US006654949B1
a2 United States Patent (10) Patent No.: US 6,654,949 Bl
Fraenkel et al. 45) Date of Patent: Nov. 25, 2003
(54) METHOD AND SYSTEM FOR MONITORING 6,173,440 Bl * 1/2001 DArty ...oocovevereeeevee.. 717/130
THE EXECUTION OF HYBRID SOURCE 6,200,007 B1 * 3/2001 Kelley et al. 707/102
CODE 6,247,020 B1 * 6/2001 Minardcccocveenee... 717/100

(75) Inventors: Michael L. Fraenkel, Raleigh, NC
(US); Christopher H. Gerken, Apex,
NC (US); Arthur G. Ryman, Thornhill
(CA); Patsy S. H. Yu, Toronto (CA);
Siu C. Yuen, Scarborough (CA)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 09/450,596
(22) Filed: Nov. 30, 1999

(30) Foreign Application Priority Data

Nov. 30, 1998 (CA) crieiiiiiiiiee et e 2255023
(51) Int. CL7 oo GO6F 9/44
(52) US.CL ..o 717/130; 717/124; 717/127
(58) Field of Search 717/127-131,

717/136—-141, 146, 114-118, 154-158;
709/223-226; 714/35, 39, 45, 37, 38; 345/700-866

(56) References Cited
U.S. PATENT DOCUMENTS

5,410,648 A * 4/1995 Pazel ...cocvvvvnvvinnnnnnnn, 717/132
5,973,696 A * 10/1999 Agranat et al. 345/760
6,063,133 A * 5/2000 Lietal. ..cocovivinennnn.... 717/136
6,161,200 A * 12/2000 Rees et al. 717/130

OTHER PUBLICAITONS

Hamilton, Java and the Shift to Net—Centric Computing.
IEEE. 1996. pp. 31-39.%

JavaServer Pages Specification—Draft. http://hunter.cinet.c-
n.ua:8101/docs/java/gnusp091/jsp__spec.html. Jun. 1998.*
Bechini et al. Design of a Toolset for Dynamic Analysis of
Concurrent Java Programs. IEEE. 1998, pp. 190-197.%
Ball et al. Optimally Profiling and Tracing Programs. ACM.
1994, pp. 1319-1360.*

* cited by examiner

Primary FExaminer—We1 Zhen
(74) Attorney, Agent, or Firm—Scully, Scott, Murphy &
Presser; Manny W. Schecter, Esq.

(57) ABSTRACT

This mvention describes a system and method for monitor-
ing the execution of hybrid source code such as JavaServer
Pages (JSP) code. The system comprises a page compiler,
which 1s called by a server for translating JSP code into a
servlet for execution by the server. The page compiler during
translation of the JSP code inserts istrumentation in the
compiled JSP code for supporting execution tracing by an
execution monitor. The execution monitor receives outputs
from the page compiler, the servlet and the raw JSP code for
displaying selected information about the execution of the
JSP code to the developer on a graphical user interface. The
execution monitor thus allows the developer to view the
correlation between the JSP code, the servlet code and the
HTML code that 1s generated by the servlet.

24 Claims, 6 Drawing Sheets

102
LOAD DEVELOPMENT ENVIRONMENT

#

L0
SEND LIRL OF I5P FILE FROM BROWSER

#

104
REaAD ISPFILE

NO 103
NEED COMPILING?

¢ YES

109
INITIATE TRANSLATION AND COMPILING

&

” VES DISPLAY ERRORS VIA
. L EXECUTION MONITOR GUL
SYNTAX ERRORS? TERMINATE COMPILATION

113

!

114

WITI{ ADDED "HODEKS"

TRANSLATE AND COMPILE JSP CODE TO SERVLET

119 YES

SYNTAX ERRORSY

NG

10
DISPLAY EXECUTION MONITOR GUII

&

¥

LOAD CURRENT FILE NAME INTO ISP FILE LIST VIEW

l

114
LOAD iSP CQDE INTQ ISP SOURCE VIEW

|

1o

LOAD SERVLET SOURCE CODE INTO JavaA SOURCE VIEW

o

;
)

U.S. Patent

ol

HTTP

Nov. 25, 2003

15

JSP
FILE

17

HTML
PAGE

Sheet 1 of 6

16
SERVLET

FIGURE 1

10

"—_T——,

US 6,654,949 B1

19
7 ke

I8
DB

U.S. Patent Nov. 25, 2003 Sheet 2 of 6 US 6,654,949 B1

HYBRID JAVA/HTML
SOURCE CODE
28 SERVER | .
. 27
© INSTRUMENTED
24 © SERVLET SOURCE (>
PAGE COMPILER
GENERATED|JAVA CLASS -
r 26)
SERVLET j @
GENERATED HTML
30
WEB BROWSER
20 i B
34
EXECUTION MONITOR

ik [) - = =m = w & = W "W = 2 = = & ¥ = ¥y @ ® @& = = 3

40
USER INPUT

FIGURE 2

U.S. Patent Nov. 25, 2003

Sheet 3 of 6

— 102
LOAD DEVELOPMENT ENVIRONMENT

SEND URL OF JSP FILE FROM BROWSER

o 106
READ JSP FILE

108
NEED COMPILING?

‘ YES

- 109
I INITIATE TRANSLATION AND COMPILING

i1l
SYNTAX ERRORS?

NC

US 6,654,949 B1

118

TRANSLATE AND COMPILE JSP CODE TO SERVLET
WITH ADDED "HOOKS"

[19

SYNTAX ERRORS?

DISPLAY EXECUTION MONITOR GUI I

¢

) |2
l LOAD CURRENT FILE NAME INTO JSP FILE LIST VIEW

o

e " i - il

| 14
l LOAD ISP CODE INTO JSP SOURCE VIEW

- ; _

116

L I

LOAD SERVLET SOURCE CODE INTO JAVA SOURCE VIEW

o
O

113
DISPLAY ERRORS VIA
EXECUTION MONITOR GUL
TERMINATE COMPILATION

FIGURE 3(a)

U.S. Patent Nov. 25, 2003 Sheet 4 of 6 US 6,654,949 B1

RUN TO
COMPLETION.
NO
HIGHLIGHTING

198 TERMINATE

USER INPUT

STEP/RUN

120
HIGHLIGHT APPROPRIATE CODE SEGMENT IN JSP SOURCE

VIEW

122
HIGHLIGHT CORRESPONDING LINE IN JAVA SOURCE

i VIEW

| - 124

WRITE/REMOVE TEXT TO/FROM GENERATED
l HTML AND HTML STACK VIEWS

126
MOVE TO NEXT LINE/CODE SEGMENT
|

|
R
YES WAIT FOR NEXT JSP
FILE

STEP/BREAK

FIGURE 3(b)

U.S. Patent Nov. 25, 2003 Sheet 5 of 6 US 6,654,949 B1

150

USE NEW PRINTWRITER CLASS |

152
CORRELATE LINE IN INSTRUMENTED

SERVLET SOURCE TO CODE SEGMENT IN JSP

153

TRANSLATE JSP CODE SEGMENT INTO
SERVLET SOURCE

154

FINISHED JSP
CODE SEGMENT?

YES

158

INCREMENT JSP CODE —
SEGMENT
YES
156
DONE

FIGURE 4

U.S. Patent Nov. 25, 2003 Sheet 6 of 6 US 6,654,949 B1

JSP Execution Monitor !T____I @
File _Action View Help

CooeE

JSP File List

162 164
JSP Source Java Source

Generated HTML HTML Stack
166 168

tatus par '

FIGURE 5

US 6,654,949 B1

1

METHOD AND SYSTEM FOR MONITORING
THE EXECUTION OF HYBRID SOURCE
CODE

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates to a method and system for
monitoring the execution of hybrid source code, and more
particularly to an execution monitor for code containing,

Java and HTML source code.

2. Prior Art

The ubiquitous Internet, 1s essentially a network of com-
puters connected using the TCP/IP as the transportation
mechanism for communicating between the computers. The
World Wide Web (WWW) allows users on one computer to
access files and data on remote computers using a program
called a Web browser. One feature of a browser 1s that it
allows a user to read, in a graphical user interfave (GUI),
Hyper Text Markup Language (HTML) documents or,
colloquially, Web pages. Essentially, when the person
accessing the Internet (the user) opens a browser or another
similar program to view Web pages a URL (uniform
resource locator) must be specified by the user, by the
browser or by another software program. The URL specifies
the address of the computer (server) from which the Web
page 1s being requested. The server then, directly or
indirectly, delivers the requested Web pages 1n the form of
an HTML file to the browser over the Internet, generally
using the Hypertext Transfer Protocol (HTTP). The browser
then translates the file for viewing by the user.

As the use of the Internet progressed 1t became clear that
simply providing people with static pages that contained
only text and 1mages was not going to be enough. For
example, businesses that were going “on-line” needed more
powerful tools that could allow the user to access their
databases and to purchase goods over the Internet.

Unfortunately, not everyone uses the same computers or
even the same operating systems, so a need arose for a
programming language that could operate on any machine
regardless of 1ts operating system. One of the languages that
has accomplished this 1s Sun Microsystems, Inc.’s Java™
language, an object-oriented, network capable programming
language. Java code 1s run on a virtual machine within an
operating system. The communication between the virtual
machine and the Java program is the same for all operating
systems, and the virtual machine communicates to the
operating system 1t 1s running on. Java programs can run as
stand alone applications or as applets running under a Java
capable browser. To create an applet, the developer writes it
in the Java language, compiles 1t and calls it from a HTML
Web page. To create an application, the developer writes it
in the Java language, compiles 1t and calls it from the
command line or from another program.

Currently, the most visible examples of Java software are
“applets” that are available on the Internet. These applets are
sent from the server to the browser, which acts as the virtual
machine to execute the applet However, there are other kinds
of Java software, including software that runs on servers, or
on large mainframe computers. In these cases, Java may be
used to monitor transactions, manipulate data, or to stream-
line the flow of information between departments, suppliers,
and customers.

Further developments 1n this area have led to
JavaServer™Pages™(JSP) technology, which is a new

10

15

20

25

30

35

40

45

50

55

60

65

2

hybrid language. JSP technology allows Java code to be
imbedded directly mnto a static HIML Web document. This
feature makes 1t possible to create dynamically generated
content for Web pages quickly and easily on the server. Also,
the 1mbedded Java code 1s designed to act more as a
scripting language than Java programming, although it may
act as both, emphasizing the use of components conforming,
to Sun Microsystems, Inc.’s JavaBeans™ specification.

JavaBeans 1s a portable, platform-independent component
model written 1n the Java programming language. Java-
Beans acts as a bridge between proprietary component
models. Since these components do much of the processing
work, component development 1s more cleanly separated
from Web design (formatting). Therefore, teams developing
the component (business rules) aspect of the Web page do
not have to be a concerned with the appearance of the page,
and vice versa.

Another advantage of the JSP technology is that it 1s
compiled and executed on the server side. An important
result of this 1s the fact that the browser doesn’t need to have
any special capabilities to view a JSP {ile or page since 1t 1s
completely processed on the server side and delivered to the
browser in HITML format. Another result 1s that the JSP file
1s only compiled once. The server checks to see if the JSP
file has been altered since it was last compiled. If it has then
it 1s recompiled, but if 1t hasn’t then 1t can be run from
memory reducing the average access time of the page.

From a developer’s point of view, there are however still
some deficiencies with the JSP development environment.
Currently, the only method a developer has of verifying the
JSP code that has been written 1s to load the page onto a Web
server, load it through a Web browser and mspect the output.
This method, however, 1s far from satisfactory, as the
developer has to guess where an error 1n the JSP page is
originating. Further, it 1s a very tedious process that can lead
to unwanted errors.

SUMMARY OF THE INVENTION

In accordance with an aspect of the invention, there 1s
provided a method for monitoring the execution of hybrid
source code which 1s executable on a server, comprising the
steps of: generating executable code for execution by the
server from the hybrid source code; providing instrumenta-
tion 1n the executable code for supporting execution tracing;
and receiving 1n an execution monitor information from the
instrumentation 1n the executable code for display on a user
interface.

The step of generating executable code may further
comprise translating the hybrid source code into source
code. The step of providing instrumentation may also com-
prise 1nserting instrumentation into the source code.

The instrumentation may comprise a mapping table com-
prising information correlating a code segment 1n the hybrid
source code with a line 1n the source code. The mstrumen-
tation may further comprise a line method for communicat-
ing said correlating information to the execution monitor.
The method may also comprise displaying on the user
interface the hybrid source code and the source code. The
method may further comprise correlating a code segment
from the hybrid source code with one or more lines of code
from the source code using the instrumentation. The hybrid
source code may be JavaServer Pages code.

There 1s also provided a method for monitoring execution
of hybrid source code which executes 1n a server, comprising
the steps of translating the hybrid source code by a page
compiler 1nto a source code form and an executable code;

US 6,654,949 B1

3

providing methods into the executable code, such that when
the server executes the executable code, the methods are
invoked and send line information to an execution monitor
allowing the execution monitor to synchronize an executing
code segment of the hybrid source code with a correspond-
ing line of the source code; and displaying the executing
code segment of the hybrid source and the corresponding
line of the source code 1n a user interface.

In accordance with another aspect of the invention, there
1s provided a program storage device readable by a data
processing system, tangibly embodying a program of
instructions, executable by the data processing system to
perform the above method steps.

In accordance with another aspect of the invention, a
computer program product for monitoring the execution of
hybrid source code which 1s executable on a server, said
computer program product comprising a page compiler for
reading and translating the hybrid source code 1nto execut-
able code for execution by the server and for inserting
instrumentation in the executable code for supporting execu-
fion tracing; and an execution monitor for receiving infor-
mation from the instrumentation in the executable code for
display on a user interface.

There 1s also provided a computer program product for
displaying the execution of hybrid source code, comprising
a page compiler for translating the hybrid source code into
source code, inserting 1strumentation for execution tracing
in the source code and compiling the hybrid source code mnto
executable code; an execution monitor for receiving as input
and for displaying in a user interface of the execution
monitor, the hybrid source, the source code, and information
from the 1nstrumentation 1n the executable code. The com-
puter program product may filer comprise a server for
executing the executable code provided by the page
compiler, and providing the information from the instru-
mentation 1n the executable code to the execution monitor.
The computer program product may further comprise a
browser for sending a request with respect to the hybrid
source code, wherein the server further invokes the page
compiler 1n response to the request and provides the output
from the executable code to the browser. The execution
monitor may further receive output from the executable code
and wherein the server provides the output from the execut-
able code to the execution monitor. The computer program
product may further comprise a bi-directional communica-
fions means for communicating between the executing code
and the execution monitor including communicating the
information from the instrumentation 1n the executable code
to the execution monitor. And the hybrid source code may be
JavaServer Pages code.

In accordance with another aspect of the invention, there
1s provided a computer system monitoring the execution of
hybrid source code which 1s executable on a server, said
computer system comprising a page compiler for reading
and translating the hybrid code into executable code for
execution by the server and for inserting instrumentation in
the executable code for supporting execution tracing; and an
execution monitor for receiving information from the instru-
mentation 1n the executable code for display on a user
interface.

In accordance with another aspect of the invention, there
1s provided a computer system for displaying the execution
of hybrid source code, comprising a page compiler for
translating the hybrid source code 1nto source code, inserting
instrumentation for execution tracing in the source code and
compiling the hybrid source code 1nto executable code; and

10

15

20

25

30

35

40

45

50

55

60

65

4

an execution monitor for receiving as input and for display-
ing 1n a user interface of the execution monitor, the hybrid
source, the source code, and information from the instru-
mentation in the executable code. The computer may further
comprise a server for executing the executable code pro-
vided by the page compiler, and providing the information
from the instrumentation 1n the executable code to the
execution monitor. The computer system may further com-
prise a browser for sending a request with respect to the
hybrid source code, wherein the server further invokes the
page compiler 1n response to the request and provides the
output from the executable code to the browser. Further, the
execution monitor may further receive output from the
executable code and wherein the server provides the output
from the executable code to the execution monitor. The
computer system may further comprise a bi-directional
communication means for communicating nformation
between the executing code and the execution monitor
including information from the mstrumentation to correlate
a code segment of the hybrid source code and a line in the
source code.

In accordance with another aspect of the mnvention, there
1s provided an article of manufacture comprising a computer
usable medium having a computer readable program code
embodied therein for monitoring the execution of hybrid
source code, comprising HI'ML and Java code, running on
a Web application server, the computer readable program
code 1n said article of manufacture comprising computer
readable program code configured to cause a computer to
read and translate the hybrid source code 1nto an executable
program and for mserting instrumentation 1n the executable
program; computer readable program code configured to
cause a computer to read the hybrid source code, a source
code of the executable program and an output from the
executable program and for displaying the hybrid source
code, source code and the output 1n respective views on a
oraphical user interface; and computer readable program
code conifigured to cause a computer to communicate 1nfor-
mation between the istrumentation of the executing pro-
oram and the graphical user interface whereby the informa-
tion 1s used by the graphical user interface to correlate 1n the
views a code segment of the hybrid source code with a line
in the source code of the executable code.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the present invention will now
be described, by way of example only, with reference to the
accompanying drawings 1n which:

FIG. 1 1s a block diagram of a Web based application;

FIG. 2 1s schematic diagram of a system for monitoring
the execution of a JSP file according to an embodiment of
the present mvention;

FIGS. 3(a) and 3(b) are flow charts showing the operation
of the system of FIG. 2;

FIG. 4 1s a tlow chart showing a portion of a page compile
process according to an embodiment of the present imven-
tion; and

FIG. 5 1s a plan view of a GUI display according to an
embodiment of the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS OF THE
INVENTION

Referring to FIG. 1, a schematic diagram of a simple two
tier model of a Web-based application utilizing the JavaSer-

US 6,654,949 B1

S

ver Pages technology 1s shown schematically by numeral 10.
This model includes a first tier comprising clients 11 and a
second tier comprising a server 14. These first tier clients
comprise a number of Java enabled browsers 12 on various
devices such as personal computers, workstations and net-
work computers. The server side of such a system comprises
servlets running 1nside a Java Web server. In this example,
the client makes a request for a JSP page that 1s handled by
the server (not shown). The server generates the dynamic
content of the JSP page by loading a JSP file 15, which
contains both business rules and logic of an application as
well as standard document formatting such as HITML, the
syntax of which 1s divided into component centric tags and
scripting centric tags. The JSP file 1s translated and
compiled, 1f necessary, to encapsulate all the referenced
components 1nto a Java servlet 16, which, in turn, sends
(using HTTP) all the information to the browser in standard
HAML format 17. Such translation and compilation 1is
typically performed by a JSP code parser to translate the JSP
code to Java source code and then compiled by a Java source
to byte-code compiler such as Java which 1s provided as part
of Sun Microsystems, Inc.’s Java Development Kit (JDK).
A reference implementation by Sun Microsystems, Inc.’s of
the JavaServerPages technology provides such functionality.
Alternatively, the browser may access a servlet (not shown)
which, 1n turn, calls the JSP file, which then compiles and
executes as above. Optionally, the servlet may access data on
a database (DB) 18 through Sun Microsystems, Inc.’s Java
database connectivity (JDBC) technology 19, which tech-
nology provides communication and query functionality for
databases 1n the Java language.

Referring now to FIG. 2, a schematic diagram of a system
for monitoring the execution of a hybrid source code file,
such as a JSP file, in order to detect errors 1 the code 1s
shown generally by numeral 20. The system generally
comprises a hybrid source code file 22, which in a preferred
embodiment 1s JSP source code, containing HITML and Java
source code, which 1s stored on a file system; a Web
application server 28 (comprising a virtual machine) for
invoking a page compiler 24 to form the servlet 26 1n
response to an HTTP request from a Web browser 30 with
respect to the JSP source code 22, for executing the servlet
in response to an HTTP request and for providing HITML
output from the servlet to the browser; a page compiler 24
which 1s called by the server 28 for reading the JSP source
code, translating the JSP code into 1nstented source code 27
by 1nserting instrumentation in the translated JSP source
code or servlet source code for supporting execution tracing,
and arranging for the compiling of the instrumented servlet
source code 1nto a servlet; a Web browser 30 for sending an
HTTP request with respect to the JSP source code (and
corresponding servlet) to the server and for displaying
received HI'ML code from the servlet 26; a second file 32
that contains the 1instrumented source code 27 received from
the page compiler 24; an execution monitor 34 for reading
the mnstrumented servlet source code 27, the output from the
servlet 26 and the JSP code 22, for receiving information
from the executing servlet based on the instrumentation
contained 1n the servlet, for displaying selected information
about the execution of the JSP code file to the developer on
a graphical user interface (GULI) 36 and for supplying a
user 1nput interface 40 for providing commands to the
execution monitor 34. A socket 38 1s also provided for
bi-directional communication between the executing servlet
26 and the execution monitor 34. The execution monitor
thus allows the developer to view the correlation between

the JSP code, the servlet code and the HI'ML code that 1s

10

15

20

25

30

35

40

45

50

55

60

65

6

ogenerated by the servlet. Each of the above components will
now be discussed 1n detail.

In a preferred embodiment, the server, page compiler,
browser and execution monitor are integrated into a devel-
opment environment such as International Business
Machines Corporation’s VisualAge® for Java software pro-
oram thus allowing the server, page compiler, browser and
execution monitor to be run on the same machine. A switch
mechanism 1s provided for selectively enabling the page
compiler 1n one of two modes, a normal mode 1n which the
execution monitor 1s not enabled and a trace mode where the
execution monitor 1s enabled. If the execution monitor 1s not
enabled, the page compiler will simply compile each code
segment of the JSP source code 1nto a Java servlet until the
file 1s complete. If the monitor 1s enabled then instrumen-
tation 1s added to the servlet (and the servlet source code) for
use by the execution monitor.

Referring now to FIGS. 3(a) and (b), a flow diagram
illustrating the operation of the system 1s indicated generally
by numeral 100. The user loads the development environ-
ment 102 at which point the virtual Web application server
1s loaded onto the system. Next, the user sets the trace or
normal mode of operation of the execution monitor 34, and
sends 104 the URL of the JSP file 22 from the browser 30
to the Web application server 28. The server 28 invokes the
page compiler 24 which reads 106 the JSP source file 22. An
example of a JSP source code file 1s shown 1n the following
table. The Java code 1s delimited by <% and %:>.

Line # Source Text

1 <%for(int i=0; i<=100; i+=10) {%>

2 <tr ALIGN=RIGHTBGCOLOR=“#CCCCCC”>
3 <td><%=1%></td>

4 <td><%=(1-32)*5/9 %> </td>

5 </tr>

6 <% | Yo

The page compiler checks 108 whether the JSP file 22
needs to be compiled, e.g. 1f there has been a change 1n the
code since last compiled. If no compilation is required the
execution monitor GUI 36 1s displayed 110 and the opera-
tion of the system continues with step 112 and ensuing steps.
Otherwise, the page compiler 24 1mitiates 109 the translation
and compilation of the JSP source code. With the execution
monitor 34 enabled, the page compiler first performs a
syntax check 111 on the JSP code. It errors are found, they
are displayed 113 the execution monitor and compilation 1n
the page compiler 1s terminated. Details of this will be
discussed later. If there are no errors, the page compiler
translates 118 the JSP code (Table 1) into instrumented
servlet source code 27 by adding 118 “hooks” (described
later) to the instrumented servlet source code and compiling
the instrumented servlet source code to form servlet 26.
While translating and compiling, the page compiler also
checks for syntax errors as described below. A section of the
instrumented servlet source code for the JSP code example
above 1s shown 1n the following table.

TABLE 11
Line # Servlet source
97 for(int i=0;i<100;i+=10){

//com.ibm.1v].jsp.debugger.
JspDebugCharArrayChunk

US 6,654,949 B1

7

TABLE II-continued

Line # Servlet source

d:/www/html/temperature.jsp 18,43-
d:/www/html/temperature.jsp 20,5
data| O].writeChars(381,2,out);
100 data] 0].writeChars(383,34,out);
data] 0 |.writeChars(417,2,0out);
102 data]0].writeChars(419,4,0out);
f/com.sun.server.http.pagecompile.jsp.
ScriptletChunk
d:/www/html/temperature.jsp 20,5-
d:/www/html/temperature.jsp 20,13
out.print(ServletUtil.toString(i))

//com.1ibm.1v].Jsp.debugger.
JspDebugCharArrayChunk
d:/www/html/temperature.jsp 20,13-
d:/ww/html/temperature.jsp 21,5
data] 0 |.writeChars(431,5,0out);
data] 0].writeChars(436,2,0ut);

108 data] 0 |.writeChars(438,4,0out);

/fcom.sun.server.http.pagecompile.|sp.

ScriptletChunkd:/www/html/temperature.js

p21,5-d:/www/html/temperature.jsp 21,28
out.print (ServletUtil.toString((i

32(*5/9));

//com.1ibm.1v].]sp.debugger.
JspDebugCharArrayChunkd:/www/html/temper
ature.;sp21,28-
d:/www/html/temperature.jsp23,1
112 data] 0].writeChars(465.5,0ut);
data] 0 |.writeChars(470,2,0ut);
data] 0].writeChars(472,5.out);

114 data] 0 |.writeChars(477.2,0out);
/fcom.sun.server.http.pagecompile.jsp.Sc
riptletChunkd:/www/html/temperature.jsp
23,1-d:/www/html/temperature.|sp23,8

h

104

106

110

117

This mstrumented servlet source code 1s saved 1n a file 32
for use by the execution monitor 34. The instrumented
servlet source code 1s also checked for syntax errors 119. It
errors are found, these are also displayed by the execution
monitor 113 and the compilation in the page compiler is
terminated.

It may be observed that each code segment of the JSP
code (which includes a single line of Java code blocks, list
of related Java code or HIML tags) may translate to more
than one line of the instrumented servlet source code so it 1s
necessary to have a method to correlate the JSP code
secgments with the mstrumented servlet source code lines.
Specific “hooks” must be added by the page compiler 24 to
the 1nstrumented servlet some code. The first of these
“hooks” are “line” methods which enable the execution
monitor to correlate a line of mstrumented servlet source
code (Table II) to the corresponding code segment of there
JSP code (Table I). This is achieved by the page compiler
creating a table or mapping at the time of compilation that
1s stored 1n the servlet and is referenced by the line method.
Examples of the line methods—*“line (46)” and “line (48)
”—are shown 1n Table II. Thus when the Web application
server executes the servlet, the line methods, when 1invoked,
will send via the socket 38 the line numbers from the
mapping table to the execution monitor 34. This process
allows the execution monitor to synchronize the line of the
executing instrumented servlet source code (in the servlet)
with 1ts corresponding JSP source code segment. The line
method also provides for pausing of the servlet by means of
communications between the servlet and the execution
monitor via the socket.

The second of these “hooks” i1s the redirection of the
HTML output from the servlet to the execution monitor as

10

15

20

25

30

35

40

45

50

55

60

65

3

well as the browser. This 1s accomplished by providing a
modified Print Writer class. The Print Writer class, provided
in Sun Microsystems, Inc.’s Java Development Kit (JDK), is
used to print out formatted text to an output stream. In this
case, the formatted text (HTML output) is sent to both the
browser and the execution monitor.

Referring now to FIG. 4, a detailed flow diagram of the
portion of the page compile process at step 118 1s shown.
The page compiler first overwrites 150 the usual PrintWriter
class with a new PrintWriter class for sending the output to
the execution monitor (as well as the browser). The page
compiler then continues to process the JSP code 1nto 1nstru-
mented servlet source code For each code segment of the
JSP code, the page compiler creates an entry 1n a mapping
table as described above, relating 1t to the corresponding
line(s) in the instrumented servlet source code 152 and
inserts a line method into the instrumented servlet source
code line(s). In a preferred embodiment, the JSP code
segment 15 correlated only to the first line of the correspond-
ing mstrumented servlet source code, although 1t 1s possible
to add the line method to each of the lines created in the
instrumented servlet source code.

The page compiler then proceeds to translate 153 the JSP
code segment into corresponding servlet source code line(s).
If the translation step has finished 154 with the JSP code
segment (otherwise continuing to translate the JSP code
segment) the page compiler inquires whether the end of the

JSP code file (EOF) has been reached. If not, the compiler
moves to the next JSP code segment 158 for translation and

the page compiler repeats the steps from step 152. If the end
of file has been reached, the instrumented servlet source
code (along with the mapping table) is compiled into a
servlet. The page compiler can invoke the standard Java
source code to byte-code compiler (Java compiler) provided
in the JDK although other compiler means are readily
apparent to those skilled 1n the art. At the completion of the
page compile process, the JSP code has been translated mto
instrumented servlet source code (which in the preferred
embodiment is stored to a file system such as a hard disk)
and executable code (class file) in the form of a servlet
(which in the preferred embodiment is also stored to a file
system such as a hard disk).

Turning back to FIGS. 3(a) and 3(b) as described above,
in addition to adding “hooks” into the compiled code the
page compiler 24 checks for syntax errors or semiantic
errors 119 during translation and compilation. There are two
kinds of syntax errors, namely JSP syntax errors and gen-
erated Java syntax errors. Some of the JSP syntax errors will
be caught by the precompiler of the page compiler, e.g.
Missing end INSERT tag. Other JSP syntax errors and Java
syntax errors mside the JSP file that are not caught by the
precompiler (a generated Java syntax error) will be caught
by the Java compiler. Syntax error handling 1s added in the
execution monitor to effectively point out to the users the
syntax errors, especially generated Java syntax errors. The
mapping table may be utilized by the page compiler, such
that when the page compiler sees a syntax error in the JSP
file, an exception will be thrown that allows the execution
monitor to display the syntax error message, thereby allow-
ing a user to visually match the JSP code segment that has
the syntax error with the syntax error message itself.
Optionally, the syntax errors may be displayed in the
browser.

In order to display the errors in the execution monitor, the
exception during compilation 1s intercepted. The syntax
error message 1s parsed and the information 1s sent to and
displayed by the execution monitor. A standard syntax error
message from the precompiler 1s shown below:

US 6,654,949 B1

9

<column>,<row>:<JSP syntax error message>

c.g. 5,1:Unterminated <insert> tag.

For the JSP syntax errors, the starting and ending JSP code
segment 1nformation 1s retrieved from the mapping table in
order to highlight the exact code segment that has the JSP
syntax error. For Java syntax errors, the starting and ending
JSP code segment information and the corresponding star-
tling line and position are retrieved from the mapping table
in order to highlight the exact JSP code segment and the
corresponding servlet source line(s) that has the Java syntax
eITOr.

If there are no syntax errors 1n both the JSP code and the
executable Java code servlet, the servlet 1s compiled and the
execution of the servlet within the Web server 1s ready to be
monitored 110 1n the execution monitor. The servlet com-
municates to the execution monitor. The servlet communi-
cates to the execution monitor via the socket 38. The servlet
informs the monitor of the name of the JSP file 112, at which
point the execution monitor can retrieve 114 the JSP code as
well as retrieve 116 the instrumented servlet source code 32
(e.g. from the hard disk). In a preferred embodiment, the
instrumentation 1s removed from the instrumented servlet
source code before presentation on the execution monitor
GUI. Initially, the execution monitor will wait for input from
the user 128, before the servlet begins to run, on how the
user would like to proceed. Optionally, the user can termi-
nate the servlet execution (which will trigger the servlet to
run to completion) and the system will wait for another JSP
file (which the user can supply by following step 104 and
ensuing steps) or any other user action. Otherwise, the user
can, for example, step the execution of the servlet—step
mode—or ask the servlet to run freely (after, for example, a
pause caused by the user or a breakpoint set in the code)—
run mode. When stepping or running, the currently execut-
ing line of servlet source code 120 and the corresponding
code segment of the JSP code 122 i1s highlighted in the
execution monitor GUI. As described above, the line method
facilitates this coordination between the JSP code and servlet
source code. Further, the servlet may produce HI'ML output
which 1s sent to the browser and also to the execution
monitor for display in the execution monitor GUI 124. The
system then moves to the next line/code segment of the code
126. If there 1s no next line/code segment because the servlet
has run its course, i.e. the end of file (EOF) has been reached
127, then the system will wait for another JSP file (or any
other user action). The line method also causes the servlet 26
to pause 1ts operation. It will signal the execution monitor 34
via the socket 38 and wait for a response before continuing.
If the execution monitor 1s 1n run mode 129, i1t will signal the
servlet 26 via the socket 38 to continue running and step 120
and ensuing steps are performed. Otherwise, 1f the execution
monitor is in step mode or a break has occurred (from, for
example, a breakpoint inserted in the code) the execution
monitor will wait for mput from the user 128 and perform
the ensuing steps depending on the user’s mput. Therefore,
the execution monitor controls the progress of the servlet. Ot
course, and not shown, the user may optionally perform a
number of other tasks in the system including terminating
execution of the servlet and/or the system, editing the JSP
code, setting breakpoints and may other standard
maintenance, operational and development tasks in the
system. Referring to FIG. 5, a schematic plan view of the
execution monitor GUI display 36 1s shown. The GUI not
only displays the code execution but also provides for user
input to control execution of the code. In a preferred
embodiment, the user input 40 1s integrated with the GUI 36.

10

15

20

25

30

35

40

45

50

55

60

65

10

The GUI provides the following views:

A JSP file list view 160 which shows the currently
executing JSP file. For example, 1t 1s possible for one JSP file
to call another JSP file directly or indirectly. All these JSP
files may be displayed in the file list view, but with the
currently executing JSP file highlighted.

A JSP source view 162 shows the source code for the
currently selected JSP file 22. The JSP source view high-
lights the currently executing code segment of the JSP file.
The user can optionally set breakpoints at code segments of

the JSP file which cause the execution to pause.
A Java source view 164 shows the servlet source code that

1s generated from the currently selected JSP file. In a
preferred embodiment, the instrumentation 1s removed from
the instrumented servlet source code to show simply the
servlet source code. The currently executing line of the
servlet source code may be highlighted. The JSP source view
and the Java source view are coordinated so the code

segment of the JSP source and the line(s) of the servlet
source code that relate to that code segment may both be
highlighted. As execution proceeds the user sees an anima-
tion of the currently executing lines. The coordination
between Java source and JSP source views 1s achieved by
the line methods 1n the instrumented servlet source code as
shown 1n Table II.

A generated HIML view 166 shows the HTML that 1s
ogenerated by the servlet corresponding to the JSP file. The
contents of this view grows as the servlet executes. The
ogenerated HIML view 1s captured by the execution monitor
by replacing the usual PrintWriter class of the HTTP
response object by a modified PrintWriter class as described
above.

An HTML stack view 168 shows an a view of the
cgenerated HTML that only includes the currently unended
HTML tags. For example, HI'ML tags that are not ended
may not render properly in an HI'ML browser. The HTML
stack aids the user 1n finding errors that result in improperly
ended tags. The GUI allows the user to select a tag in the
HTML stack view and the GUI then highlights the corre-
sponding line 1n the generated HTML view.

A status bar 170 1s also provided which displays a current
syntax error that 1s generated 1n either the JSP source code
or the mstrumented servlet source code as described with
reference to FIG. 3(a). The corresponding line in either the
JSP source view or the Java source view will be highlighted.

The 1nput area of the GUI further provides a set of button
inputs for stepping the execution 172, running the execution
174, stopping the execution 176, viewing a previous syntax
error 178, and viewing a next syntax error 180. When
buttons 178 and 180 are used, the status bar 1s updated with
the appropriate syntax error. As well, code segment/line
highlights 1n views 162 and 164 are updated to correspond
to the syntax error in the status bar.

It can be seen that the execution monitor now has access
to and can display to a user at least the name of the currently
executing servlet, the JSP code, the instrumented servlet
source code, and the HTML code output from the servlet.

Thus, 1t may be seen that the present imnvention allows a
user to monitor the execution of a JSP file and to detect and
resolve errors 1n the syntax of the JSP code as well as
runtime errors 1n the execution of the JSP file. Furthermore,
the present invention provides the above functionality 1n a
unified development environment.

The invention may be implemented as a program storage
device readable by a data processing system, tangibly
embodying a program of instructions, executable by said
data processing system to perform the method steps of the
invention. Such a program storage device ma include

US 6,654,949 B1

11

diskettes, optical discs, tapes, CD-ROMS, hard drives,
memory including ROM or RAM, computer tapes or other
storage media capable of storing a computer program.

The 1nvention may also be implemented 1 a computer
system. In a preferred embodiment, a system 1s provided
comprising a computer program operating on a data pro-
cessing system, with the computer program embodying the
method of the mvention and producing an output of the
method on a display or output device. Data processing
systems 1nclude computers, computer networks, embedded
systems and other systems capable of executing a computer
program. A computer mcludes a processor and a memory
device and optionally, a storage device, a video display
and/or an mput device. Computers may equally be 1n stand-
alone form (such as the traditional desktop personal
computer) or integrated into another apparatus (such as a
cellular telephone).

While the invention has been particularly shown and
described with respect to preferred embodiments thereof, it
will be understood by those skilled 1n the art that the
foregoing and other changes 1 form and details may be
made therein without departing from the spirit and scope of
the 1nvention.

Having thus described our invention, what we claim as
new, and desire to secure by Letters Patent is:

1. A method for monitoring the execution of hybrid source

code which 1s executable on a server, comprising the steps
of:

generating executable code for execution by the server
from the hybrid source code 1ncluded 1n a single hybrid
source code file comprising a source code 1n a second
language 1mbedded 1n a source code of a markup
language;

providing instrumentation in the executable code for
supporting execution tracing; and

receiving 1n an execution monitor information from the
instrumentation 1n the executable code for display on a
user 1nterface.

2. The method of claim 1 wherein the step of generating
executable code comprises translating the hybrid source
code 1nto source code.

3. The method of claim 2 wherein the step of providing
Instrumentation comprises 1nserting nstrumentation nto the
source code.

4. The method of claim 3 wherein the instrumentation
comprises a mapping table comprising information corre-
lating a code segment 1n the hybrid source code with a line
in the source code.

5. The method of claim 4 wherein the instrumentation
further comprises a line method for communicating said
correlating mformation to the execution monitor.

6. The method of claim 2 further comprising displaying
on the user interface the hybrid source code and the source
code.

7. The method of claim 2 further comprising correlating,
a code segment from the hybrid source code with one or
more lines of code from the source code using the instru-
mentation.

8. The method of claim 1 wherein the hybrid source code
1s JavaServer Pages code.

9. A method for monitoring execution of hybrid source
code which executes 1n a server, comprising the steps of:

translating the hybrid source code by a page compiler mto
a source code form and an executable code;

providing methods into the executable code, such that
when the server executes the executable code, the

10

15

20

25

30

35

40

45

50

55

60

65

12

methods are invoked and send line information to an
execution monitor allowing the execution monitor to
synchronize an executing code segment of the hybrid
source code with a corresponding line of the source
code; and

displaying the executing code segment of the hybnd
source and the corresponding line of the source code 1n
a user 1nterface.

10. A program storage device readable by a data process-
ing system, tangibly embodying a program of instructions,
executable by the data processing system to perform a
method for monitoring the execution of hybrid source code
which 1s executable on a seer, the method comprising the
steps of:

ogenerating executable code for execution by the server
from the hybrid source code included 1n a single hybrid
source code file comprising a source code 1n a second
language 1mbedded 1n a source code of a markup
language;

providing instrumentation in the executable code for
supporting execution tracing; and

receiving 1n an execution monitor mnformation from the
instrumentation 1n the executable code for display on a
user 1nterface.
11. A computer program product for monitoring the
execution of hybrid source code which 1s executable on a
server, salid computer program product comprising;:

a page compiler for reading and translating the hybrid
source code 1ncluded 1n a single hybrid source code file
comprising a source code 1n a second language 1imbed-
ded mm a source code of a markup language into
executable code for execution by the server and for
inserting 1nstrumentation in the executable code for
supporting execution tracing; and

an execution monitor for receiving information from the
instrumentation in the executable code for display on a
user 1nterface.

12. A computer program product for displaying the execu-
tion of hybrid source code which 1s executable on a server,
comprising:

a page compiler for translating the hybrid source code

included 1n a single hybrid source code file comprising
a source code 1 a second language 1mbedded 1n a
source code of a markup language, 1nserting instrumen-
tation for execution tracing 1n source code translated
from the hybrid source code and compiling the hybrid
source code 1nto executable code for execution by the
server;, and

an execution monitor for receiving as input and for
displaying 1n a user interface of the execution monitor,
the hybrid source code, the source code, and informa-
tion from the mstrumentation 1n the executable code.

13. The computer program product of claim 12 further
comprising a server for executing the executable code
provided by the page compiler, and providing the informa-
tion from the instrumentation in the executable code to the
execution monitor.

14. The computer program product of claim 13 further
comprising a browser for sending a request with respect to
the hybrid source code, wherein the server further invokes
the page compiler 1n response to the request and provides an
output from the executable code to the browser.

15. The computer program product of claim 13 wherein
the execution monitor further receives output from the
executable code and wherein the server provides the output
from the executable code to the execution monitor.

US 6,654,949 B1

13

16. The computer program product of claam 13 further
comprising bi-directional communication means for com-
municating between the executable code and the execution
monitor 1including communicating the mformation from the
instrumentation 1n the executable code to the execution
monitor.

17. The computer program product of claim 13 wherein
the hybrid source code 1s JavaServer Pages code.

18. A computer system for monitoring the execution of
hybrid source code which 1s executable on a server, said
computer system comprising:

a page compiler for reading and translating the hybrid
code 1ncluded in a single hybrid source code file
comprising a source code 1n a second language 1imbed-
ded 1n a source code of a markup language into
executable code for execution by the server and for
inserting instrumentation in the executable code for
supporting execution tracing;

an execution monitor for receiving information from the
instrumentation 1n the executable code for display on a
user 1nterface.

19. A computer system for displaying the execution of
hybrid source code which 1s executable on a server, com-
Prising;:

a page compiler for translating the hybrid source code

included 1n a single hybrid source code file comprising
a source code 1n a second language 1mbedded 1n a
source code of a markup language into source code,
inserting instrumentation for execution tracing in the
source code and compiling the hybrid source code into
executable code for execution by the server; and

an execution monitor for receiving as 1nput and for

displaying 1n a user interface of the execution monitor,

the hybrid source code, the source code, and informa-

tion from the mstrumentation 1n the executable code.

20. The computer system of claim 19 further comprising

a server for executing the executable code provided by the

page compiler, and providing the information from the

instrumentation 1n the executable code to the execution
monitor.

21. The computer system of claim 20 further comprising

a browser for sending a request with respect to the hybnd

10

15

20

25

30

35

40

14

source code, wherein the server further invokes the page
compiler 1n response to the request and provides an output
from the executable code to the browser.

22. The computer system of claim 20 wherein the execu-
tion monitor further receives output from the executable
code and wherein the server provides the output from the
executable code to the execution monitor.

23. The computer system of claim 20 further comprising
a bi-directional communication means for communicating,
information between the executable code and the execution
monitor including information from the instrumentation to
correlate a code segment of the hybrid source code and a line
in the source code.

24. An article of manufacture comprising;

a computer usable medium having a computer readable
program code embodied therein for monitoring the
execution of hybrid source code, comprising HITML
and Java code, running on a Web application server, the
computer readable program code in said article of
manufacture comprising:
computer readable program code configured to cause a
computer to read and translate the hybrid source
code 1nto an executable program and for inserting
instrumentation 1n the executable program;

computer readable program code configured to cause a
computer to read the hybrid source code, a source
code translated from the hybrid source code and an
output from the executable program and for display-
ing the hybrid source code, source code and the
output 1n respective views on a graphical user inter-
face; and

computer readable program code configured to cause a

computer to communicate 1information between the
instrumentation of the executable program and the
ographical user interface whereby the mnformation 1s
used by the graphical user interface to correlate 1n
the views a code segment of the hybrid source code
with a line 1n the source code translated from the
hybrid source code.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 6,654,949 B1 Page 1 of 1
DATED : November 25, 2003
INVENTOR(S) : Michael L. Fraenkel et al.

It Is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Column 1,
Line 60, atter “applet” 1nsert -- . --

Column 3,
Line 18, “HAML” should read -- HTML --

Line 46, “instented” should read -- instrumented --
Line 61, “(GULI)” should read -- (GUI) --

Column 7,

Line 27, “465.5,0ut” should read -- 465,5,0ut --
Line 29, “472,5.out” should read -- 475,5,0ut --
Line 30, “477.2,0ut” should read -- 477,2,0ut --

Column 9,
Line 63, “Reterring to FIG. 5...” should begin a new paragraph.

Column 10,
Line 32, after “shows” delete “an”

Column 12,
Line 13, “seer” should read -- server --

Signed and Sealed this

Twentieth Day of April, 2004

o WD

JON W. DUDAS
Acting Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

