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(57) ABSTRACT

A feedback control system for automatic on-line training of
a controller for a plant, the system having a reinforcement
learning agent connected 1n parallel with the controller. The
learning agent comprises an actor network and a crific
network operatively arranged to carry out at least one
sequence of a stability phase followed by a learning phase.
During the stability phase, a multi-dimensional boundary of
values 1s determined. During the learning phase, a plurality
of updated weight values 1s generated 1n connection with the
on-line training, 1if and until one of the updated weight
values reaches the boundary, at which time a next sequence
1s carried out to determine a next multi-dimensional bound-
ary of values followed by a next learning phase. Also, a
method for automatic on-line training of a feedback con-
troller within a system comprising the controller and a plant
by employing a reinforcement learning agent comprising a
neural network to carry out at least one sequence comprising
a stability phase followed by a learming phase. Further
included, a computer executable program code on a com-
puter readable storage medium, for on-line training of a
feedback controller within a system comprising the control-
ler and a plant.

20 Claims, 6 Drawing Sheets
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F IG. 9 Design and provide a robust controller in paratiel with an
RL Agent (e.g., P, PI, PID, or other controller}

Initialize RL Agent parameters to random values,

preferably close to zero (e.g., RL Agent's initial
output is ciose to zero) -— Step 0

initialize a perturbation matrix (dW, dV), a/k/a safe range/boundary/constraint, for
each weight vector/quantitative value (associated with each input) to a value for
which when added to initial parameters, entire system is still stable (Step 1):
Perturbation matrices defined such that, as long as RL Agent's parameters stay

within safe range(s), system will remain stable.

Find/update parameter values within each boundary/constraint that move
system toward an optimal performance. Do this with the iterative RL

methods that make small steps, or updates, in parameter values (e.g.,
neural network weight vectors recaiculated/updated) --- Step 2

Have greater than a pre-
selected number of iterative

RL steps been taken for current
learning phase?

‘——Yes Yes—]
Find new perturbation matrix/safe range for which
system stability can be maintained. - Step 3

Reached an optimal performance?

Is next parameter change
(weight update) outside of the
perturbation matrix/range?

No No

No




US 6,665,651 B2

1

CONTROL SYSTEM AND TECHNIQUE
EMPLOYING REINFORCEMENT LEARNING
HAVING STABILITY AND LEARNING
PHASEKES

This application claims priority to pending U.S. provi-
sional patent application filed by the assignee hereof, No.
60/306,380, on Jul. 18, 2001.

The 1nvention disclosed herein was made with United
States government support awarded by the National Science
Foundation, under contract numbers CMS-9804757 and
9732986. Accordingly, the U.S. Government has certain
rights 1n this nvention.

BACKGROUND OF THE INVENTION

In general, the present invention relates to techniques for
training neural networks employed in control systems for
improved controller performance. More-particularly, the
invention relates to a new feedback control system and
assoclated method employing reinforcement learning with
robust constraints for on-line training of at least one feed-
back controller connected 1n parallel with a novel reinforce-
ment learning agent (sometimes referred to, herein, as “RL
agent”). Unlike any prior attempt to apply reinforcement
learning techniques to on-line control problems, the inven-
tion utilizes robust constraints along with remnforcement
learning components, allowing for on-line training thereof,
to augment the output of a feedback controller in operation-
allowing for continual improved operation-moving toward
optimal performance while effectively avoiding system
instability. The system of the invention carries out at least
one sequence of a stability phase followed by a learning
phase. The stability phase includes the determination of a
multi-dimensional boundary of values, or stability range, for
which learning can take place while maintaining system
stability. The learning phase comprises the generating a
plurality of updated weight values in connection with the
on-line training; if and until one of the updated weight
values reaches the boundary, a next sequence 1s carried out
comprising determining a next multi-dimensional boundary
of values followed by a next learning phase. A multitude of
sequences may take place during on-line training, each
sequence marked by the calculation of a new boundary of
values within which RL agent training, by way of an
updating of neural network parameter values, 1s permitted to
take place.

Use of conventional reinforcement learning alone
(whether comprising a neural network), to optimize perfor-
mance of a controller nearly guarantees system instability at
some point, dictating that off-line traiming of sufficient
duration must be done, mitially, with either stmulated or real
data sets. Furthermore, while the use of robust control
theory, without more, provides a very high level of confi-
dence 1n system stability, this level of stability 1s gained at
a cost: System control 1s much less aggressive. Such con-
servative operation of a feedback control system will rarely
reach optimal performance.

Two key research trends led to the early development of
reinforcement learning (RL): trial and error learning from
psychology disciplines and traditional “dynamic program-
ming~ methods from mathematics. RL began as a means for
approximating the latter. Conventional RL networks interact
with an environment by observing states, s, and selecting,
actions, a. After each moment of interaction (observing s and
choosing an a), the network receives a feedback signal, or
reinforcement signal, R, from the environment. This 1s much
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like the trial-and-error approach from animal learning and
psychology. The goal of reinforcement learning 1s to devise
a control algorithm, often referred to as a policy, that selects
optimal actions for each observed state. Here according to
the mstant invention, optimal actions includes those which
produce the highest reinforcements not only for the 1imme-
diate action, but also for future states and actions not yet
selected: the goal being improved overall performance. It 1s
important to note that reinforcement learning is not limited
to neural networks; the function and goal(s) of RL can be
carried out by any function approximator, such as a
polynomial, or a table may be used rather than a neural
network, and so on.

In earlier work of the applicants, Anderson, C. W, et al,
“Synthests of Reinforcement Learning, Neural Networks,
and PI Control Applied to a Simulated Heating Coil.”
Journal of Artificial Intelligence in Engineering, Vol. 11, #4
pp. 423-431 (1997) and Anderson, C. W., et al, “Reinforce-
ment Learning, Neural Networks and PI Control Applied to
a Heating Coil.” Solving Engineering Problems with Neural
Networks: proceedings of the International Conference on
Engineering Applicatoins of Neural Networks (EANN-96),
c¢d. By Bulsari, A. B. et al. Systems Engineering Association,
Turku, Finland, pp. 135-142 (1996), experimentation was
performed on the system as configured 1n FIG. 8 of the latter
(1997) of the above two references. In this prior work,
applicants trained the reinforcement learning agent off-line
for many repetitions, called trials, of a selected number of
fime-step interactions between a simulated heating coil and
the combination of a reinforcement learning tool and the PI
controller, to gather data set(s) for augmenting (by direct
addition, at C) the output of the PI Controller during periods
of actual use to control the heating coil. In this 1997 prior
work, applicants define and applied a simple Q-learning type
algorithm to implement the reinforcement learning.

In their pursuit to continue to analyze and characterize
on-line training of a neural network connected to a feedback
controller, 1t was not until later that the applicants 1dentified
and applied the unique technique of the instant invention
employing a two phase technique, thus allowing for suc-
cessful on-the-fly, real-time, training of a reinforcement
learning agent 1n connection with a feedback controller,
while ensuring stability of the system during the period of
training. Conventionally, reinforcement learning had been
applied to find solutions to control problems by learning,
cgood approximations to the optimal value function, J*, given
by the solution to the Bellman optimality equation which
can take the form identified as Eqn. (1) in Singh, S., et al,
“Reinforcement Learning for Dynamic Channel Allocation
in Cellular Telephone Systems.” (undated). And as men-
tioned earlier, when conventional RL 1s placed within a
feedback control framework, 1t must be trained off-line 1n a
manner that exposes the system to a wide variety of com-
mands and disturbance signals, 1n order to become ‘expe-
rienced’. This takes a great deal of time and extra expense.

The conventional techniques used to train neural networks
off-line can become quite costly: Not only are resources
spent in connection with off-line training time, but additional
resources are spent when employing feedback controllers
operating under conservative, less-aggressive control
parameters. For instance, US Pat. No. 5,448,681 1ssued Sep.
5, 1995 to E. E. R. Khan, refers to what 1t identifies as a
conventional reinforcement learning based system shown 1n
Khan’s FIG. 1. A closer look at Khan *681 reveals that no
suggestion of stability 1s made. Khan does not attempt to
control an interconnected controller on-line with 1ts rein-
forcement learning subsystem (FIG. 1). Further, Khan sim-
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ply doesn’t recognize or suggest any need for a stability
analysis. Here, the conventional Khan system has to learn
everything from scratch, off-line.

While there have been other earlier attempts at applying
conventional notions of reinforcement learning to particular
control problems, until applicants devised the instant
invention, the stability of a feedback control system into
which conventional reinforcement learning was 1ncorpo-
rated for on-line learning, stmply could not be guaranteed.
But rather, one could expect that this type of conventional
feedback control system, training itself on-the-1ly, will pass
through a state of instability in moving toward optimal
system performance (see FIG. 4 hereof, particularly the path
of weight trajectory 44 without application of constraints
according to the invention). While academic study of con-
ventional systems 1s interesting to note, 1n practice, these
systems are not so interesting to an operators: It will crash
before reaching an optimal state. Whereas, a control system
employing the robust constraints of the two phased tech-
nique of the instant invention, will not—as one will better
appreciate by tracing the lower weight trajectory 46 plotted
in FIG. 4, representing that of a system operating according
to the mstant mvention.

SUMMARY OF THE INVENTION

It 1s a primary object of the invention to provide a
feedback control system for automatic on-line training of a
controller for a plant to reach a generally optimal perfor-
mance while maintaining stability of the control system. The
system has a reinforcement learning agent connected in
parallel with the controller. As can be appreciated, the
innovative system and method employ a learning agent
comprising an actor network and a critic network opera-
tively arranged to carry out at least one sequence of a
stability phase followed by a learning phase, as contem-
plated and described herein. The system and method can
accommodate a wide variety of feedback controllers con-
trolling a wide variety of plant features, structures and
architectures—all within the spirit and scope of design goals
contemplated hereby. Advantages of providing the new
system and associated method, include without limitation:

(a) System versatility;

(b) Simplicity of operation-automatic, unmanned long
term operation;

(¢) Speed with which an optimal state of system control

may be reached; and

(d) System design flexibility.

Briefly described, once again, the invention includes a
feedback control system for automatic on-line training of a
controller for a plant. The system has a remnforcement
learning agent connected 1n parallel with the controller. The
learning agent comprises an actor network and a critic
network operatively arranged to carry out at least one
sequence of a stability phase followed by a learning phase.
During the stability phase, a multi-dimensional boundary of
values 1s determined. During the learning phase, a plurality
of updated weight values is generated 1n connection with the
on-line training, if and until one of the updated weight
values reaches the boundary, at which time a next sequence
1s carried out to determine a next multi-dimensional bound-
ary ol values followed by a next learning phase.

In a second characterization, the invention includes a
method for automatic on-line training of a feedback con-
troller within a system comprising the controller and a plant
by employing a reinforcement learning agent comprising a
neural network to carry out at least one sequence comprising
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4

a stability phase followed by a learning phase. The stability
phase comprises the step of determining a multi-dimensional
boundary of neural network weight values for which the
system’s stability can be maintained. The learning phase
comprises the step of generating a plurality of updated
welght values 1n connection with the on-line training; and if,
during the learning phase, one of the updated weight values
reaches the boundary, carrying out a next sequence com-
prising the step of determining a next multi-dimensional
boundary of weight values followed by a next learning
phase.

In a third characterization, the invention includes a com-
puter executable program code on a computer readable
storage medium, for on-line training of a feedback controller
within a system comprising the controller and a plant. The
program code comprises: a first program sub-code for 1ni-
fializing mput and output weight values, respectively, W,
and V,, of a neural network; a second program sub-code for
instructing a remnforcement agent, comprising the neural
network and a critic network, operatively arranged 1n par-
allel with the controller, to carry out a stability phase
comprising determining a multi-dimensional boundary of
neural network weight values for which the system’s sta-
bility can be maintained; and a third program sub-code for
instructing the reinforcement agent to carry out a learning
phase comprising generating a plurality of updated weight
values 1n connection with the on-line training if and until any
one of the updated weight values reaches the boundary, then
instructing the reinforcement agent to carry out a next
sequence comprising determining a next multi-dimensional
boundary of weight values followed by a next learning
phase. The first program sub-code can further comprise
instructions for setting a plurality of table look-up entries of
the critic network, to zero; and the third program sub-code
can further comprise instructions for reading 1into a memory
assoclated with the neural network, a state variable, s, to
produce a control signal output, a, and reading into a
memory assoclated with the critic network, a state and action
pair to produce a value function, Q(s, a). The program code
can further comprise structions for exiting any of the
learning phases for which a total number of the updated
welght values generated, reaches a preselected value.

There are many further distinguishing features of the
control system and method of the invention. The actor
network preferably includes a neural network such as a
feed-forward, two-layer network parameterized by input and
output weight values, respectively, W and V. Input into the
neural network i1s at least one state variable, s, such as a
tracking error, €, along with one or more other state variables
of the controller. The critic network can include a table
look-up mechanism, or other suitable function
approximator, into which a state and action pair/vector are
input to produce a value function therefor. The critic net-
work 1s preferably not interconnected as a direct part of the
control system feedback loop. The state and action pair can
include any such state, s, and a control signal output from the
actor network, a, to produce, accordingly, the value function,
Q(s, a). The multi-dimensional boundary of values is pref-
crably a stability range which can be defined by perturbation
welght matrices, dW and dV, 1n the two-dimensional case,
and up to any number of perturbation matrices, thus creating
a higher-dimensional stability space, depending on neural
network parameterization characteristics.

Input and output weight values, respectively, W and V, of
the neural network can be 1nitialized by randomly selecting
small numbers such as, for example, selecting numbers from
a Gaussian distribution having a mean equal to zero and
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some small variance such as 0.1. Input and output output
welght values for any current step t, can be designated
respectively, W, and V.. The control signal output from the
actor network preferably contributes, along with an output
from the controller, to an input of the plant. In order to
determine the next multi-dimensional boundary of values,
an 1nitial guess, P, of said stability range can be made; this
initial guess, P, being proportional to a vector N, according
to the expressions below:

N=(W::VI)=(”1:H2: S )

In the event one of the updated weight values reaches the
first boundary, a next sequence 1s carried out to determine a
next multi-dimensional boundary of values and to generate
a plurality of next updated weight values. In the event one
of the next updated weight values reaches this next
boundary, a third sequence 1s carried out to determine a third
multi-dimensional boundary of values and to generate a
plurality of third updated weight values; and so on, targeting,
a generally optimal state of system control-until a system
disturbance occurs-thus, launching another series of
sequences, each including a stability phase and learning
phase, allowing for on-line training of the RL agent 1n a
manner that maintains system stability while targeting a
state of optimal system control. For example, the method
may be carried out such that one of the next updated weight
values reaches the next boundary so that a third sequence 1s
carried out to determine a third multi-dimensional boundary
of values comprising a third stability range and to generate
a plurality of third updated weight values; thereafter, one of
these third updated weight values reaches its third boundary
so that a fourth sequence 1s carried out to determine a fourth
multi-dimensional boundary of values comprising a fourth
stability range and to generate a plurality of fourth updated
welght values.

It 1s possible that only a couple of sequences may need to
be carried out, or a large number of sequences are needed to
reach an acceptable optimal system control. During each
learning phase, preferably to refrain from engaging the
learning phase for an indefinite time with little or no
improvement to control performance, on-line training 1is
performed either until a current boundary 1s reached or until
a total number of updated weight values reaches a prese-
lected value, at which time the current learning phase is
exited. And, 1f optimal performance has been reached during
that current learning phase such that no further on-line
training of the reinforcement learning agent 1s necessary, no
new sequence need be carried out. If, on the other hand, the
total number of updated weight values generated equals the
preselected value and optimal performance has not been
reached, then a next boundary 1s determined providing a new

stability range within which a subsequent learning phase can
be carried out.

BRIEF DESCRIPTION OF THE DRAWINGS

For purposes of 1llustrating the mnnovative nature plus the
flexibility of design and versatility of the preferred system
and technique disclosed hereby, the invention will be better
appreciated by reviewing accompanying drawings (in which
like numerals, if included, designate like parts). One can
appreciate the many features that distinguish the instant
invention from known feedback control systems and tech-
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6

niques. The drawings have been included to communicate
the features of the mmnovative system and method of the
invention by way of example, only, and are 1n no way
intended to unduly limit the disclosure hereof.

FIG. 1 schematically depicts components of a feedback
control system 10 of the invention, also adaptable for
carrying out a method of the invention.

FIGS. 2A-2B schematically depict functional aspects of
alternative embodiments of an actor network component 22
and critic network component 24 of the invention.

FIG. 3 diagrammatically represents the stability and
learning phases of a first and next sequence carried out
according to the mvention for on-line training.

FIG. 4 diagrammatically represents the stability and
learning phases of a multitude of sequences through which
the system passes from a point 39 of initialized neural
network weights to a point 48 representing the weight vector

of optimal performance of the system. Two weight trajec-
tories have been plotted here: 44, 46.

FIG. 5 diagrammatically represents, at 50 in the form of
2-dimensional plots for simplicity, the stability and learning
phases of a multitude of sequences through which a reduced
2-dimenisonal version of the system depicted in FIG. 8
passes from a pomnt 49a of initialized neural network
welghts to a point 49¢ representing the weight vector of
optimal performance of the system.

FIG. 6 15 a control system diagram of an embodiment that
has a plant, a proportional controller, plus a neuro-controller
(including the tanh function) operating as an actor network,
in parallel with the nominal controller-no critic network 1s
depicted here for simplicity.

FIG. 7 1s the control system diagrammed 1 FIG. 6 to
which [QC (Integral Quadratic Constraint) analysis has been

applied, thus resulting in a modification of the neuro-
controller of FIG. 6.

FIG. 8 1s the control system diagrammed m FIG. 7 to
which an STV (Slowly Time-Varying) IQC block to capture
the weight change uncertainty was added to produce a
system 80 for which analysis can be depicted 1n 2-d.

FIG. 9 1s a flow diagram depicting features of a method
90 of the mnvention including details further distinguishing
this novel technique from known systems.

BRIEF DESCRIPTION OF AI'TACHMENT A

The following enclosure, labeled ATTACHMENT A, 1s
hereby incorporated herein by reference to the extent nec-
essary to aid 1n a thorough understanding of the general
technical background and the invention:

ATTACHMENT A 1s a 25-page manuscript authored by

the applicants entitled “Robust Reinforcement Learning
Control with Static and Dynamic Stability”, included for 1ts
general technical background and analysis of the invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

FIG. 1 schematically depicts components of a feedback
control system 10 of the invention, also adaptable for
carrying out a method of the mvention. The critic network
(or simply “net”) 14 is included to learn the value function
(Q-values); its two inputs by way of example as shown here,
are system state (such as a current tracking error, €) and the
actor network’s control signal, a. The critic net 14 forms the
Q-values for these inputs (as shown here, by way of
example, the value function 1s the expected sum of future
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squared tracking errors). The actor network implements the
current policy. Here by way of example, given the mput of
the system state (here, a tracking error, ¢€), the actor net
produces a continuous-valued action (a) as output. In
ogeneral, the system state 1nto the actor net and the critic net
will be those variables that comprise the state(s) for the
particular control application and neural net being trained.
By no means 1s the instant invention restricted to cases 1n
which the entire state can be represented by the error (€), as
this 1s seldom the case. The system 10 includes a plant 19
controlled by controller 18 (with feedback input 11) con-
nected 1n parallel with the RL agent comprised of an actor
12 and critic 14. The technique of the 1nvention, as one will
further appreciate, employs a repetition of stability phases
and learning phases to train the neural network on-line while
the controller controls the system. Additionally, further
detail of the rigorous mathematical and engineering analyses
done, as well as a simulation of, the unique features of the

system and technique of the invention, can be found within
ATTACHMENT A. Although certain details of experimental

use 1n connection with HVAC 1s specified within ATTACH-
MENT A, one 1s certainly not limited thereto. The technique
of the mvention, including its unique on-line reinforcement
learning technique for continual improved performance in
connection with controlling a system that incorporates feed-
back control, can be applied to any control system that
provides device control signals for altering a process/plant,
especially a system whereby the controller has at least one
input port for receiving an mput signal representing at least
one process/plant condition defining the process/plant—
such process/plant input signal(s) having been created using
a systems variable(s) produced by, for example, a signal(s)
from at least one sensor or a setpoint (for example, in HVAC,
can include sensor(s)/meter to measure airflow, temp of air
and water, efc.).

FIGS. 2A-2B schematically depict functional aspects of
alternative embodiments of an actor network component 22
and critic network component 24 of the invention. FIG. 2A
depicts a feed-forward, two-layer neural network 22 param-
eterized by mput and output weight values, respectively, W
and V. FIG. 2B depicts a table look-up mechanism 24
whereby a state and action pair comprising a state, s, (or as
shown here, tracking error, €) and a control signal output
from the actor network, a, produces the value function
therefor, Q(s, a)-or as shown here, Q(e, a). While the
function of the critic network 14 can be accomplished by a
table look-up shown here by way of example at 24, any
suitable control mechanism may be used including another
neural net or other value function approximator.

FIG. 3 diagrammatically represents at 28 the stability and
learning phases of a first and next sequence carried out
according to the 1nvention for on-line traiming. During each
stability phase, a perturbation matrix 31, 34—sometimes
referred to as ‘safe region’ or ‘stability range/region’—is
estimated such that the system can remain stable so long as
neural net weights remain therewithin. When one or more of
the weights (trajectory 32) approaches the boundary 31 of
the current stability range, a new range 34 1s calculated. For
further reference, see the tlow diagram labeled FIG. 9,
illustrating features describing certain aspects of a preferred
method of the invention. The boundaries (stability matrices)
are 1llustrated in the form of rectangles defined according to
the technique of the invention, and the path 32 depicts an
example trajectory of the neural network weights (or other
quantifiable values identified in connection with employing
an RL agent, whether 1in the form of a traditional neural
network typically parameterized by weights, or an improve-
ment thereof), as they move.
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FIG. 4 diagrammatically represents the stability and
learning phases of a multitude of sequences through which
the system passes from a point 39 of initialized neural
network weights to a point 48 representing the weight vector
of optimal performance of the system. Two weight trajec-
tories are graphically depicted: 44 and 46. Trajectory 44 1s
the path the control system will take while attempting
on-line training of a learning agent that does not employ an
RL agent to carry out the sequences according to the
invention. As one can appreciate, pathway 44 enters and
travels through an unstable region, defined and labeled 42,
which represents the learning agent weight parameters that
will mnevitably cause the system to crash. Trajectory 46 1s the
path a confrol system employing the RL agent of the
invention to carry out at least one sequence of a stability and
learning phase, will take. One can readily see that pathway
46 remains outside of the stability region 42. This 1s a result
of carrying out one or more sequences including a respective
stability phase to generate a respective boundary (shown,
here, as a series of overlapping rectangular structures, since
an IQC technique was applied to generate the successive
boundaries-although other suitable stability programming
tools may be applied) and allowing on-line learning to take
place within each respective boundary.

FIG. 5 diagrammatically represents, at 50 in the form of
2-dimensional plots for simplicity, the stability and learning
phases of a multitude of sequences through which the
system depicted in FIG. 8 (reduced to allow for simplified
viewing in 2-D) passes from a point 49a of initialized neural
network weights to a point 49¢ representing the weight
vector of optimal performance of the system. The method 1s
a repetition of sequences comprising a stability phase fol-
lowed by a learning phase. In the stability phase for a 2-d
case, the maximum additives, dW and dV, are estimated
which allow the system to retain system stability. In the
learning phase, the neural network weights are adjusted until
one of the weights approaches the boundary of 1ts stability
(safe) range computed in the stability phase. In order to
present the information 1n a 2-dimensional plot, for simplic-
ity as depicted 1 FIG. 5, a minimal actor network 1s used:
only one hidden unit tanh 1s used. Thus, the actor network
has two inputs (the bias=1 and the tracking error, €), one tanh
hidden unit, and one output, a. While a system with one
hidden tanh 1s sufficient to function for training the control
function of the network example depicted 1n FIGS. 6-9, 1n
practice, three hidden units often resulted 1n faster learning
and slightly better control. To visualize the neuro-dynamics
of the actor net, the trajectories of the individual weights 1n
the actor network were tracked and plotted as they change
during learming. The weights W, and V form a two-
dimensional picture of how the network changes during the
learning process (plotted at 50) of a typical training episode.
Here, by way of example, the x-axis shows the second 1nput
welght W, while the y-axis represents the single output
welght V. The trajectory begins with point 494 and
progresses to point 49¢. Each point along the trajectory
represents a weight pair (W,, V) achieved at some point
during the learning process. The jagged pathway between
the points labeled 49a—49¢, represent different sequential
learning phases of the method, each corresponding with a
respective stability region, 51-54.

Several stability (safe) ranges are depicted as rectangular
boxes 51-54 1n the two-dimensional trajectory plot of FIG.
5; the first 1s labeled box S1(A). A first stability phase is
carried out by computing, via applying either an I-analysis
tool or the IQC-analysis tool, the amount of uncertainty
which can be added to the weights; the resulting
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perturbations, dW and dV (sides of the rectangle S51),
indicate how much learning can be performed yet remain

stable. The pathway from 494 to the edge of box S1(A) of
the trajectory represents the learning that occurred for the

first values of dW and dV. After the first learning phase,
another stability phase 1s performed to compute new values
for dW and dV, shown by rectangular shape 52(B). A second
learning phase 1s entered, represented by path 49b, that
proceeds until a weight update reaches the then-current
allowed range 52(B). The process of alternating stability and
learning phases repeats until the neural network 1s satisfac-
torily trained. In the example of FIG. §, a total of five
sequences of a stability and learning phase are carried out.

As can be seen from the trajectory between 49a and the
boarder of 51(A), by way of example here, the on-line
training progresses until the V weight reaches an edge of
boundary S1(A). At this point the current learning phase 1s
halted, because any additional weight changes (weight
updates) might result in an unstable control system (it 1s
possible that the system might still be stable, but there 1s no
longer any guarantee of system stability). A next boundary
52(B) 1s computed or determined using a second stability
phase; followed by a next/second learning phase represented
by jagged path from 495 until the weights almost violate the
next boundary 52(B). In this way the technique of the
invention alternates between stability phases (computing
bounding boxes) and learning phases (adjusting weights
within the bounding boxes). An aside note: If a trajectory
reaches the edge of a respective bounding box, a more
accurate then-current stability region may be determined by
adjusting the center and aspect ratio of the box (and then
recomputing the maximum box size with these new
parameters), or an adjustment might be made to the on-line
fraining learning rate, or some other modification.

The third trajectory component from 495 to 49c¢ reveals
some 1nteresting dynamics. This portion of the trajectory
stops near the edge of box 53(C)-that is to say it doesn’t
reach 1t-and then moves back toward the middle of that box
53(C). Note that, here, at the same time as the actor network
1s learning, the critic network 1s also learning and adjusting
its weights along with being busy forming the value func-
tion. It 1s during this third phase 1n the training that the critic
network has started to mature; the “trough” in the critic
network has started to form. Because the critic network
directs the weight changes for the actor network, the direc-
fion of weight changes 1n the actor network reverses. In the
carly part of the learning the critic network indicates that
“upper left” 1s a desirable trajectory for weight changes in
the actor network. By the time the third learning phase is
encountered around point 49¢ and within boundary box
53(C), the gradient in the critic network has changed to
indicate that “upper-left” 1s now an undesirable direction for
movement for the actor network. The actor network has
“over-shot” its mark. If the actor network has higher learn-
ing rates than the critic network, then the actor network
would have continued 1n that same “upper-left” trajectory,
because the critic network would not have been able to learn
quickly enough to direct the actor net back in the other
direction. Similar type dynamics are revealed 1n the last two
phases around points 49d and 49¢, associated with bound-
aries 54(D) and SS(E). Here, the actor network weights are
not changing as rapidly as they did in the earlier learning
phases. The on-line training 1s reaching a point of optimal
tracking performance according to the critic network. The
point of convergence of the actor network weights 1s a local
optimum 1n the value function of the critic network weights.
It 1s preferred to halt training at this point because the actor
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welghts have ceased to move much, i1f at all, and the
resulting control function improves performance (minimizes
tracking error) over the nominal system.

FIG. 6 1s a control system diagram 60 of an embodiment
that has a plant 69, a proportional controller 68 with feed-
back input 61, plus a neuro-controller 62 (including the tanh
function) operating as an actor network, in parallel with the
nominal controller-no critic network 1s depicted here for
simplicity. The neural network 62 depicted, here, 1s param-
cterized by input and output weight values, respectively,

Wand V, and includes the nonlinearities associated with use
of the tanh function.

FIG. 7 1s the control system diagrammed 1 FIG. 6 to
which IQC (Integral Quadratic Constraint-a known tool
which can be used for veritying the stability of systems with
uncertainty) analysis has been applied. Here in system 70,
the neuro-controller of FIG. 6 has been modified as follows:
the nonlinear tanh function has been replaced with an
odd-slope nonlinearity (73). Additionally, another 1QC
block-a performance block (77)-has been added to trigger an
analysis of the system. Thus, FIG. 7 depicts the FIG. 6
system converted mto an IQC robustness analysis frame-
work. The system 70 includes a plant 79 being controlled by
nominal controller 78 (with feedback mput 71) connected in
parallel with neural network 72.

FIG. 8 1s the control system diagrammed in FIG. 7 to
which an STV (Slowly Time-Varying) IQC block to capture
the weight change uncertainty was added. According to the
invention (labeled FIG. 8, in ATTACHMENT A) the non-
linear tanh function was replaced (as in FIG. 7) and IQC-
analysis 1s mcorporated into the system to compute maxi-
mum allowed perturbations for the actor network weights,
which are in turn used in the RL Agent’s (at 85) learning
phase to ‘safely’ adjust actor net weights therewithin. The
matrices dW and dV are the perturbation matrices of this
system, with matrices WA, WB, VA, and VB are included to
cast the uncertainty mnto standard block-diagonal form. A
simple first-order system 80 i1s depicted here by way of
example, only, as other neuro-controller subsystems can be
used. The system 80 includes a plant 89 controlled by
controller 88 (with feedback input 81) connected in parallel
with RL agent 85. The function learned by the actor net of
system 80, for example, can be described as follows: for
negative tracking errors (e<0) the system will learn to output
a strongly negative control signal, and for positive tracking
errors, the network will learn to produce a positive control
signal. The actor net of the RL agent 85 1s a direct part of
system 80 while the critic net does not directly affect the
feedback/control loop of the system (but rather, it influences
the speed of adaptation of the weights).

FIG. 9 illustrates, 1n flow diagram format, certain aspects
and features of a preferred method of the invention at 90. As
one will appreciate, by following the detailed explanation 1n
cach box shown 1n the flow-diagram a better understanding
of the control system’s operation as well as 1n appreciating
the novel features of a method of the 1nvention can be
cained. In connection with FIG. 9, details of a process to
build a system according to the invention are speciiied
below:

1. Check the stability of the nominal system (without the
neuro-controller). Recall that BIBO stability presup-
poses 1nternal stability of the nominal system.

2. If the nominal system is stable (step 1 above), then add
the neuro-controller, replace the non-LIT neural con-
troller with an LTI uncertainty block, and perform a
static stability check with either the I-analysis or IQC-
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analysis stability tools. This 1s done to 1ncrease confi-
dence that the initial weight values of the neuro-
controller implement a stable system. Initially, choose
the network output weights to be small so that the
neuro-controller has little effect on the control signal of

the system.

3. The next step 1s a stability phase to compute a maxi-
mum network weight uncertainty that retains system
stability, use the following subroutine:

(a) For each individual weight in the neural network,
select an uncertainty factor. These uncertainty fac-
tors are the diagonal entries 1n the BP matrix.

(b) Combine all the uncertainty into the M—ALFT
arrangement and apply either the u-analysis tool or
the IQC-analysis tool.

(¢) If  (or IQC) indicates that system is stable, increase
cach individual weight uncertainty factor; multiply
all the weights by the same factor to keep all the
ratios constant. But, if # (or IQC) indicates that
system 1s unstable, decrease each individual weight
uncertainty by multiplying each weight by the same
factor to keep all the ratios fixed.

(d) Repeat sub-steps in 3(c) until the largest set of
individual weight perturbations in the B, matrix that
still just barely retain system stability have been
1dentified. This 1s the maximum amount of pertur-
bation each weight can experience while still retain-
ing a stable control system.

4. Use these uncertainty factors to compute a permissible
perturbation range, R, , for each individual network
welght. The perturbation range 1s the “safe range” for
cach individual weight such that all perturbations to a
welght that keep the weight within this range will not
induce system 1nstability.

5. Enter the learning phase. One could employ any
suitable learning algorithm that updates the neuro-
controller weights up and until the allowable safe
perturbation range 1s violated.

(a) Train on one sample input.

(b) Compute the desired weight updates.

(¢c) As long as weight update(s) do not exceed any
current perturbation range, continue to update the
welghts. But, if any of the weight updates do exceed
a perturbation range, stop learning with the last set of
allowable network weights.

Referring, once again specifically to FIGS. 1 and 2A-2B,

a summary of a preferred embodiment of the system detail-
ing the actor and critic network components, follow.

Example Actor Net Features:

Feed-forward, two-layer, neural network;
Parameterized by input and output weights, Wand V;

n (# inputs) determined by the control task. For many
tasks, this includes the tracking error and possibly
additional plant state variables. Also included i1s an
extra variable held constant at 1 for the bias input.

m (# outputs) determined by the control task. This is the
number of control signals needed for the plant input.

h (# hidden units)—a free variable which can be selected
to be small for faster learning or larger for more
expressive control functionality.

tanh hidden unit activation functions;
linear output unit activation functions;

e(k) 1s the input signal at time k. The signal is composed
of the tracking error and additional plant and controller
internal state variables. Also includes the bias input set
to 1.
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(k) is the output signal at time k. Important note about
notation: Recall above, as well as 1n FIGS. 1, 2A-2B,
a 1s used rather than i. Computed by the actor net via

feed forward computation:

H
$j = Z Wi jéi,
=1

h
iy, = Z thanh(cﬁj)
=1

Trained via back propagation (gradient descent).
Example Critic Net Features:

Table look-up mechanism;
Parameterized by table, Q;

n—-1+m inputs determined by the control task. The 1input to
the critic network includes the actor net input, e(k)
(without bias term) and the actor net output, (k)
signals. The actor net input has n—1 signals (without
bias term) and the actor net output has m signals for a
total n -1+m 1nput signals to critic net.

A single output, the value function Q(e, 10);

Tramed via suitable variants of remnforcement learning.

Referring generally back to FIGS. 1, 2A-2B, and 5-8, 1n
support of the invention, further derivation 1s offered. The
actor network 12 receives the tracking error € and produces
a control signal, a, which 1s both added to the traditional
control signal (16) and is fed into the critic network 14. The
critic network 14 uses e (the state) and a (the action) to
produce as its output, the Q-value which evaluates the
state/action pair. The critic net, via local search, 1s used to
estimate the optimal action to update the weights in the actor
network. Let n be the number of inputs to the actor network.
For most tasks, this includes the tracking error and possibly
additional plant state variables. Also included, 1s an extra
variable held constant at 1 for the bias mput. Let m be the
number of components 1n the output, a, of the actor network.
This 1s the number of control signals needed for the plant
input. Let h be the number of hidden units in the actor
network. A ‘best’ value for h can be determined experimen-
tally.

The hidden layer weights are given by W, an hxn matrix,
and the output weights are given by V, an mxh matrix. The
input to the actor network 1s given by vector x, composed of
the error, €, between the reference signal, r, and the plant
output, y, and of a constant input that adds a bias term to the
welghted sum of each hidden unit. Other relevant measure-
ments of the system could be included in the 1nput vector to
the actor network, but for the simple experiments described
here, the only variable input was e. The critic receives inputs
¢ and a. An index into the table of Q values stored in the
critic 1s found by determining which € and a partition within
which the current error and action values fall. The number
of partitions for each input 1s determined experimentally.

In the following summary of the steps of a method of the
invention, focus 1s on RL steps and the interaction of the
nominal controller, plant, actor network, and critic. Variables
are given a time step subscript. The time step 1s defined to
increment by one as signals pass through the plant. One can
calculate the error between the reference input and the plant
output:

E~F—V;

Next, calculate the outputs of the hidden units, @, and of the
output unit, which 1s the action, a,:
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®=tan h(W_e,)

( Vf(bh

Vr(br + rand »

with probability 1 — &;;
with probability €,, where a,,,4 15 a

(Gaussian random variable with mean 0

\ and variance 0.0

The Following Steps are Repeated

Apply the fixed, feedback control law, 1, to mnput ¢, and
sum the output of the fixed controller, ¢, and the neural
network output, a,, to get u,. This combined control output
1s then applied to the plant to get the plant output y,, , for the
next time step through the plant function g.

Cr=f (Er)
H’I=Cf+ﬂr
Vir 1=g(ur)

Again calculate the error, ¢, ,, and the hidden and output
values of the neural network, ®,_ , and a,_;:

€1 1™ Vi1

(I).H 1=tEI.1‘1 ‘h( WI€I+1)

( Vr(brﬂ "

Vi1 + Gyang, with probability €;, 1, where a,q,q 15 a

with probability 1 — €,,1;

(Gaussian random variable with mean 0O

and variance 0.05

Now assign the reinforcement, R, _,, for this time step. For
the experiments presented here by way of example, define
the reinforcement to be the absolute value of the error,

RI+1=|€I+1|'

Let Q. , be afunction that maps the value function inputs,
¢, and a,, to the corresponding 1index into the Q table. To
update the neural network, first estimate the optimal action,
a,*, at step t by minimizing the value of Q for several
different action inputs in the neighborhood, A, of a,. The
neighborhood 1s defined as

A={ﬂr|ﬂr=ﬂmin+i(ﬂmax_ﬂmin)/”1‘T’.:l: co Sy Uy {ﬂf{ﬂmﬂx}

FLF

for which the estimate of the optimal action 1s given by

4y = arganQindfx( €1 ,4)

e A

Updates to the weights of the neural network are propor-
tional to the difference between this estimated optimal action
and the actual action:

Vr+1=VI+B(ﬂ:$_ﬂz)(D:T

|14 _W:+I3VT(£I:$_H:)'(1_(DII(I):)EI:

+1

where - represents component-wise multiplication. Now,
update the value function, Q. The Q indices, g, for step t and
for step t+1 are calculated first, then the Q value for step t
1s updated:

QI=Qinde_r(€::ﬂr)
QI+1=andﬂr(€r+1:ﬂr+ 1)

QqI=QqI+CL (RI+1+YQ.«:;I+ 1~ qu‘)
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Next, determine whether or not the new weight values, W
and V__,, remain within the stable region S. Note that 1nitial
values for W and V are random variables from a Gaussian
distribution with mean zero and variance of 0.1. The stable
region S 1s always a rectangle 1n the multi-dimensional
welght space and 1s iitially centered at zero with size
determined by an 1terative expanding search involving small
increases to the size and a corresponding IQC analysis to
determine stability until a maximum size 15 reached or
instability 1s determined. After calculating changes to V and
W, 1if the new weight values fall within S, S remains
unchanged. Otherwise a new value for S 1s determined.

If(WI+1:ﬂ+1)ESI: then Sr+1=SI:

else W, =W,
V=V,
S, 1=newbounds(W,V))

End Repeated Step Section

Now, according to the next stability phase, to calculate
new bounds, S, do the following steps. First, collect all of the
neural network weight values into one vector, N, and define

an 1nitial guess at allowed weight perturbations, P, as factors
of the current weights. Define the 1nitial guess to be pro-
portional to the current weight values.

N=(W.=::V:)=(”1:”2: R )

Next, adjust these perturbation factors to estimate the largest
factors for which the system remains stable. Let z, and z_be
scalar multipliers of the perturbation factors for which the
system 15 unstable and stable, respectively. Initialize them to

Increase z, until system 1s unstable:
If stable for N+P-N,

then while stable for N+xz P-N do

r =2z

it i

Decrease z_ until system 1s stable:
If not stable for N+P-N,

then while stable for N+xz P-N do

Perform a finer search between z_ and z, to increase z_ as
much as possible:

H o~ s H+
S £ 0.05 do g, = 5

g
While - 5

If not stable for N+z P-N

then z =z,

clse z =7
Now define the new stable perturbations, which 1 turn
define the set S of stable weight values.
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P=ZSP=(p1:p2: roe o )

S=1-pny,(+p)n IX[(1-po)no,(1+po)ms Ix .. }

The control system will remain stable as neural network
welght values are changed, so long as the new weight values
do not exceed the stability range (in both magnitude and
learning rate) specified by the perturbation matrices, dW and
dV. In the learning phase, reinforcement learning i1s
employed until one of the network weights approaches the
boundary of the stability range computed via IQC analysis.
A system was tested for a 10 second period (1000 discrete
time steps with a sampling period of 0.01). The sum of the
squared tracking error (SSE) over the 10 second interval was
computed. For the nominal controller only, the SSE=33.20.
Adding the neuro-controller reduced the SSE to 11.73. The
reinforcement learning neuro-controller was able to improve
the tracking performance dramatically for the simple first-
order system tested.

Further Discussion and Analysis of Neural Networks:
u-Analysis and 1QC

While there are a multitude of neural networks from
which one can select to perform the actor network function,
preferably (see FIG. 2A) the actor net architecture includes
two feed forward layers, a nonlinear hyperbolic tangent
function (tanh) in the activation layer, and a linear (no
activation function) output layer. Begin with the conversion
of the nonlinear dynamics of the hidden layer of the neural
network depicted in FIG. 6, into an uncertainty function.
Consider a neural network with input vector e=(e,, ..., ¢,)
and output vector i=(l, . . ., i,,). Important to note: for
purposes of this further discussion, the designation used for
neural network output, a, has been replaced with 1. The
network has h hidden units, input weight matrix W, ., and
output weight matrix V__, where the bias terms are included
as fixed 1nputs. The hidden unit activation function 1s the

commonly used hyperbolic tangent function. The neural
network computes 1ts output by:

F
$j = Z Wi jei,
i=1

h
iy, = Z Vk,jtanh(qu).
=1

One can write this 1n vector notation as
PD=We,
T=tan h{®),
=VT.

Next, consider an LTI system with a neural network as a
non-LTT component. Recall that the network 1s a two-layer,
feed forward network with tanh activation functions in the
hidden layer. The network has two sets of weight matrices:
W, 15 the input-side weight matrix and V,__, 1s the
output-side weight matrix (n inputs, h hidden units, and m
outputs with the bias terms included as fixed inputs). Form
the matrix B as a diagonal matrix in which the weights of W

and V are distributed along the diagonal
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Matrix B 1s of size zxz where z=hn+mh. Now form a
diagonal matrix B, (the P subscript denotes perturbation)
also of size zxz by:

By,

P2

Pr _

where each B, €R. Finally, we form a diagonal matrix
A, (the L subscript denotes learning) again of size zxz:

where 9, -1, 1] is the unit uncertainty function as described
in the previous section on static stability. These square
matrices, B, B, and A,, are all diagonalized so that when
they are multiplied together, the corresponding entries of
cach matrix will multiply together.

Summary of Stability Phase in Pseudo Code Format:

1. Inputs:

P: The control system (used for # or IQC calculations),

W, V: The current neuro-controller weights which form B.

2. Imitialize the individual neural network weight perturba-
tions 1 Bp. Set each perturbation, B, proportional to its
corresponding weight in B.

B, = 2
Pt—ﬁ

3. Set: B, ..=B,, min =1, max =1
4. Arrange the overall system, P, and the LIT uncertainty
(with B) into the M-A LFT. Compute u# (or IQC).

5. If u (or IDC) indicated that the system is stable, then

While (system is stable) do
Begin
max f=max 2
Bp=B;,..* max J
recompute u (or IQC)

End

6. Else if u (or IQC) indicates that the system is not stable,
then

While (system is not stable) do
Begin

min f=min f+2

B,=B, _* min f

recompute u (or IQC)
End
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7. Reduce the range between min f and max f by:

maxf — minf

While [ < 0.05]

minf
Begin

test = minf + (maxf —minf)/2
compute ¢ for Bp = Bpgse +test

1f stable, then minf = test, else max/ = test

End

8. Return B, * min J

END.

Summary of Learning Phase 1n pseudo code format:
1. Inputs:

P: The system (used for u or IQC calculations),
W, V: The current neuro-controller weights.
QQ: The current table look-up values.

B,: Set of actor net perturbations (computed in stability
phase).

c: A criteria for halting the training—may 1nclude prese-
lected total number.
2. Imitialize:

e=current state of system (tracking error and possibly
other variables).

i=current actor net control action (Notation: a also used
in discussion).
3. Take control action u=u_+10 and observe new state
(tracking error) €.
4. Choose next control action: i'=e—greedy(e).

® = tanh(We')
; with probability 1 — €
U =oV

i'=OGV=random from 0.1 ({i,,45x—0,,,) Withprobablity e
5. Train critic network:

Q(E‘, ﬂ)=Q(€J ﬁ)"'fi(%’(?'—yﬂi’)(ﬁﬂ ﬁl))_Q(EJ ﬂ))

6. Compute desired actor net output: (*=gradient__search

(Q(e; *))

7. Train actor network:
V=V+[31(I)(ﬁ’*‘—ﬂ)
W=W+B,eV(1-®) (6%~

If W and V exceed perturbation ranges R, then retain
previous values of W and V and exit learning phase.

8. Update state information: e=¢', (=0’

9. If perturbation criteria ¢ 1s net, then exit learning phase.
Otherwise, go to Step 3.

END.

While certain representative embodiments and details
have been shown merely for the purpose of illustrating the
invention, those skilled 1n the art will readily appreciate that
various modifications may be made to these representative
embodiments without departing from the novel teachings or
scope of this invention. Accordingly, all such modifications
are 1ntended to be included within the scope of this disclo-
sure. Although the commonly employed preamble phrase
“comprising the steps of” have been used herein, or
hereafter, the applicants do not intend to invoke 35 U.S.C.
Section 112 §6. Furthermore, any means-plus-function
clauses used, or later found to be present, are intended to
cover the structures described herein as performing the
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recited function and not only structural equivalents but also
equivalent structures.

What 1s claimed 1s:

1. A teedback control system for automatic on-line train-

ing of a controller for a plant, comprising:

a reinforcement learning agent connected 1n parallel with
the controller; the learning agent comprising an actor
network and a critic network operatively arranged to
carry out at least one sequence of a stability phase
followed by a learning phase; and

wherein said stability phase comprises determining a
multi-dimensional boundary of values, and said learn-
ing phase comprises generation of a plurality of
updated weight values 1n connection with the on-line
training, 1f and until one of said updated weight values
reaches said boundary, at which time a next sequence
1s carried out comprising determining a next multi-
dimensional boundary of values followed by a next
learning phase.

2. The system of claim 1 wheremn said actor network
comprises a neural network and said critic network com-
prises a function approximator into which a state and action
pair are 1nput to produce a value function theretfor.

3. The system of claim 2 wherein: said neural network 1s
a feed-forward, two-layer network parameterized by input
and output weight values, respectively, W and V; an input
into said neural network includes a state variable, s; said
state and action pair comprises said state, s, and a control
signal output from said actor network, a, to produce said
value function, Q(s, a); and said multi-dimensional bound-
ary of values comprises a stability range defined by pertur-
bation weight matrices, dW and dV.

4. The system of claim 3 wherein: said function approxi-
mator comprises a table look-up mechanism; said imput and
output weight values, respectively, W and V, are 1nitialized
by randomly selecting small numbers; an input signal of said
neural network comprises mnformation about a plurality of
state variables of the controller, including said state which
comprises a tracking error, €; and said control signal output
from said actor network contributes, along with an output
from the controller, to an 1nput of the plant.

5. The system of claim 1 wherein:

said actor network comprises a neural network param-
cterized by mput and output weight values for current

step t, respectively, W, and V;

sald multi-dimensional boundary of values comprises a

stability range defined by perturbation weight matrices,
dW and dV; and

said determining of said next multi-dimensional boundary
of values comprises making an initial guess, P, of said
stability range, said initial guess, P, being proportional
to a vector N, according to the expressions:

N(W::V:)=(n1,nzﬂ JN )

6. The system of claam 1 wherein one of said updated
welght values reaches said boundary so that said next
sequence 1s carried out to determine said next boundary and
to generate a plurality of next updated weight values, one of
said next updated weight values reaches said next boundary
so that a third sequence 1s carried out to determine a third
multi-dimensional boundary of values and to generate a
plurality of third updated weight values.

7. The system of claim 1 wherem one of said updated
welght values reaches said boundary so that said next
learning phase 1s carried out to generate a plurality of next
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updated weight values; and the automatic on-line training 1s
performed during said next learning phase 1f and until a total
number of said plurality of updated weight values so gen-
crated reaches a preselected value, said next learning phase
1s exited.

8. A method for automatic on-line training of a feedback
controller within a system comprising the controller and a
plant, the method comprising the steps of:

employing a reinforcement learning agent comprising a
neural network to carry out at least one sequence
comprising a stability phase followed by a learning
phase;

said stability phase comprising the step of determining a
multi-dimensional boundary of neural network weight
values for which the system’s stability can be main-
tained; said learning phase comprising the step of
generating a plurality of updated weight values 1n
connection with the on-line training; and

if, during said learning phase, one of said updated weight
values reaches said boundary, carrying out a next
sequence comprising the step of determining a next
multi-dimensional boundary of weight values followed
by a next learning phase.

9. The method of claim 8 wherein said learning agent
comprises an actor network comprising said neural network
and a critic network operatively arranged 1n parallel with the
controller to carry out said at least one sequence; said
learning phase further comprises accepting a state variable,
s, mnto said neural network to produce a control signal
output, a, and inputting a state and action pair 1nto said critic
network to produce a value function, Q(s, a); and further
comprising the step of initializing mnput and output weight
values, respectively, W. and V,, of said neural network by
randomly selecting small numbers.

10. The method of claim 9 wherein: said random selection
comprises selection from a Gaussian distribution; said critic
network comprises a function approximator ito which said
state and action pair, comprising a tracking error, ¢, and said
control signal output, a, are 1nput; and said multi-
dimensional boundary of values comprises a stability range
defined by perturbation weight matrices, dW and dV.

11. The method of claim 8 wherein said learning phase
further comprises accepting a state variable, s, mto said
neural network to produce a control signal output, a, and
inputting a state and action pair into a critic network of said
reinforcement learning agent to produce a value function,
Q(s, a); and said step of determining a next multi-
dimensional boundary of weight values comprises making
an 1nitial guess, P, of said stability range, said initial guess,
P, being proportional to a vector N, according to the expres-
S101S:

N(WI:VI)=(”1:”2: - )

12. The method of claim 11 wherein said step of deter-
mining a next multi-dimensional boundary of weight values,
said boundary comprising a next stability range defined by
perturbation weight matrices, dW and dV, further comprises
estimating a maximum perturbation factor for which the
system’s stability will be maintained, for each of an 1nput
and output weight value for current step t, respectively, W,
and V..

13. The method of claim 8 wherein one of said updated
welght values reaches said boundary so that said next
sequence 1s carried out to determine said next boundary
comprising a next stability range defined by perturbation
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welght matrices, dW and dV, and said next learning phase 1s
carried out by generating a plurality of next updated weight
values.

14. The method of claim 13 wherein one of said next
updated weight values reaches said next boundary so that a
third sequence 1s carried out to determine a third multi-
dimensional boundary of values comprising a third stability
range and to generate a plurality of third updated weight
values; and thereafter, one of said third updated weight
values reaches said third boundary so that a fourth sequence
1s carried out to determine a fourth multi-dimensional
boundary of values comprising a fourth stability range and
to generate a plurality of fourth updated weight values.

15. The method of claim 13 wherein: if, during any
respective one of said learning phases, a total number of said
plurality of updated weight values so generated reaches a
preselected value, exit said respective learning phase.

16. The method of claim 15 wherein one of said updated
welght values reaches said boundary so that said next
learning phase 1s carried out to generate a plurality of next
updated weight values; and the automatic on-line training 1s
performed during said next learning phase such that said
total number equals said preselected value before any of said
next updated weight values reaches and exceeds said next
multi-dimensional boundary of values.

17. A computer executable program code on a computer
readable storage medium, for on-line training of a feedback
controller within a system comprising the controller and a
plant, the program code comprising:

a {irst program sub-code for 1nitializing input and output
welght values, respectively, W, and V., of a neural
network;

a second program sub-code for instructing a reinforce-
ment agent, comprising said neural network and a critic
network, operatively arranged in parallel with the
controller, to carry out a stability phase comprising
determining a multi-dimensional boundary of neural
network weight values for which the system’s stability
can be maintained; and

a third program sub-code for instructing said reinforce-
ment agent to carry out a learning phase comprising
generating a plurality of updated weight values 1n
connection with the on-line training 1f and until any one
of said updated weight values reaches said boundary,
then 1nstructing said remnforcement agent to carry out a
next sequence comprising determining a next multi-
dimensional boundary of weight values followed by a
next learning phase.

18. The program code of claim 17 wherein said first
program sub-code further comprises instructions for setting,
a plurality of table look-up entries of said critic network, to
zero, and said third program sub-code further comprises
instructions for reading into a memory associated with said
neural network, a state variable, s, to produce a control
signal output, a, and reading into a memory associated with
said critic network, a state and action pair to produce a value
function, Q(s, a).

19. The program code of claim 17 wherein said third
program sub-code further comprises instructions for exiting
any saild learning phase for which a total number of said
plurality of updated weight values so generated reaches a
preselected value.

20. The program code of claim 17 further comprising a
fourth program sub-code for instructing said reinforcement
agent to carry out a third stability phase and a third learning
phase comprising generating a plurality of updated weight
values 1n connection with the on-line training 1f and until any
onc of said next updated weight values reaches said next
boundary.
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