts, relationships and rules in the con-
cept database without requiring knowledge of the actual
database schema. For example, processes are included to
return all the concepts 1n a given category, to generate and
store a concept category, to add a concept to a category, to
return sub-concepts (that is, concepts that are descendent of
a given concept), to return child concepts, to return the
parent concept of a given concept, to return ancestor
concepts, to rename a given concept, to set the parent of a
orven concept, to delete a concept, and to return duplicate
mapping. The database concept access API 424 also includes
processes for manipulating relationships, such as to return
all relationships, to return all relationship types, to return all
“Is__A” relationships, to return all relationships of a given
type, to generate and store a relationship type, to generate
and store a relationship, to modify a participant or partici-
pant type 1n a relationship type, to modily a participant
instance 1n a relationship instance and to delete a relation-
ship. The database concept access API 424 includes pro-
cesses for manipulating attributes, such as to return attribute
information for all concepts 1n a given category, to set
attribute information, to update attribute information, and to
delete attribute information. The database concept access
API 424 includes processes for manipulating rules, such as
to return all rules 1n the rule table, to return all rules with a
ogven name, to set the definition of a rule with a given name
and sequence number, to generate and store a new rule with
a given name and definition, to delete a given rule, and to
delete rules with a given name.

The VDS database concept access API 424 1s used by
applications that are external to the VDS 410, such as
concept application 408, and servlet 403a of Web Server
402. The VDS database concept access API 424 1s also used
by other processes within VDS 410, such as the concept
import module 426 and the concept export module 428, and
the rule engine 430 of the concept access API 432. All
clements of FIG. 4A that are shown outside of VDS 410 are
shown by way of example, and are not required. Further, the
structural elements of VDS 410 are shown as examples and
the specific architecture shown 1s not required.

The concept import module 426 1s designed for the bulk
import of a large amount of data, splitting that data into
concepts, and storing the concepts in the concept database
420. The concept export module 428 1s designed for the bulk
export of a large number of related concepts and concept
attributes to an external system, such as concept application
408, and client 404 or concept web application 406 through
the web server 402 via servlet 403b.

The concept access API 432 provides processes for use by
other applications that deal with groups of related concepts,
or for responding to queries about concepts, relationships
and rules that are received from external application pro-
orams. The API 1s used, for example, by the concept
application 408 and servlet 4035 of Web server 402 which
are technically client processes of the VDS. Through net-
work 401 and the Web server 402, a standalone client 404

such as a Web browser or a concept Web application 406

C
t
C
C

US 6,665,662 Bl

19

obtains and uses concept data. These are technically client
processes of the Web server 402.

The concept access API 432 groups related concepts
based on the requests made by the client processes. The
concept definitions and relationships are checked to deter-
mine that constraints are not violated. Rules that are
employed to define the computations or constraints
employed by the concepts and relationships are obtained
from the concept database 420 through the database concept
access API 424, are converted to executable statements, and
are executed by the rule engine 430 of the concept access
API 432.

In one embodiment, the rule engine 430 1s integrated with
the concept access API 432 through the use of a foreign
function facility of the PROLOG™ rule engine. This com-
ponent provides service functions that enable the rule engine
o access 1nformation, including rules expressed in text of a
high level language, from the concept database 420 through
the database concept access API 424. Rule execution func-
fions can execute in the rule engine 430 the rules retrieved
from the database 420. These functions marshal the function
arguments (such as concepts/relationships/attribute) into the
rule arecuments, execute the PROLOG™ rule and retrieve
any results, and un-marshal the rule results into a results set
suitable for returning back to the client process, ¢.g., the
calling application.

In this arrangement the concept database can be continu-
ally updated with new concepts, new hierarchies, new levels
in old hierarchies, new relationships between hierarchies,
and new rules, without requiring changes in the applications
such as concept application 408, Web server 402, standalone
client 404, or concept Web application 406. Any changes
dictated by changes in the database 420 can be accommo-
dated by changes 1n one or more of the APIs of the VDS,
such as database access API 422, database concept access
API, and concept access API 432.

4.2 Object Oriented Concept Access API

In preferred embodiments, the concept access API 432 1s
an object oriented software system that supports the
creation, storage and update of persistent vocabulary data for
retrieval by the external applications using standard Internet
protocols. In object oriented software systems various items
are treated as objects having object attributes and methods.
For example, a particular concept 1s treated as an object and
the attributes of the concept become attributes of the object.
Similarly a particular relationship 1s treated as an object.

The object includes methods, such as a method to list the
object attributes, and a method to change an object attribute.
Each object is generated as needed as an instance of a class,
sometimes called instantiated as needed. Attributes and
methods of the class become common to all objects gener-
ated from the class at the time the object 1s instantiated.
Some classes called sub-classes are instantiated from other
classes called super-classes or parent classes. A class that 1s
made up entirely of methods 1s sometimes called an 1nter-
face. A class or object inherits all the attributes and methods
of the class from which the class or object was 1nstantiated.
A new subclass can extend the super-class it came from by
adding or overwriting the attributes and methods of 1its
super-class. Object oriented development systems often pro-
vide a large number of classes and subclasses to perform
common programming functions and usually provide a user
interface to make simple the definition of further subclasses.
Each object and class in an object oriented system 1s usually
referenced by a name that has to be unique within a
collection of classes and objects called a namespace for the
system.

10

15

20

25

30

35

40

45

50

55

60

65

20

In these embodiments of the concept access API 432,
concept types and relationship types are treated as classes
and particular concepts and relationships are treated as
objects.

4.3 Web Compatible Concept Access API

In some of the embodiments using Internet protocols,
documents in the extensible markup language (XML) are
used to exchange data between client applications and the
concept access API 432 of the VDS server 410. These
embodiments support a Web server 402 acting as a client

application.
The World Wide Web (the Web) involves a network of

servers on the Internet, each of which 1s associated with one
or more Hypertext Markup Language (HTML) pages.
However, the same protocols may be used even when the
network does not involve the Internet. The HTML pages
assoclated with a server provide information and hypertext
links to other documents on that or other servers. Servers

communicate with clients by using the Hypertext Transfer
Protocol (HTTP). Users of the World Wide Web use a client

program, referred to as a browser, to request, decode and
display information from servers. When the user of a
browser selects a link on an HTML page, the browser that
1s displaying the page sends a request over the Internet to the
server assoclated with the Universal Resource Locator
(URL) specified in the link. In response to the request, the
server transmits the requested mformation to the browser
that 1ssued the request. The browser receives the
information, presents the received information to the user,
and awaits the next user request.

The HTML standard 1s one application of a more general
markup language standard called the Standard Generalized
Markup Language (SGML). Recently, a subset of SGML
that 1s more powerful and flexible than HI'ML has been
defined and has gained popularity for providing information
on the Internet. The new standard, developed and promoted

by the World Wide Web Consortium (W3C), is called the
Extensible Markup Language (XML). XML provides a
common syntax for expressing structure 1n data. Structured
data refers to data that i1s tagged for its content, meaning,
classification, or use. XML provides an expansion of the
tagoing that 1s done 1n HTML, which focuses on format or
presentation. Given the elements defined and used by XML,
a document object model (DOM) is used to define how to
access the mformation m the XML documents. Using the
DOM, programmers can script dynamic content to cause a
specific piece of content to behave in certain way. For
example, a piece of text may change color when a user
positions a cursor over the text.

Elements are defined for an XML document using Exten-
sible Markup Language (XML) grammar, represented by a
document type definition (D'TD) or XML schema. A DTD is
a set of syntax rules for elements 1n SGML and XML
documents. An HTML tag 1s a particular kind of SGML
clement. The DTD tells what elements can be used 1n a
document, what order they should appear 1n, which elements
can appear 1nside other elements, which elements have
attributes, and what those attributes are. A DTD can be part
of an XML document, but it 1s usually a separate document
or series of documents. XML allows documents to contain
clements from several distinct DTD files by the use of
namespaces. In particular, elements from other, indepen-
dently created DTD files can be interleaved in one XML
document.

In these embodiments, a DTD file named “vdf.dtd” is
used to deflne elements comprising concepts, normative
concepts, alternative concepts, flat lists of concepts,
categories, attributes, and relationships.

US 6,665,662 Bl

21

4.4 Remote Clients

According to some embodiments, a concept Web appli-
cation 406 1s developed for a remote platform that 1nteracts
with the concept access API 432 through a network 401 and
a Web server 402. This concept Web application 406 1s a
remote concept client of the Web server 402a that uses the
local concept database 420. It 1s more than a browser such
as 1s included 1n the standalone client 404 1n that the concept
client requests and uses information in the concept database
420 while the browser just requests information provided by
the Web server and 1s uninvolved with where the informa-
tion originated.

Each concept Web application 406 1s allowed to have its
own approach to collecting concept data from the VDS 410.
Some of these approaches are expected to require fine-
orained data manipulation, such as walking hierarchical
frees of concepts and relationships. Unfortunately, a perfor-
mance bottleneck can occur if the fine-grained data manipu-
lation was implemented in the concept Web application 406.
Such a fine-grained data manipulation results 1n numerous
round-trip communications between a concept client, such
as concept Web application 406, and the Web server 402
interacting with the concept access API 432.

In addition, because the concept access API 432
exchanges data using XML documents, the concept client,
such as concept Web application 406, must generate an
XML document to send requests to the Web server 402
destined for the concept access API 432 and to process
responses from the Web server 402 originating in the con-
cept access API 432. This 1s true even for clients that are not
remote.

According to one embodiment, an adapter library i1s
provided as a toolkit to insulate concept client processes
from the complexity of XML processing and to eliminate the
performance bottleneck caused by fine-grained data manipu-
lation on the client side, such as 1n walking hierarchical
trees. FIG. 4B 1s a block diagram showing structures on the
platforms of applications involved with remote clients using,
Internet protocols according to this embodiment.

An embodiment 402a of Web server 402 executes on a
platform 4035 local to the VDS 410 including the concept
database 420. A server side adapter library 461 of methods
1s used to develop a server side adapter, such as generic
server adapter 460 for Web server 4024. In the embodiment
depicted, the server side adapter library 461 resides on the
local platform 405. Alternatively, the toolkit of the server
side adapter library 461 resides on a separate platform where
a generic server adapter 460 1s developed. After
development, the server side adapter library 461 1s not
required for the operation of the generic server adapter 460.

A server side adapter that 1s created using the server side
adapter library 461 1s responsible for servicing requests from
a concept client process, and collecting the requested con-
cept data returned from the VDS 410 to the concept access
API 432 for transport back to the concept client process. The
server side adapter acts as an agent on the server platform
405 to collect data on behalf of the concept client. The server
side adapter processes the concept data for the concept client
process on a local platform 4035 that minimizes the expen-
diture of system time and bandwidth. When the processing
1s completed, resulting concept data 1s transmitted back to
the concept client process 1n a single message.

The generic server adapter 460 1s implemented as a
servlet for Web server 402a. Servlets are software modules
that expand a server by providing functionality that is
launched 1n response to a request. Servlets are uniquely

identified by a URL and can be mvoked and called by

10

15

20

25

30

35

40

45

50

55

60

65

22

invoking the URL. Thus, in this embodiment, the generic
server adapter 461 1s 1nvoked by sending messages to the
URL address of the generic server adapter 460. The generic
server adapter 460 passes requests to the concept access API
432 for processing by the VDS 410. The generic server
adapter 460 retrieves the responses from the VDS 410
through the concept access API 432, which provides an
XML document. The collected responses are passed back to
the concept client, such as concept Web application 406a.

On a logically remote platform 407 1s a client side adapter
library 451 for building a concept client, such as Web
application 4064, including a client side adapter 452. In the
embodiment depicted, the client side adapter library 451
resides on the remote platform 407. Alternatively, the client
side adapter library 451 resides on a platform where the
client side adapter 452 1s developed. After development, the
client side adapter library 451 1s not required for the opera-
tion of the client side adapter 452.

The client side adapter 452 1s responsible for communi-
cations with the server adapter, such as generic server
adapter 460. In order to process a request from the concept
client process, the client side adapter 452 and codes the
request mto an XML document and communicates the
document to the server side adapter, such as generic server
adapter 460. In return, the client side adapter 452 receives
the XML document including the concept data resulting
from the responses from the concept access API 432. The
client side adapter 4352 presents the concept data to the
concept client process, such as concept Web application
4064, 1n a form required by the concept client process. In
this embodiment, the client side adapter 452 includes an
XML parser to decode the content of the message returned
from the server side adapter, such as generic server adapter
460. In another embodiment, in which the messages are not
encoded 1in XML, the client side adapter 452 need not
include an XML parser.

The client side adapter library 451 includes methods to
insulate concept client processes from the complexity of
XML processing. These methods encapsulate a concept
client’s requests for concept data, such as business vocabu-
lary data, without exposing the concept client process to
XML request syntax. These methods also provide concept
data resulting from the requests to the concept client process
without exposing the concept client process to XML
response syntax parsing.

The client side adapter library 451 includes methods that
essentially ageregate multiple requests necessary to navigate
hierarchical trees 1n the concept database 420 into a single
message. This reduces the message tratfic over the network
401 between the concept client process on the remote
platform 407 and the Web server 402a on platform 405 local
to the VDS 410. For example, the client side adapter library
451 1ncludes methods to start a document of aggregated
requests, to msert each request mto the document, and to
finish the document and send 1t to the server side adapter.
5.0 Method grained of Translating Requests for Vocabulary
Data

FIG. 5A 1s a flow chart 1llustrating one embodiment of a
high level method for developing a concept client that
interacts with a concept server. For example, the process of
FIG. 5A may be used to develop Web concept application

406a of FIG. 4B, which interacts with Web server 402a of
FIG. 4B.

In step 502, a library of client side adapter routines to
request and obtain vocabulary data 1s generated or used and
stored. The client side adapter library includes methods for
communications with the server side adapter, such as

US 6,665,662 Bl

23

ogeneric server adapter 460. The client side adapter library
451 includes methods to 1nsulate concept client processes
from the complexity of XML processing. The client side
adapter library 451 also includes methods that essentially
aggregate multiple requests necessary to navigate hierarchi-
cal trees 1n the concept database 420 1nto a single message.

In one embodiment, the client side adapter library com-
prises object-oriented classes and interfaces. The classes
include a request class and request type subclasses for
defining request objects. The request types include requests
for a concept tree of related concepts, requests for related
concepts, request for a concept, and requests for normative
terms. The interfaces include methods for starting an export
document that ageregate requests, inserting a request 1nto
the export document, and finishing the export document.
Interfaces also include a method for importing a document
comprising the results of the requests previously sent in an
export package or data structure, and a method for gener-
ating an event based on the request or data encoded 1n the
package or data structure that 1s imported. The event 1s
chosen from a set of predetermined events. The interfaces
also mnclude default methods for responding to each event
ogenerated among the set of predetermined events. More
information on the classes and interfaces of the client side
adapter library are provided elsewhere herein.

In step 504, a library of server side adapter routines 1s
generated and stored. The server side adapter library
includes methods for servicing a request from a concept
client process, and collecting the concept data resulting from
the responses of the concept access API 32, and transporting
those collected responses back to the concept client process.

In one embodiment, the client side adapter library com-
prises object-oriented classes and interfaces. The classes
include classes defined for the object-oriented concept
access API (432 in FIG. 4B) such as a root concept class (a
concept type class) for instantiating concepts, a relationship
type class for instantiating relationships, and an attribute
class, as well as classes for requests, responses, and sessions.
The interfaces include the concept access API (432 in FIG.
4B). A session class provides methods and attributes for
managing a connection between a concept client process and
the local concept server process. The session class includes
methods for starting a transaction with the concept database,
for rolling back a transaction with the concept database and
for committing a transaction with the concept database.

In step 506, a server side adapter, such as the generic
server adapter, 1s generated and stored as a server-side
software component to process requests on the concept
client process. An example of such a server-side software
component 15 a servlet. The generic server adapter is
designed to process every request generated by any method
in the client side adapter library and any XML document
produced 1n those methods. Thus, the servlet with the
ogeneric server adapter 1s the only servlet needed by the Web
server to deal with any client process developed with the
client side adapter library; and, the URL of this servlet can
be 1ncluded in the client side adapter library method that
establishes communications with the VDS.

In step 508, a concept client software program 1S gener-
ated and stored to use the concept data 1 the concept
database 420. The concept client software program includes
a client side adapter based on the client side adapter library.
Alternatively, a client may obtain access to vocabulary
without using an adapter. Further, in another alternative, a
non-client external element may obtain vocabulary informa-
fion using a non-client call or API.

In step 510, the concept server, such as the Web server
with the generic server adapter servlet, 1s executed. More

10

15

20

25

30

35

40

45

50

55

60

65

24

details on the steps performed by the concept server are
described 1n later section.

In step 512, the concept client, such as the concept Web
application, 1s executed. More details on the steps performed
by the concept client are described 1n the next section.

5.1 The Concept Client Process

FIG. 5B and FIG. 5C are portions of a flow chart
illustrating steps performed while executing a remote con-
cept client process according to an embodiment 5124 of step
512 from FIG. SA. The same steps can be used by a client
process that 1s not remote. Further, the process of FIG. 5B
and FIG. 5C can execute mdependently of the process of
FIG. 5A at any time after steps 502 to 510 are complete.
5.1.1 Requests 1n an Export Document

In step 522, a method or routine of the client side adapter
library 1s 1nvoked for starting the export document of
ageregated requests. In an object-oriented embodiment, this
method 1s placed 1mn an interface named, for example,
“MDFXMLClientlF” of the client side adapter library dur-
ing step 502 and implemented 1n a class named, for example,
“MDFXMLClient Impl,” by a developer of the remote
concept client process during step 508. In this embodiment,
the method 1s 1nvoked with a method call of the form

start XMLexport (outputstream out).

This method 1s called first to establish the head of the
XML document on the output stream. The program that
invokes this method need not specily any of the properties
of the export XML document being generated, such as the
DTD.

In step 524, an output stream (e.g., named “out”) is
initialized with the start of the XML output for the export
document. Typically, the start of the XML document 1den-
fifies XML as the markup language and specifies a DTD file
that defines the document elements to be used. The address
of the DTD 1s inserted into the XML document by the
method of the client side adapter library, such as startXM-
Lexport. The DTD 1itself may reside on the platform 405 of
the concept server process or on the platform of the VDS. In
this case, the address of the DTD may be expressed as a
relative address with respect to the concept server. Other-
wise the URL address of the DTD file 1s inserted into the
XML document. During this step, other information useful
to the concept server 1s 1nserted using the tags defined 1n the
DTD. For example, the version of the client side adapter
library being used 1s mserted 1nto the XML document at this
step.

In step 526, the concept client process indicates the target
concept or group of concepts being requested. For example,
a target concept can be indicated by having a certain
attribute or relationship to another concept. The target
concept can be indicated through user input to the concept
client process or through predetermined steps formulated by
the developer of the concept client process.

For example, the concept client process may perform the
predetermined step of requesting the root concepts 1n the
concept database, presenting the root concepts to a user of
the concept client process as a list of selectable 1tems, and
then determine which root concepts were selected by the
user. The concept client process may then perform the
predetermined steps of requesting for the selected concepts
the concepts and alternative terms for the next level 1n each
category and a list of the marketing documents that include
information about each concept in that next level.

In step 528, the concept client process invokes methods of
the client side adapter library that are capable of providing
the indicated target concepts. In the object-oriented
embodiment, for example, these methods are placed 1n a

US 6,665,662 Bl

25

class named “MDFXMILRequest” of the client side adapter
library during step 502. Methods of the same method name
may be distinguished by the types of parameters supplied
when mvoked. Table 13 lists some example request methods
in the request class of this embodiment.

TABLE 13

Methods 1in the Request Class of an Example Client Side Adapter Library

Passed Passed
Method Name Parameters Parameters
& Function Types Meanings
requestConceptlree string category name
For given category name, return Boolean include alternatives
normative concepts in tree form (optional)string type of alternatives
requestConceptlree string category name
also return values for attributes Boolean include alternatives
named (optional)string type of alternatives
string array list of attribute names
requestConceptlree string category name
only return sub-tree starting at ~ Boolean include alternatives
given concept named as root for (optional)string type of alternatives
number of levels string concept at root of sub-
tree
integer number of levels from
root (null indicates
all levels)
requestConcept string category name
For given category name, return Boolean include alternatives
normative concepts in flat form (optional)string type of alternatives
requestConcept string category name
restrict returned concepts to Boolean include alternatives
those with named relationship (optional)string type of alternatives

types to partners in the corres-
ponding named category

string array list of relationship

types
list of corresp.
partner category

string array

requestConcept string category name

For given normative concept of string normative concept
named category return concepts name

with named relationship types to Boolean include alternatives
partners 1n the corresponding (optional)string type of alternatives

named category string array list of relationship

types
string array list of corresp. partner
category
requestConcept string category name
Supports generic requests for Boolean include alternatives
returning concepts and attributes (optional)string type of alternatives

listed for returned concepts,
restricted to concepts with given
attribute values of certain
restricting attributes

string array list of relationship

types

list of corresp.
partner category
list of attributes to
return

list of restricting
attributes

list of corresp. attri-
bute value for
restricting attribute

string array

string array
string array

string array

requestNormativeTerms string category name
Given a category name, alterna- string alternative name
tive type, and alternative name, string alternative type

return the normative terms
having the specified alternative
name and type

Herein, “string” indicates one or more text characters,
“Boolean” indicates a logical true or false, and “imnteger”
indicates a whole number in binary code. The result of
invoking one of these methods 1s a request data structure to
be 1nserted 1nto the export document, not the list or tree of
target concepts. The request data structure 1s here indicated
by type “MDFXMLRequest.” In embodiments that include
multiple 1nter-related hierarchies, other methods are
included 1n the Request class to retrieve multiple relation-
ships for each concept and multiple partners for each non-
binary relationship.

10

15

20

25

30

35

40

45

50

55

60

65

26

For the example concept client process to obtain the root
concepts, a method of Table 13 could be invoked as follows

MDFEXMLRequest FirstRequest =requestConceptlree
(“Vocabulary”, FALSE, “Vocabulary”,1)

This call 1s made because the root concepts are 1n a hierarchy
with the top level pseudo concept “Vocabulary” and thus
would appear one level down 1n the tree.

In step 530, the request method invoked generates a
request type data structure. For the XML export document,
the resulting request data structure comprises one or more

XML document elements indicated by tags. For example,
the XML element generated by the above method takes the

following form:

<selectConceptIree category ="Vocabulary”
normativeName=“Vocabulary” levels="2">
</selectConceptIrees

where the XML element selectConceptTree 1s defined 1n the
DTD f{ile to have attributes named “category” “normative-
Name” and “levels.” The first example XML statement
assoclates values with these three attributes of this XML
clement. The selectConceptTree element has other attributes
defined 1n the DTD but those attributes are not assigned
values 1in the XML statements associated with the example
request. The second XML statement indicates the end of this
clement. These two XML statements are generated by the
request method 1invoked by the concept client process. The
concept client mmvoking the request method need not specily
any of the properties of the export XML document being,
oenerated. That 1s, the concept client does not need to
specily the XML element name “selectConceptlree” or
specily that its attribute names include “category”, “norma-
fiveName” and “levels.” In step 532, the request data
structure 1s added to the export document by invoking
another method of the client side adapter library. In the
object-oriented embodiment, as described above with
respect to step 522, for example, this method 1s placed 1n the
interface named “MDFXMLClientlF” of the client side

adapter library during step 502 and implemented by the class
“MDFXMLClient Impl” by a developer of the remote
concept client process during step 508. In this embodiment,
the method 1s invoked with a statement of the form

request(tMDFXMLRequest FirstRequest).

This method 1s called to place the request into the export
document. In some embodiments this method also translates
the data structure 1nto a different format. For example from
a non XML data structure into XML elements. In the XML
embodiment, however, the data structure i1s already repre-
sented by the XML elements given above, and this method
simply appends those XML elements given above to the
clements already in the export XML document. For
example, the method inserts a “request” element, <request>,
into the XML document, then inserts the XML elements
ogrven above specilying the request, then inserts the “end of
request” element, </request>.

In step 534 1t 1s determined whether there 1s another
request to be appended to the XML document. If there 1s
another request, control passes back to step 526 to indicate
what concept data 1s to be requested. If there 1s no other
request, or 1f there 1s no other request that can be formulated
without returning results from the requests already made,
then control passes to step 536 to finish the export document
and send it.

For the example concept client, which presents the root
concepts to a user for selection before requesting further

US 6,665,662 Bl

27

concept data, no other requests are added to the current
export document.

In step 536, a method of the client side adapter library 1s
invoked for finishing and sending the export document of
aggregated requests. In the object-oriented embodiment, this
method was placed 1n an interface named “MDFEFXMLCli-
entlF” of the client side adapter library during step 502 and
implemented by the class “MDFXMLClient Impl” by a

developer of the remote concept client process during step
S508. In this embodiment, the method 1s mmvoked with a

statement of the form

finishXMLexport ().

In step 538, the invoked method finishes the export
document and sends it. For example,the finishXMLexport
method (1) places the end of XML document tag “</>" at the
end of the document, (2) establishes a communications
session with the concept server using the URL address of the
concept server such as the servlet comprising the Generic
server adapter within the Web server, and (3) sends the XML
document over the network to the concept server for pro-
cessing. Table 14 shows the XML statements in an example

export document according to this embodiment.

TABLE 14

XML statements in a hypothetical request (export) document.

line # XML statement
1 <?xml version="1.0"7>
2 <IDOCTYPE requests SYSTEM “vdf.dtd”>
3 <request>
4 <selectConceptlree category="Vocabulary”
normativeName="“Vocabulary” levels="2">
5 </selectConceptTree>
0 <requests>
7 <>

control then passes to step 540 to 1import a response from
the concept server.
5.1.2 Responses 1 an Import Document

In step 540 of FIG. 5C, the concept client process invokes
a method of the client side adapter library for receiving in an
import document one or more responses to the one or more
requests sent in the export document. In the object-oriented

embodiment, this method was placed 1n an interface named
“MDFXMLClientlF” of the client side adapter library dur-

ing step 502 and implemented by the class “MDFEFXMLCli-
ent Impl” by a developer of the remote concept client
process during step 508. In this embodiment, the method 1s
invoked with a statement of the form

importXML (inputstream in, MDFXMLClientEventIF

handler).

In step 542, the mnvoked method extracts values associ-
ated with related concepts, such as concept names,
relationships, and attributes, from the import document. In
some embodiments the method also translates from a par-
ficular import document format.

For example, method importXML (1) parses the import
XML document on the mput stream “in” to determine the
individual elements in each response, and (2) converts those
clements 1nto a number of predetermined events. The pro-
crammer 1nvoking this method writes code to handle the
predetermined events but does not specily the properties of
the 1mport XML document being returned. In one
embodiment, the method importXML invokes methods
implemented from third party interfaces for parsing XML
documents based on the associated DTD fields.

In step 544, the events generated are sent to an event
handler named “handler,” which 1s an instance of an inter-

10

15

20

25

30

35

40

45

50

55

60

65

23

face called “MDFXMLClientEventlF” generated and placed
in the client side adapter library during step 502 and 1mple-
mented by the class “MDFXMLClientEventlmpl” by a
developer of the remote concept client process during step
508. The interface 1n the client side adapter library contains
names and parameters of the methods called upon occur-
rence of the predetermined events, as given by Table 15, but
simply returns with default values when called. When 1mple-
mented by the concept client programmer, during step 508,
code 1s 1nserted to perform any particular processing desired
by the programmer upon the occurrence of one of the
predetermined events.

TABLE 15

Methods Called Upon Occurrence of Predetermined Events

Types Meanings of
Event Method Name & Function & Passed Parameters
import importStart string current version of
document Called when parsing of the client side adapter
starts current 1mport document
begins
import importEnd
document Called when parsing of the
ends current import document
ends.
responses responsesStart long time stamp indicating
start Called when parsing the integer when concept server
first of the responses aggre- started generating
gated 1n the current docu- reSponses
ment starts
responses responsesEnd
end Called when all the re-
sponses aggregated in the
current document have been
parsed
response responsestart
starts Called when the parsing of
a next one of the aggre-
gated responses starts
response responseEnd
ends Called when the parsing of
the current one of the
aggregated responses ends
category conceptCategoryStart string name of the category
starts Called when parsing a next being parsed
category of concepts in the
current response starts
category conceptCategoryEnd
ends Called when parsing of the
current category of con-
cepts ends
normative normativelTermStart string norm. concept name
concept Called when parsing of the 1integer norm. concept ID
starts next normative concept in integer level in category
the current category starts integer parent concept ID
normative normativelermEnd
concept Called when parsing of the
ends current normative concept
ends
child childTermsStart
concepts Called when parsing the
start next level of children 1n the
sub-tree below the norma-
tive concept starts
child childTermsEnd
concepts Called when parsing the
end current level of children
ends
alternative alternativeTermsStart
concepts Called when parsing the

start

alternative concepts asso-
ciated with the current
normative concept starts

US 6,665,662 Bl

29

TABLE 15-continued

Methods Called Upon Occurrence of Predetermined Events

Types Meanings of

Event Method Name & Function & Passed Parameters
alternative alternativelTermsEnd
concepts Called when parsing the
end alternative concepts of the

current normative

concept ends
alternative alternativeTermStart string alternative type
concept Called when parsing a integer alternative concept ID
starts current alternative concept

starts
alternative alternativelermEnd string alternative concept
concept Called when parsing the name
ends current alternative concept

ends
related relatedConceptsStart
concepts Called when parsing the
start related concepts associated

with the current normative

concept starts
related relatedConceptsEnd
concepts Called when parsing the
end related concepts of the

current normative

concept ends
related relatedConceptStart string relationship type
concept Called when parsing a cur- string category of partner
starts rent related concept starts string related concept ID
related relatedConceptEnd string normative name of
concept Called when parsing the related concept
ends current related concept ends
attribute attributeStart string ~ name of next attribute
starts Called when parsing a next string type of current

attribute of a current con- attribute

cept starts
attribute attributeEnd string value of the current
ends Called when parsing the attribute

current attribute ends
requests exception integer unique ID for error
fail Called to indicate that the string plain text message

requests 1n the export docu-
ment could not all be
accomplished. No concepts
are returned.

indicating the source
of the error

In embodiments that include multiple inter-related
hierarchies, other predetermined events and corresponding
methods are included in the interface of the client side
adapter library to distinguish additional relationships for
cach concept and multiple partners for each non-binary
relationship. In such embodiments the methods and events
for related concepts include concepts related by all
relationships, including the “category child of” relationship.
In this embodiment, then, the conceptCategoryStart, the
alternative TermsStart, and the childTermsStart methods and
associated events are special cases of the relatedCon-
ceptsStart method and associated event; while the alterna-
tiveTermStart and: the childTermStart methods and associ-
ated events are special cases of the relatedConceptStart
method and 1ts associated event. Similarly, 1n these
embodiment, the conceptCategoryEnd,: the
alternative TermsEnd, and the childTermsEnd methods and
associated events are special cases of the relatedConcept-

sEnd method and associated event; while the alternativel-
ermEnd and the childTermEnd methods and associated
events are special cases of the relatedConceptEnd method
and 1its associated event.

In an example of this embodiment, the request generated
by the sample statement given above, namely,

request FirstRequest=requestConceptTree(” Vocabulary”,
FALSE, “Vocabulary”, 1)

10

15

20

25

30

35

40

45

50

55

60

65

30

caused an XML element representing the request to be
placed 1 an export document and sent to the concept
server. As a consequence, the concept server causes an
import document containing one or more responses to
be returned to the concept client. In one embodiment,
the 1mport document 1s also 1n XML and includes the
XML statements shown 1n Table 16. More detail on
how the import document 1s generated by the concept
server 1S given 1n the next section.

TABLE 16

XML statements in a hypothetical import document.

line
XML statement

1 <7xml version="1.0"7>
2 <!DOCTYPE responses SYSTEM “vdf.dtd”>
3 <responses time = “1223334444555556666667 >
4 <response>
5 <selectConceptTree>
0 </selectConceptTree>
7 <conceptCategory>
8 <normativeTerm name = “Vocabulary” ID = “11” level=
“0” parentlD = null>
9 </normativelerm>
10 <childTerms>
11 <normativeTerm name = “DOC” [D = “1001”
level= “17 parentID = “117>
12 </normativeTerm>
13 <normativelerm name = “PROD” ID = “1005”
level= “1” parentlD = “117>
14 </normativeTerm>
15 <normativeTerm name = “SOLU” ID = “1010”
level= “1” parentlD = “117>
16 </normativeTerm>
17 <normativelerm name = “TECH” ID = “1015”
level= “17 parentID = “117>
18 </normativeTerm>
19 <normativelerm name = “USER” ID = “1020”
level= “1” parentID = “117>
20 </normativeTerm>
21 </childTerms>
22 </conceptCategory:

23 <fresponse>

24 <fresponses>
25 «/>

In this embodiment, the XML statements of Table 16 will
cause the predetermined events to occur 1n the order shown

in Table 17.

TABLE 17

Sequence of events generated from hypothetical import document

Event called method with parameter values
1 import document starts importStart(“1.0”)
2 responses start responsesStart(122333444455555666666)
3 response starts responseStart()
4 category starts conceptCategoryStart(“Vocabulary”)
5 normative concept starts normativeTermStart(“Vocabulary”,11,0,

NULL)

6 normative concept ends normativeTermEnd()
7 child concepts start childTermsStart()
8 normative concept starts normativeTermStart(“DOC”,1001,1, 11)
9 normative concept ends normativeTermEnd()
10 normative concept starts normativeTermStart(“PROD”,1005,1, 11)
11 normative concept ends normativeTermEnd()
12 normative concept starts normativeTermStart(“SOLU”,1010,1, 11)
13 normative concept ends normativeTermEnd()
14 normative concept starts normativeTermStart(“TECH”,1015,1, 11)
15 normative concept ends normativeTermEnd()
16 normative concept starts normativeTermStart(“USER”,1020,1, 11)
17 normative concept ends normativeTermEnd()

US 6,665,662 Bl

31

TABLE 17-continued

Sequence of events generated from hypothetical import document

Event called method with parameter values
18 child concepts end childTermsEnd()
19 category ends conceptCategoryEnd()
20 response ends responseEnd()
21 responses end responsesEnd
22 import document ends importEnd()

programmer of the concept client application provides the
processing within each called method 1n Table 15 but 1s
insulated from having to deal with the XML statements
shown 1 Table 16. The processing programmed into the
methods may include storing the data returned to those
methods 1n a general public data structure or sending the
data to another method as a set of one or more parameters.
In step 546, the event handler associated with the event
processes the data passed from the import document.

In step 548 1t 1s determined whether more events are
expected. If so control passes to step 544 to invoke the
appropriate event handling method. Otherwise, the process-
ing ends 1n step 544. In the example embodiment, control 1s
passed to step 549 by the method importEnd.

5.1.2 Multiple Requests and Responses

If the concept client has additional requests to make,
based on the responses received 1n the first import document,
then control passes back to step 522 to start another export
document with new requests. For the example concept client
process described above, when the results from the first
request are returned and presented to a user to make a
selection, the user may select the root concepts “Products”
and “Solutions” for obtaining the concepts and alternatives
in the next level and to identify the marketing document for
those concepts. At that time the concept client process would
invoke the methods of Table 13 in the following two
requests.

MDEXMILRequest SecondRequest =requestConceptIree
(“PROD”, TRUE, “PROD”, 1)

MDFXMILRequest ThirdRequest =requestConceptlree
(“SOLU”, TRUE, “SOLU”, 1).
These two requests can be made together 1n the same export
document, and steps 522 through 538 repeated.

When these results are later returned, the normative
concepts may be placed 1nto an array called
NormativeConcepts| | by the normativeTermEnd method.
The normative concepts at the next level for the products
concept might include NormativeConcept [1] having name
“Network Device Products,” NormativeConcept| 2] having
name “Network Software Products,” and NormativeConcept
|3] having name “Cabling Products.” The normative con-
cepts at the next level for solutions concept may include
NormativeConcept[4] having name “SingleServerLocal”
NormativeConcept[5] having name “WAN-2sites,” and
NormativeConcept[|6] having name “VPN-3t08.” At that
time the concept client process would mnvoke the methods of
Table 13 such as in the following statements.

startXMLexport (outputstream out).
Array1]|1] = “marketDoc”
Array2|1] = “Document”
loop over 1 from 1=1 to 1=06
MDFXMILRequest TempRequest = requestConcept(“Products”,

5

10

15

20

25

30

35

40

45

50

55

60

65

32

-continued

NormativeConcept]i],FALSE, Arrayl,Array2)
request(MDFXMI.Request TempRequest).
end loop

finishXMLexport ().

These statements ask for the concepts of type “Document”

that are related by the relationship type “marketDoc” to the
concepts stored 1n the NormativeConcepts string array. This

example combines six requests 1n a single export document.
The concept results returned from these statements would

include the name or URL of marketing documents for
products such as devices, software and cabling sold by the
enterprise and for single server local networks, wide area
networks of two sits, and virtual private networks of 3 to 8
sites. That 1s, the single import document aggregates many
concept results associated with six responses to the six
requests.

Altogether, the example concept client generated three
export documents and processed three import documents in
order to make nine requests (one request in the first export
document, two requests in the second export document, and
six requests in the third export document) and to obtain nine
reSponses.

5.2 The Concept Server Process

FIG. 5D 1s a flow chart 1llustrating details for executing a
concept server process external to the VDS system, such as
the concept Web server, according to an embodiment S1a of
step 510 from FIG. SA.

In step 550, the concept Web server receives packets
addressed to the URL of the servlet implementing the
ogeneric server adapter. When the concept server 1s 1mple-
mented as a standalone application, rather than as a Web
server with servlet, the URL to which the packets are
addressed 1s the URL of the standalone application. In step
552, the concept Web server invokes the servlet to which the
packets are addressed. Step 552 1s optional where the
concept server 1s implemented as a standalone server appli-
cation.

In step 554, the packets communicated are assembled 1nto
the request document exported by the concept client process
as described above with respect to FIGS. 5B and 5C. In the
preferred embodiment, the request document 1s an XML
document. Table 14, described above, lists the XML state-
ments 1 an example XML request document.

In step 556, based on the statements 1n the request
document, the concept server determines a set of operations
that are performed by methods available to the concept
server. The methods available to the concept server include
methods 1n the server side adapter library, which in one
embodiment includes the methods of the concept access API
432 of the VDS 410. For example, the XML document
header information 1n lines1 and 2 of Table 14 may be used
by several methods of the concept server, so that the set of
operations performed by these header methods are deter-
mined to be 1n the set of operations to be performed on this
request document. Those operations include starting a
response document to be imported by the concept client
process and providing a creation time for the responses to
follow.

In the preferred embodiment, step 556 includes determin-
ing that the XML element <selectConceptlree>requires one
or more operations performed by methods of the concept
access API 432 in the server side adapter library 461. For
example, 1n one embodiment the concept server determines
that a selectConcepTree XML eclement with concept

US 6,665,662 Bl

33

normativeName="“Vocabulary” and with “levels” =2 corre-
sponds to a concept access API method “selectConceptCat-
coory’ without parameters -- a special method for providing
the root concepts.

In step 558, the methods that perform the set of operations
determined from the request document are invoked and the
result 1s moved 1nto a response document, for import by the
concept client. For example, the header methods would be
invoked to perform the operations for starting a response
document by generating the first statements 1n the response
XML document, such as the first three lines listed 1n Table
16 for a hypothetical response (import) document. In the
preferred embodiment, the generic server adapter invokes
the concept access APl method “selectConceptCategory”
determined to correspond to an element of the XML request
document and obtains the result which 1s expressed as new
XML clements.

This step includes aggregating results based on the
responses 1nto the response document to be 1imported 1n the
client process. For example, the XML elements returned by
the concept access APl method “selectConceptCategory”
includes a list of normative terms and attributes. In a
hypothetical example, the normative terms are “DOC” for
documents, “PROD” for products, “SOLU” for solutions,
“TECH” for technologies, and “USER” for users. The
concept server 1nserts 1nto the response document several
XML elements based on these results.

For example, as shown in Table 16, the XML element
<response>1s 1nserted at line 4 to indicate a response to a
request follows 1n the response document. The particular
request 1s indicated, 1n this example, by mserting into lines
5 and 6 of the response document the XML elements
assoclated with the start and end of the request type “select-
CategoryIrees” found in the request document shown 1n
Table 14. The root concept category for the response 1s
“Vocabulary” so the results are inserted between a start of
concept element 1n line 7 and an end of concept element in
line 22 of Table 16. The first result 1s the normative concept
for the category. In this embodiment, the results from the
concept access API include names and values of all the
attributes of the normative concept for the category.
However, only the attributes name, ID, level and parent 1D
are used by the methods of the concept client for this
response. Therefore the concept server pares down the
results to values for these four attributes, and inserts these
values into an XML element for the response document
being prepared for the concept client, as illustrated 1n Table
16 by line 8. Line 9 1s inserted to signal the end of the current
normative concept.

The results from the concept access API include a list of
the normative concepts of all the root concepts with all their
attributes. Information expected by the concept client, cor-
responding to the requestConceptIree request, 1s selected
from these results and placed into the XML response docu-
ment between elements marking the start and end of the
child concepts (lines 10 and 21, respectively, of Table 16).
Between these elements are placed the elements marking the
start and end of each normative concept corresponding to
cach of the categories. The normative concepts are placed
into the response XML document with just the attributes that
satisty the request. The additional attributes of these nor-
mative concepts yielded by the concept access API are not
included. Normative concepts and attributes placed in the
hypothetical example response document are shown 1n Table
16 1n lines 11 through 20, inclusive.

Step 560 represents a decision point to determine whether
any operations remain to be performed to handle the

10

15

20

25

30

35

40

45

50

55

60

65

34

requests 1n the current request document. If there 1s another
operation 1t 1s performed 1n step 558. If not, the response
document 1s finished, and control passes to step 562. In step
562, the concept server generates the end of the response
document and sends the response document to the concept
client over the network. For example, the generic server
adapter inserts an “end of document” element, </>, as the
last XML element in the response document, as shown 1n
line 25 of Table 16; and then sends the document to the
concept client. In step 564, the processing of this set of
requests comes to an end.

As 1llustrated by this example, the concept server invokes
methods to perform operations determined from the request
document and forms a response document based on the
results of invoking those methods. This arrangement allows
the concept server to substitute one or more operations for
a single request element 1n the request document and to pare
down the amount of data returned 1n the response document.
Both functions serve to insulate the concept client from
details of the concept access API and concept database. Both
functions further serve to reduce tratfic on the network
between the concept client and the concept server. The
former function reduces the traffic sent from client to server
by allowing one request to be replaced by several operations
at the server side. The latter function reduces the size of the
response document sent back to the client by excluding extra
data output by the VDS (that is not needed to fulfill the
request) before the response document is sent over the
network.

6.0 Hardware Overview

FIG. 6 1s a block diagram that illustrates a computer
system 600 upon which an embodiment of the mvention
may be implemented. Computer system 600 includes a bus
602 or other communication mechanism for communicating
information, and a processor 604 coupled with bus 602 for
processing information. Computer system 600 also includes
a main memory 606, such as a random access memory
(“RAM?”) or other dynamic storage device, coupled to bus
602 for storing information and instructions to be executed
by processor 604. Main memory 606 also may be used for
storing temporary variables or other intermediate 1nforma-
tion during execution of instructions to be executed by
processor 604. Computer system 600 further includes a read
only memory (“ROM”) 608 or other static storage device
coupled to bus 602 for storing static information and instruc-
tions for processor 604. A storage device 610, such as a
magnetic disk or optical disk, 1s provided and coupled to bus
602 for storing information and instructions.

Computer system 600 may be coupled via bus 602 to a
display 612, such as a cathode ray tube (“CRT”), for
displaying information to a computer user. An 1nput device
614, including alphanumeric and other keys, 1s coupled to
bus 602 for communicating information and command
selections to processor 604. Another type of user input
device 1s cursor control 616, such as a mouse, a trackball, or
cursor direction keys for communicating direction 1nforma-
fion and command selections to processor 604 and for
controlling cursor movement on display 612. This input
device typically has two degrees of freedom 1n two axes, a
first axis (e.g., X) and a second axis (e.g., y), that allows the
device to specily positions 1n a plane.

The invention 1s related to the use of computer system 600
for accessing a vocabulary development server. According
to one embodiment of the invention, a remote concept client
process using the vocabulary development server is pro-
vided by computer system 600 1n response to processor 604
executing one or more sequences of one or more instructions

US 6,665,662 Bl

35

contained 1n main memory 606. Such instructions may be
read 1nto main memory 606 from another computer-readable
medium, such as storage device 610. Execution of the
sequences of instructions contained 1n main memory 606
causes processor 604 to perform the process steps described
herein. In alternative embodiments, hard-wired circuitry
may be used 1n place of or 1n combination with software
instructions to implement the mvention. Thus, embodiments
of the invention are not limited to any specific combination
of hardware circuitry and software.

The term “computer-readable medium” as used herein
refers to any medium that participates in providing instruc-
fions to processor 604 for execution. Such a medium may
take many forms, including but not limited to, non-volatile
media, volatile media, and transmission media. Non-volatile
media 1includes, for example, optical or magnetic disks, such
as storage device 610. Volatile media includes dynamic
memory, such as main memory 606. Transmission media
includes coaxial cables, copper wire and fiber optics, includ-
ing the wires that comprise bus 602. Transmission media can
also take the form of acoustic or light waves, such as those
ogenerated during radio wave and infrared data communica-
fions.

Common forms of computer-readable media include, for
example, a Hloppy disk, a flexible disk, hard disk, magnetic
tape, or any other magnetic medium, a CD-ROM, any other

optical medium, punch cards, paper tape, any other physical
medium with patterns of holes, a RAM, a PROM, and

EPROM, a FLASH-EPROM, any other memory chip or
cartridge, a carrier wave as described hereinafter, or any
other medium from which a computer can read.

Various forms of computer readable media may be
involved 1n carrying one or more sequences of one or more
instructions to processor 604 for execution. For example, the
instructions may initially be carried on a magnetic disk of a
remote computer. The remote computer can load the mstruc-
fions 1nto 1ts dynamic memory and send the instructions over
a telephone line using a modem. A modem local to computer
system 600 can receive the data on the telephone line and
use an 1nfrared transmitter to convert the data to an infrared
signal. An 1nfrared detector can receive the data carried 1n
the infrared signal and appropriate circuitry can place the
data on bus 602. Bus 602 carries the data to main memory
606, from which processor 604 retrieves and executes the
instructions. The 1nstructions received by main memory 606
may optionally be stored on storage device 610 either before
or alfter execution by processor 604.

Computer system 600 also includes a communication
interface 618 coupled to bus 602. Communication interface
618 provides a two-way data communication coupling to a
network link 620 that 1s connected to a local network 622.
For example, communication interface 618 may be an
integrated services digital network (“ISDN”) card or a
modem to provide a data communication connection to a
corresponding type of telephone line. As another example,
communication interface 618 may be a local area network
(“LLAN") card to provide a data communication connection
to a compatible LAN; Wireless links may also be imple-
mented. In any such implementation, communication inter-
face 618 sends and receives electrical, electromagnetic or
optical signals that carry digital data streams representing
various types of mformation.

Network link 620 typically provides data communication
through one or more networks to other data devices. For
example, network link 620 may provide a connection
through local network 622 to a host computer 624 or to data
equipment operated by an Internet Service Provider (“ISP”’)

10

15

20

25

30

35

40

45

50

55

60

65

36

626. ISP 626 1n turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet” 628. Local
network 622 and Internet 628 both use electrical, electro-
magnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 620 and through communication interface 618,
which carry the digital data to and from computer system

600, arc exemplary forms of carrier waves transporting the
information.

Computer system 600 can send messages and receive
data, including program code, through the network(s), net-
work link 620 and communication interface 618. In the
Internet example, a server 630 might transmit a requested
code for the client side adapter library through Internet 628,
ISP 626, local network 622 and communication interface
618. In accordance with the invention, one such downloaded
library provides for a remote concept client process as
described herein.

The received code may be executed by processor 604 as
it 1s received, and/or stored in storage device 610, or other
non-volatile storage for later execution. In this manner,
computer system 600 may obtain application code in the
form of a carrier wave.

7.0 Scope

In the foregoing specification, the invention has been
described with reference to specific embodiments thereof. It
will, however, be evident that various modifications and
changes may be made thereto without departing from the
broader spirit and scope of the invention. The specification
and drawings are, accordingly, to be regarded 1n an 1llus-
trative rather than a restrictive sense.

What 1s claimed 1s:

1. A method of translating any of a plurality of queries for
related concepts 1n a database of concepts and relationships
among concepts, the database local to a concept server
process, a first query originating from a first concept client
process, wherein a plurality of other concept client processes
may 1ssue other respective queries, the method comprising
the steps of:

accepting the first query 1n a format required by the first
concept client process;

translating the first query 1nto one or more concept server
request data structures that are expressed using a
markup language 1n a first document, wherein each of
the request data structures represents a request for the
concept server process to transtorm the first query into
a concept tree, one or more related concepts, or one or
more normative terms;

sending the first document to a concept server over a
network;

receiving over the network from the concept server a
second document in the markup language that includes
results based on the concept server process processing
the request data structures, wherein the results com-
prise one or more concept categories, normative terms,

alternative terms, or related concepts for the first query;
and

translating from the markup language m the second
document 1nto values of the related concepts 1n the
format required by the first client process.

2. A method as recited 1in claim 1, wherein:

said step of translating the first query further comprises
invoking for each request data structure a method of a
client-side adapter library provided by providers of the
database of concepts and relationships for remote use
of the database; and

US 6,665,662 Bl

37

said invoking the method of the client-side adapter library
causes the request data structure to be placed 1n the first
document.

3. A method as recited 1n claim 2, wherein:

said step of sending the first document further comprises
invoking a different method of the client-side adapter
library; and

said invoking the different method of the client-side
adapter library causes the first document to be finished
for sending and to be sent.

4. A method as recited in claim 2, wherein said invoking,
the method of the client-side adapter library further causes
the first document to be started.

5. A method as recited 1n claim 2, wherein said invoking,
the method of the client-side adapter library further causes
the request data structure to be translated into a predeter-
mined format 1n the markup language before being placed
into the first document.

6. A method as recited 1in claim §, wherein:

the first document 1s an extensible markup language
document; and

the predetermined format uses document elements
defined 1n a particular document type definition file
developed for remote requests for the database of
concepts and relationships.

7. A method as recited 1n claim 2, wherein the client-side
adapter library comprises object-oriented classes for
requests for at least two of a concept, a category of concepts,
a sub-category of concepts, and a hierarchical tree of con-
cepts.

8. A method as recited 1n claim 2, wherein the client-side
adapter library comprises object-oriented interfaces for
starting the first document, mserting a request 1nto the first
document, and finishing the first document.

9. A method as recited in claim 1, wherein:

said step of translating the first query further comprises
invoking a first method of a client-side adapter library
provided by providers of the database of concepts and
relationships for remote use of the database; and

said 1nvoking the first method of the client-side adapter

library further comprises,

mnvoking an event handler of the client-side adapter
library for handling every event of a plurality of
predetermined events, and

converting a plurality of responses in the second docu-
ment into a series of events, each event of the series
of events selected from the plurality of predeter-
mined events.

10. A method as recited 1 claim 9, wherein the plurality
of predetermined events comprise: a start of the second
document; an end of the second document; a start of a
response; an end of the response; a start of related concepts;
an end of the related concepts; a start of a concept; an end
of the concept; a start of an attribute; and an end of the
attribute.

11. A method as recited 1in claim 9, wherein:

saidd mvoking the event handler causes a particular
method of the concept client process to be mvoked 1n
response to a particular event of the plurality of pre-
determined events, and

the particular method has a name and a set of zero or more
parameters defined i1n the client-side adapter library
based on the particular event.
12. A method as recited in claim 9, wherein the client-side
adapter library comprises object-oriented classes for events
and responses.

10

15

20

25

30

35

40

45

50

55

60

65

33

13. A method as recited 1n claim 9, wherein the client-side
adapter library comprises an object-oriented interface for
processing cach event of the plurality of predetermined
events.

14. A method as recited in claim 1, wherein the database
1s a business vocabulary database, and further comprising
the steps of:

receiving at a client site on a network, from a provider of

the business vocabulary database, a client-side adapter

library of methods for

translating a query for related concepts of the business
vocabulary database 1nto one or more elements of the
first document, and

extracting a set of values of the related concepts from

one or more elements of the second document;

developing a concept client process for the client site to
generate the first query and to use a first set of values
of related concepts based in part on the client-side
adapter library; and

executing the concept client process to translate a par-
ticular first query into a particular first document, to
send the first document to the concept server process,
and to extract a particular set of values of related
concepts from a particular second document including
results returned from the concept server process.

15. A method as recited 1n claim 1, wherein the database
1s a business vocabulary database of concepts and relation-
ships among concepts, the method further comprising the
steps of:

generating and sending from a provider of the business

vocabulary database to a client site on a network, a

client-side adapter library of methods for

translating the first query for related concepts of the
business vocabulary database into one or more ele-
ments of the first document, and

extracting a set of values of the related concepts from
one or more elements of the second document;

developing a concept server process based on a server-

side adapter library of methods for

determining a set of operations performed by a data-
base server based on the first document, and

generating and storing a second document that aggre-
gates results from the set of operations as one or
more elements, from which second document the
methods of the client-side adapter library may
extract values; and

executing the concept server process to receive a particu-
lar first document from a particular concept client
process, to determine a particular set of operations
based on the particular first document, to cause the
database server to perform the particular set of
operations, to generate and store a particular second
document including results based on responses from
the set of operations, and to send the particular second
document to the particular client process.

16. A method as recited 1n claim 1, wherein the steps are
performed at a client side adapter based on a client side
adapter library of methods.

17. A computer-readable medium carrying one or more
sequences of 1nstructions for translating any of a plurality of
queries for related concepts 1n a database of concepts and
relationships among concepts, the database local to a con-
cept server process, a first query originating from a {first
concept client process, wherein a plurality of other concept
client processes may 1ssue other respective queries, which
instructions, when executed by one or more processors,
cause the one or more processors to carry out the steps of:

US 6,665,662 Bl

39

accepting the first query 1n a format required by the first
concept client process;

translating the query into one or more concept server
request data structures that are expressed using a
markup language 1n a first document, wherein each of
the request data structures represents a request for the
concept server to transform the first query into a
concept tree, one or more related concepts, or one or
more normative terms;

sending the first document to a concept server over a
network;

receiving over the network from the concept server a
second document in the markup language that includes
results based on the concept server process processing
the request data structures, wherein the results com-
prise one or more concept categories, normative terms,
alternative terms, or related concepts for the first query;
and

translating from the markup language in the second
document into values of related concepts 1n the format
required by the first concept client process.

18. An apparatus for translating any of a plurality of
queries for related concepts 1n a database of concepts and
relationships among concepts, the database local to a con-
cept server process, a first query originating from a {first
concept client process, wherein a plurality of other concept
client processes may 1ssue other respective queries, com-
prising:

means for accepting the first query 1n a format required by

the first concept client process;

means for translating the first query into one or more
concept server data structures that are expressed using
a markup language 1n a first document, wherein each of
the request data structures represents a request for the
concept server to transform the first query into a
concept tree, one or more related concepts, or one or
more normative terms;

means for sending the first document to the concept server
process over a network;

means for receiving over the network from the concept
server a second document 1n the markup language that

10

15

20

25

30

35

40

40

includes results based on the concept server process
processing the request data structures, wherein the
results comprise one or more concept categories, nor-
mative terms, alternative terms, or related concepts for
the first query; and

means for translating from the markup language in the
second document into values of related concepts 1n the
format required by the first client process.

19. An apparatus for translating any of a plurality of
queries for related concepts 1n a database of concepts and
relationships among concepts, the database local to a con-
cept server process, a first query originating from a {first
concept client process, wherein a plurality of other concept
client processes may 1ssue other respective queries, com-
prising:

ONE Or MOre Processors;

one or more sequences of 1nstructions that are accessible

to the one or more processors and which, when

executed by the one or more processors, cause the one

Or more processors to carry out the steps of:

accepting the first query 1n a format required by the first
concept client process;

translating the first query into a normalized format
using a markup language in a first document,
wherein each of the request data structures represents
a request for the concept server to transtorm the first
query 1nto a concept tree, one or more related
concepts, or one or more normative terms;

sending the first document to a concept server over the
network;

receiving over the network from the concept server a
second document in the markup language that
includes results based on the concept server process
processing the request data structures, wherein the
results comprise one or more concept categories,
normative terms, alternative terms, or related con-
cepts for the first query; and

translating from the markup language 1n the second
document 1nto values of the related concepts 1n the
format required by the first concept client process.

	Front Page
	Drawings
	Specification
	Claims

