US006651235B2
a2 United States Patent (10) Patent No.: US 6,651,235 B2
Dai et al. 45) Date of Patent: Nov. 18, 2003
(54) SCALABLE, PARTITIONING INTEGRATED 6,249,902 Bl * 6/2001 Igusa et al. ................... 716/10
CIRCUIT LAYOUT SYSTEM . - .
cited by examiner

(75) Inventors: Wei-Jin Dai, Cupertino, CA (US); Primary Examiner—Vuthe Siek

Kit-Lam Cheong, Palo Alto, CA (US); Assistant Examiner—Yelena Rossoshek

Hsi-Chuan Chen, Fremont, CA (US); (74) Attorney, Agent, or Firm—Daniel J. Bedell; Smith-Hill

Wei-Lun Kao, Cupertino, CA (US) and Bedell
(73) Assignee: Cadence Design Systems, Inc., San (57) ABSTRACT

(%)

(21)
(22)

(65)

(51)
(52)

(58)

(56)

Jose, CA (US)

Notice: Subject to any disclaimer, the term of this

patent 15 extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 10/003,595
Filed: Oct. 30, 2001

Prior Publication Data
US 2003/0084416 Al May 1, 2003

INt. Gl oo GO6F 17/50
US.CL .o, 716/7; 716/1; 716/2; 716/4;
716/5; 716/8; 716/11; 257/401; 703/14;
7147726
Field of Search ....................... 716/1-21; 257/401;
703/14; 714/726
References Cited

U.S. PATENT DOCUMENTS
5,754,826 A * 5/1998 Gamal et al. ................. 703/14
6,018,622 A * 1/2000 Lin et al. vooovvveverveeerrennns 716/2
6,243,849 B1 * 6/2001 Singh et al. ................... 716/8

' START '
PARTITION

An integrated circuit (IC) layout system initially modifies a
netlist describing an IC as a hierarchy of circuit modules to
combine clusters of cells forming selected modules so that
they form a smaller number of larger cells. This reduces the
number of cells forming the IC, thereby reducing the time
the system needs to generate an IC layout. The system then
ogenerates a trial layout of the IC described by the modified
netlist. Based on the shape and position of the area each
module occupies in the trial layout, the system estimates the
shape and position of a substrate arca each module would
require 1n a layout where module areas did not overlap. The
system then divides the IC design mto several partitions,
cach including separate set of the modules forming the IC,
and creates a partition plan allocating substrate space to each
partition based on the estimated space requirement of each
module assigned to that partition. The system also creates a
timing budget allocating signal path timing constraints
among the partitions based on an timing analysis of signal
paths delays 1n the trial layout. Thereafter the system inde-
pendently lays out each IC partition so that 1t satisfies that
partition’s spatial and timing constraints as indicated by the
partition plan and timing budget. The partition layouts are
then assembled to form a complete IC layout.

32 Claims, 8 Drawing Sheets

SPEC, & TIMING GATE LEVEL
CONSTRAINTS NETLIST .,
W ™ CLUSTERING LIBRARY CELL
~®  ENGINE ENTRIES > LIBRARY
102 103
P&R CON.
m' - STRAINTS
TRIAL MODIFED PARTITION  CON-
LAYOUT GATE LEVEL SPEC.  STRAINTS
— NETLIST
Y Y v {
t : PARTITIONING
ENGINE 106
PARTITION PARTITION| TOP
NETLIST NETLIST Ni-EE{%T
Y Vv PARTITIONING
TIMING PLAN
ANALYSIS/ t >
ENGINE BUDGET
108} P 116 110
PARTITION  [PARTITION
. LAYOUT LAYOUT
STRAINTS —™  TOP-LEVEL P&R
CON- — iz
STRA'”ﬂ LAYOUT ¢ FULL-CHIP
(LAYOUT { SiMULATION L EVEL iC LAYOUT
FAILURE) | AND VERIFI- NETLIST NETLIST
CATION TOOLS COMPILER
116 114

l (LAYOUT
SUCCESS)

m{i (END )




U.S. Patent Nov. 18, 2003 Sheet 1 of 8 US 6,651,235 B2

START

SEED 40
PARTITION

NETLIST gtRAINTS

CELL
cEL| |LAYOUTS PLAiﬁI\Ef)IENT
LIBRARY
ROUTING PARTITION | | OPTIMIZE 41
12 TOOL 10
43
IC LAYOUT
42
NETLIST
COMPILER YES
14 (ROUTING 44
FAILURE)
vouT ROUTING
LEVEL —
NETLIST
45
— /
SIMULATION NO
AND VERIFI-
CATION
19
46
CONSTRAINT
CHECKING
(PRIOR ART) 47
NO
IG. 2 N

END
(PRIOR ART) |



U.S. Patent Nov. 18, 2003 Sheet 2 of 8 US 6,651,235 B2

ORD) @ @ 16
_DIVIDE @ @

____________ 20

u@® OO O| . O ©OY
@@@@ TIMIZE @@.@@ 18

we ©

FI1G. 3

(PRIOR ART)



U.S. Patent Nov. 18, 2003 Sheet 3 of 8 US 6,651,235 B2

START
CLUSTER

NUMBER
OF CELLS
< LIMIT

951

NO

YES
SEED o6
PARTITION

S7

OPTIMIZE

DIVIDE
UN-
CLUSTER

60

59

YES
ROUTING
NO

8
62
YES 66 63
, . NO
END
YES

CONSTRAINT | 64
FIG 4 CHECKING

(PRIOR ART)



U.S. Patent Nov. 18, 2003 Sheet 4 of 8 US 6,651,235 B2

FIG. 5

(PRIOR ART)



U.S. Patent Nov. 18, 2003 Sheet 5 of 8 US 6,651,235 B2

______________ __.___..._._.__.._..........._......_.__
______ T T S
oD € oD . 5]y
B O ORI @R R N [ DX o S
& DD OO
DD -0 - O -
FIG. 6 LEVEL 5

------ IS 2 - o Wy R
Fncecscle:los oo @ Iyt
WO doh ; BNC Ve i o Yo o Satet
o concocion o oHo TN

FIG. 7
LEVEL 5
__________________ ___..________..,_._.__.__....H_.__.,__.
--------- ON O TN I ST TR
\/ 3
—————— 6 alonls e indnii y Tt

‘ LEVEL 2

B VS CR WG o T @ Yo o IR

---------- N0 1m0 Nin'e NI

-------- e aleoNes e 1)
FIG. 8




U.S. Patent Nov. 18, 2003 Sheet 6 of 8 US 6,651,235 B2

PARTITION 1

INTERNAL A INTERFAC
CELLS CELLS

97

INTERNAL B |INTERNAL
CELLS CELLS
100

l TA .

P a—

i |

i

|

|

A SIGNAL SIGNAL

’ PATH PATH

| SECT. SECT.
130
PARTITION 1

PARTITION




U.S. Patent Nov. 18, 2003 Sheet 7 of 8 US 6,651,235 B2

START
PARTITION

SPEC, & TIMING GATE LEVEL
CONSTRAINTS NETLIST ..,
M 7| CLUSTERING LIBRARY

STRAINTS

MODIFED

GATE LEVEL
NETLIST

PARTITION CON-
SPEC. STRAINTS

PARTITIONING
ENGINE 106
PARTITION PARTITION| TOP

LEVEL
NETLIST

NETLIST
PARTITIONING

NETLIST

TIMING
ANALYSIS/
BUDGETING
ENGINE
108
PARTITION  |PARTITION
CON-
STRAINTS TOP-LEVEL P&R
CON- 112
STRAINTS AYOUT FULL-CHIP
(LAYOUT | SIMULATION LEVEL IC LAYOUT
FAILURE) | AND VERIFI- NETLIST NETLIST
CATION TOOLS COMPILER
116 114
(LAYOUT

SUCCESS)
P (eno FIG. 10

101



U.S. Patent Nov. 18, 2003 Sheet 8 of 8 US 6,651,235 B2

MODULE

I_ __________ =1
, |
, |
PARTITION 1 |
' (MODULES A AND B) |
| 126
| J—I
FIG. 13 —— 128 !
| — —
| |
| PARTITION 2 |
|
| (MODULES C AND D) 128
| 127



US 6,651,235 B2

1

SCALABLE, PARTITIONING INTEGRATED
CIRCUIT LAYOUT SYSTEM

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates 1n general to computer
software for automatically generating an integrated circuit
layout.

2. Description of Related Art

An IC designer usually begins the IC design process by
producing a register transfer language (RTL) “netlist”
describing the IC circuit only 1n terms of the logic it carries
out. For example a high level netlist may describe a cell
connected to three node A, B and C using the equation
C=A*B. This equation indicates only that the cell generates
an output signal at node C that 1s the logical AND of signals
appearing at nodes A and B. To test the logic of the circuit
described by the netlist, the designer supplies the netlist and
a “testbench” file as mputs to a circuit simulator. The circuit
simulator then simulates the behavior of the circuit
described by the netlist in response to a set of 1nput signals
described by the testbench file and produces output data
describing the time-dependent behavior of signals at various
nodes of the circuit. Since at this level the netlist models
only the circuit logic, the simulator 1s only concerned with
simulating circuit logic and does not attempt to simulate
circuit timing.

Having used the simulator to verily the logic of the
circuit, the designer typically uses a syntheses tools to create
a “gate level” netlist that models the circuit as a set of
interconnected circuit components (cells), wherein each cell
1s described by an entry i a cell library. IC components
described as library cells may range from individual tran-
sistors and small components formed by several transistors
such as logic gates up to very large components such as
computer processors and memories. The cell library
describes not only the logic performed by the cells, but also
the time-dependent behavior of the cells. The boolean mod-
cls of cell behavior are replaced with mathematical models
that more accurately reflect the time-dependent behavior of
the cells. For example, instead of modeling an AND gate by
a simple boolean function C=A*B, a gate level netlist will
model the AND gate with a mathematical expression having
fime as a variable and which describes the gate’s input and
output signals as analog voltages that change 1n magnitude
over time 1n response to changes 1n mput signal magnitudes.
This more detailed netlist model of the circuit enables the
circuit simulator to more accurately verify not only the
circuit’s logic but also the time-dependent behavior of the
circuit. Thus by supplying a gate level netlist as mput to a
simulator, the designer can use the simulator to determine
not only whether the AND gate carries out the required AND
function, but also whether 1t does so quickly enough to meet
various timing constraints for the circuit. However since the
design at this point does not accurately model signal routing
paths between the cells, the simulator output does not
accurately take into account signal path delays between the
cells.

After using the simulator to verify the time-dependent
behavior of the circuit described by the gate level netlist, the
circuit designer employs an automated placement and rout-
ing (P&R) tool to convert the gate level netlist nto an IC
layout describing how and where each cell 1s to be formed
in the IC substrate and describing the signal routing paths
within the IC that are to interconnect the cells. A typical

10

15

20

25

30

35

40

45

50

55

60

65

2

placement and routing tool uses an algorithm which 1itera-
fively moves cells about on the substrate looking for a
placement solution 1n which all cells fit within the substrate
arca allocated for the placement, that allows room for the
routing paths needed to properly interconnect the cells and

that satisfies various timing constraints on the circuit.

Once a P&R tool has created an IC layout satisfying all
constraints, the designer may use a conventional netlist
compiler to convert the layout back into another “layout
level” netlist that accurately models the time-dependent
behavior not only of the cells forming the IC but also of the
routing structures that interconnect the cells. The designer
may then again use a circuit stmulator and other tools to
verily the behavior of the circuit before sending the com-
pleted IC layout to an IC manufacturer.

Placement and Routing Tools

As 1llustrated 1n FIG. 1 a placement and routing tool 10
converts a gate level netlist design of an integrated circuit
mmto an IC layout satisfying various timing and spatial
constraints supplied as input to the tool. A cell library 12 tells
P&R tool 10 how to layout each cell referenced by the netlist
and the P&R tool 10 determines an appropriate position
within an IC substrate for each cell. P&R tool 10 also
designs the routing structures that interconnect the cells. A
netlist compiler 13 may then convert the IC layout back into
a layout level netlist for use by simulation and verification
tools 135.

One way P&R tool 10 could determine an appropriate cell
layout would be to randomly choose cell placements until 1t
finds a placement that permits the cells to be appropriately
interconnected 1n a manner that satisfies the various timing
and other constraints. However for large I1Cs, 1t can take too
long for a P&R tool to find a suitable placement by randomly
ogenerating and testing various cell placements to see if they
can be appropriately routed. However various algorithms
have been developed that reduce the amount of time a P&R
tool needs to find acceptable cell placement.

FIG. 2 1s a flow chart illustrating the process carried out
by a typical P&R tool when generating an IC layout. The
P&R tool makes use of a widely used placement and routing
procedure making use of the well-known “min-cut” algo-
rithm (steps 40—43) for generating a cell placement in an IC
substrate. The basic approach of the min-cut algorithm 1s to
progressively divide the substrate area into smaller and
smaller partitions and to allocate cells to each partition after
cach division 1n an attempt to minimize the number of
connections between cells that must pass between partitions.
This system helps to minimize the lengths of signal paths
between cells by attempting to position highly intercon-
nected cells near one another. Keeping signal paths short
improves the chance that the P&R tool will be able to
establish suitable routing paths between the cells because the
routing paths require less space. Also since short paths have
low signal path delays, keeping signal paths short improves
the chances that the IC layout will satisfy various timing
constraints.

FIG. 3 1s a pictorial 1llustration of the min-cut process.
Although ICs typically have thousands or millions of cells,
for simplicity the example of FIG. 3 assumes the IC design
includes only 26 cells A—Z that are to be placed fit within a
substrate area 14. The first step of the process 1s to divide the
substrate mnto two partitions 16 and 18 and randomly assign
cells A—Z to the two partitions, thereby creating an initial
“seed partitioning” 20. The placement algorithm then tries to
optimize the manner in which cells are allocated to the two
partitions 16 and 18 by moving cells from partition-to-
partition trying to find a placement that minimizes the




US 6,651,235 B2

3

number of cell-to-cell connections that cross between the
two partition. For large I1Cs 1t would take too long to try all
possible placement, so 1n many systems each cell 1s moved
only once between partitions.

After attempting to optimize the placement of cells
between the two 1nitial partitions 16 and 18, the algorithm
divides partition 16 1nto two partitions 21 and 22 and divides
partition 18 into two partitions 23 and 24. It then tries to
minimize the number of connections that cross partition
lines between partitions 21 and 22 and by moving cells
between partitions 21 and 22. The system will also try to
minimize the number of connections crossing partition lines
between partitions 23 and 24 by moving cells between them.
Since partitions 21 and 22 divide partition 16, the system 1s
free to move any cell from partition 22 to partition 21.
However it will not try moving any cell from partition 22 to
partition 24 since partitions 22 and 24 are not derived from
the same parent partition.

After optimizing the cell placement within partitions

21-24, the system divides each partition 21-24 1n half to
produce a set of eight partitions 31-38 and repeats the
optimization process. Note that the system may move cell A
from partition 31 to partition 32 because partitions 31 and 32
are derived from the same parent partition 21. However the
system 1s not free to move cells from partition 31 to partition
33 because the two partitions have a different parent parti-
tions. The iterative process of dividing and optimization
continues until the number of cells per partition falls below
a predetermined limit.

Steps 4043 of FIG. 2 depict the min-cut process 1llus-
trated in FIG. 3. The P&R tool establishes the seed partition
at step 40, optimizes the partition at step 41, and then (step
42) determines whether the number of cells per partition has
fallen below the predetermined lower limit. If not, the
system partitions the substrate again (step 43) and repeats
the optimization step 41. The tool iteratively repeats steps
41-43 until partitions reach their lower size limit at step 42.

After using the min-cut algorithm to place the cells, the
P&R tool tries to lay out signal paths for interconnecting the
cells (step 44). If the P&R tool is able to successtully lay out
all necessary signal paths (step 45) based on the layout
developed at steps 40—43, then the layout is analyzed (step
46) to determine whether it meets all timing and other
constraints. If all constraints are satisfied (step 47) the
placement and routing process ends. However it a successiul
routing plan could not be developed (step 46), or if the IC
layout does not satisfy all timing and other constraints (step
47), then the process starts over again at step 40 by choosing
another seed partition. Since the IC layout to be routed at
step 44 1s a direct result of the seed partition randomly
selected at step 40, different seed partitions selected at step
40 are likely to result 1n a different IC placement and routing
plans. Thus the P&R algorithm searches for an acceptable I1C
layout by randomly choosing a succession of seed partitions
and testing whether each seed partition results 1n a place-
ment that can be successtully routed and which meets
various circuit timing and other criteria. While the min-cut
algorithm randomly chooses seed partitions, the iterative
partitioning and optimization process increases the likeli-
hood that the randomly chosen seed partition will result in
an acceptable layout. The min-cut approach will typically
find a suitable layout more quickly than a system that
randomly chooses placement plans to be routed. However it
still can be time-consuming, particularly when the IC
includes a large number of cells.

Clustering

In general the more cells an IC 1ncludes, the longer 1t takes

a placement algorithm to produce a placement plan based on

10

15

20

25

30

35

40

45

50

55

60

65

4

a seed partition. Hence 1f a designer can reduce the number
of cells the algorithm must place, he or she can reduce the
time the placement algorithm needs to generate each place-
ment alternative.

FIG. 4 1llustrates a P&R process employing an improved
min-cut placement algorithm described by the paper entitled
“Multilevel Circuit Partitioning” by Alpert et. al, published
in 1997 by the Design Automation Conference. The algo-

rithm describes an improved min-cut algorithm requiring
less time to produce a placement plan from a seed partition.

The algorithm first organizes the IC’s cells 1nto a set of
“clusters” (step 50), wherein each cluster includes one or
more cells. Each cluster including more than one cell 1s then
redefined at step 50 as a single cell having a particular area
and shape based on the size and shape of its constituent cells.
The algorithm 1s biased towards grouping cells that are
highly interconnected with one another together into the
same cluster, and 1s also biased toward grouping the smallest
cells 1nto clusters.

The number of clusters 1s selected to be only about 10%
smaller then the number of cells, so the result of the
clustering process carried out at step 50 causes only a 10%
reduction 1in the number of cells. If the number of cells 1s not
less than a predetermined limit (step 51) then the algorithm
repeats the clustering process (step 50) to further reduce the
number of cells. The algorithm continues to loop through
steps S0 and 51 unftil the number of cells falls below the
threshold level.

FIG. § graphically 1llustrates the clustering process. A
group of cells A—Z are 1nitially assigned (“matched”) to a set
of clusters 70. A modified circuit design 1s then “induced” by
redefining clusters 70 as a new, smaller set of cells A—N".
The matching process 1s then repeated to produce a new set
of clusters 72, and the circuit design 1s again modified to
redefine clusters 72 as a set of cells A"-G".

Referring again to FIG. 4, when the number of cells falls
below the threshold level at step 51, the algorithm creates a
seed partition (step 56) and then optimizes placement of
cells between the partitions (step 57) as in a convention
min-cut algorithm. The P&R system can carry out the
optimization process (step 57) relatively quickly because the
“clustered” IC design has substantially fewer cells than the
original (non-clustered) IC design. After optimizing the seed
placement at step 57, the system determines (step 358)
whether the design is flat (i.e. unclustered). Since at this
point the design 1s still clustered, the algorithm moves to
step 539 which rolls back the last iterative clustering per-
formed at step 50, thereby slightly increasing the number of
cells 1n the design. The current partitions are then divided to
form new partitions (step 60) and the cell placement within
the new partitions 1s then optimized at step §7. The design
1s again processed at step 59 to remove the clustering
produced by the second-to-last iteration of step 50. The
current partitions are then divided once again at step 60 and
optimized at step 57. Thus with each pass through steps
57-60, the algorithm not only divides the substrate into
smaller partitions as 1n conventional min-cut algorithms, 1t
also rolls back the clustering carried out at step 50 by one
level, thereby increasing the number of cells 1n the design
with each pass.

The placement process ends at step 58 when the design
has returned to 1ts original flat, unclustered, state. A routing
plan is then generated (step 62), and if the routing plan
successfully links all of the cells (step 63), the layout is
analyzed to determine whether it satisiies all constraints
(step 64). If not, or if the system is unable to successfully
route the layout (step 63), then the placement and routing
process (steps 56—66) is repeated.




US 6,651,235 B2

S

While the clustering and unclustering steps 50 and 59
require processing time, cell clustering substantially reduces
the time needed for each pass through the optimization step
57 and the processing time saved at step 57 more than offsets
the processing time required to perform steps 50 and 59.
Thus the clustering process improves the speed with which
the P&R tool 1s able to generate layouts.

As mentioned above, the system 1s biased toward 1nclud-
ing cells that are highly mnterconnected with one another into
the same cluster at step 50. This 1s beneficial because it
anticipates what the min-cut placement process tries to
do—keep highly mterconnected cells close together. Clus-
tering only the most highly interconnected cells together
therefore maximizes the likelihood that cells would end up
in the same partition after each pass of optimization step 57
regardless of whether they had been grouped into clusters.
Thus while clustering cells increases the speed of the
min-cut placement process, it does not significantly affect its
outcome.

An IC designer often creates RTL and gate level netlists
that are hierarchical 1n nature, grouping various cells 1nto
modules which may themselves be grouped into progres-
sively higher level modules. For example a computer pro-
cessor module may include many submodules such as
registers, mstruction decoders, cache memories and the like,
which in turn may be formed by lower level modules or
individual cells. RTL and gate level netlists for large IC
designs can have many hierarchical levels.

However conventional layout tools ignore the hierarchical
nature of netlists. Since they are interested only 1n placing
and routing individual cells, they typically “flatten” the
netlist to a single level, so that 1t describes the design only
in terms of a collection of interconnected cells without any
reference to a module hierarchy.

Thus when assigning cells to clusters at step 50, the
algorithm of FIG. 4 determines which cells are highly
interconnected simply by counting the number of connec-
tions between the cells as indicated by the netlist. The fact
that the two cells may or may not be a part of the same
module 1s irrelevant to the decision. Of course the system
will frequently group cells of the same module 1nto the same
cluster because cells forming the same module tend to be
highly interconnected with one another. However cells
belonging to different modules can often be highly
interconnected, such as for example cells forming module
input/output terminals. Thus the algorithm of FIG. 4 can also
often group cells of different modules into the same cluster.
This 1s not problematic in the context of the layout system
of FI1G. 4 where the notion of modular hierarchy 1s irrelevant
to the layout. However grouping cells of different modules
into the same cluster prior to generating an IC layout can be
a problem when the layout tool does take into account the
hierarchical nature of the design.

Design Partitioning

As ICs become progressively larger computers carrying
out the automated placement and routing phase of the design
process require progressively longer amounts of time to lay
out ICs. As mentioned above, one way to reduce processing
time when laying out an IC 1s to employ clustering. Another
way a designer can reduce the time required to lay out an IC
1s to divide the circuit design into two or more partitions and
to separately lay out each partition. (Note that in this context
the word “partition” applies to a portion of the IC design,
whereas 1n the context of the above-described min-cut
placement process, the word “partition” applies to a portion
of the substrate area in which cells of an IC are placed.)

Since the time required to lay out an IC increases geo-
metrically with the number of cells forming the IC, 1t can be

10

15

20

25

30

35

40

45

50

55

60

65

6

much faster for a P&R tool to successively layout M
partitions of an IC having N cells each than to layout the
entire 1C having M*N cells. Further speed improvements
can be had by using a separate layout tools to concurrently
lay out the partitions.

However this approach 1s problematic because the
designer may have difficulty accurately estimating an appro-
priate size, shape and position of the substrate area allocated
to each partition and may have difficulty allocating timing
constraints for the partitions. When a designer imposes a
timing constraint on an IC design, the constraint typically
specifies that a signal path formed by a set of cells connected
between two circuit nodes A and B may have a signal path
delay no greater than some maximum limit. The placement
and routing tool tries to lay out the IC so that 1t satisfies all
timing constraints. However when the design 1s divided
prior to placement and routing with node A appearing in one
partition and node B appearing in another partition, then the
designer must also divide the constraint among the
partitions, allocating portions of the maximum allowable
signal path delay to portions of the signal path residing in
and between the partitions. It can be difficult and time-
consuming for the designer to determine how much of that
maximum signal path delay to allocate to each partition.

Thus what 1s needed 1s a system for automatically parti-
tioning a hierarchical netlist description of a circuit in a way
that enables P&R tools to quickly and efficiently produce
layouts for the design partitions satistying circuit timing and
other constraints. Moreover it would be helpful to combine
partitioning with clustering to obtain the speed benefits of
both techniques. However, referring again to FIG. 4, when
assigning cells to clusters at step 50, the prior art clustering
algorithm of FIG. 4 determines which cells are highly
interconnected simply by counting the number of connec-
tions between the cells as indicated by the netlist. The fact
that the two cells may or may not be a part of the same
module 1s irrelevant to the decision. The system will tend to
oroup cells of the same module into the same cluster because
cells forming the same module tend to be highly intercon-
nected with one another. However since cells belonging to
different modules can also be highly interconnected, cells
belonging to different modules can be assigned to different
clusters. This 1s not problematic 1 the context of the layout
system of FIG. 4 where the notion of modular hierarchy 1s
irrelevant to the layout. However 1n a system that partitions
designs along modular lines, grouping cells of different
modules 1nto the same cluster prior to partitioning the design
causes a problem.

Thus what 1s needed 1s a system for converting a hierar-
chical netlist description of the IC 1nto an IC layout that uses
both partitioning and a form of clustering to speed up the
layout process and which automatically allocates timing
constraints among the partitions in an appropriate manner.

BRIEF SUMMARY OF THE INVENTION

An integrated circuit (IC) layout system in accordance
with the invention initially modifies a gate level netlist
describmmg an IC as a hierarchy of circuit modules to
combine clusters of cells included within selected modules
so that they form a smaller number of larger cells. Only
modules comprising a number of cells falling within a
predetermined first cell count range are subjected to
clustering, and the average number of cells included 1n each
cluster 1s selected so that the total number of cells in the
design after clustering falls within a predetermined second
cell count range. Thus regardless of the number of cells
included 1n the original netlist, the number of cells included




US 6,651,235 B2

7

in the modified “clusterized” netlist remains the about same.
Since the time required to perform an IC layout depends to
a large extent on the number of cells n the IC design,
clustering the design 1n this manner renders the subsequent
layout process “scalable”: the complexity of the placement
routing process remains substantially the same regardless of
the size (number of cells) forming the IC because the
clustering process reduces all large IC designs to approxi-
mately the same number of cells.

The clustering process respects the hierarchical nature of
the design; 1t does not blur the lines between modules
subjected to clustering by incorporating cells of more than
one module into the same cluster. Thus after employing
clustering to reduce the complexity of the netlist, the system
1s able to divide the netlist along modular lines to produce
two or more netlists, each describing a separate partition of
the IC design. The system then independently lays out each
partition and thereafter combines them to form a full IC
layout.

The designer specifies which modules are to be included
in each partition, and the layout system automatically pro-
duces a partition plan including a floor plan allocating an
arca of semiconductor substrate to each partition and a pin
assignment plan indicating points along the boundary of
cach partition area at which input/output signals cross.

To create the partition plan, the system first generates a
trial layout of the IC that the modified netlist describes.
Based on the shape and position of overlapping areas
various modules occupy in the trial layout, the system
estimates the shape and position of a substrate area each
such module would require 1n a layout where module areas
did not overlap. The system then creates a floor plan
allocating substrate space to each partition based on the
estimated space requirement of each module assigned to that
partition. It also creates a pin assignment plan, selecting
points at which signal paths cross partition boundaries based
on the positions of the signal paths in the trial layout. The
system also creates a timing budget allocating signal path
fiming constraints among the partitions based on an timing
analysis of signal paths delays in the trial layout.

Thercafter the system divides the netlist to create a
separate netlist for each partition and then independently
lays out each IC partition so that it satisfies that partition’s
spatial and timing constraints as indicated by the partition
plan and timing budget. The system then assembles the
partition layouts into a complete top-level IC layout.

Since cells are clustered 1n a manner that respects module
boundaries, the system can cluster the cells before partition-
ing the design. Thus by clustering cells, the system not only
reduces the time 1t needs to generate the partition layouts, it
also reduces the time 1t needs to develop a partition plan
because 1t reduces the time 1t needs to generate the trial
layout providing information needed to develop the partition
plan.

It 1s accordingly an object of the invention to provide a
system for clusterizing a netlist description of an IC design
in a manner that respects modular boundaries.

It 1s another object of the 1nvention to provide a system for
ogenerating an IC layout that makes use of both clustering
and design partitioning to reduce processing time.

The claims appended to this specification particularly
point out and distinctly claim the subject matter of the
invention. However those skilled in the art will best under-
stand both the organization and method of operation of what
the applicant(s) consider to be the best mode(s) of practicing
the mvention, together with further advantages and objects

10

15

20

25

30

35

40

45

50

55

60

65

3

of the invention, by reading the remaining portions of the
specification in view of the accompanying drawing(s)
whereln like reference characters refer to like elements.

BRIEF DESCRIPTION OF THE DRAWING(S)

FIG. 1 1s a data flow diagram illustrating a prior art
integrated circuit (IC) layout system;

FIG. 2 1s a flow chart 1llustrating the prior art placement
and routing tool of FIG. 1 1n more detail,

FIG. 3 1s a pictorial illustration of a prior “min-cut”
process employed by the placement and routing tool of FIG.
2,

FIG. 4 1s a flow chart 1llustrating a prior art placement and

routing process employing an min-cut placement algorithm
making use of clustering to reduce processing time,

FIG. 5 1s a pictorial 1llustration of the clustering process
employed by the placement and routing process of FIG. 4,

FIGS. 6-8 are pictorial illustrations of a clustering pro-
cess employed by an IC layout in accordance with the
mvention,

FIG. 9 1s a block diagram 1llustrating two interconnected
partitions of an IC design,

FIG. 10 1s a data flow diagram 1illustrating an IC layout
system 1n accordance with the invention,

FIGS. 11-13 pictorially 1llustrate an example of hoe the
layout system of FIG. 9 allocates semiconductor substrate
space to partitions of an IC design, and

FIG. 14 1s a block diagram illustrating a signal path
having a timing constraint.

DETAILED DESCRIPTION OF THE
INVENTION

The present invention relates to computer instructions,
stored on computer readable media such as for example a
hard disk or one or more compact disks, which when read
and executed by a conventional computer generate a layout
for an integrated circuit (IC) described by a hierarchical
netlist. This specification describes one or more exemplary
embodiments and/or applications of the invention consid-
ered by the applicant(s) to be the best modes of practicing,
the 1nvention.

Hierarchical IC Designs

An integrated circuit (IC) designer creates an IC design in
the form of a gate level hardware description language
(HDL) netlist listing the nodes of the IC and describing the
various electronic components (“cells”) that are connected
between the nodes. Designers usually find it convenient to
organize an IC design into a hierarchy of interconnected
logic modules wherein collections of cells are grouped into
modules, and collections of modules are grouped 1nto higher
level modules. FIG. 6 illustrates how a hierarchical netlist
might organize a portion of a circuit formed by 46 cells
(represented by small circles) into hierarchy of 17 logic
modules (represented by small squares). IC designs typically
include thousands of cells but the simple example of FIG. 6
having 46 cells as 1illustrated 1n FIG. 6 1s sufficient to
illustrate a hierarchical design. FIG. 6 shows that a single
module A at the highest level of the hierarchy (level 5) is
formed by a set of four level 4 modules B and two 1individual
cells C. A set of five modules D and nine individual cells E
at level 3 form models B of level 4. Four of modules F and
nine cells G at level 2 form models D. Three models H and
ten cells I at level 1 form the level 2 modules F. Sixteen cells
J at the lowest hierarchical level O form the level 1 modules

H.




US 6,651,235 B2

9

After creating a gate level netlist, the designer uses a
placement and routing tool to convert the gate level netlist
into an IC layout indicating where each cell of the design 1s
to be placed within a semiconductor substrate and describing
the conductive paths that are to route signals between the
cells. However while a gate level netlist description of an IC
design may be organized into a hierarchy of modules, a
typical placement and routing tool 1gnores the hierarchical
nature of the design and positions each cell 1in the substrate
without regard to 1ts place within the design hierarchy.

A layout system 1n accordance with the invention has two
features that speed up the layout process. First 1t allows a
user to specifty that the system 1s to divide the design into
more than one partition and to separately layout each
partition. Since the time required to layout an IC 1ncreases
rapidly with the number of cell included 1n the IC, a layout
system 1n accordance with the invention can usually produce
an acceptable layout for each partition in turn faster than a
prior art system can generate a layout for the enftire IC.
Further speed improvements may be had when the partition
layouts are generated concurrently.

The second feature of the layout system in accordance
with the mvention that speeds up layout process 1s that prior
to laying out the IC it groups collections of highly intercon-
nected cells into clusters, and then redefines each cluster as
a cell. This reduces the total number of cells that the system
must lay out and therefore reduces the time it needs to
generate a layout.

As described below, the manner in which the netlist
organizes cells 1nto modules, the manner in which the
system partitions the design and clusters cells are all inter-
related.

Clustering

Some prior art layout systems temporarily cluster cells
they find to be highly interconnected during initial stages of
the placement and routing process to reduce the number of
cells that must be placed and routed. With fewer cells to
place and route, a layout system employing clustering is able
to quickly produce a “low resolution” IC layout establishing
approximate positions of clusters of cells but not the posi-
tions of individual cells within the clusters. Having pro-
duced the low resolution layout, the prior art routing system
progressively “de-clusters” the cells so that 1t can place and
route each cell, thereby producing a high resolution layout
in which each individual cell 1s appropriately placed and
routed. This clustering/de-clustering process generally low-
ers the total time needed to place and route an IC design.

A layout system 1n accordance with the present invention
also employs clustering to reduce the number of cells that
must be placed and routed. However when 1t groups cells
into clusters, it fixes the cell layout within each cluster
before the start of the layout process. Therecafter the system
need not de-cluster the cells and individually place and route
them after having placed and routed the clusters they form.

Since 1t carries out the clustering process before the start
of the placement and routing process, the layout system of
the present invention does not make use of information
acquired during preliminary stages of the placement and
routing process to discover which cells are highly intercon-
nected so as to determine how cells ought to be grouped 1nto
clusters. Instead the layout system clusters cells according to
their positions 1n the netlist design hierarchy. Since cells that
are closely related 1n the design hierarchy tend to be highly
interconnected, they are good candidates for clustering.

Prior art clustering layout systems try to group the most
highly interconnected cells 1nto the same cluster, and while
cells of the same module often tend to be highly

10

15

20

25

30

35

40

45

50

55

60

65

10

interconnected, prior art clustering systems do not respect
module boundaries when forming clusters. Cells of different
modules can be 1ncluded 1n the same cluster when they are
highly interconnected. Since the layout system 1n accor-
dance with the invention respects module boundaries when
forming clusters, the modules can be later separated into
different partitions that may be separately placed and routed.

FIGS. 7 and 8 1llustrates how a layout system i1n accor-
dance with the invention organizes cells of the design
hierarchy of FIG. 6 imto clusters. The first step of the
clustering process 1s to 1dentily the highest level modules
having a number N of cells lying within a predetermined
range. Cells of those modules will be grouped into clusters.
In this simple example the range of N 1s selected to be from
6 to 10, though 1 practice where modules are much larger,
the lower and upper limits of the range will be much larger.
Thus 1n this example the layout system looks for the highest
level modules having from 6 to 10 cells.

To do so the system traverses the modular hierarchy
starting with the module 79 at the highest level (level 5) of
the hierarchy. Since module 79 includes more than ten cells,
it 1s not selected as a “clusterable” module. The system
therefore looks at all of the modules on the next lower level
of the hierarchy (level 4) which are included within module
79, starting with module 80. Since the system finds that
module 80 includes a total of eight cells residing on levels
1-3 1t 1dentifies module 80 as a “clusterable” module. The
system then looks at the next module 81 of level 4 and finds
that 1t 1ncludes more than 10 cells and therefore does not
select module 81 as a clusterable module. Instead the layout
system looks at module 82 on level 3 to determine whether
it includes from 6 to 10 cells. Since 1t also has more than 10
cells, the system checks the modules 83 and 84 forming
module 82 and finds that the number of cells with each of
those modules 1s within the range 6 to 10. The system
therefore chooses both modules 83 and 84 as clusterable
modules. As the system continues to traverse the hierarchy
in a stmilar manner 1t finds modules 80, 83, 84 85 and 86 to
be clusterable modules. (FIG. 7 depicts clusterable modules
using boxes having thick borders.)

The system next decides how many cells to mclude 1n
cach cluster. To do so the system chooses a target total
number M of cells to be included 1n the design after
clustering. Making M small speeds up the layout process,
but 1t also reduces the flexibility that the system has in
finding an layout satisfying all placement and routing cri-
teria. For large ICs including more than a million cells, a
value of M of about 300,000 typically produces good results.
However 1n the simplified example herein, where the IC
includes only 46 cells, we choose M to be 30.

Next the system counts the number P of cells outside
clusterable modules and the number Q of cells 1nside cluster
modules. In the example, P=6 and Q=40. Given the values
of P, and M, the system calculates a “cluster ratio” as
follows:

R=RND[Q/(M-P)]

where RND| | is a rounding function that rounds its argu-
ment to the nearest integer. The cluster ratio R indicates a
target number of cells that are to be included in each cluster.
In this example

R=RND(40/(30-8)]=2.

Hence the system will try to form clusters having two cells
cach from the cells forming each clusterable module. In
practice, however, R will be a larger number, for example



US 6,651,235 B2

11

5—-10, and the system will try to make clusters having 10
cells each, although it may form some clusters having
slightly more or slightly less than 10 cells when the number
of cells within a clusterable module 1s not an even multiple
of 10. Thus the clustering process reduces the number of
cells 1n the design to approximately M by grouping cells into
clusters all of which include approximately the same number
(R) of cells.

FIG. 8 illustrates the result of the clustering process in
which small hexagons represent cell clusters. Note for
example that module 92 of FIG. 7, which included two cells
90 and 91, was converted into a single cluster 93 as shown
in FIG. 8. Cells 94 and 95 of FIG. 7 are grouped 1nto a single
cluster 96 of FIG. 8. Thus whereas the unclustered design of
FIG. 7 includes 46 cells, the clustered design of FIG. 8
includes 19 clusters and 8 unclustered cells for a total of 27
“cells” that must be placed and routed—-close to the target
number M=30.

Partition Limitations on Clustering

At the beginning of the layout process, when the designer
provides the layout system with the gate level netlist, the
designer also supplies the system with a partition specifica-
tion 1ndicating how many partitions of the IC design are to
be separately laid out and indicting which modules of the
design are to be included i each partition. Thus when
initially clustering the design, the layout system avoids
creating clusters that cut across partition lines. This normally
does not pose much of a restriction on clustering since
clustering normally occurs at lower levels of the design
hierarchy while partitioning normally occurs at higher levels
of the design hierarchy. However the partition specification
also places a more subtle restriction on clustering that 1s
related to timing constraints.

FIG. 9 1llustrates two partitions 1 and 2 having only a
single iterconnection. Partition 1 includes a set of “inter-
face” cells 97 forming a signal path between a node A within
partition 1 and a node C between partitions 1 and 2. All other
cells of partition 1 are classified as “internal” cells 98.
Similarly partition 2 includes a set of “interface” cells 99
forming a signal path between a node B within partition 2
and node C. All other cells of partition 2 are classified as
“internal” cells 100. The designer has placed a timing
constraint on the signal path between nodes A and B; a signal
must be able to traverse that path within some maximum
allowable time specified by the timing constraint. Thus 1t 1s
necessary for the layout system to place the interface cells 97
and 99 forming the path between nodes A and B so as to
satisty the timing constraint. To provide the layout system
with maximum {lexibility during the layout process to
position interface cells so as to meet a timing constraint, the
layout system refrains from clustering interface cells prior to
carrying out the layout process. In that regard, the system
freats as an interface cell any cell within any time con-
strained signal path between two partitions.

Modular Partitioning

In addition to clustering cells prior to placement and
routing, a layout system 1n accordance with the invention
also partitions the design along modular lines as specified by
the designer, so that each partition can be i1ndependently
placed 1n a separate, 1dentifiable area of the substrate. To do
so the layout system estimates the size, shape and position
of the area needed for each partition and then separately
performs placement and routing for each partition. This has
two advantages. First, 1t can help to speed up the layout
process by reducing a big layout to several small ones. The
time required to find an acceptable placement and routing
solution 1s a geometric function of the number of cells to be

10

15

20

25

30

35

40

45

50

55

60

65

12

placed and routed. Hence when a design 1s divided mto
several partitions, with each partition being separately
placed and routed, the total processing time needed to
separately place and route all partitions 1s typically much
less than the processing time that would be needed to place
and route an entire unpartitioned design. Further speed
improvements can be had when the partitions are concur-
rently placed and routed using parallel processing.

The second advantage to partitioning becomes apparent
when a designer makes small changes to an IC design for
which an IC layout has already been produced. This
happens, for example, when small portions of an IC design
must be occasionally modified to customize the IC for
particular applications. When the layout has been performed
on an unpartitioned design, cells of various modules are
intermingled to some extent in the substrate, and any change
to the design makes 1t necessary to completely redo the
layout for the entire IC. However when modules are placed
in separate areas of the substrate with the cells forming those
modules being independently placed and routed, it 1s pos-
sible to modify the design of one module without having to
redo the layout for the entire IC; only the layout for the
partition containing the changed module need be redone.
Layout System

FIG. 10 1s a data flow diagram 1llustrating a layout system
101 1 accordance with the mvention which both clusters
and partitions a hierarchical netlist design along modular
lines and then separately places and routes each partition.
Initially a clustering engine 102 converts the hierarchical
netlist into a modified netlist 1n which selected cells are
cgrouped 1nto clusters 1n the manner described above so that
the total number of cells included 1n the design 1s approxi-
mately the value of the parameter M supplied as input to
clustering engine 102. As discussed above, clustering engine
102 refrains from grouping cells assigned to different par-
titions 1nto the same cluster and also refrains from clustering
“interface” cells forming time constrained signal paths pass-
ing between partitions.

Each cluster of cells of the hierarchical netlist becomes an
individual cell of the modified netlist. Each cell that may be
incorporated 1nto a design 1s described by a separate cell
library entry describing how the cell 1s formed 1n a semi-
conductor substrate and including various information about
the cell including 1ts size, shape and timing characteristic.
Placement and routing tools may thereafter consult the cell
library to determine the size and shape of the cells and
timing analysis tools may thereafter consult the cell library
when analyzing IC layout to determine whether they meet
various timing constraints.

After clustering engine 102 produces the modified netlist,
a P&R tool 104 processes the clustered netlist to produce a
“trial” layout for the entire IC, mcluding a trial placement
and a trial routing. P&R tool 104 suitably employs the
well-known “min-cut” algorithm that iteratively alters cell
placements to determine whether 1t can find a placement that
permits the cells of the entire IC to be properly intercon-
nected and which satisfies various spatial and timing con-
straints. If allowed to operate long enough, the P&R tool 104
could converge on a flat placement and routing solution
meeting all timing constraints. However and P&R tool 104
1s not given enough time to do that.

The min-cut algorithm P&R tool 104 employs tends to
place highly interconnected cells near one another in the
semiconductor substrate. Highly interconnected cells tend to
move close together relatively quickly in the process, and
P&R tool 104 need not run long before that happens. Thus
while the trial layout P&R tool 104 produces will normally




US 6,651,235 B2

13

not run long enough to satisty all of the IC’s timing
constraints, it will tend to group highly interconnected cells
together. Since cells forming a module of the hierarchical
design tend to be highly interconnected, the cells of each
ogrven module tend to cluster together 1n the trial layout.

A partitioning engine 106 uses the trial layout as a guide
developing an IC floorplan allocating an area of substrate
space to each partition defined by the partition specification
and for creating a pin assignment plan indicating points
along the boundaries of each partition at which inter-
partition signal paths terminate.

FIG. 11 illustrates a simple example of a trial layout
within a substrate 125 of four modules A-D at a level of a
design hierarchy at which the design 1s to be divided into
two partitions. The partition specification calls for modules
A and B to be 1ncluded 1n one partition and for modules C
and D to be included in the other partition. Since cells
forming a module tend to be highly interconnected, they
tend to cluster together in the trial layout. However the areas
121-124 occupied by cells forming the four modules A-D,
respectively, tend to be somewhat amorphous 1n shape and
they overlap with one another to some extent. Partitioning
engine 106 can nonetheless make a reasonably good esti-
mate of size and shape of more regular areas of the substrate
that can accommodate the module based on the relative size
and shape of the area occupied by each module 1n the trial
layout. For example based on the trial layout of FIG. 11
partitioning engine 106 would determine that the four rect-
angular areas 121'-124' of substrate 125 as illustrated in
FIG. 12 would likely be sufficient to hold all of the cells of
a corresponding one of the four modules. Partitioning engine
106 chooses the shapes and positions of areas 121'-124' so
that they have approximately the same centroids and aspect
rat1os as those of corresponding areas 121-124 of FIG. 11,
but 1n addition to making areas 121'-124' more rectilinear in
shape than areas 121-124, partitioning engine 106 also
makes arcas 121'-124' proportionately smaller than corre-
sponding arcas 121-124 so that arecas 121'-124' do not
overlap one another.

Partitioning engine 106 then groups the modules corre-
sponding to areas 121" and 122' into one partition and groups
modules corresponding to areas 123" and 124' into the other
partition. Partitioning engine 106 then produces a floorplan
as 1llustrated in FIG. 13, which reserves an area 126 for cells
forming the partition to include modules A and B and
reserves an area 127 for cells forming the partition to include
modules C and D. Areas 128 of substrate 125 not included
in partition arcas 126 and 127 are reserved for signal routing
paths between the partitions and for individual cells at the
level of the hierarchy of modules A—D that are not included
in any of modules A-D.

Partitioning engine 106 also develops a pin assignment
plan indicating where signals passing between partitions 1
and 2 are to cross the boundaries of arcas 126 and 128.
Partitioning engine 106 positions the crossing points of
those signals as near as possible to the positions within the
trial layout of FIG. 11 of cells that terminate those signals.
The floorplan and the pin assignment plan form the parti-
floning engine’s output partitioning plan.

Timing Budget

In addition to developing a gate level netlist describing
the IC, the IC designer also establishes a set of timing
constraints for the circuit. A typical timing constraint refer-
ences a pair of nodes i1n the circuit linked through one or
more cells and 1ndicates a maximum allowable signal path
delay between the two nodes. Since the signal path delay
between two nodes increases with the distance between the

10

15

20

25

30

35

40

45

50

55

60

65

14

two nodes, the IC layout system tries to position the two
nodes sufficiently close together to meet the signal path
delay timing constraint.

When partitioning engine 106 divides the design 1nto two
or more partitions to be independently placed and routed, a
signal path between two nodes can extend across partition
boundaries when the two nodes are placed in separate
partitions. Thus 1t 1s necessary when partitioning a design to
also partition the timing constraints on signal paths extend-
Ing across partition boundaries.

FIG. 14 illustrates an example wherein a signal path
extends between a circuit node A within a partition 1 and a
node B within a partition 2. If the maximum signal path
delay between the two nodes A and B 1s constrained to T ns,
then a first portion T, of the T ns must be allocated to the
portion 130 of the signal path residing i partition 1, a
second portion T, of the T ns must be allocated to the
portion 131 of the signal path residing 1n partition 2, and a
third portion T~ of the T ns must allocated to the portion 132
of the signal path, if any, extending between partitions 1 and
2.

Accordingly layout system 101 includes a timing analysis
and budgeting (TAB) engine 108 for dividing timing con-
straints among the partitions. For each path for which there
1s a timing constraint, TAB engine 108 checks the modified
netlist to determine which cells are in the signal path to
which the constraint applies. The cell library indicates the
path delay through each cell, and TAB engine 108 checks the
cell library entry for each cell in the time-constrained Signal
path to determine the path delay for that cell. TAB engine
108 also employs a conventional “RC extraction” tool to
determine the delay of routing paths described in the trial
layout that interconnect the cells forming the time-
constrained signal path.

TAB engine 108 next determines whether the constrained
signal path cuts across partition boundaries. If so TAB
engine 108 allocates a separate portion of the constraint to
cach partition though which the path extends. Since P&R
tool 104 1s not allowed enough time to ensure that the trial
layout satisfies all constraints, the sum T' of the delays
through the cells of the constrained path and through their
interconnecting signal routing structures as described in the
trial layout may be greater or smaller than time constraint T
for that path. However the trial layout does provide a
reasonable basis for allocating the timing constraint among
partitions.

For example, when the calculated delay for path sections
130, 131 and 132 of FIG. 14 are T',, T';, and T,
respectively, based on the analysis of the trial placement, the
total path delay for that path in the trial placement 1s T' ns,
and the constraint for that path 1s T ns, then TAB engine 108
calculates timing constraints T,, T, and T3, for path
sections 130, 131 and 132, respectively, as follows:

T=(T",1TT.
To=(T"5/T)T
T=(T"/T"T.

Since T=T,+T1,;+T,., the timing constraint T for the entire
signal path 1s fully distributed to the three path sections in
proportion to their calculated delays 1n the trial placement.
TAB engine 108 partitions all signal path timing constraints
in a similar manner and produces a “timing budget” 1ndi-
cating results of the timing constraint allocations.

In addition to producing the partitioning plan including,
the floorplan and pin assignment plan for each partition,



US 6,651,235 B2

15

partition engine 106 divides the modified netlist for the
entire IC 1nto several “partition netlists”, each describing
only the portion of the IC to be included in a corresponding
one of the partitions. Partitioning engine 106 also produces
a “top-level” netlist covering the entire IC which treats the
partitions as large “cells” and indicates how the partitions
are to be mterconnected. The top level net list also describes
any portion of the circuit that may not be included 1n one of
the partitions.

One or more conventional P&R tools 110 then separately
lays out each partition. (One P&R tool 110 could succes-
sively layout each partition, or each of several P&R tools
110 running on separate computers could concurrently lay
out separate partitions.) Based on the top-level netlist sup-
plied by partitioning engine 106, P&R tool 112 produces a
“top-level” layout of the enfire IC, which 1ncorporates the
partition layouts produced by P&R tools 110. The partition-
ing plan produced by partition engine 106 provides each
P&R tool 110 with the spatial constraints it 1s to try to meet
when placing cells within a partition. The partitioning plan
also provides the spatial constraint information to top level
P&R tool 112. The timing budget produced by TAB engine
108 provides each layout tool 110 and 112 with the timing
constraints it 1s to try to meet when determining where to
position cells and how to route paths between them.

A netlist compiler 114 converts the full chip IC layout
produced by P&R tools 110 and 112 mnto a “layout level”
netlist which models not only the behavior of the cells, but
also of the structures P&R tools 110 and 112 designed to
interconnect the cells. Various simulation and verification
tools 116 then analyzes the layout level netlist to determine
whether the IC layout satisfies all of the IC’s constraints.

P&R tools 110 and 112 try to generate layouts that satisty
the all constraints, but when one of P&R tools 110 or 112
can’t generate a layout satisfying all of its constraints, it
produces as its output layout the layout that comes as close
as possible to satisfying the constraints. If constraint check-
ing tools 116 find the layout to be satisfactory, the layout
process 1s complete. However if tools 114 detect that the
layout fails to meet all of the various timing or spatial
constraints, the layout level netlist produced by compiler
114 1s returned to partitioning engine 106 and TAB engine
108. Partitioning engine 106 then produces a new partition
plan based on the IC layout produced by tools 110 and 112
rather than on the trial layout produced by P&R tool 104.

Recall that the allocations of spatial and timing con-
straints placed on the partitions by the partitioning plan and
the timing budget were estimates based on an analysis of the
frail layout produced by P&R tool 104. It 1s therefore
possible, for example, for the partitioning plan based on
those preliminary estimates to allocate too little space to one
partition and too much space to another. Or TAB engine 108
may allocate too much of a path’s timing constraint to
portions of a path within one partition and not enough to
portions of the path within another partition. When there 1s
a layout failure 1n which the IC layout produced by P&R
tools 110 and 112 does not meet all spatial or timing
constraints, the IC layout they do produce nonetheless
provides a much better basis than the trail layout for esti-
mating the size and shape of the area each partition requires,
and for estimating the signal path delays within each parti-
fion.

Therefore when there 1s a layout failure, partition engine
106 and TAB engine 108 create a new partition plan and
timing budget based on the 1C layout produced by P&R tools
110 and 112 rather than on the trial layout produced by P&R

tool 104. Since the new partition plan and timing budget

10

15

20

25

30

35

40

45

50

55

60

65

16

more accurately allocate spatial and timing constraints to the
partitions, P&R tools 110 and 112 are more likely to be able
to produce a layout satisfying all constraints when they
repeat the layout process based on the new partition plan and
timing budget. When a layout satisfying the designer’s
constraints 1s possible, the iterative planning and layout
process will quickly converge to a satisfactory IC layout.

In cases where the system still cannot converge to an
acceptable layout, 1t can be helpful for the designer to
increase the number M of cells clustering engine 102
includes 1n the modified netlist and to then restart the entire
layout process. This increases the amount of time system
101 needs to generate a layout, but 1t also gives P&R tools
110 and 112 more flexibility 1n how they place cells, and that
can help them to overcome problems they may have 1n
satisfying the various timing or spatial constraints.

Thus 1nitially the designer using system 101 may want to
choose a relative large value of M to keeping the number of
cells 1n the clustered netlist relative small, thereby enabling
layout system 101 to quickly produce an IC layout which
may satisly all constraints. However should system 101 fail
to produce a satisfactory layout after several partitioning/
layout cycles, the designer can reduce the value of M and
restart the process.

The forgoing specification and the drawings depict the
best mode(s) of practicing the invention, and elements or
steps of the depicted best mode(s) exemplify the elements or
steps of the imnvention as recited in the appended claims.
However the appended claims are itended to apply to any
mode of practicing the invention comprising the combina-
fion of elements or steps as described in any one of the
claims, including elements or steps that are functional
cequivalents of the example elements or steps depicted 1n the
specification and drawings. Accordingly should any
appended claim describe an element or step only in terms of
its function, then 1t 1s intended that the claim’s description
of the element be interpreted as reading on any element or
step having the described function, regardless of any struc-
tural limitations associated with any example depicted 1n
this specification or 1n the drawings.

What 1s claimed 1s:

1. A method for an automated placement and routing
(P&R) tool for designing a layout on a constrained area of
a semiconductor substrate of an integrated circuit (IC)
described by a first netlist as interconnected cells organized
into a hierarchy of circuit modules, wherein the cells form
signal paths subject to signal path delay constraints, wherein
the P&R tool includes a cell library containing a description
of each cell of the IC, and wherein the first netlist identifies
cach cell by reference to 1ts description in the cell library, the
method comprising the steps of:

a. modifying the first netlist to produce a second netlist
also describing the IC as being interconnected cells
organized 1nto a hierarchy of circuit modules, wherein
while the first netlist describes a portion of the IC as
being implemented by a group of cells, the second
netlist describes the same portion of the IC as being
implemented by a single cell;

b. producing a trial layout of the IC as described by the
second netlist 1n accordance with cell descriptions
included 1n the cell library in a manner that 1s biased
toward positioning most closely interconnected cells
nearest one to another in the semiconductor substrate;
and

c. producing estimates of areas of semiconductor sub-
strate needed to separately contain circuit modules of
the IC described by the second netlist based on posi-



US 6,651,235 B2

17

tions within the trial layout of cells forming those
circuit modules.
2. The method in accordance with claim 1 wherein step a
comprises the substeps of:

al. processing the first netlist to 1dentify circuit modules
formed by a number of cells falling within a predeter-
mined first range; and

a2. moditying the first netlist to produce the second
netlist, wherein while the first netlist describes said
portion of the IC as being implemented by said group
of cells included within one of the circuit modules
identified at step al, the second netlist describes the
same portion of the IC as being implemented by said
single cell.

3. The method 1n accordance with claim 2 wherein step a2

comprises the substeps of:

a2l. processing the first netlist to generate a first count of
cells of the IC that are included in the circuit modules
identified at step al and to generate a second count of
cells of the IC that are external to the circuit modules
identified at step al;

a22. based on the first and second counts, calculating a
first target number of cells or each group that would
reduce a total number of cells 1 the IC as described by
the first netlist to a second target number of cells 1n the
IC to be described by the second netlist; and

a23. moditying the first netlist to produce the second
netlist 1n a manner that 1s biased toward including the
first target number of cells 1n each group the second
netlist identifies as being a single cell such that the total
number of cells included 1 the IC defined by the
second netlist approximates the second target number.
4. The method 1n accordance with claim 2 wherein step a
further comprises the substep of:

a3. altering the cell library to 1include a description of said
single cell, wherein the second netlist 1dentifies the
single cell by reference to its description in the cell
library.

5. The method 1n accordance with claim 1 further com-

prising the step of:

d. processing the second netlist to produce a plurality of
partition netlists, each partition netlist corresponding to
and describing a separate partition of the IC, each
partition including a separate set of the IC’s circuit
modules.

6. The method m accordance with claim 5 further com-

prising the step of:

¢. generating a partition plan separately allocating to each
partition of the IC a semiconductor substrate area of
size determined 1n accordance with the estimates pro-
duced at step ¢ of areas of semiconductor substrate
needed to separately contain circuit modules 1ncluded
In each partition.

7. The method 1 accordance with claim 6 further com-

prising the step of:

f. for each signal path subject to a timing constraint,
analyzing the trial layout and the second netlist to
generate an estimate of a signal path delay through each

portion of the signal path residing within each partition;
and

g, generating a timing budget allocating a separate part of
the timing constraint for each signal path portion resid-
ing within each partition in proportion to the signal path
delay of that signal path portion estimated at step I.

8. The method 1n accordance with claim 7 further com-

prising the step of:

10

15

20

25

30

35

40

45

50

55

60

65

138

h. separately processing the partition netlists to generate
separate partition layouts for their corresponding por-
tions of the circuit modules, wherein layouts of 1ndi-
vidual cells are determined in accordance with the
descriptions of the cells included 1n the cell library,
wherein the semiconductor substrate areca the partition
plan allocates to each partition and the portion of each
timing constraint the timing budget allocates to each
portion of each signal path subject to the timing con-
straint act as constraints on cell placement within each
partition layout.

9. The method 1n accordance with claim 8 further com-

prising the step of:

1. producing a top level layout for the entire IC 1ncorpo-
rating the partition layouts produced at step h.
10. The method 1n accordance with claim 9

wherein a portion of at least one signal path subject to a
timing constraint resides outside all partitions,

wherein the timing budget includes an allocation of a part
of that signal path’s timing constraint to that portion of
the signal path, and

wherein that allocation acts as a constraint on the top level

layout produced at step 1.
11. The method 1n accordance with claim 8 wherein step
a comprises the substeps of:

al. processing the first netlist to 1dentify circuit modules
formed by a number of cells falling within a predeter-
mined first range; and

aZ2. moditying the first netlist to produce the second
netlist, wherein while the first netlist describes said
portion of the IC as being implemented by said group
of cells mcluded within one of the circuit modules
identified at step al, the second netlist describes the
same portion of the IC as being implemented by said
single cell.

12. The method 1n accordance with claim 11 wherein step

a further comprises the substep of:

a3. altering the cell library to include a description of said
single cell, wherein the second netlist 1dentifies the
single cell by reference to its description in the cell
library.
13. The method 1n accordance with claim 12 wherein step
a2 comprises the substeps of:

a21. processing the first netlist to generate a first count of
cells of the IC that are included in the circuit modules
identified at step al and to generate a second count of
cells of the IC that are external to the circuit modules
identified at step al;

a22. based on the first and second counts, calculating a
first target number of cells for each group that would
reduce a total number of cells 1n the IC as described by
the first netlist to a second target number of cells 1n the
IC to be described by the second netlist; and

a23. modilying the first netlist to produce the second
netlist in a manner that 1s biased toward including the

first target number of cells 1n each group the second
netlist identifies as being a single cell such that the total
number of cells included in the IC defined by the
second netlist approximates the second target number.

14. A method for an automated placement and routing
(P&R) tool for converting a first netlist describing an
integrated circuit (IC) into a second netlist describing the
same [C, wherein the first and second netlists each describe
the IC as mterconnected cells organized into a hierarchy of
circuit modules, wherein the P&R tool includes a cell library




US 6,651,235 B2

19

containing a description of each cell of the IC described by
the first netlist, and wherein the first netlist identifies each
cell of the IC by reference to its description in the cell
library, the method comprising the steps of:

a. processing the first netlist to 1dentily circuit modules
formed by a number of cells falling within a predeter-
mined first range; and

b. moditying the first netlist to produce the second netlist,
wherein while the first netlist describes a portion of the
IC as being implemented by a group of cells 1included
within one of the circuit modules 1dentified at step a,
the second netlist describes the same portion of the IC
as being implemented by a single cell.

15. The method in accordance with claim 14 wherein step

b comprises the substeps of

bl. processing the first netlist to generate a first count of
cells of the IC that are included in the circuit modules

identified at step a and to generate a second count of
cells of the IC that are external to the circuit modules

identified at step a;

b2. based on the first and second counts, calculating a first
target number of cells for each group that would reduce
a total number of cells 1 the IC as described by the first
netlist to a second target number of cells 1 the IC
described by the second netlist; and

b3. modifying the first netlist to produce the second netlist
in a manner that is biased toward including the first
target number of cells in each group the second netlist
identifies as being a single cell such that the total
number of cells included m the IC defined by the
second netlist approximates the second target number.
16. The method 1n accordance with claim 14 further
comprising the substep of:

c. altering the cell library to include a description of said
single cell, wherein the second netlist 1dentifies the
single cell by reference to its description in the cell
library.

17. Computer readable media containing program instruc-
fions for converting a computer executing the program
instructions into an automated placement and routing (P&R)
tool for designing a layout on a constrained arca of a
semiconductor substrate of an integrated circuit (IC)
described by a first netlist as interconnected cells organized
into a hierarchy of circuit modules, wherein the cells form
signal paths subject to signal path delay constraints, wherein
the P&R tool includes a cell library containing a description
of each cell of the IC, and wherein the first netlist identifies
cach cell by reference to its description in the cell library, the
computer readable media comprising;:

first program 1nstructions for modifying the first netlist to
produce a second netlist also describing the IC as being
interconnected cells organized into a hierarchy of cir-
cuit modules, wherein while the first netlist describes a
portion of the IC as being implemented by a group of
cells, the second netlist describes the same portion of
the IC as being implemented by a single cell;

second program 1nstructions for producing a trial layout
of the IC as described by the second netlist in accor-
dance with cell descriptions included 1n the cell library
in a manner that 1s biased toward positioning most
closely interconnected cells nearest one to another 1n
the semiconductor substrate; and

third program 1nstructions for producing estimates of
arecas of semiconductor substrate needed to separately
contain circuit modules of the IC described by the
second netlist based on positions within the trial layout
of cells forming those circuit modules.

10

15

20

25

30

35

40

45

50

55

60

65

20

18. The computer readable media 1n accordance with
claim 17 wherein the first program instructions comprise:

fourth program instructions for processing the first netlist
to 1dentily circuit modules formed by a number of cells
falling within a predetermined first range; and

fifth program 1nstructions for modifying the first netlist to
produce the second netlist, wheremn while the first
netlist describes said portion of the IC as being 1imple-
mented by said group of cells included within one of
the 1dentified circuit modules, the second netlist
describes the same portion of the IC as being 1mple-
mented by said single cell.

19. The computer readable media in accordance with

claim 18 wherein the fifth program instructions comprise:

program 1nstructions for processing the first netlist to
generate a first count of cells of the IC that are included
in the identified circuit modules and to generate a
second count of cells of the IC that are external to the
identified circuit modules 1dentified;

program 1nstructions for, based on the first and second
counts, calculating a first target number of cells for
cach group that would reduce a total number of cells 1n
the IC as described by the first netlist to a second target
number of cells 1 the IC to be described by the second
netlist; and

program 1nstructions for modifying the first netlist to
produce the second netlist in a manner that 1s biased
toward 1ncluding the first target number of cells 1n each
ogroup the second netlist identifies as being a single cell
such that the total number of cells included 1n the IC
defined by the second netlist approximates the second
target number.

20. The computer readable media in accordance with
claim 18 wherein the first program instructions further
COmMprise:

program 1nstructions for altering the cell library to include

a description of said single cell, wherein the second
netlist 1dentifies the single cell by reference to its
description 1n the cell library.

21. The computer readable media 1in accordance with
claim 17 further comprising;:

program 1nstructions for processing the modified netlist to
produce a plurality of partition netlists, each partition
netlist corresponding to and describing a separate par-
tition of the IC, each partition including a separate set
of the IC’s circuit modules.
22. The computer readable media 1in accordance with
claim 21 further comprising;:

program 1nstructions for generating a partition plan sepa-
rately allocating to each partition of the IC a semicon-
ductor substrate area of size determined 1n accordance
with the produced estimates of areas of semiconductor
substrate needed to separately contain circuit modules
included 1n each partition.

23. The computer readable media 1in accordance with

claim 22 further comprising;:

program 1instructions which, for each signal path subject
to a timing constraint, analyze the trial layout and the
second netlist to generate an estimate of a signal path
delay through each portion of the signal path residing,
within each partition; and

program 1nstructions for generating a timing budget allo-
cating a separate part of the timing constraint for each
signal path portion residing within each partition 1n
proportion to the estimated signal path delay of that
signal path portion.



US 6,651,235 B2

21

24. The computer readable media 1n accordance with
claim 23 further comprising;:

program 1nstructions for separately processing the parti-
tion netlists to generate separate partition layouts for
their corresponding portions of the circuit modules,
wherein layouts of individual cells are determined 1n
accordance with the descriptions of the cells included
in the cell library, wherein the semiconductor substrate
arca the partition plan allocates to each partition and the
portion of each timing constraint the timing budget
allocates to each portion of each signal path subject to
the timing constraint act as constraints on cell place-
ment within each partition layout.

25. The computer readable media 1n accordance with

claim 24 further comprising;:

program 1nstructions for producing a top level layout for
the entire IC incorporating the partition layouts.
26. The computer readable media 1n accordance with
claim 25

wherein a portion of at least one signal path subject to a
timing constraint resides outside all partitions,

wherein the timing budget includes an allocation of a part
of that signal path’s timing constraint to that portion of
the signal path, and

wherein that allocation acts as a constraint on the top level
layout.
27. The computer readable media 1n accordance with
claim 24 wherein the first program instructions comprise:

program 1nstructions for processing the first netlist to
identify circuit modules formed by a number of cells
falling within a predetermined first range; and

program 1nstructions for modifying the first netlist to
produce the second netlist, wherein while the first
netlist describes said portion of the IC as being imple-
mented by said group of cells included within one of
the 1dentified circuit modules, the second netlist
describes the same portion of the IC as being 1mple-
mented by said single cell.
28. The computer readable media 1n accordance with
claim 27 wherein the first program instructions further
comprise:

program 1nstructions for altering the cell library to include

a description of said single cell, wherein the second

netlist 1dentifies the single cell by reference to 1its
description 1n the cell library.

29. The computer readable media 1n accordance with

claim 28 wherein the second program instructions comprise:

program 1nstructions for processing the first netlist to
generate a first count of cells of the IC that are included
in the i1dentified circuit modules and to generate a
second count of cells of the IC that are external to the
identified circuit modules;

program 1nstructions which, based on the first and second
counts, calculate a first target number of cells for each
ogroup that would reduce a total number of cells 1n the
IC as described by the first netlist to a second target
number of cells 1n the IC to be described by the second
netlist; and

10

15

20

25

30

35

40

45

50

55

22

program 1nstructions for modifying the first netlist to
produce the second netlist in a manner that 1s biased
toward 1ncluding the first target number of cells 1n each
ogroup the second netlist 1dentifies as being a single cell
such that the total number of cells included 1n the IC
defined by the second netlist approximates the second
target number.

30. Computer readable media containing program instruc-
tions for converting a computer executing the program
instructions into an automated placement and routing (P&R)
tool for converting a first netlist describing an integrated
circuit (IC) into a second netlist describing the same IC,
wherein the first and second netlists each describe the IC as
interconnected cells organized into a hierarchy of circuit
modules, wherein the P&R tool includes a cell library
containing a description of each cell of the IC described by
the first netlist, and wherein the first netlist identifies each
cell of the IC by reference to its description in the cell
library, the computer readable media comprising:

first program instructions for processing the first netlist to
identify circuit modules formed by a number of cells
falling within a predetermined first range; and

second program 1nstructions for modifying the first netlist
to produce the second netlist, wherein while the first
netlist describes a portion of the IC as being 1mple-

mented by a group of cells included within one of the
identified circuit modules, the second netlist describes
the same portion of the IC as being implemented by a
single cell.
31. The computer readable media 1in accordance with
claim 30 the first program instructions comprise:

program 1nstructions for processing the first netlist to
generate a first count of cells of the IC that are included
in the i1dentified circuit modules and to generate a
second count of cells of the IC that are external to the
identified circuit modules;

program 1nstructions which, based on the first and second
counts, calculate a first target number of cells for each
oroup that would reduce a total number of cells in the
IC as described by the first netlist to a second target
number of cells 1n the IC described by the second
netlist; and

program 1nstructions for moditying the first netlist to
produce the second netlist in a manner that 1s biased
toward 1ncluding the first target number of cells 1n each
ogroup the second netlist 1dentifies as being a single cell
such that the total number of cells included 1n the IC
defined by the second netlist approximates the second
target number.

32. The computer readable media 1in accordance with

claim 30 further comprising;:

program 1nstructions for altering the cell library to include
a description of said single cell, wherein the second
netlist 1dentifies the single cell by reference to 1its
description 1n the cell library.



	Front Page
	Drawings
	Specification
	Claims

