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I 04
COMMAND N S AN
‘ MODE B\TS‘ VX | WY | vz | VW
cOr | ¢Og | cOb | ¢0a
202 clr Tf.g cib | fog
0s [ 0.4 ] 05 | t0g |
| s |t | tr |t
nx | ny | nz
w /N /fff
| data[0:63]  data[64.127]
+ J l ATA o
COMMAND  TRANSFORM LIGHTING DESCRIPTION
STALL  STALL
| FE2XF_CMD_NOP ' NO OPERATION. CAN BE USED AS A SPACER BETWEEN
| COMMANDS.
FE2XF_CMD_VERTEX | READ |READ | VERTEX DATA - _1
| FE2XF_CMD_PASSTHR PASSTHROUGH. TRANSFORM AND LIGHTING PASS THE
DATA THROUGH.
[ FE2XF_CND_RDVAR " | READ THE VAB CONTENTS WHEN CONTEXT SWITCHING|
FE2XF_CMD_LDMODE ~ [LOADNEWMODEBITS. I
| FE2XF_CMD_LDXFCTX | WRITE LOAD TRANSFORM CONTEXT MEMORY DATA,
FE2XF_CMD_RDXFCTX | READ | READ TRANSFORM CONTEXT MEMORY DATA. |
FE2XF_CMD_LDLTCTX 'WRITE | LOAD LIGHTING CONTEXT MEMORY DATA.
FE2XF_CMD_RDLTCTX READ | READ LIGHTING CONTEXT MEMORY DATA
FE2XF CMDLDLTCO | [WRITE | LOAD LIGHTING CONTEXTO MEMORY DATA
FE2XF_CMD_RDLTCO | READ | READ LIGHTING CONTEXTO MEMORY DATA
| FE2XF_CMD_LDLTC | WRITE | LOAD LIGHTING CONTEXT1 MEMORY DATA.
| FE2XF_CMD_RDLTC! READ | READ LIGHTING CONTEXT! MEMORY DATA.
FE2XF_CMD_LDLTC? WRITE | LOAD LIGHTING CONTEXT2 MEMORY DATA
FE2XF_CMD_RDLTC2 | READ | READ LIGHTING CONTEXT2 MEMORY DATA.
FE2XF_CMD_LTLTC3 WRITE | LOAD LIGHTING CONTEXT3 MEMORY DATA _
[FEDIF_CMD_ROLTCS [READ | READ LIGHTING CONTEXT3 MEMORY DATA.
FEOXF CMD SYNC | READ+ | READ+ | SIMILAR TO NOP, BUT IS NOT ALLOWED TO BE
WRITE | WRITE | PROCESSED IN PARALLEL
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T —
RECEIVING APLURALITY OF SETS OF VERTEX ATTRIBUTES IN A
VERTEXATTRIBUTE BUFFER FOR BEING PROCESSED, EACH SET |~ 210
OF ATTRIBUTES INCLUDING A PLURALITY OF UNIQUE VERTEX
ATTRIBUTES CORRESPONDING TO A SINGLE VERTEX

STORING THE VERTEX ATTRIBUTES IN THE VERTEX ATTRIBUTE 212
BUFFER UPON THE RECEIPT THEREOF

MONITORING THE RECEIVED SETS OF VERTEXATTRIBUTES IN

ORDER TO DETERMINE WHETHER A RECEIVED VERTEX 216
ATTRIBUTE HAS A CORRESPONDING VERTEX ATTRIBUTE OF A

DIFFERENT SET CURRENTLY STORED IN THE VERTEX ATTRIBUTE

BUFFER
Y N
| 218
217 f "
| TRANSFERRING THE STORED VERTEX | R S
ATTRIBUTE TO THE CORRESPONDING TRANSFERRING EACH SET OF
INPUT BUFFER OF THE PROCESSING STORED VERTEX ATTRIBUTES TOA
MODULE OUT OF ORDER UPON IT BEING CORRESPONDING ONE OF A
l DETERMINED THAT THE STORED VERTEX PLURALITY OF INPUT BUFFERS OF
ATTRIBUTE CORRESPONDS TO THE APROCESSING MODULE IN ORDER
RECEIVED VERTEX ATTRIBUTE

( END )
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MODE BIT BITS DESCRIPTION

_- TEXTURE 0 ENABLE
-
TOV0O |1 [TEXTURE 0 wDIVIDE ENABLE
TOS |3 |TEXTURE 0 TEXGEN s CONTROL
TOT |3 |TEXTUREOTEXGEN t CONTROL
_- TEXTURE 0 TEXGEN r CONTROL

T0Q |2 |TEXTURE O TEXGEN q CONTROL
TEXTURE 1 ENABLE

TXF TEXTURE 1 MATRIX TRANSFORM ENABLE
TDV1 TEXTURE 1 w DIVIDE ENABLE

TS |3 |TEXTURE 1 TEXGENs CONTROL
TIT |3 |TEXTURE 1 TEXGENt CONTROL
_- TEXTURE 1 TEXGEN r CONTROL
TIQ |2 [TEXTURE 1 TEXGEN q CONTROL
ETY [t |EYETYPEINFINITE(0) OR LOCAL(1)

LIT 1 LIGHTING ENABLE B
NRM 1 |NORMAL NORMALIZE ENABLE
FOG 1 FOG ENABLE
LIS 16 [LIGHT STATUS (8 LIGHTS BY 2 BITS EACH,
|0:0FF,1:INFINITE 2:LOCAL,3:SPOTLIGHT)
FG 2 FOGGEN CONTROL(0: OFF, 1:RADIAL, 2: PLANE)
LIGHT ATTENUATION CONTROL (0: INVERT, 1: NO INVERT)

SPECULAR COLOR INPUT ENABLE
SPECULAR COLOR OUTPUT ENABLE

CV 4 |COLOR MATERIAL CONTROL (1: EMISSIVE, 2: ABIENT, 4
DIFFUSE, 8:SPECULAR)

PP 1 |POINT PARAMETER ENABLE

SKIN 1 |SKINNING ENABLE

VPAS 1 | VERTEXPASS ENABLE

FIG. 3



U.S. Patent Nov. 18, 2003 Sheet 7 of 43 US 6,650,325 B1

30

VAB

IBUFFER

412 5) £10
| | CONTEXT
MICRO-CODE TRANSFORM S EMORY

||I“ VBUFFER III WBUFFER TBUFFER
404 406

408

402 /

F1G. 4



U.S. Patent Nov. 18, 2003 Sheet 8 of 43 US 6,650,325 B1

DETERMINE CURRENTTHREADT) 2
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ADDRESS TARGET ACTION DESCRIPTION

| T[] =ALU | posiTion

T3]=AL TEXTURED -
TBUFFER T[4] = ALU TEXTURE -
WBUFFER VBUFFER | W[0] =ALU, V[0]y =ALUw | EYE VECTOR

WLVO [ WBUFFER VBUFFER | W[1] =ALU, V[iy =ALUW | LIGHTO DIRECTION VECTOR
WLV | WBUFFER VBUFFER | W) =ALU, V2ly = ALU | LIGHT{ DIRECTION VECTOR

LIGHT2 DIRECTION VECTOR
WLV3 LIGHT3 DIRECTION VECTOR
WLV w_s] A_U V[5_.y=A_U.w LIGHT4 DIRECTION VECTOR
VilV5 JGHT5 DIRECTION VECTOR
| WLV LIGHT6 DIRECTION VECTOR
WLV7 W_B] A_U VI8ly=ALUw | LIGHT7 DIRECTION VECTOR
WSLO W[9] = ALU SPOTLIGHTO cos
WSL1 W[10] = ALL SPOTLIGHT1 cos
| WSL2 WiH1=ALU SPOTLIGHT2 cos
ws-z WBUFFER W[12] = AL | SPOTLIGHT3 cos

SL4 | WBUFFER W[13] = ALL SPOTLIGHT4 cos
WBUFFER W[14] = ALL SPOTLIGHT cos
WBUFFER W[15] = ALL SPOTLIGHTS cos
SPOTLIGHT7 cos
VED VBUFFER %=10,V[0]z=ALUw | EVE RADIAL DISTANCE VECTOR
VLDO VBUFFER LIGHTO DISTANCE VECTOR
VLD VBUFFER V[2]x=1.0, V2] z = ALUw | LIGHTT DISTANCE VECTOR
VLD2 VBUFFER V3Jx=1.0,V[3].z=ALUw | LIGHT2 DISTANCE VECTOR
VLD3 V'4'x 1.0, V[4]z ALUw | LIGHT3 DISTANCE VECTOR
VLD4 LIGHT4 DISTANCE VECTOR
VLD5 VBUFFER ve]x V[B]z ALUw LIGHT5 DISTANCE VECTOR
VLDB VBUFFER V[7])x = 1c V[7)z=ALUw | LIGHTE DISTANCE VECTOR |
VLD7 VBUFFER V[8].x= 1.0, V[8]z =ALUw | LIGHT7 DISTANCE VECTOR
VCO VBUFFER TBUFFER | V[9]=ALU, T[1]=ALU DIFFUSE COLOR
| VC1 IVBJFFER‘BJFFER V[10]=ALU, T[2]=ALU | SPECULAR COLOR
[ VNRM VBUFFER V[11] =ALL NORMAL VECTOR
VED? VBUFFER V[12] = ALL EYE PLANAR DISTANCE VECTOR
TVW_NOP | NOVALID QUTPUT. '

——-—J

FIG. 10
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MICROCODE FIELD BITS LOCATION DELAY DESCRIPTION
6 |05 ]2 TOUTPUTBUFFER WRITE ADDRESS
68 |0  [RIUREADADDRESS
wm_ [4 o2 7 |RIWWRTEMASK
We
Iy
au T4 182
ais 2 ALU SIGN CONTROL
aia 1 ALU INPUT AMUX |
2527 10 [MWUOPERATION
mib 2629 [0 | MLUINPUT B MUX
mia 2 13031 [0 [ MLUINPUTAMUX
va |3 [®3% [0 |INPUTBUFFERREADADDRESS
 c8 1 % |02 | CONTEXTMEMORYREADWRTE
Ca 6 | 36:41 CONTEXT MEMORY ADDRESS
mr 4243 |0 | MLUINPUT VECTOR ROTATE

FIG. 17
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IDENTIFYING A PLURALITY OF ADDRESSES IN MEMORY BASED 1322
ON THE MODE BITS

RECEIVING APLURALITY OF MODE BITS INDICATIVE OF THE 1320
| STATUS OF APLURALITY OF MODES OF PROCESS OPERATIONS

ACCESSING THE ADDRESSES IN THE MEMORY FOR RETRIEVING
CODE SEGMENTS WHICH EACHARE ADAPTED TO CARRY OUT 1324

THE PROCESS OPERATIONS IN ACCORDANCE WITH THE STATUS
OF THE MODES

EXECUTING THE CODE SEGMENTS WITHIN A TRANSFORM OR 1326
LIGHTING MODULE FOR PROCESSING VERTEX DATA

FIG. 13
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RECEIVING APLURALITY OF MATRICES, A PLURALITY OF WEIGHT
VALUES EACH CORRESPONDING WITH ONE OF THE MATRICES, 1470)

AND VERTEX DATA

CALCULATING A SUM OF APLURALITY OF PRODUCTS WITH EACH
| PRODUCT CALCULATED BY THE MULTIPLICATION OF THE VERTEX |~ 1472

DATA, ONE OF THE MATRICES, AND THE WEIGHT
CORRESPONDING TO THE MATRIX

OUTPUTTING THE SUM OF PRODUCTS FOR ADDITIONAL - 1474
PROCESSING

FIG. 14D
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DESCRIPTION

CLEAR FLAG. SETS IFLAG AND MFLAG TO 0,

SPOTLIGHT CONE FLAG. SET IF VERTEX IS OUTSIDE SPOTLIGHT CONE.
SPECULAR2 FLAG. SET IF SPECULAR CONTRIBUTION IS NEGATIVE.
DIFFUSE FLAG. SET IF DIFFUSE TERM IS NEGATIVE.

SPOTLIGHT CONE ATTENUATION FLAG. SET IF SPOTLIGHT CONE
ATTENUATION CONTRIBUTION IS NEGATIVE.

SPECULAR FLAG. SET IF SPECULAR CONTRIBUTION IS NEGATIVE.
RANGE FLAG. SET IF VERTEX IS TOO FAR AWAY FROM THE LIGHT,

FIG. 21
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MICROCODE FIELD BITS LOCATION DELAY DESCRIPTION
oa |3 [02 2 JOUTPUTADDRESS
RLU WRITE ADDRESS
R23 1 [6  J0  [RLU(MLU)READ ADDRESS |
RO RLU (ALU) READ ADDRESS
@a |1 8 [1  [ALUINPUTAMUX _
au {2 j&l0 |1 | ALUOPERATION
ma 2 [1314 JO0  [MLUINPUTAMUX
miu 2 [1516 |0 [MLUOPERATION
mia 5 [ |0 |MUWBUFFERREADADDRESS
awa ALU WBUFFER READ ADDRESS
va 4 |2130 |0 [ VBUFFER READ ADDRESS
0 2 | 31:32 LLU QUTPUT ADDRESS
frm 6 FLAG REGISTER MASK
mfe MFLAG WRITE ENABLE
mfa MFLAG WRITE ADDRESS
fe FLAG WRITE ENABLE
fa 2 4344 |2 FLAG WRITE ADDRESS
4546 |2 FLU INPUT AMUX
fll 3 FLU OPERATION
M1 1 MAC1 INPUT C MUX
M1b 2 |51 |2 MAC1 INPUT B MUX -
2 | MAC1 INPUT A MUX
2 MACO INPUT B MUX
Moa |2 5960 |2 MACO INPUT AMUX -
ce 3 CONTEXT MEMORY READ/WRITE ENABLE |
3 5 CONTEXT MEMORY ADDRESS ]
C33 4 |7073 |2 | CONTEXT3 MEMORY ADDRESS
Caa |4 |11 |2 CONTEXT2 MEMORY ADDRESS
5 (7882 |2 CONTEXT1 MEMORY ADDRESS
FIG. 22

US 6,650,325 B1



US 6,650,325 B1

Sheet 28 of 43

Nov. 18, 2003

U.S. Patent

/

AGOWAN
Q0L IX3INOJ

/s

0051

SNLVLS

ONILHOI |

d444Nd
LMA

74

c¢ Ol

¢0S1

SOd

3INAON
qSIHaaY ONIONIN0AS

———| P

lllllllllllll—'lllllllll' AN gy S B esa NS e all, SIS S . e . e - e e anih S

/

-

f
0
-—

.‘"lllll..ll

30c¢

dOLI3A
TOHLNOD

G0EC



U.S. Patent Nov. 18, 2003 Sheet 29 of 43 US 6,650,325 B1

I RECEIVING VERTEX DATA IN ABUFFER OF A FIRST SET OF
BUFFERS, WHEREIN THE BUFFER IN WHICH THE VERTEX DATAIS | 2420

RECEIVED IS BASED ON ARQUND ROBIN SEQUENCE

. |

IDENTIFYING AN EMPTY BUFFER OF A SECOND SET OF BUFFERS

BASED ON AROUND ROBIN SEQUENCE, WHEREIN A TRANSFORM I/ 2422
MODULE IS COUPLED BETWEEN THE FIRST SET OF BUFFERS AND
THE SECOND SET OF BUFFERS

PROCESSING THE VERTEX DATA IN THE TRANSFORM MODULE
AFTER THE EMPTY BUFFER OF THE SECOND SET OF BUFFERS IS |~ 4424
IDENTIFIED
I
OUTPUTTING THE VERTEX DATA FROM THE TRANSFORM |

MODULE TO THE IDENTIFIED EMPTY BUFFER OF THE SECOND |- 2426
SET OF BUFFERS

Y

IDENTIFYING AN EMPTY BUFFER OF ATHIRD SET OF BUFFERS
BASED ONAROUND ROBIN SEQUENCE, WHEREIN ALIGHTING 2428
MODULE IS COUPLED BETWEEN THE SECOND SET OF BUFFERS
AND THE THIRD SET OF BUFFERS

LT T R e —

L

PROCESSING THE VERTEX DATA IN THE LIGHTING MODULE 430
AFTER THE EMPTY BUFFER OF THE THIRD SET OF BUFFERS IS -~
IDENTIFIED

N

OUTPUTTING THE VERTEX DATAFROM THE LIGHTING MODULE | - 2432
TO THE IDENTIFIED EMPTY BUFFER OF THE THIRD SET OF BUFFERS

F1G. 24
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2700 ~ RECEIVE TRIANGLE AND COMPUTE LINE EQUATION COEFFICIENTS

2702 ~_| MODIFY LINE EQUATION COEFFICIENTS IF ANY TRIANGLE VERTEX(ES)
HAVE ANEGATIVE W-COORDINATE

2704 ~J POSITION A CONVEX POLYGON ON OR NEAR THE TRIANGLE/POLYGON

el S I AN DN SIS EEE e s W sl el W W iy el ek e B diew vhele el el sl R iy IS LUEF IS ST ST TS ST T e e e A AR e e e AR e S S

2106 ~ PROCESS ROW '

2710~ GOTO JUMP

POSITION | -
i 1 :
E YES i
; 20 JUMP POSITION FOUND? ;
NO 5
END i
; TRAVERSAL ;
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START 2100
2800 /
COMPUTE SENSE POINTS

_ @ 2801

STORE RIGHT-HAND NEIGHBOR RECTANGLE AS SNAP-LOCATION |~ 8%

CALCULATE VALUE OF LINE EQNS. AT SENSE POINTS OF RECTANGLE 200 2812

NO MOVE
CAN GO DOWN? 2906 RECTANGLE
(LEFT
YES

2808 -

CALCULATE AND STORE JUMP POSITION
2810

ARE LEFT SENSE
POINTS BOTH OUTSIDE EDGE OF
THE TRIANGLE?

IS THERE A 2814
SNAP LOCATION?

| GOTO SNAP LOCATION 1t
| CALCULATE VALUE OF LINE EQNS. AT SENSE POINTS OF RECTANGLE ok 2826

NO

I
289( MOVE
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METHOD, APPARATUS AND ARTICLE OF
MANUFACTURE FOR BOUSTROPHEDONIC
RASTERIZATION

RELATED APPLICATIONS

The present application 1s related to applications entitled
“Method, Apparatus and Article of Manufacture for Area
Rasterization using Sense Points” which was filed on Dec.
6, 1999 under Ser. No. 09/455,305, “Method, Apparatus and
Article of Manufacture for Clip-less Rasterization using,
Line Equation-based Traversal” which was filed on Dec. 6,

1999 under Ser. No. 09/455,728, “Transform, Lighting and
Rasterization System Embodied on a Single Semiconductor
Platform” which was filed on Dec. 6, 1999 under Ser. No.
09/454,516, and 1ssued under U.S. Pat. No. 6,198,488,
“Method, Apparatus and Article of Manufacture for a Vertex

Attribute Buflfer 1n a Graphics Processor” which was filed on
Dec. 6, 1999 under Ser. No. 09/454,525, ans 1ssued under

U.S. Pat. No. 6,515,671, “System, Method and Computer
Program Product for a Blending Operation m a Transform

Module of a Computer Graphics Pipeline” which was filed
on Dec. 6, 1999 under Ser. No. 09/456,102, and 1ssued under

U.S. Pat. No. 6,353,439, “Method and Apparatus for a
Lighting Module 1n a Graphics Processor” which was filed
on Dec. 6, 1999 under Ser. No. 09/454,524, and 1ssued under
U.S. Pat. No. 6,417,851, and “Method, Apparatus and
Article of Manufacture for a Sequencer in a Transform/

Lighting Module Capable of Processing Multiple Indepen-
dent Execution Threads” which was filed on Dec. 6, 1999

under Ser. No. 09/456,104, which were filed concurrently
herewith, and which are all incorporated herein by reference
in their entirety.

FIELD OF THE INVENTION

The present invention relates generally to rasterizers and,
more particularly, to optimizing results during the conver-
sion of primitives defined by vertexes to equivalent 1images
composed of pixel patterns that can be stored and manipu-
lated as sets of bits.

BACKGROUND OF THE INVENTION

Raster displays are commonly used in computer graphics
systems. These displays store graphics images as a matrix of
picture eclements or “pixels” with data representing each
pixel being stored 1n a display buifer. This data specifies the
display attributes for each pixel on the screen such as the
intensity and color of the pixel. An entire 1mage 1s read from
the display buffer and displayed on the screen by sequen-
fially scanning out horizontal rows of pixel data or “scan
lines.”

Raster display systems commonly use polygons as basic
building blocks or “primitives” for drawing more complex
images. Triangles are a common basic primitive for polygon
drawing systems, since a triangle 1s the simplest polygon and
more complex polygons can always be represented as sets of
triangles. The process of drawing triangles and other geo-
metric primitives on the screen 1s known as “rasterization.”

An 1mportant part of rasterization involves determining
which pixels fall within a given triangle. Rasterization
systems generally step from pixel to pixel in various ways
and determine whether or not to “render,” 1.e. draw 1nto a
frame buffer or pixel map, each pixel as part of the triangle.
This, 1n turn, determines how to set the data 1n the display
buffer representing each pixel. Various traversal algorithms
have been developed for moving from pixel to pixel 1n a way
such that all pixels within the triangle are covered.
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Rasterization systems sometimes represent a triangle as a
set of three edge-functions. An edge function 1s a line
equation representing a straight line, which serves to sub-
divide a two-dimensional plane. Edge functions classily
cach point within the plane as falling mto one of three
regions: the region “inside” of the triangle, the region
“outside” of the triangle, or the region representing a line
itself. The type of edge function that will be discussed has
the property that points “inside” of the triangle have a value
orcater than zero, points “outside” have a value less than
zero, and points exactly on the line have a value of zero. This
1s shown 1n Prior Art FIG. 1. Applied to rasterization
systems, the two-dimensional plane 1s represented by the
ographics screen, points are represented by mdividual pixels,
and the edge function serves to subdivide the graphics
screen.

Triangles are created by the union of three edges, or more
particularly three half-planes, each of which 1s specified by
edge functions. It 1s possible to define more complex poly-
cons by using Boolean combinations of more than three
cdges. Since the rasterization of triangles 1nvolves deter-
mining which pixels to render, a tie-breaker rule 1s generally
applied to pixels that lie exactly on any of the edges to
determine whether the pixels are to be considered interior or
exterior to the triangle.

As shown 1n Prior Art FIG. 1A, each pixel has associated
with it a set of edge variables, (¢,, €, and ¢,), which are
proportional to the signed distance between the pixel and the
three respective edges. The value of each edge variable 1s
determined for a given triangle by evaluating the three edge
functions, f, (x,y), {; (x,y) and £, (Xx,y) for the pixel location.
It 1s important to note that 1t can be determined whether or
not a pixel falls within a triangle by looking at only the signs
of e,, ¢, and e¢,.

In determining which pixels to render within a triangle,
typical rasterization systems compute the values of the edge
variables, (e,, €, and e,), for a given set of three edge
functions and a given pixel position, and then use a set of
increment values (Ae_, ..., Ae. .., etc.) to determine the
edge variable values for adjacent pixels. The rasterization
system traverses the triangle, adding the increment values to
the current values as a traversal algorithm steps from pixel
to pixel.

With reference again to Prior Art FIG. 1, a line 1s
illustrated that is defined by two points: (X,Y) and (X+dX,
Y+dY). As noted above, this line can be used to divide the
two dimensional space into three regions: all points “out-

side” of, “inside” of, and exactly on the line.
The edge f(x,y) can be defined as:

f63)=(e-X)dY-(y-Y)dX.

This function has the useful property that its value 1s

related to the position of the point (X,y) relative to the edge
defined by the points (X,Y) and (X+dX, Y+dY):

f(x,y)>0 if (x,y) is “inside”;

f(x,y)=0 if (x,y) is exactly on the line; and

f(x,y)<0 if (x,y) is “outside”.

Existing rasterization systems commonly use this

function, since 1t can be computed incrementally by simple
addition:

fle+1,y)=f(x,y)+dY; and
fey+1)=fxy)-dX.

A variety of different traversal algorithms are presently
used by different rasterization systems in the rendering
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process. Any algorithm guaranteed to cover all of the pixels
within the triangle can be used.

For example, some solutions involve generating the pixels
in a unidirectional manner. Such traditional unidirectional
solution includes generating the pixels row-by-row 1n a
constant direction. This requires that the sequence shift
across the primitive to a starting location on a first side of the
primitive upon finishing at a location on an opposite side of
the primitive. Each time this shift 1s executed, pixels or
texture values are stored which were not positioned adjacent
fo pixels or texture values processed immediately before-
hand. Therefore, such distant pixels or texture values have a
orcater chance of belonging to different memory access
blocks, making such access inefficient.

This problem 1s exacerbated with primitives of a large
size. For example, 1f a sequence generates pixels along a
very long row or column, the probability 1s reduced that
contiguous pixels or texture values from an adjacent row or
column, respectively, will still be 1n memory. This probabil-
ity 1s further reduced with memory of a limited size.

As yet another example, a haphazard generation sequence
includes jumping around randomly within the primitive.
Using this method, pixels or texture values that are accessed
are rarely adjacent to those that were accessed recently
enough to still be 1 a limited size memory.

There 1s therefore a need for a rasterization system that
processes pixels or texture values that are frequently adja-
cent to pixels or texture values that have been previously
processed 1mmediately beforehand and are still stored in

Memory.

DISCLOSURE OF THE INVENTION

A method, apparatus and article of manufacture are pro-
vided for performing rasterization using alternating sense
point traversal. Upon receipt of a primitive, 1.€. a triangle, a
plurality of points 1s positioned on or near the primitive.
Such points define an enclosed convex region and are
located at corners of the convex region. In operation, the
points and thus the convex region are moved 1n an alternat-
ing manner for the purpose of i1dentifying an arca in the
primitive for rendering pixels therein. In particular, the
points are moved in a boustrophedonic manner.

This boustrophedonic rasterization constrains the
sequence to obey certain rules that offer better performance
for hardware. Boustrophedonic refers to a serpentine pattern
that folds back and forth. A horizontal boustrophedonic
sequence, for example, may generate all the pixels within a
primitive triangle that are on one row from left to right, and
then generate the next row right to left, and so on. Such a
folded path ensures that an average distance from a gener-
ated pixel to recently previously generated pixels 1s rela-
tively small.

Generating pixels that are near recently generated pixels
1s 1mportant when recent groups of pixels and/or their
corresponding texture values are kept in memories of a
limited size. The boustrophedonic sequence more often finds
the pixels or texture values already loaded into such
memories, and therefore repeating the memory load occurs
less often.

In one embodiment, at least one boundary may be used
which divides the primitive nto a plurality of portions. In
operation, the polygon-defining points may be moved 1in
cach of the portions separately. Further, the points may be
moved through an entirety of a first one of the portions
before being moved 1n a second one of the portions. As an
option, the boundary spacing may be defined based on a
memory size and the size of the smallest texture element, a
“texel.”
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Rasterization with boundaries 1s another constraint on the
pixel generation sequence that 1s complementary to bous-
trophedonic rasterization. If a primitive 1s very wide, the

pixels of a single row may not fit 1n a limited-size memory.
Rasterization with boundaries divides the triangle into

limited-width rows (or columns), and generates all the pixels
within such a portion before moving on to the next portion.

These and other advantages of the present invention will

become apparent upon reading the following detailed
description and studying the various figures of the drawings.

BRIEF DESCRIPITION OF THE DRAWINGS

The foregoing and other aspects and advantages are better
understood from the following detailed description of a
preferred embodiment of the invention with reference to the
drawings, 1n which:

FIG. 1 illustrates a prior art method of rasterization;

FIG. 1A 1illustrates the association of a set of edge
variables with a particular pixel in accordance with a prior
art method of rasterization;

FIG. 1B 1s a flow diagram illustrating the various com-

ponents of one embodiment of the present invention 1imple-
mented on a single semiconductor platform;

FIG. 2 1s a schematic diagram of a vertex attribute buffer
(VAB) in accordance with one embodiment of the present
invention;

FIG. 2A 1s a chart illustrating the various commands that
may be received by VAB 1n accordance with one embodi-
ment of the present invention;

FIG. 2B 1s a flow chart illustrating a method of loading
and draining vertex attributes to and from VAB 1n accor-
dance with one embodiment of the present mnvention;

FIG. 2C 1s a schematic diagram 1llustrating the architec-
ture of the present mvention employed to implement the
operations of FIG. 2B;

FIG. 3 1llustrates the mode bits associated with VAB 1n
accordance with one embodiment of the present invention;

FIG. 4 illustrates the transform module of the present
mvention;
FIG. 4A 1s a flow chart illustrating a method of running

multiple execution threads in accordance with one embodi-
ment of the present mnvention;

FIG. 4B 1s a flow diagram 1illustrating a manner 1n which
the method of FIG. 4A 1s carried out 1n accordance with one
embodiment of the present invention;

FIG. 5 1llustrates the functional units of the transtform
module of FIG. 4 1n accordance with one embodiment of the
present 1nvention;

FIG. 6 1s a schematic diagram of the multiplication logic
unit (MLU) of the transform module of FIG. §;

FIG. 7 1s a schematic diagram of the arithmetic logic unit
(ALU) of the transform module of FIG. 5;

FIG. 8 1s a schematic diagram of the register file of the
transform module of FIG. 5;

FIG. 9 1s a schematic diagram of the mverse logic unit
(ILU) of the transform module of FIG. §;

FIG. 10 1s a chart of the output addresses of output
converter of the transform module of FIG. § 1n accordance
with one embodiment of the present 1nvention;

FIG. 11 1s an 1llustration of the micro-code organization of
the transform module of FIG. § 1 accordance with one
embodiment of the present invention;

FIG. 12 1s a schematic diagram of the sequencer of the
transform module of FIG. § 1n accordance with one embodi-
ment of the present mnvention;
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FIG. 13 1s a flowchart delineating the various operations
associated with use of the sequencer of the transform

module of FIG. 12;

FIG. 14 1s a flow diagram delineating the operation of the
sequencing component of the sequencer of the transform

module of FIG. 12;

FIG. 14A 1s a flow diagram illustrating the components of
the present mvention employed for handling scalar and
vector components during graphics-processing;;

FIG. 14B 1s a flow diagram illustrating one possible
combination 1451 of the functional components of the
present invention shown in FIG. 14A which corresponds to
the transform module of FIG. 5;

FIG. 14C 1s a flow diagram 1illustrating another possible
combination 1453 of the functional components of the
present mvention shown in FIG. 14A;

FIG. 14D illustrates a method implemented by the trans-
form module of FIG. 12 for performing a blending operation
during graphics-processing in accordance with one embodi-
ment of the present invention;

FIG. 15 1s a schematic diagram of the lighting module of
one embodiment of the present invention;

FIG. 16 1s a schematic diagram showing the functional
units of the lighting module of FIG. 15 1n accordance with
one embodiment of the present invention;

FIG. 17 1s a schematic diagram of the multiplication logic
unit (MLU) of the lighting module of FIG. 16 in accordance
with one embodiment of the present invention;

FIG. 18 1s a schematic diagram of the arithmetic logic unit
(ALU) of the lighting module of FIG. 16 in accordance with
one embodiment of the present invention;

FIG. 19 1s a schematic diagram of the register unit of the
lighting module of FIG. 16 1n accordance with one embodi-
ment of the present mnvention;

FIG. 20 1s a schematic diagram of the lighting logic unit
(LLU) of the lighting module of FIG. 16 in accordance with
one embodiment of the present invention;

FIG. 21 1s an 1illustration of the flag register associated
with the lighting module of FIG. 16 1n accordance with one
embodiment of the present invention;

FIG. 22 1s an illustration of the micro-code fields associ-
ated with the lighting module of FIG. 16 1n accordance with
one embodiment of the present invention;

FIG. 23 1s a schematic diagram of the sequencer associ-
ated with the lighting module of FIG. 16 1in accordance with
one embodiment of the present invention;

FIG. 24 1s a flowchart delineating the manner in which the
sequencers of the transform and lighting modules are
capable of controlling the mput and output of the associated
buffers 1n accordance with one embodiment of the present
mvention;

FIG. 25 1s a diagram 1llustrating the manner 1n which the
sequencers of the transform and lighting modules are

capable of controlling the mnput and output of the associated
buffers 1n accordance with the method of FIG. 24;

FIG. 25B 1s a schematic diagram of the various modules
of the rasterizer of FIG. 1B;

FIG. 26 illustrates a schematic of the set-up module of the
rasterization module of the present invention;

FIG. 26A 1s an 1illustration showing the various param-
cters calculated by the set-up module of the rasterizer of

FIG. 26;

FIG. 27 1s a flowchart illustrating a method of the present
invention assoclated with the set-up and traversal modules
of the rasterizer component shown 1n FIG. 26;
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FIG. 27A 1llustrates sense points that enclose a convex
region that 1s moved to identily an area 1n a primitive 1n
accordance with one embodiment of the present 1nvention;

FIG. 28 1s a flowchart 1llustrating a process of the present
invention assoclated with the process row operation 2706 of

FIG. 27,

FIG. 28A 1s an 1illustration of the sequence 1n which the
convex region of the present mnvention 1s moved about the
primitive;

FIG. 28B 1llustrates another example of the sequence 1n

which the convex region of the present invention 1s moved
about the primitive;

FIG. 29 1s a flowchart 1llustrating an alternate boustro-
phedonic process of the present 1nvention associlated with
the process row operation 2706 of FIG. 27;

FIG. 29A 1s an 1illustration of the sequence 1n which the
convex region of the present mvention 1s moved about the
primitive 1n accordance with the boustrophedonic process of

FIG. 29;

FIG. 30 1s a flowchart 1llustrating an alternate boustro-
phedonic process using boundaries;

FIG. 31 1s a tlowchart showing the process associated
with operation 3006 of FIG. 30;

FIG. 31A 1s an 1illustration of the sequence 1n which the
convex region of the present mvention 1s moved about the

primitive 1n accordance with the boundary-based boustro-
phedonic process of FIGS. 30 and 31;

FIG. 32 1s a flowchart showing the process associated
with operation 2702 of FIG. 27;

FIG. 32A 1s an illustration showing which area 1s drawn
if no negative W-values are calculated in the process of FIG.

32;

FIG. 32B 1s an 1llustration showing which area 1s drawn
if only one negative W-value 1s calculated in the process of

FIG. 32; and

FIG. 32C 1s an 1llustration showing which area 1s drawn
if only two negative W-values are calculated i the process

of FIG. 32.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

FIGS. 1 and 1A show the prior art. FIGS. 1B-32C show
a graphics pipeline system of the present invention.

FIG. 1B 1s a flow diagram illustrating the various com-
ponents of one embodiment of the present invention. As
shown, the present invention 1s divided into four main
modules including a vertex attribute buffer (VAB) 50, a
transform module 52, a lighting module 54, and a rasteriza-
tion module 56 with a set-up module 57. In one embodiment,
cach of the foregoing modules 1s situated on a single
semiconductor platform 1n a manner that will be described
hereinafter in greater detail. In the present description, the
single semiconductor platform may refer to a sole unitary
semiconductor-based 1ntegrated circuit or chip.

The VAB 50 1s included for gathering and maintaining a
plurality of vertex attribute states such as position, normal,
colors, texture coordinates, etc. Completed vertices are
processed by the transform module 52 and then sent to the
lighting module 54. The transform module 52 genecrates
vectors for the lighting module 54 to light. The output of the
lighting module 54 1s screen space data suitable for the
set-up module which, in turn, sets up primitives. Thereafter,
rasterization module 56 carries out rasterization of the
primitives. It should be noted that the transform and lighting,
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modules 52 and 54 might only stall on the command level
such that a command 1s always finished once started.

In one embodiment, the present invention includes a
hardware implementation that at least partially employs
Open Graphics Library (OpenGL®) and D3D™ transform
and lighting pipelines. OpenGL® 1s the computer industry’s
standard application program interface (API) for defining
2-D and 3-D graphic images. With OpenGL®, an applica-
fion can create the same effects 1n any operating system
using any OpenGL®-adhering graphics adapter. OpenGL®
specifles a set of commands or immediately executed func-
fions. Each command directs a drawing action or causes
special effects.

FIG. 2 1s a schematic diagram of VAB 30 1n accordance
with one embodiment of the present invention. As shown,
VAB 50 passes command bits 200 while storing data bits

204 representative of attributes of a vertex and mode bits
202. In use VAB 50 receives the data bits 204 of vertices and

drains the same.

The VAB 50 1s adapted for receiving and storing a
plurality of possible vertex attribute states via the data bits
204. In use after such data bits 204, or vertex data, 1s
received and stored in VAB 50, the vertex data 1s outputted
from VAB 50 to a graphics-processing module, namely the
transform module 52. Further, the command bits 200 are
passed by VAB 50 for determining a manner in which the
vertex data 1s mputted to VAB 50 1n addition to other
processing which will be described in greater detail with
reference to FIG. 2A. Such command bits 200 are received
from a command bit source such as a microcontroller, CPU,
data source or any other type of source which 1s capable of
generating command bits 200.

Further, mode bits 202 are passed which are indicative of
the status of a plurality of modes of process operations. As
such, mode bits 202 are adapted for determining a manner
in which the vertex data 1s processed in the subsequent
ographics-processing modules. Such mode bits 202 are
received from a command bit source such as a
microcontroller, CPU, data source or any other type of
source which 1s capable of generating mode bits 202.

It should be noted that the various functions associated
with VAB 50 may be governed by way of dedicated
hardware, software or any other type of logic. In various
embodiments, 64, 128, 256 or any other number of mode
bits 202 may be employed.

The VAB 50 also functions as a gathering point for the 64
bit data that needs to be converted into a 128-bit format. The
VAB 50 1nput 1s 64 bits/cycle and the output 1s 128 baits/
cycle. In other embodiments, VAB 50 may function as a
gathering point for 128-bit data, and VAB 50 input may be
128 bits/cycle or any other combination. The VAB 50 further
has reserved slots for a plurality of vertex attributes that are
all IEEE 32 bit floats. The number of such slots may vary per
the desires of the user. Table 1 1llustrates exemplary vertex
attributes employed by the present invention.

TABLE 1

Position: x,y,z,w
Diffuse Color: r,g,b,a
Specular Color: 1,g,b
Fog: {

TextureO: s,t,1,q
Texturel: s,t,r1,q
Normal: nx,ny,nz
Skin Weight: w
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During operation, VAB 50 may operate assuming that the
X,y data pair 1s written before the z,w data pair since this
allows for defaulting the z,w pair to (0.0,1.0) at the time of
the x,y write. This may be important for default components

in OpenGL ™ and D3D™, It should be noted that the
position, texture( and texturel slots default the third and
fourth components to (0.0,1.0). Further, the diffuse color slot
defaults the fourth component to (1.0) and the texture slots
default the second component to (0.0).

The VAB 50 includes still another slot 205 used for
assembling the data bits 204 that may be passed into or
through the transform and lighting module 52 and 54,
respectively, without disturbing the data bits 204. The data
bits 204 1n the slot 205 can be 1n a floating point or integer
format. As mentioned earlier, the data bits 204 of each vertex
has an associated set of mode bits 202 representative of the
modes alfecting the processing of the data bits 204. These
mode bits 202 are passed with the data bits 204 through the
transform and lighting modules 52 and 54, respectively, for
purposes that will be set forth hereinafter in greater detail.

In one embodiment, there may be 18 wvalid VAB,
transform, and lighting commands received by VAB 50.
FIG. 2A 1s a chart 1llustrating the various commands that
may be received by VAB 50 in accordance with one embodi-
ment of the present invention. It should be understood that
all load and read context commands, and the passthrough
command shown 1n the chart of FIG. 2A transfer one data
word of up to 128 bits or any other size.

Each command of FIG. 2A may contain control informa-
tion dictating whether each set of data bits 204 1s to be
written 1nto a high double word or low double word of one
VAB address. In addition, a 2-bit write mask may be
employed for providing control to the word level. Further,
there may be a launch bit that informs VAB controller that
all of the data bits 204 are present for a current command to
be executed.

Each command has an associated stall field that allows a
look-up to find information on whether the command 1s a
read command 1n that it reads context memory or 1s a write
command in that it writes context memory. By using the stall
field of currently executing commands, the new command
may be either held off in case of conflict or allowed to
proceed.

In operation, VAB 50 can accept one mput data word up
to 128 bits (or any other size) per cycle and output one data
word up to 128 bits (or any other size) per cycle. For the load
commands, this means that it may take two cycles to load the
data mto VAB 50 to create a 128-bit quad-word and one
cycle to draimn 1t. For the scalar memories 1n the lighting
module 54, it 1s not necessary to accumulate a full quad-
word, and these can be loaded 1n one cycle/address. For one
vertex, 1t can take up to 14 cycles to load the 7 VAB slots
while 1t only takes 7 cycles to drain them. It should be noted,
however, that 1t 1s only necessary to update the vertex state
that changes between executing vertex commands. This
means that, 1n one case, the vertex position may be updated
taking 2 cycles, while the draining of the vertex data takes
7 cycles. It should be noted that only 1 cycle may be required
in the case of the x,y position.

FIG. 2B 15 a flow chart 1llustrating one method of loading,
and draining vertex attributes to and from VAB 50 during
ographics-processing. Initially, in operation 210, at least one
set of vertex attributes 1s received mn VAB 30 for being
processed. As mentioned earlier, each set of vertex attributes
may be unique, and correspond to a single vertex.

In use the vertex attributes are stored in VAB 50 upon the
receipt thereof 1in operation 212. Further, each set of stored
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vertex attributes 1s transferred to a corresponding one of a
plurality of 1put buffers of the transform module 52. The
received set of vertex attributes 1s also monitored 1n order to
determine whether a received vertex attribute has a corre-
sponding vertex attribute of a different set currently stored in

VAB 50, as indicated in operation 216.

Upon it being determined that a stored vertex attribute
corresponds to the received vertex attribute 1n decision 217,
the stored vertex attribute 1s outputted to the corresponding
input buffer of the transform module 52 out of order. See
operation 218. Immediately upon the stored vertex attribute
being outputted, the corresponding incoming vertex attribute
may take 1ts place in VAB 50. If no correspondence 1s found,
however, each set of the stored vertex attributes may be
transterred to the corresponding input buffer of the trans-
form module 52 1n accordance with a regular predetermined
sequence. Note operation 219.

It should be noted that the stored vertex attribute might
not be transferred 1n the aforementioned manner 1f 1t has an
assoclated launch command. Further, in order for the fore-

ogoing method to work properly, the bandwidth of an output
of VAB 50 must be at least the bandwidth of an input of VAB
50.

FIG. 2C 1s a schematic diagram illustrating the architec-
ture of the present mnvention employed to implement the
operations of FIG. 2B. As shown, VAB 50 has a write data
terminal WD, a read data terminal RD, a write address
terminal WA, and a read address RA terminal. The read data

terminal 1s coupled to a first clock-controlled butfer 230 for
outputting the data bits 204 from VAB 50.

Also 1ncluded 1s a first multiplexer 232 having an output
coupled to the read address terminal of VAB 50 and a second
clock-controlled buifer 234. A first input of the first multi-
plexer 232 1s coupled to the write address terminal of VAB
50 while a second mput of the first multiplexer 232 1is
coupled to an output of a second multiplexer 236. A logic
module 238 1s coupled between the first and second multi-
plexers 232 and 236, the write address terminal of VAB 50,

and an output of the second clock-controlled buffer 234.

In use the logic module 238 serves to determine whether
an ncoming vertex attribute 1s pending to drain in VAB 50.
In one embodiment, this determination may be facilitated by
monitoring a bit register that imndicates whether a vertex
attribute 1s pending or not. If 1t 1s determined that the
incoming vertex attribute does have a match currently in
VAB 50, the logic module 238 controls the first multiplexer
232 1n order to drain the matching vertex attribute so that the
incoming vertex attribute may be immediately stored 1n its
place. On the other hand, if it 1s determined that the
incoming vertex attribute does not have a match currently in
VAB 50, the logic module 238 controls the first multiplexer
232 such that VAB 50 1s drained and the incoming vertex
attribute 1s loaded sequentially or in some other predeter-
mined order, per the 1nput of the second multiplexer 236
which may be updated by the logic module 238.

As a result, there 1s no requirement for VAB 50 to drain
multiple vertex attributes before a new 1ncoming vertex
attribute may be loaded. The pending vertex attribute forces
out the corresponding VAB counterpart if possible, thus
allowing it to proceed. As a result, VAB 50 can drain 1n an
arbitrary order. Without this capability, 1t would take 7
cycles to drain VAB 50 and possibly 14 more cycles to load
it. By overlapping the loading and draining, higher perfor-
mance 1s achieved. It should be noted that this 1s only
possible 1f an mput buffer 1s empty and VAB 50 can drain
into mput buffers of the transform module 52.
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FIG. 3 illustrates the mode bits associated with VAB 50 1n
accordance with one embodiment of the present 1nvention.
The transform/light mode information 1s stored 1n a register
via mode bits 202. Mode bits 202 are used to drive the
sequencers of the transform module 52 and lighting module
54 1n a manner that will be become apparent hereinafter.
Each vertex has associated mode bits 202 that may be
unique, and can therefore execute a specifically tailored
program sequence. While, mode bits 202 may generally map
directly to the graphics API, some of them may be derived.

In one embodiment, the active light bits (LIS) of FIG. 3
may be contiguous. Further, the pass-through bit (VPAS) is
unique 1n that when 1t 1s turned on, the vertex data 1s passed
through with scale and bias, and no transforms or lighting is
done. Possible mode bits 202 used when VPAS 1s true are the
texture divide bits (TDV0,1), and foggen bits (used to
extract fog value in D3D™). VPAS is thus used for pre-
transformed data, and TDV0,1 are used to deal with a
cylindrical wrap mode 1n the context of D3D™,

FIG. 4 1llustrates the transtorm module of one embodi-
ment of the present invention. As shown, the transform
module 52 1s connected to VAB 50 by way of 6 mnput buifers
400. In one embodiment, each input buifer 400 might be
7#*128b 1n size. The 6 mput bullers 400 ecach 1s capable of
storing 7 quad words. Such imput buifers 400 follow the
same layout as VAB 50, except that the pass data 1s over-
lapped with the position data.

In one embodiment, a bit might be designated for each
attribute of each input buifer 400 to indicate whether data
has changed since the previous instance that the input butfer
400 was loaded. By this design, each input buffer 400 might
be loaded only with changed data.

The transform module 52 1s further connected to 6 output
vertex buffers 402 1n the lighting module 54. The output
buffers include a first buffer 404, a second bufter 406, and a
third buffer 408. As will become apparent hereinafter, the
contents, 1.e. position, texture coordinate data, etc., of the
third butfer 408 are not used 1n the lighting module 54. The
first buffer 404 and second buffer 406 are both, however,
used for mnputting lighting and color data to the lighting
module 54. Two buffers are employed since the lighting
module 1s adapted to handle two read inputs. It should be
noted that the data might be arranged so as to avoid any
problems with read conflicts, efc.

Further coupled to the transform module 52 1s context
memory 410 and micro-code ROM memory 412. The trans-
form module 52 serves to convert object space vertex data
into screen space, and to generate any vectors required by
the lighting module 54. The transform module 52 also does
processes skinning and texture coordinates. In one
embodiment, the transform module 52 might be a 128-bat
design processing 4 floats 1n parallel, and might be opti-
mized for doing 4 term dot products.

FIG. 4A 1s a flow chart illustrating a method of executing,
multiple threads i1n the transform module 52 in accordance
with one embodiment of the present invention. In operation,
the transform module 52 1s capable of processing 3 vertices
in parallel via interleaving. To this end, 3 commands can be
simultaneously executed i parallel unless there are stall
conditions between the commands such as writing and
subsequently reading from the context memory 410. The 3
execution threads are independent of each other and can be

any command since all vertices contain unique correspond-
ing mode bits 202.

As shown 1n FIG. 4A, the method of executing multiple
threads includes determining a current thread to be executed
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in operation 420. This determination might be made by
identifying a number of cycles that a graphics-processing
module requires for completion of an operation, and track-
ing the cycles. By tracking the cycles, each thread can be
assigned to a cycle, thus allowing determination of the
current thread based on the current cycle. It should be noted,
however, that such determination might be made 1n any
desired manner that 1s deemed eflective.

Next, 1n operation 422, an instruction associated with a
thread to be executed during a current cycle 1s retrieved
using a corresponding program counter number. Thereafter,
the 1nstruction 1s executed on the graphics-processing mod-
ule 1n operation 424.

In one example of use, the instant method includes first
accessing a first instruction, or code segment, per a first
program counter. As mentioned earlier, such program
counter 1s assoclated with a first execution thread. Next, the
first code segment 1s executed in the graphics-processing
module. As will soon become apparent, such graphics-
processing module might take the form of an adder, a

multiplier, or any other functional unit or combination
thereof.

Since the graphics-processing module requires more than
one clock cycle to complete the execution, a second code
secgment might be accessed per a second program counter
immediately one clock cycle after the execution of the first
code segment. The second program counter 1s associated
with a second execution thread, wherein each of the execu-
tion threads process a unique vertex.

To this end, the second code segment might begin execu-
fion 1n the graphics-processing module prior to the comple-
fion of the execution of the first code segment in the
graphics-processing module. In use the graphics-processing
module requires a predetermined number of cycles for every
thread to generate an output. Thus, the various steps of the
present example might be repeated for every predetermined
number of cycles.

This technique offers numerous advantages over the prior
art. Of course, the functional units of the present invention
are used more etficiently. Further, the governing code might
be written more efficiently when the multiple threading
scheme 1s assumed to be used.

For example, 1n the case where the graphics-processing,
module 1includes a multiplier that requires three clock cycles
to output an answer, it would be necessary to include two no
operation commands between subsequent operations such as
a=b*c and d=e™*a, since “a” would not be available until after
the three clock cycles. In the present embodiment, however,
the code might simply call d=e*a 1immediately subsequent
a=b*c, because 1t can be assumed that such code will be
executed as one of three execution threads that are called

once every three clock cycles.

FIG. 4B 1s a flow diagram 1llustrating a manner in which
the method of FIG. 4A 1s carried out. As shown, each
execution thread has an associated program counter 450 that
1s used to access 1nstructions, or code segments, 1n 1nstruc-
fion memory 452. Such instructions might then be used to
operate a graphics-processing module such as an adder 456,
a multiplier 454, and/or an 1inverse logic unit or register 459.

In order to accommodate a situation where at least two of
the foregoing processing modules are used in tandem, at
least one code segment delay 457 1s employed between the
ographics-processing modules. In the case where a three-
thread framework 1s employed, a three-clock cycle code
secoment delay 457 1s used. In one embodiment, the code
secoment delay 457 1s used when a multiplication instruction
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1s followed by an addition instruction. In such case, the
addition 1nstruction 1s not executed until three clock cycles
after the execution of the multiplication instruction 1n order
to ensure that time has elapsed which 1s sufficient for the
multiplier 456 to generate an output.

After the execution of each nstruction, the program
counter 450 of the current execution thread 1s updated and
the program counter of the next execution thread 1s called by
module 458 1n a round robin sequence to access an associ-
ated instruction. It should be noted that the program counters
might be used 1n any fashion including, but not limited to
incrementing, jumping, calling and returning, performing a
table jump, and/or dispatching. Dispatching refers to deter-
mining a starting point of code segment execution based on
a received parameter. Further, 1t important to understand that
the principles associated with the present multiple thread
execution framework might also be applied to the lighting
module 54 of the graphics-processing pipeline of the present
ivention.

In the case where a three-thread framework 1s employed,
cach thread 1s allocated one input buffer and one output
buffer at any one time. This allows loading of three more
commands with data while processing three commands. The
input buffers and output buflers are assigned in a round robin
sequence 1n a manner that will be discussed later with

reference to FIGS. 27 and 28.

The execution threads are thus temporally and function-
ally interleaved. This means that each function unit 1s
pipelined into three stages and each thread occupies one
stage at any one time. In one embodiment, the three-threads
might be set to always execute 1n the same sequence, 1.e.
zero then one then three. Conceptually, the threads enter a
function unit at t=clock modulo three. Once a function unit
starts work, it takes three cycles to deliver the result (except
the ILU that takes six), at which time the same thread is
again active.

FIG. § 1llustrates the functional units of the transform
module 52 of FIG. 4 1n accordance with one embodiment of
the present invention. As shown, included are 1nput buifers
400 that are adapted for being coupled to VAB 50 for

receiving vertex data therefrom.

A memory logic unit (MLU) 500 has a first input coupled
to an output of input buffers 400. As an option, the output of

MLU 500 might have a feedback loop 502 coupled to the
first input thereof.

Also provided is an arithmetic logic unit (ALU) 504
having a first input coupled to an output of MLU 500. The
output of ALU 504 further has a feedback loop 506 con-
nected to the second input thereof. Such feedback loop 502
may further have a delay 508 coupled thereto. Coupled to an
output of ALU 504 1s an mnput of a register unit 510. It
should be noted that the output of register unit 510 1is
coupled to the first and second mputs of MLU 500.

An inverse logic unit (ILU) 512 is provided including an
input coupled to the output of ALU 504 for performing an
Inverse or an inverse square root operation. In an alternate
embodiment, ILU 512 might include an input coupled to the
output of register unit 510.

Further included 1s a conversion, or smearing, module 514
coupled between an output of ILU 512 and a second 1nput
of MLU 500. In use the conversion module 514 serves to
convert scalar vertex data to vector vertex data. This 1s
accomplished by multiplying the scalar data by a vector so
that the vector operators such as the multiplier and/or adder
may process it. For example, a scalar A, after conversion,
may become a vector (A,A,A,A). In an alternate
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embodiment, the smearing module 514 might be 1ncorpo-
rated mto the multiplexers associated with MLU 500, or any
other component of the present invention. As an option, a
register 516 might be coupled between the output of ILU

14

TABLE 3-continued

512 and an input of the conversion unit 514. Further, such 5 VAR RLU (shared with MB_R)
register 516 might be threaded. MB (LU

Memory 410 1s coupled to the second mput of MLU 500 MB_€ ontext Memory
and the output of ALU 504. In particular, memory 410 has MB_R RLU (shared with MA_R)
a read terminal coupled to the second mnput of MLU 500.
Further, memory 410 has a write terminal coupled to the 10
output of ALU 504.

The memory 410 has stored therein a plurality of con-
stants and variables for being used 1n COIljllIlCtiOIl with the Table 4 i1llustrates a vector rotate op‘[ion capable of being
input buffer 400, MLU 500, ALU 504, register unit 510, ILU used for cross products.
512, and the conversion module 514 for processing the 15
vertex data. Such processing might include transforming TARIE 4
object space vertex data into screen space vertex data,
generating vectors, etc. MR NONE  No change

Finally, an output converter 518 1s coupled to the output - MR ALBR  Rotate A[XYZ] vector left, B[XYZ] vector right
of ALU 3504. The output converter 518 serves for being MR__ARBL Rotate A:XYZ] vector right, B[XYZ] vector left
coupled to a lighting module 54 via output buffers 402 to - ' "’
output the processed vertex data thereto. All data paths
except for the ILU might be designed to be 128 bits wide or
other data path widths may be used. )5

FIG. 6 1s a schematic diagram of MLU 500 of the , L
transform module 52 of FIG.gS in accordance with one FIG. 7 15 a schematic diagram of ALU 504 of transform
embodiment of the present invention. As shown, MLU 500 module 52 of FIG. 5 1in accordance with one embodiment of
of the transform module 52 includes four multipliers 600 the present invention. As shown, ALU 3504 of transform
that are coupled 1n parallel. 30 module 52 includes three adders 700 coupled in parallel/

IMLU 50? of transform module 52 iﬁ Capda'l;fle of multi- serics. In use ALU 504 of transform module 52 can add two
plying two Tour component vectors 1n three dilferent ways,
or pass one four component vector. MLU 500 is capable of three component vectors, pass one four component V@C‘[(?I‘, or
performing multiple operations. Table 2 illustrates such smear a vector component across the output. Table 5 1llus-
operations associated with MLLU 500 of transform module 35 trates various operations of which ALU 504 of transtorm
52. module 52 1s capable.
TABLE 2

CMLU_MULT o[0] = a]O0]*b|0],0l1] = a]1]*b]1],0]2] = a|2|*b[2],0][3] = a| 3]*b| 3]
CMLU_MULA o[0] = a|0]*b|0],0]1] = a|1]*b|1],0]2] = a]2]*b|2],0|3] = a] 3]
CMLU__MULB o[0] = a|O0]*b|0],0[1] = a|1]|*b|1],0[2] = a|2]*b|2],0[3] = b| 3]
CMLU__PASA o[0] = a|0],0]1] = a]1],0]2] = a|2],0[3] = a] 3]
CMLU_PASB o[0] = b[0],0[1] = b[1],0[2] = b[2],0[3] = b[3]

Possible A and B inputs are shown in Table 3.

TABLE 3
MA M MLU 50
MA_V [nput Buffer
CALU_ ADDA
CALU ADDB

CALU__SUM3B
CALU_SUM4B
CALU_SMRBO
CALU_SMRBI1
CALU__SMRB2
CALU_SMRB3

CALU__PASA
CALU__PASB

TABLE 5

o[0] = a0 J+b[0],0[ 1] = a[1]+b[1],0[2] = a]2 ]+b[2],0] 3] = a[ 3]
o[0] = a]O+b|0],0]1] = a|1|+b|1],0]2] = a]2 +b|2],0] 3] = b| 3]
0[0123] = b|O] + b[1] + b|2]

0[0123] = b]O] + b[1] + b]2] + b|3]

0[0123] = b| O]

0[0123] = b|1]

0[0123] = b| 2]

0[0123] = b| 3]

o[0] = a|0],0]l1] = a]1],0]2] = a|2],0]3] = a]|3]

o[0] = b|0],0[1] = b[1],0[2] = b]2],0[3] = b| 3]
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Table 6 illustrates the A and B inputs of ALU 504 of
transform module 52.

TABLE 6
AA_A ALU (one instruction delay)
AA_C Context Memory
AB M MILU

It 1s also possible to modify the sign bits of the A and B
input by effecting no change, negation of B, negation of A,
absolute value A,B. It should be noted that when ALU 504
outputs scalar vertex data, this scalar vertex data 1s smeared
across the output in the sense that each output represents the
scalar vertex data. The pass control signals of MLU 500 and
ALU 504 are each capable of disabling all special value
handling during operation.

FIG. 8 1s a schematic diagram of the vector register file
510 of transform module 52 of FIG. § 1n accordance with
one embodiment of the present mvention. As shown, the
vector register file 510 includes four sets of registers 800
cach having an output connected to a first input of a
corresponding multiplexer 802 and an input coupled to a
second 1nput of the corresponding multiplexer 802.

In one embodiment of the present invention, the vector
register file 510 1s threaded. That 1s, there are three copies of
the vector register file 510 and each thread has its own copy.
In one embodiment, each copy contains eight registers, each
of which might be 128 bits 1n size and store four floats. The
vector register file 510 1s written from ALU 504 and the

output 1s fed back to MLU 500. The vector register file 510
has one write and one read per cycle.

In operation, 1t 1s also possible to individually mask a
write operation to each register component. The vector
register file 510 exhibits zero latency when the write address
1s the same as the read address due to a bypass path 511 from
the 1nput to the output. In this case, unmasked components
would be taken from the registers and masked components
would be bypassed. The vector register file 510 1s thus very
usetul for building up vectors component by component, or
for changing the order of vector components in conjunction
with the ALU SMR operations (See Table 5). Temporary

results might be also stored in the vector register file 510.

FIG. 9 1s a schematic diagram of ILU 512 of transform
module 52 of FIG. § 1n accordance with one embodiment of
the present mmvention. As shown, ILU 512 of transform
module 52 1s capable of generating a floating-point recip-
rocal (1/D) and a reciprocal square root (1/D"(¥2)). To carry
out such operations, either one of two iterative processes
might be executed on a mantissa. Such processes might be
executed with any desired dedicated hardware, and are
shown below:

Reciprocal (1/D) Reciprocal Square-root (1/D (1/2))

X, +1 = x,(2-x,%D)
1) table look up for x, (seed)

Xn+l = (1/2) $Xﬂ(3_Xﬂ2$D)
table look up for x, (seed)

Xn Xy Xp

2) 1% iteration: multiply-add 1" iteration: multiply-add
2-x.*D 3-x,”*D

3) 1% iteration: multiply 1% iteration: multiply
Xa(2-%,"D) (1/2)*%,(3-%,2*D)

4y 2" iteration: no-op 224 jteration: square
pass X,+1 X, +1°

5) 2™ iteration: multiply-add 204 jteration: multiply-add
2-x_+1*D 3-x, ,2*D
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-continued
Reciprocal (1/D) Reciprocal Square-root (1/D (1/2))

224 jteration: multiply
(1/2) =+=X:ﬂ+1 (3_Xn+12$D)

6) 2% iteration: multiply
Xn+l (2_}{11+1$D)

™

As shown, the two processes are similar, affording a
straightforward design. It should be noted that the iterations
might be repeated until a threshold precision 1s met.

In operation, ILU 512 performs two basic operations
including an 1nverse operation and inverse square root
operation. Unlike the other units, 1t requires six cycles to
ogenerate the output. The input 1s a scalar, and so 1s the
output. As set forth earlier, the threaded holding register 516
at ILU 512 output 1s relied upon to latch the result until the
next time a valid result 1s generated. Further, the scalar
output 1s smeared 1nto a vector before being fed mmto MLU
500. The 1inverse unit 512 uses look-up tables and a two pass
Newton-Raphson iteration to generate EEE (Institute of
Electrical and Electronics Engineers) outputs accurate to
within about 22 mantissa bits. Table 7 illustrates the various
operations that might be performed by ILU 512 of transform

module 32.
TABLE 7
CILU__INV o =1.0/a
CILU__ISQ o = 1.0/sqrt(a)
CILU__CINV o = 1.0/a (with range clamp)
CILU__NOP no output

The foregoing range clamp inversion operation of Table 7
might be used to allow clipping operations to be handled by
rasterization module 56. Coordinates are transformed
directly into screen space that can result 1n problems when
the homogeneous clip space w 1s near 0.0. To avoid multi-
plying by 1.0/0.0 1n the perspective divide, the 1/w calcu-
lation 1s clamped to a minimum and a maximum exponent.

In use the context memory 410 as shown 1n FIG. 5 reads
and writes only using quad-words. The memory can be read
by MLU 500 or ALU 504 each cycle, and can be written by
ALU 504. Only one memory read 1s allowed per cycle. It a
read 1s necessary, 1t 1s done at the start of an 1nstruction and
then pipelined down to ALU 504 three cycles later. Context
memory 410 need not necessarily be threaded.

FIG. 10 1s a chart of the output addresses of output
converter 518 of transform module 52 of FIG. 5 1n accor-
dance with one embodiment of the present invention. The
output converter 518 1s responsible for directing the outputs
to proper destinations, changing the bit precision of data,
and some data swizzling to increase performance. All data
destined for lighting module 54 is rounded to a 22 bat
floating point format organized as SIESM13 (one sign, eight
exponent, 13 mantissa bits). The destination buffers 402 as
shown 1in FIG. 4 1in lighting module 54 are threaded.

Data swizzling 1s useful when generating vectors. Such
technique allows the generation of a distance vector (1,d,
d*d) without penalty when producing a vector.

The distance vector 1s used :for fog, point parameter and
light attenuation. This 1s done with an eye vector and light
direction vectors. Table 8 illustrates the various operations
assoclated with such vectors. It should be noted that, in the
following table, squaring the vector refers to d*=dot[(x,y,z),
(X,¥,2)], and storing d* in the w component of (x,y,z).
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TABLE 8

1. Square the vector  (X,y,z,d*d) (output d*d to VBUEF, 1.0 to VBUF)
2. Generate inverse sqrt of d*d (1/d)

3. Normalize vector  (x/d,y/d,z/d,d) (output x/d,y/d,z/d to WBUF, d to
VBUF)

It should be noted that the math carried out 1n the present
invention might not always be IEEE compliant. For
example, 1t might be assumed that “0” multiplied by any
number renders “0.” This 1s particularly beneficial when
dealing with the equations such as d=d**1/(d*)"*, where
d=0. Without making the foregoing assumption, such equa-
tion would afford an error, thus causing problems in making
related computations.

FIG. 11 1s an 1llustration of the micro-code organization of
transform module 52 of FIG. 5 in accordance with one
embodiment of the present invention. The transform module
micro-code might be arranged 1nto 15 fields making up a
total width of 44 bits. Fields might be delayed to match the
data flow of the units. MLU 500 operations are executed at
a delay of zero, ALU operations are executed at a delay of
one, and RLU, output operations are executed at a delay of
two. Each delay 1s equivalent to three cycles.

FIG. 12 1s a schematic diagram of sequencer 1200 of
transform module 52 of FIG. 5 in accordance with one
embodiment of the present invention. As shown 1n FIG. 12,

sequencer 1200 of transform module 52 includes a buifer
1202 adapted for receiving the mode bits from VAB 50 that

are mdicative of the status of a plurality of modes of process
operations.

Also 1ncluded 1s memory 412 capable of storing code
scgments that each are adapted to carry out the process
operations 1n accordance with the status of the modes. A
sequencing module. 1206 1s coupled between memory 412
and a control vector module 1205 which 1s 1n turn coupled
to buffer 1202 for identifying a plurality of addresses in
memory 412 based on a control vector derived from mode
bits 202. The sequencing module 1206 1s further adapted for
accessing the addresses 1n memory 412 for retrieving the
code segments that might be used to operate transform
module 52 to transfer data to an output buffer 1207.

FIG. 13 1s a flowchart delineating the various operations
assoclated with use of sequencer 1200 of transform module
52 of FIG. 12. As shown, sequencer 1200 1s adapted for
sequencing graphics-processing in a transform or lighting
operation. In operation 1320, mode bits 202 are first
received which are indicative of the status of a plurality of
modes of process operations. In one embodiment, mode bits
202 might be received from a software driver.

Then, 1n operation 1322, pluralities of addresses are then
identified 1n memory based on mode bits 202. Such
addresses are then accessed in the memory 1n operation 1324
for retrieving code segments that each are adapted to carry
out the process operations in accordance with the status of
the modes. The code segments are subsequently executed

with a transform or lighting module for processing vertex
data. Note operation 1326.

FIG. 14 1s a flow diagram delineating the operation of the
sequencing module 1206 of sequencer 1200 of transform
module 52 of FIG. 12. As shown, a plurality of mode
registers 1430 each include a unique set of mode bits 202
which 1 turn correspond to a single vertex. It should be
noted that mode registers 1430 are polled 1n a round robin
sequence 1n order to allow the execution of multiple execu-
tion threads 1n the manner set forth earlier during reference

to FIGS. 4A and 4B.

5

10

15

20

25

30

35

40

45

50

55

60

65

138

Once the current execution thread 1s selected, a corre-
sponding group of mode bits 202 are decoded 1n operation
1432. Upon mode bits 202 being decoded 1n operation 1432,
a control vector 1s afforded which includes a plurality of bits
cach of which indicate whether a particular code segment 1s
to be accessed in ROM 1404 for processing the correspond-
ing vertex data.

Upon determining whether a code segment should be
accessed 1n ROM 1404 and executed, a pointer operation
1436 increments the current thread pointer to start the next
execution thread to obtain a second group mode bits 202 to
continue a similar operation. This might be continued for
cach of the threads in a round robin sequence.

Once the control vector has been formed for a particular
cgroup of mode bits 202, a priority encoder operation 1438
determines, or identifies, a next “1” or enabled, bit of the
control vector. If such a bit 1s found, the priority encoder
operation 1438 produces an address 1n ROM 1404 corre-
sponding to the enabled bit of the control vector for execu-
fion purposes.

Upon returning to the initial group of mode bits 202 after
handling the remaining threads, and after the mode bits have
been decoded and the control vector 1s again available, a
masking operation 1434 might be used to mask the previous
“1”, or enabled, bit that was 1dentified earlier. This allows
analysis of all remaining bits after mask operation 1434.

The foregoing process might be illustrated using the
following tables. Table 9 shows a plurality of equations that
might be executed on subject vertex data.

TABLE 9
R = (a )
R = (a + d*e )
R = (a + b*c + f)
R = (a + b*c + d*e )
R = 1.0/(a )
R = 1.0/(a + d*e )
R = 1.0/(a + b*c + f)
R = 1.0/(a + b*c + d*e )

As shown, there are four possibilities of products that
might be summed in addition to an inverse operation (a, b*c,
d*e, f, and 1/x). Next, mode fields might be defined. Table
10 1llustrates a pair of mode fields, mode.y and mode.z, each
having assigned thereto a predetermined set of the opera-

tions of Table 9.

TABLE 10
mode.y[4] 0: R=a
1: R=a+ d*e

2: R=a+b*c+1t

3: R=a+ b*c + d*e
mode.z[2] 0: R =R

1: R=1.0/R

Thereafter, each of the operations might be positioned 1n
memory with an associated address. Table 11 illustrates a
plurality of memory addresses each having an associated
operation. Also shown 1s a set of control vector definitions.

TABLE 11
ROM|0O]: R =a
ROM[1]: R = R + b*c
ROM|2]: R =R + d*e
ROM[3]: R=R + f
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TABLE 11-continued

ROM[4]: R = 1.0/R

cv|0] = 1;

cv]1] = (mode.y==2 || mode.y==3) 7 1 : 0;
cv]2] = (mode.y==1 | mode.y==3) 7 1 : 0;
cv|3] = (mode.y==2) 71 : 0;

cv|4] = (mode.z==1) 7 1 : (;

Table 12 illustrates the execution of an example.

TABLE 12

R = a+d™*e corresponds to:
mode.y = 1;
mode.z = O;
which in turn affords the following control vector:

cv[0] = 1;
cv|1] = 0;
cv|2] = 1;
cv| 3] = 0;
cvl4] = 0;
execution
first cycle:

cv[0] 1s TRUE so execute ROM|0]
more TRUE values in control vector, so do not terminate
program
second cycle:
cv|1] is FALSE so keep looking
cv|2] is TRUE so execute ROM|2]
no more TRUE wvalues 1n control vector, so terminate
program

As such, sequencer 1200 of transform module 52 steps
through a threaded control vector which 1s derived from
threaded mode bits 202, and executes every ROM address
whose corresponding control vector bit 1s set to “TRUE”.
The control vector has the same length as the ROM. The
sequencer 1200 1s capable of stepping through an arbitrary
control vector at the rate of one “1”, or enabled bit per a
predetermined number of cycles. Commands that do not use
mode bits 202 might be executed by on-the-fly micro-code
ogeneration due to the simplicity thereof.

By representing such statuses by way of a unique string of
mode bits 202, 1t 1s unnecessary to execute a plurality of
if-then clauses in the graphics-processing hardware to deter-
mine the statuses of the various operations. Improved per-
formance 1s thereby afforded. Conceptually, 1t 1s as 1if the 1f
clauses 1n a program language had been moved to sequencer

1200 which 1n turn instantly skips instructions with a
“FALSE” condition, as indicated by mode bits 202.

As indicated earlier, code segments are stored 1n the ROM
which are capable of handling the various statuses of the
operations identified by the mode bits. In one embodiment
a separate code segment might be retrieved for handling
cach operation indicated by the mode bits. In the alternative,
a single comprehensive code segment might be written for
handling each or some combinations of operations that are
possible. It should be noted, however, that generating such
large code segments for each combination of operations
requires additional code space, and 1t therefore might be
beneficial to modularize the code segments for only com-
monly used combinations of operations.

Since mode bits 202 do not change once the vertex
commences execution, the control vector generation might
only have to be done once per vertex before entering the
sequencer. Exceptions to this might arise 1n some cases,
however, such as lighting where operations might be
repeated. When the last vertex instruction 1s found, an end
of sequence (EOS) signal might be asserted. This in turn
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might be used to change the status of the input and output
buffers, and to allow the start of the next command 1n a
manner that will be set forth during reference to FIGS. 28A
and 28B. It should be noted that the EOS signal 1s pipeline
delayed for release of the destination buffer similar to the
manner 1n which the mstructions are handled. See FIG. 4B.

FIG. 14A 1s a flow diagram 1llustrating the various func-
tional components of the present invention employed for
integrating the handling of scalar and vector vertex data
during graphics-processing. As shown, one functional aspect
1440 includes 1nputting vector vertex data into a processing,
module, 1.e. adder, multiplier, etc., for outputting vector
vertex data. In another functional aspect 1442, vector. vertex
data 1s processed by a vector processing module, 1.€. adder,
multiplier, etc., which outputs scalar vertex data that 1s in
turn converted, or smeared, again 1nto vector vertex data.

In yet another functional aspect 1444, vector vertex data
1s masked, thereby converted to scalar vertex data, after
which 1t 1s stored 1n memory, 1.e. register logic unit, for the
purpose of generating vector vertex data. In still yet another
functional aspect 1446, scalar vertex data 1s extracted by a
vector processing module, 1.e. adder, multiplier, etc., which
In turn 1s processed by a scalar processing module, 1.e.
inverse logic unit, which renders scalar vertex data. This
scalar vertex data 1s converted again 1nto vector vertex data.

FIG. 14B 1s a flow diagram illustrating one possible
combination 1451 of the functional components of the
present mvention shown in FIG. 14A which corresponds to
transform module 52 of FIG. 5. It should be noted that
functional aspects 1444 and 1446 might have delays asso-
cilated therewith 1n a manner similar to that set forth earlier
during reference to FIG. 4B. FIG. 14C 1s a flow diagram
illustrating yet another possible combination 1453 of the

functional components of the present imnvention shown in
FIG. 14A.

Multiplexers might accomplish the extraction of the scalar
vertex data from the vector vertex data in the functional
modules of FIGS. 14A-14C. Such multiplexers might also
be responsible for any data swizzling that might be required
before processing by the various functional modules. In one
embodiment, the multiplexers might be capable of passing
and rotating vector vertex data, and rely on other graphics-
processing modules such as an ALU for other processing. In
yet another embodiment, the multiplexers might be capable
of arbitrarily rearranging attributes independently without
penalty.

FIG. 14D 1llustrates a method 1n which the transtorm
system 1s adapted for performing a blending, or skinning
operation during graphics-processing 1n a graphics pipeline
via a hardware implementation such as an application spe-
cific integrated circuit (ASIC). During processing in the
pipeline, 1 operation 1470, a plurality of matrices, a plu-
rality of weight values each corresponding with one of the
matrices, and vertex data are received. It should be noted
that an additional set of matrices might be required for
normal vertex data.

Subsequently, 1n operation 1472, a sum of a plurality of
products 1s then calculated with each product being calcu-
lated by the multiplication of the vertex data, one of the
matrices and the weight corresponding to the matrix. Such
sum of products i1s then outputted in operation 1474 for
additional processing.

In summary, the following sum of products might be
calculated:

vi=2w M *v for i=1...x Equation #1
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where v=1nputted vertex data
w=welght value
M=maftrix
x=number ol matrices
v'=vertex data for output to a processing module

n'=2w*I*nfori=1...x Equation #2

where n=inputted vertex data (normal vector)
w=welght value
[=inverted matrix (inverse transpose matrix)
x=number of inverted matrices

n'=vertex data for output to a processing module (normal
vector)

v 0,,0,,0,_.0]+1/(v",, 0" ("), (")), ("), 1] Equation #3

where
v'=C*V
v'=sum of products from Equation #1
C=[S,, S,, S, 1]*P
P=projection matrix
v _=screen vector for display purposes
O=viewport ollset

S=viewport scale

It should be noted that there are many ways to represent
the weights w, set forth hereinabove. For example, in
Equations #1 and #2 above, 1t might be said that 1=1 . . .
(x-1), leaving w_(w, where 1=X) to be calculated by the
cequation 1-Zw,. By representing the weights w, 1n this way,
it 1s ensured that all of the weights w sum to 1.

In one embodiment, the matrices might include model
view matrices (M), and the sum of products (v') might be
outputted for additional processing by a lighting operation.
See Equation #1. This sum of products (v') might also be
used to generate another sum of products (v,) for display
purposes by using a composite matrix (C). See Equation #3.
Still yet, the matrices might include inverse matrices (I) and
the vertex data might include normal vector data (n). In such
case, the additional processing might include a lighting
operation. See Equation #2.

FIG. 15 1s a schematic diagram of lighting module 54 in
accordance with one embodiment of the present invention.
As shown, lighting module 54 includes buifers 402 to which
transform module 52 outputs the vertex data. As shown,
buffer 408 bypasses lighting module 54 by way of the
pathway 1501. Further coupled to lighting module 54 1s a
context memory 1500 and micro-code ROM memory 1502.

The lighting module 54 1s adapted for handling lighting in
addition to fog and point parameters. In use lighting module
54 controls the buffer bypass pathway 1501, and calculates
the diffuse, point size, and specular output colors as well as
the fog value. It should be noted that lighting module 54
employs the same mode bits 202 as transform module 52.

The lighting module 54 further requires less precision
with respect to transform module 52, and therefore processes
22 bit floating point values (1.8.13 format) organized in
tri-words. Since the data of third buffer 408 1s 128 bats, it
utilizes bypass pathway 1501 around lighting module 54.
The lighting module 54 1s event driven and simultaneously
executes three threads in a manner similar to transform
module 52 as was set forth earlier with reference to FIGS.
4A and 4B. It should be noted that lighting module 54 might
require command launch approval from an outside source.

FIG. 16 1s a schematic diagram showing the functional

units of lighting module 54 of FIG. 15 1n accordance with
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one embodiment of the present invention. As shown,
included are mput buffers 402 adapted for being coupled to
a transform system for receiving vertex data therefrom. As
set forth earlier, input buffers 402 mclude a first input butfer
404, a second mput 406, and a third mnput butfer 408. An
input of first butfer 404, second mput buifer 406, and third
mnput buffer 408 are coupled to an output of transform
module 52. For bypass purposes, the output of third buifer
408 1s coupled to the output of lighting module 54 via a
delay 1608.

Further included 1s a MLU 1610 having a first input
coupled to an output of first input buifer 404 and a second
input coupled to an output of second input buifer 406. The
output of MLU 1610 has a feedback loop 1612 coupled to
the second input thereof. An arithmetic logic unit (ALU)
1614 has a first input coupled to an output of second 1nput
buffer 406. ALLU 1614 further has a second 1nput coupled to
an output of MLU 1610. An output of ALU 1614 1s coupled
to the output of lighting module 54. It should be noted that
the output of ALU 1614 and the output of the third 1nput
buffer 408 are coupled to the output of lighting module 54
by way of multiplexer 1616.

Next provided 1s a first register unit 1618 having an input
coupled to the output of ALU 1614 and an output coupled to
the first input of ALU 1614. A second register unit 1620 has
an 1mput coupled to the output of ALU 1614. Also, such
second register 1620 has an output coupled to the first input
and the second mput of MLU 1610.

A lighting logic unit (LLU) 1622 is also provided having
a first mnput coupled to the output of ALU 1614, a second
input coupled to the output of the first input bufier 404, and
an output coupled to the first input of MLU 1610. It should
be noted that the second mput of LLU 1622 1s coupled to the
output of the first input buifer 404 via a delay 1624. Further,
the output of LLU 1622 1s coupled to the first input of MLU
1610 via a first-in first-out register unit 1626. As shown 1n
FIG. 16, the output of LLU 1622 1s also coupled to the first
mnput of MLU 1610 via a conversion module 1628. In
operation, such conversion module 1628 1s adapted for
converting scalar vertex data to vector vertex data 1n a
manner similar to that of transform module 52.

Finally, memory 1500 1s coupled to at least one of the
inputs of MLU 1610 and the output of arithmetic logic unit
1614. In particular, memory 1610 has a read terminal
coupled to the first and the second input of MLU 1610.
Further, memory 1500 has a write terminal coupled to the
output of ALU 1614.

The memory has stored therein a plurality of constants
and variables for being used in conjunction with input
buffers 402, MLU 1610, ALU 1614, first register unit 1618,
second register unit 1620, and LLU 1622 for processing the
vertex data.

FIG. 17 1s a schematic diagram of MLU 1610 of lighting
module 54 of FIG. 16 1n accordance with one embodiment
of the present invention. As shown, MLU 1610 of lighting
module 54 includes three multipliers 1700 1n parallel. In
operation, the present MLU 1610 1s adapted to multiply two
three component vectors, or pass one three component
vector. The multiplication of the three component vectors
might be accomplished by way of a dot product or a parallel
multiply. Table 13 1llustrates the operations that MLU 1610
of lighting module 54 1s capable of performing.
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TABLE 13

0]*bI0], of 1] = a[1]*b[1], o[ 2] = a[2]*b] 2]

0], o[1] = a[1], o[2] = a[2]
], o[1] = b[1], o[2] = b[2]

ZMLU_MUIT  of0] =
ZMLU_PASA  of[0] =
ZMLU_PASB  of0] =

o O
i
[
o O

Table 14 1llustrates the possible A and B mputs of MLU
1610 of lighting module 54.

TABLE 14
MA_V VBUFFER
MA_ L LLU
MA_R RLU|2,3] (shared with MB__R)
MA_C Context memory (shared with MB__C)
MB_M MLU
MB_ W WBUFFER
MB_R RLU|[2,3] (shared with MA_ R)
MB_C Context memory (shared with MA_ C)

FIG. 18 1s a schematic diagram of ALU 1614 of lighting
module 54 of FIG. 16 1n accordance with one embodiment

of the present invention. As shown, ALU 1614 includes
three adders 1800 in parallel/series. In use ALU 1614 is
capable of adding two three component vectors, or passing
one three component vector. Table 15 1llustrates the various
operations of which ALU 1614 of lighting module 54 1is

capable.

TABLE 15
ZALU_ADD ol0] = a|0]+b[O], of[1] = a]1]+b[1], o[2] = a]2]+b| 2]
ZALU_SUM3B  o[012] = b[0] + b[1] + B[2]
ZALU__PASA o|l0] = a|0], o|1] = a|1], o|[2] = a]|2]
ZALU_ PASB  o[0]=b[0], o[1] = b[1], o[2] = b[2]

Table 16 1llustrates the possible A and B inputs to ALU
1614 of lighting module 54.

TABLE 16
AA_W WBUFFER
AA_R RI.U[0,1]
AB_M MLU

FIG. 19 1s a schematic diagram of register units 1618 and
1620 of lighting module 54 of FIG. 16 in accordance with
one embodiment of the present invention. As shown, register
units 1618 and 1620 each include two sets of registers 1900
cach having an output connected to a first input of a
corresponding multiplexer 1902 and an 1nput coupled to a
second 1nput of multiplexer 1902.

Register units 1618 and 1620 of lighting module 54 are
split 1into two registers for ALU 1614 and two registers for
MLU 1610. In one embodiment, the registers are threaded.
The register units 1618 and 1620 exhibit zero latency when
a write address 1s the same as a read address due to a bypass
path from the input to the outputs.

FIG. 20 1s a schematic diagram of LLU 1622 of lighting
module 54 of FIG. 16 1n accordance with one embodiment
of the present mnvention. LLU 1622 1s the lighting unit of
lighting module 54. It 1s a scalar block that computes
lighting coetlicients later used to multiply the light+material
colors. LLLU 1622 includes two MAC’s, an iverter, four
small memories, and a flag register.

The flag register 1s used to implement the conditional
parts of the lighting equations. The outputs are an ambient,
diffuse, and specular coefficient. The scalar memories con-
tain variables used for the specular approximations and
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constants. The first location of each memory contaimns 1.0
(for ctx0 and ctx2) and 0.0 (for ctxl and ctx3). In one
embodiment, these are hardwired and do not need to be
loaded.

In use LLLU 1622 fundamentally implements the equation:
(x+L)/(M*x+N). This equation is used to approximate a
specular lighting term. The mputs to LLU 1622 are from
ALU 1614 of lighting module 54 and are the dot products
used 1n the lighting equations. As set forth earlier, with
respect to FIG. 16, there 1s an output FIFO 1626 between
LLU 1622 and MLU 1610 which buffers coeflicients until
MLU 1610 needs them. In one embodiment, such FIFO
1626 might be threaded along with delays 1608 and 1624,
and registers 1618 and 1620. Due to possible color material
processing, 1t 1s unknown when the diffuse and specular
outputs are consumed by MLU 1610.

There 1s specially adapted hardware for dealing with the
diffuse output alpha component since lighting module 54
only deals with R,G,B components. Such specially adapted
hardware 1s capable of outputting two types of alpha
components, namely vtx colorg o Tbuffer], and stored ctx
of Ctx store]. The choice between the foregoing alpha com-
ponents 1s governed by mode bits 202.

In operation, LLU 1622 calculates ambient (Ca), diffuse
(Cde), and specular (Cs) coefficients of lighting. These
coellicients are then multiplied with the ambient, diffuse,
and specular colors to generate a light’s contribution to the
vertex color. Table 16A includes a list of inputs recerved by
LLU 1622 and the calculations carried out to generate the
ambient (Ca), diffuse (Cde), and specular (Cs) coefficients of
lighting. It should be noted that any desired hardware
conflguration might be employed to implement LLU 1622.
In one embodiment, the specific configuration shown 1n FIG.

20 might be employed.

TABLE 16A

[nput definitions:

(from transform engine)
(from transform engine)
(from transform engine)
(from transform engine)
(from transform engine)
(from lighting engine)

(from context memory)

n = normal vector
e = normalized eye vector
| = normalized light vector
s = spotlight vector*light vector
D = distance vector (1,d,d*d)
h = half angle vector
K = attenuation constant vector
(K0,K1,K2)
The LLU might receive the following scalar data in carrying out its
calculations:

n*] (from MLU/ALU)
n*h (from MLU/ALU)
K*D  (from MLU/ALU)

S (from transform engine)
powerQ (material exponent from ctx0-3 memory)
powerl (spotlight exponent from ctx0-3 memory)
range  (from ctx0-3 memory)
cutoff  (from ctx0-3 memory)

[nfinite Light

LLU Calculations:
Ca=1.0

Cd =n*1

Cs = (n*h) power0
Local Ligﬁ

LLU Calculations:
att = 1.0/(K*D)
Ca = att
Cd = att*(n*1)
Cs = att*((n*h) power())
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TABLE 16A-continued

Spot Light

LILU Calculations:
att = (s powerl)/(K*D)
Ca = att
Cd = att*(n*1)
Cs = att*((n*h) power0)

As set forth above, the mode bits controlling the vertex
sequencer might not necessarily be changed by the vertex
data itself or by any results derived from vertex data. To
allow vertex data to modity vertex processing, LLU 1622
employs a flag register 1623 1s provided. Setting bits to
TRUE 1n this flag register allows clamping to 0.0 of calcu-
lation results 1f a flag 1s specified 1n the output control of the
calculation. Another use of the flag register 1623 would be
in setting a write mask for register writes.

The flag register 1623 1s provided mm LLU 1622 for
performing the if/then/else clamping to 0.0 1n the lighting
equations at no performance penalty. The sign bit of various
operands might set the flags. Table 16B 1illustrates the
manner 1n which the flags in flag register 1623 are set and

the resulting clamping.

TABLE 16B

[nfinite Light

LLU Calculations:
Dflag = sign bit of (n*])
Sflag = sign bit of (n*h)

Clamp:
Ca = (0 )70 : Ca;
Cd = (Dflag )70 :Cd;
Cs = (Dflag | Sflag) ? O : Cs;
Local Light

LLU Calculations:
Rflag = sign bit of (range-d)
Dflag = sign bit of (n*])
Sflag = sign bit of (n*h)
Clamp:

Ca=(Rflag )?70:Ca;

Cd = (Rflag | Dflag ) ? 0 : Cd;

Cs = (Rflag | Dflag (Sflag) 7 0 : Cs;
Spot Light

LLU Calculations:
Cflag = sign bit of (s-cutoff)
Rflag = sign bit of (range-d)
Dflag = sign bit of (n*])
Sflag = sign bit of (n*h)
Clamp:

Ca = (Cflag | Rflag )20 : Ca;
Cd = (Cflag | Rflag | Dflag )70 :Cd;
Cs = (Cflag | Rflag | Dflag | Sflag) ? 0 : Cs;

FIG. 21 1s an 1illustration of the organization of the flag
register 1623 associated with ligchting module 54 of FIG. 16
in accordance with one embodiment of the present 1nven-
tion. The flag register 1623 contains 8 one bit flags and are
set by the sign bit of the ALU (IFLAG) or MACO (MFLAG)
outputs.

When LLU 1622 outputs a scalar value to MLU 1610
where 1t gets smeared 1nto a tri-word, 1t specifies a mask for
the flag register. If the register & mask 1s true, 0.0 replaces
the output. Table 17 1llustrates the various flags of FIG. 21
to be used i1n outputting ambient, diffuse, and specular
attributes.
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TABLE 17
Ambient Mask: CR, U
Difftuse Mask: D, CR, U
Specular Mask: D,S, CRT,U

The approximation used for the specular term can go
negative where the actual cos (theta)**n would go to 0.0. As
a result, 1t 1s necessary to perform a clamping operation. For
this, the T, U flags are used. Table 18 illustrates various
operations of which a functional logic unit(FLU) 1621 of

LLU 1622 1s capable. Note FIG. 20.

TABLE 18
ZFLU_INV o= 1/a (mantissa accuracy - 12 bits)
ZFLU__ISQ o = 1/sqrt(a) (mantissa accuracy - 6 bits)
ZFLU__PASS 0 =a
ZFLU__PASS] o=1.0
ZFL.U__MINI1 o=(a<1.0)?a:1.0
ZFL.U__NOP o = 0.0

FIG. 22 1s an 1llustration of the micro-code fields associ-
ated with lighting module 54 of FIG. 16 1n accordance with
onc embodiment of the present invention. As shown, the
micro-code of lighting module 54 1s arranged into 33 fields
making up a total width of 85 bits. Fields are delayed to
match the data tlow of the units. The MLU operations are
done at a delay of zero, ALU operations are done at a delay
of one, and RLU, LLU output operations are done at a delay
of two. Each delay 1s equivalent to three cycles.

FIG. 23 1s a schematic diagram of sequencer 2300 asso-
ciated with lighting module 54 of FIG. 16 1n accordance
with one embodiment of the present invention. As shown,
sequencer 2300 of lighting module 54 includes an 1nput
buffer 2302 adapted for receiving mode bits 202 which are
indicative of the status of a plurality of modes of process
operations. Also included 1s memory 1502 capable of storing
code segments that each are adapted to carry out the process
operations in accordance with the status of the modes.

A sequencing module 2306 1s coupled between memory
1502 and buifer 2302 for 1dentifying a plurality of addresses
in memory 1502 based on a control vector 2305 derived
from the mode bits. The sequencing module 2306 1s further
adapted for accessing the addresses in memory 1502 for
retrieving the code segments that might be used to operate
lighting module 54.

The sequencer 2300 of lighting module 54 1s similar to
that of transtorm module 52. In operation, sequencer 2300 of
lighting module 54 steps through a threaded control vector
that 1s dertved from threaded mode bits 202 and executes
every ROM address whose corresponding control vector bit
1s set to “1”. The control vector has the same number of bits
as the ROM has words. The sequencer 2300 can step through
an arbitrary control vector at the rate of a single “1” or
enabled bit per a predetermined number of cycles for every
thread. Commands that do not use mode bits 202 are
executed by on-the-fly micro-code generation. The main
difference between sequencer 2300 of lighting module 54
and sequencer 1200 of transform module 52 1s that
sequencer 2300 of lighting module 54 can loop back and
execute the lighting code up to eight times.

The sequencer 2300 of lighting module 54 has a light
counter that starts at zero for each new vertex and incre-
ments by one at the end of the micro-code sequence. If the
LIS field of mode bits 202 contains a “1” in the matching bit
field, sequencer 2300 goes back and starts over at the
beginning of the lighting micro-code block. This continues
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until a zero 1s found 1n the LIS field or eight lights have been
done. Color accumulation is done by incrementing (per
light) the ALU registers that store the diffuse and specular
color. Automatic memory address indexing 1s done using the
light counter to fetch the correct parameters for each light.

FIG. 24 1s a flowchart delineating the method by which
the sequencers of the transform and lighting modules 52 and
54 are capable of controlling the input and output of the
associated buffers 1n accordance with one embodiment of
the present invention. As shown, vertex data 1s initially
received 1n a buifer of a first set of buifers 1n operation 2420.
The buffer in which the vertex data 1s received 1s based on
a round robin sequence.

Subsequently, 1n operation 2422, an empty builer of a
second set of butfers 1s 1dentified also based on a round robin
sequence. The transform module 52 1s coupled between the
first set of buifers and the second set of buifers. When the
empty buifer of the second set of buffers 1s 1dentified, the
vertex data 1s processed 1n transform module and outputted
from transform module to the i1dentified empty bufler of the
second set of bulfers. Note operations 2424 and 2426.

Slmllarly, an empty bufler of a third set of buifers, or slots
Or spaces 1n memory, are identified based on a round robin
sequence 1n operation 2428. The lighting module 54 is
coupled between the second set of buffers and the third set
of buifers. When the empty bufler of the third set of buifers
1s 1denfified, the vertex data i1s processed in the lighting
module, as indicated in operation 2430. The vertex data 1s
subsequently outputted from lighting module 52 to the
identified empty bufler of the third set of buiffers. See
operation 2432. It should be noted that the number of
buifers, or slots in memory, 1s flexible and might be changed.

FIG. 25 1s a diagram 1illustrating the method by which the
sequencers of the transform and lighting modules 52 and 54
arc capable of controlling the input and output of the
associated buffers 1n accordance with the method of FIG. 24.
As shown, the first set of buflers, or input butfers 400, feed
transform module 52 which in turn feed the second set of
buffers, or intermediate buffers 404, 406. The second set of
buffers 404, 406 feed lighting module 54 that drams to
memory 2550.

In order carry out the method set forth in FIG. 25, the slots
of memory 2550 and the buifers of the first and second set
are each assigned a unique identifier upon 1nitially receiving
vertex.data. Further, a current state of each buffer 1s tracked.
Such state might include an allocated state, a valid state, an
active state, or a done state.

The allocated state indicates that a buifer/slot 1s already
allocated to receive an output of the previous graphics-
processing module, 1.e. transform module or lighting mod-
ule. When a write pointer 1s scanning the buffers/slots in the
round robin sequence, a buffer/slot in the allocated state
cause such write pointer to mcrement to the next buffer or
slot.

If a buffer/slot 1s 1n the valid state, the buffer/slot 1s
available for receiving vertex data. On the other hand, the
active state indicates that a buffer/slot 1s currently 1in an
execution state, or receiving vertex data. This active status
1s maintained until a thread 1s done after which a read pointer
increments, thus placing the buffer/slot back 1n the valid
state. It should be noted that the first set of buffers 400 are
only capable of being in the valid state since there 1s no
previous graphics-processing module to allocate them.

An example of a sequence of states will now be set forth.
Upon recerving vertex data in one of the first set of bulfers
400 and a new set of command bits 200, such buffer is
placed 1n the valid state, after which one of the second set
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of buffers 402, 404 1s placed i1n the allocated state 1n
anticipation of the output of transform module 52.

If none of the second set of buffers 404, 406 1s available
for allocation, the vertex data 1n the buffer of the first set 400
can not be processed. Further, a check might be done to
determine whether the code segments to be executed will
interfere with any other code segments that are to be
simultaneously run. If so, the vertex data in the buifer of the
first set 400 will not be processed and a stall condition
nitiated.

After one of the second set of butlers 404, 406 1s placed
in the allocated state, the buffer of the first set 400 1s placed
in the active state. When transtorm module 52 1s finished
execution, the buffer of the second set 404, 406 1s read and
then placed i1n the valid state. These state changes are
similarly executed during the transfer of vertex data between
the second set 404, 406 and the slots of memory 2550.

FIG. 235B 1illustrates the rasterizer module 56 that com-
prises a set-up module 57 and a traversal module 58. The
rasterizer module 56 1s adapted for performing area-based
rasterization 1n an alternating manner. In particular, a plu-
rality of polygon-defining sense points are positioned on or
near the primitive after which line equations are evaluated at
the points to determine which pixels reside in the primitive.
During operation, this evaluation is repeated as the points
are moved 1n an alternating manner for efficiency purposes.
Further, the rasterizer module 56 might be adapted to operate
without any clipping procedure.

FIG. 26 1llustrates a schematic of the set-up module 57 of
rasterization module 56. As shown, the set-up module 57
includes a control section 61 that handles routing data and
control signals to their appropriate functional units 1n order
to perform the desired floating-point calculations. The
primitive sequencer 62 handles turning sequences of vertices
into triangles, lines or points. Further, floating point data
path section 64 includes the multiplexers and floating point
computation units that perform the math required in the
set-up unit.

With continuing reference to FIG. 26, output formatting
section 63 handles converting the internal floating point
format of edge slopes and edge values 1nto integer formats
suitable for the rasterizer since the rasterizer operates only
with integer values. Of course, 1n alternate embodiments, the
rasterizer might use a floating point thus obviating the need
for output formatting section 63.

In operation, output formatting section 63 executes a
block floating point conversion. As 1s well known, with a
given number, i.e. 2.34 ¢'°, floating point format tracks a
mantissa (2.34) and an exponent (10) thereof. Block floating
point conversion essentially manipulates the decimal place
of the mantissas of incoming data such that the exponents
are the same. To this end, the exponent need not be handled
in rasterizer module 56.

FIG. 26A 1s an 1llustration showing the various param-
eters calculated by set-up module 57 of rasterizer module 56
of FIG. 25B. Such parameters are required for rasterizer
module 56 to perform the associated functions. Upon receipt
of a primitive 2600, set-up module 57 calculates three values
including slopes 2601 of the primitive 2600, a starting
position 2602 and a starting value 2604.

The slopes 2601 are used to generate coetficients for line
cequations of the edges of the primitive 2600 to be used
during rasterization. The slopes 2601 might, for example, be
calculated by using equations #4 and #5 shown below.

slope s=vo—y

slope g=x;—x, Equations #4 and #5
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where v,,y, and X,,X, are coordinates of vertices shown in
FIG. 26A.

It should be noted that the slopes might also be calculated
using the coordinates of the vertices by employing a simple
rotation operation or the like.

The starting position 2602 indicates a starting point for
arca rasterization that will be set forth hereinafter 1n greater
detail. The starting value 2604 1s equal to the area of the
shaded triangle shown 1n FIG. 26A and 1s also used during
the area-based rasterization process. Such starting value
2604 1s selected so that stepping the raster position about the
screen while adding the slope at each step will equal zero
exactly when the raster position 1s on the edge. Calculation
of the starting value 2604 might be accomplished using
Equation #6 below:

starting value=slope, * (x,—x,)+slopeg*(y,—vo) Equation #6

where

X, V. starting position 2602

slope,, slopez=slopes of one of the edges based on
coordinates of vertices shown 1n FIG. 26 A

X4,Yo=coordinates of one of the vertices of the edges
shown 1n FIG. 26 A

It should be understood that the foregoing values might
also be calculated for other types of primitives. For example,
in the case of a line, an extra slope must be calculated for the
four-sided bounding box. Such slope can be easily calcu-
lated by taking the reciprocal of the slope of an opposite side
of the bounding box. In addition to the extra slope
calculation, 1t 1s noted that another starting value needs to be
calculated 1n the case of the line primitive.

FIG. 27 1llustrates the method by which rasterizer module
56 handles one of a plurality of primitives, ¢.g. triangles. In
particular, an initial operation 1s first performed by set-up
module 57 of rasterizer module 56. Upon receipt of a
primitive, line equation coefficients of line equations are
determined for lines that define the primitive in operation
2700 using slopes 2601 of FIG. 26 A 1n a manner that 1s well
known to those with ordinary skill in the art. As 1s well
known, three line equations are required to define a triangle.
On the other hand, a primitive such as a line 1s drawn as a
rectangle or parallelogram with four sides and four line
equations.

Thereafter, in operation 2702, the line equation coeffi-
cients are modified if any primitive vertex(es) has a negative
W-coordinate. Additional information regarding this process
will be set forth hereinafter 1n greater detail with reference
to FIG. 32.

It should be noted that set-up module 57 of rasterizer
module 56 also computes a bounding box of the primitive.
For most triangles, the bounding box includes the minimum
and maximum values of the three vertexes. For lines, the
four parallelogram corners of the bounding box are calcu-
lated. For triangles or lines that have a vertex with a negative
W-coordinate, an area that 1s to be drawn extends beyond the
convex hull of the vertices.

One of the commands of OpenGL® 15 a scissor rectangle
which defines a boundary outside of which 1s not to be
drawn. The set-up module 57 of rasterizer module 56
calculates the intersection of the bounding box and the
scissor rectangle. Since the scissor rectangle 1s a rectangle,
four additional line equations are afforded. It should be
noted that the line equations associated with the scissor
rectangle have a trivial form, 1.e. horizontal or vertical.

Furthermore, 1n 3-D space, the near plane and far plane
are parallel and at right angles to the line of sight. In the case
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of the primitive being a triangle, three vertexes are included
which define a plane that might have any orientation. The
intersections of the plane of the primitive and the near and
far planes include two lines with two associated line equa-
fions.

Accordingly, each primitive has a total of nine or ten line
equations depending on whether 1t takes the form of a
triangle or a line, respectively. Again, in the case of the
triangle, such line equations include the three line equations
which define the triangle, the four line equations defining the
bounding box and the two line equations which define the
intersections of the plane 1n which the primitive resides, and
near and far planes.

With continuing reference to FIG. 27, the process
progresses 1n operation 2704 by positioning a plurality of
polints on or near the primitive. The starting position 2602
dictates such positioning, as shown in FIG. 26 A. Such points
define an enclosed convex region and reside at corners of the
convex region. FIG. 27A 1llustrates such sense points 2705
that enclose convex region 2707, ¢.g. a rectangle. In one
embodiment, such rectangle might be 8x2 pixels 1n size.
Further, the points might be 1nitially positioned to enclose a
top vertex of the primitive. As an option, this might be
accomplished using truncation.

Once the primitive 1s positioned, the process 1s continued
by traversal module 58 which begins 1n operation 2706 by
processing rows of the primitive 1n a manner set forth below.
After the processing of each row, it 1s determined whether a
jump position has been found in decision 2708. A jump
position 1s a starting position for processing the next row and
will be described hereinafter in greater detail. If it 1s deter-
mined in decision 2708 that a jump position has been found,
the sense points that define the convex region are moved
thereto 1n operation 2710. If, however, 1t 1s determined that
a jump position has not been found, the process 1s ended. It
should be noted that, 1n an alternate embodiment, columns,
diagonals or any other type of string might be processed in
operation 2706 1mstead of rows.

FIG. 28 1s a flowchart 1llustrating a process of the present
invention assoclated with the process row operation 2706 of
FIG. 27. As shown, the process begins by computing the
sense points 1n operation 2800 1n order to determine whether
the polygon-defining sense points might be moved right 1n
decision 2801. Such decision 1s made based on the position
of the rightmost sense points. If the rightmost sense points
are not positioned outside the same edge or edges of the
primitive, rightward movement 1s permitted and a position
(X and Y coordinates) to the right of the current position is
stored as a snap location 1n operation 2802. If, however, both
richtmost sense points are positioned outside one or more
edges of the primitive, rightward movement 1s not permitted
and operation 2802 1s skipped.

Next, the line equations are evaluated at the points of the
convex region, €.g. rectangle, in operation 2804. The evalu-
ation includes determining 1if the points reside 1 the primi-
tive. Such determination as to whether the points reside 1n
the primitive might include determining whether the evalu-
ation of each of the line equations renders a positive value
or a negative value at each of the sense points.

The line equations can be formulated to be positive mside
the primitive and negative outside. Inclusive edges, for
which pixels that lie exactly on the edge should be drawn,
evaluate to zero and might be treated as positive. Exclusive
edges, which should not be drawn, can be made negative by
initially subtracting a value of one from the starting line
equation value. Thus pixels on exclusive edges evaluate to
a negative value (-1) instead of a positive zero. This permits
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the sense point interpretation to 1gnore the inclusive/
exclusive policy and just test the line equation sign.

After the line equations are evaluated at the points, it 1s
determined whether a current position of the sense points
constitutes a jump position 1n decision 2806. It should be
noted that a jump position 1s stored only if the two bottom
sense points are not both outside an edge. If 1t 1s determined
in decision 2806 that a jump position has been found, the
jump position is calculated and stored (or replaces a previ-
ously stored jump position if existent) in operation 2808. If
not, however, operation 2808 1s skipped.

With continuing reference to FIG. 28, 1t 1s then deter-
mined 1 decision 2810 whether leftmost sense points are
both outside an edge of the primitive. Again, this process
entails determining whether the evaluation of the line equa-
tions at both of the leftmost sense points renders positive or
negative values. In particular, upon computation of the
coellicients of the nine or ten edge equations at the pertinent
sense points, nine or ten values are rendered that have nine
or ten sign bits. To determine 1f the current side 1s com-
pletely outside any edge, for example, the present invention
AND’s the ten sign bits from the two sense points together.
[f any bit(s) survive, then both points are outside that edge.

If 1t 1s determined that the leftmost sense points are not
both outside an edge of the primitive, 1t 1s concluded that
there still remains further portions of the primitive to be
considered 1n the leftward direction, and the sense points are
moved left 1n operation 2812. If 1t 1s determined 1n decision
2810 that both leftmost sense points are indeed outside the
edge of the primitive, 1t 1s concluded that there no longer
remains further portions of the primitive to be considered in
the leftward direction. Next, in decision 2814, it 1s deter-
mined whether there 1s a snap location that resulted from
operation 2802.

If 1t 1s determined 1n decision 2814 that a snap location
does not exist, the process 1s done. If, however, a snap
location does exist, the sense points are moved to the snap
location 1n operation 2816. Thereafter, operations similar to
those of operations 2804-2812 are executed to map a right
side of the primitive. This begins 1n operation 2818 by the
line equations being evaluated at the points of the convex
region.

After the line equations are evaluated at the points, 1t 1s
determined whether a current position of the sense points
constitutes a jump position in decision 2820. If 1t 1s deter-
mined in decision 2806 that a jump position has been found,
the jump position 1s calculated and stored 1n operation 2822.
If not, however, operation 2822 1s skipped.

With continuing reference to FIG. 28, 1t 1s then deter-
mined in decision 2824 whether rightmost sense points are
both outside an edge of the primitive. If 1t 1s determined that
the rightmost sense points are not both outside an edge of the
primitive, 1t 18 concluded that there still remains further
portions of the primitive in the rightward direction to be
considered, and the sense points are moved right 1n opera-
tion 2826. If 1t 1s determined 1n decision 2824 that both
richtmost sense points are outside the edge of the primitive,
it 1s concluded that there no longer remains further portions
of the primitive to be considered in the rightward direction,
and the instant process 1s done.

FIGS. 28A and 28B are illustrations of the sequence in
which the sense points of the present invention might be
moved about the primitive 2850. It should be noted that
various alterations might include determining whether the
points can go left 1n decision 2800 and proceeding right
initially. Further, the line equations might be defined to
indicate whether the points are 1nside or outside the primi-
five 1n any desired way.
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To avoid stepping in a repeating loop, the present mven-
tion thus employs an overall direction of movement during
rasterization. The initial implementation proceeds top-down,
visiting every convex region on a row before stepping down
to the next. By processing rows top-down as well as never
stepping right then left or left then right, loops are thus
avoided.

An example of the foregoing process might be shown
with reference to the polygon-defining points, P1, P2, P3 and
P4 of FIG. 27A. In operation, pairs of adjacent sense points
can be examined to determine whether stepping in their
direction would be productive. For example, if both P3 and
P4 1n FIG. 27A were outside of an edge of a polygon, but P1
and/or P2 are not, then clearly the drawable 1nside region
lies to the left, not to the right. Thus the sense points should
not move right. Conversely, if both P3 and P4 are inside all
the edges, then there 1s a drawable area just beyond P3 and
P4, and stepping right 1s appropriate. Indeed, 1if P3 and P4
were not outside the same edge or edges, stepping right
would be productive. This same logic applies to stepping
upwards guided by P1 and P3, or stepping left guided by P1
and P2, or stepping downwards based on P2 and P4.

The foregoing process thus moves, or steps, the convex
region defined by the points around the inside of the
primitive, using sense points as a guide. Since the convex
region delfined by the points might be large, many pixels
might be tested simultancously. During use, if all sense
points are 1nside all edges of the primitive, then all the
enclosed pixels must be drawable (assuming a convex
primitive). A significant advantage 1s afforded by testing the
corners, namely the ability of proving an arbitrary area of the
primitive 1s 1side, outside or split. Only 1n the latter case do
the 1ndividual pixels in the convex region defined by the
points need to be tested. In such case, the pixels in the
convex region defined by the points might be tested one-
by-one or by another method 1n order to determine whether
they reside 1n the primitive. Furthermore, the sense points
might reduce the amount of further testing required by
defining which edges(s) split the area and which do not.

FIG. 29 1s a flowchart 1llustrating an alternate boustro-
phedonic process of the present invention associated with
the process row operation 2706 of FIG. 27. As shown, 1t 1s
first determined in decision 2900 whether a previous move-
ment was 1n a first or second direction. If there was not any
actual previous movement, a default previous movement
might be assumed. If 1t 1s determined in decision 2900 that
the previous movement was in a second direction, the line
equations are evaluated at the points of the convex region,
¢.g. a rectangle, 1n operation 2902 in a manner similar to
operation 2804 of FIG. 28.

With continuing reference to FIG. 29, 1t 1s subsequently
determined 1n decision 2904 as to whether sense points of a
first side of the rectangle are both outside an edge of the
primitive. If not, the sense points are moved or stepped 1n the
first direction 1n operation 2906. Upon it being determined
that the sense points of the first side of the rectangle are both
outside an edge of the primitive, 1t 1s then determined 1n
decision 2905 whether the points can be moved downwardly
or, in other words, whether the current position constitutes
a jump position. If so, a jump position 1s calculated and
stored 1n operation 2908 after which the process 1s done.

On the other hand, 1f 1t 1s determined 1n decision 2900 that
the previous movement was 1n a first direction, operations
similar to those of operation 2902-2908 are carried out. In
particular, the line equations are evaluated at the points of
the convex region, €.g. a rectangle, in operation 2910. It 1s
then determined 1n decision 2912 as to whether sense points
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of a second side of the rectangle are both outside an edge of
the primitive. If not, the sense points are moved or stepped
in the second direction 1n operation 2914. Upon 1t being
determined that the sense points of the second side of the
rectangle are both outside an edge of the primitive, it 1s then
determined 1n decision 2913 whether the points can be
moved downwardly or, 1n other words, whether the current
position constitutes a jump position. If so, a jump position 1s
calculated and stored in operation 2916 after which the
process 1s done.

FIG. 29A 1s an 1llustration of the sequence in which the
sense points of the present invention are moved about the
primitive 1n accordance with the boustrophedonic process of
FIG. 29. The foregoing boustrophedonic rasterization con-
strains the sequence to obey certain rules that offer better
performance for hardware. As shown, the boustrophedonic
rasterization affords a serpentine pattern that folds back and
forth. A horizontal boustrophedonic sequence, for example,
might generate all the pixels within a primitive triangle that
are on one row from left to right, and then generate the next
row right to left, and so on. Such a folded path ensures that
an average distance from a generated pixel to recently
previously generated pixels 1s relatively small.

Generating pixels that are near recently previously gen-
erated pixels 1s 1mportant when recent groups of pixels
and/or their corresponding texture values are kept in memo-
ries of a limited size. The boustrophedonic sequence more
often finds the pixels or texture values already loaded into
such memories, and therefore repeating the memory load
occurs less often.

As an option, at least one boundary might be used which
divides the primitive into a plurality of portions prior to
rasterization. In operation, the points might be moved in
cach of the portions separately. Further, the points might be
moved through an entirety of a first one of the portions
before being moved 1n a second one of the portions.

FIG. 30 1s a flowchart 1llustrating an alternate boustro-
phedonic process using boundaries. As an option, the deci-
sion whether to use boundaries might be based on a size of
the primitive. As shown m FIG. 30, the boustrophedonic
process which handles boundaries 1s similar to that of FIG.
27 with the exception of an additional operation 3000
wherein at least one boundary 1s defined which divides the
primitive nto a plurality of portions or swaths.

With continuing reference to FIG. 30, an additional deci-
sion 3001 follows the completion of every portion of the
primitive. In particular, it 1s determined in decision 3001
whether a start position of an adjacent portion was found in
operation 3006. If so, the convex region defined by the sense
points 1s moved to a start position of an adjacent portion of
the primitive 1n operation 3002 and operations 3004-3010
are repeated for the new portion of the primitive. Further
information relating to the determination of the start position
in operation 3006 will be set forth in greater detail during
reference to FIG. 31.

FIG. 31A 1s an 1illustration of the process by which the
convex region of the present invention 1s moved about the
primitive 1n accordance with the boundary- based boustro-
phedonic process of FIG. 30. As shown, the first portion that
1s processed 1s that which includes the topmost vertex of the
primitive. During operation, a left neighboring portion 1s
processed after which the adjacent left neighboring portion
1s processed and so on. This 1s continued until there are no
remaining left neighboring portions. Next, a neighboring
portion to the right of the first portion 1s processed after
which the adjacent right neighboring portion 1s processed
and so on until all of the right neighboring portions are
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processed. It should be appreciated that other types of
ordering schemes might be utilized per the desires of the
USET.

FIG. 31 1s a flowchart showing the process associated
with the process row operation 3006 of FIG. 30. Such
process 1s similar to the boustrophedonic process of FIG. 29
with the exception of decisions 3118 through 3121. Deci-
sions 3118 and 3120 both determine whether any of the
sense points have passed any boundary. Only 1f it 1s deter-
mined that the sense points are still within the boundaries is
the respective loop continued.

In operations 3119 and 3121, starting positions of adja-
cent portions of the primitive are sought and stored when 1t
1s determined 1n decisions 3118 and 3120 that any sense
points of the convex region have passed any boundary,
respectively. As shown 1n FIG. 31A, such starting positions
3126 are each defined as being the topmost point of a portion
of the primitive existent beyond a boundary. By storing this
position, a starting point 1s provided when the process 1s
repeated for the adjacent boundary-defined portion of the
primitive.

It should be noted that operations 3119 and 3121 are both
performed while processing the first portion of the primitive.
While not expressly shown m FIG. 31, only a first one of
such operations 1s performed when processing portions to
the left of the first portion, while only a second one of such
operation 1s performed when processing portions to the right
of the first portion. In other words, when processing portions
to the left of the first portion, starting positions are only
determined when a leftmost boundary of the currently
processed portion has been exceeded. Similarly, when pro-
cessing portions to the right of the first portion, starting
positions are only determined when a rightmost boundary of
the currently processed portion has been exceeded.

Using boundaries during rasterization solves a very crifi-
cal problem during pipeline processing. If a primitive 1s very
wide, the storage associated with the pixels of a single row
might not fit in a limited-size memory. Rasterization with
boundaries divides the triangle into limited-width rows (or
columns), and generates all the pixels within such a portion
before moving on to the next portion.

For example, even if a triangle 1s 100 pixels wide, a
limited-size pixel or texture memory might only hold mfor-
mation for the previous 20 pixels. Constraining the pixel
sequence to stay within ten-pixel-wide vertical portions
allows all the pixels on the previous and current rows to fit
in the memory. This means that a boustrophedonic sequence
within a boundary-defined portion would always have the
previous pixel on the current row (if any) in the memory, as
well as the pixels in the row above (if any) in the memory
as well.

Most underlying memory systems transfer blocks of data
with a certain overhead per block. Small accesses to the
memory system are penalized heavily by this overhead. In
order to be efficient, larger accesses are employed and the
rest of the block 1s maintained 1n case 1t might be used next.
Beyond that, a cache memory system keeps a plurality of
these recent blocks, increasing the probability that memory
accesses can be avoided.

The boustrophedonic sequence of the present invention
exploits the single-retained-block concept when 1t reverses
and handles pixels immediately below one end of the current
line. Further, the boustrophedonic sequence exploits cache
when 1t limits rasterization to portions of a particular size.
Specifically, two scanlines within a portion should {it in the
cache, so throughout the second scanline, benefits might be
incurred from cache storage of the first scanline.




US 6,650,325 Bl

35

There 1s no constraint on the sequence or number of
boundary-defined portions. Although the present description
uses the example of vertical portions and a horizontal
boustrophedonic pattern, similar principles might extend to
horizontal portions, vertical boustrophedonic patterns or
even to diagonal portions and patterns. In one embodiment,
the length of the strings (e.g. rows, columns, diagonals, etc.)
might be each limited to be less than a dimension of the
primitive along which the string resides.

FIG. 32 1s a flowchart showing the process associated
with operation 2702 of FIG. 27. The instant process 1s
designed to handle a primitive with portions that reside
behind the eye. These outlying portions might cause prob-
lems 1n subsequent rasterization operations. To accomplish
this, the instant process employs a variable, W that 1is
commonly used for projection 1.€., for viewing objects 1n
perspective. The variable W 1s a number that the other
coordinates, X, Y and Z, are divided by in order to make
nearby things larger and far things smaller. The variable W
1s representative of a distance between a center of projection
and the corresponding vertex.

As shown 1n FIG. 32, a primitive 1s first received that 1s
defined by a plurality of vertices. Each of such vertices
includes a W-value. Upon the receipt of the primitive, the
set-up module serves to define lines that characterize the
primitive based on the vertices. Note operation 3200.

The W-values are then analyzed in decision 3202. As
shown, 1f one of the W-values 1s negative, a line equation for
a line opposite the vertex having the negative value 1s tlipped
in operation 3204. In other words, the coeflicients of the line
cquation are multiplied by -1. Further, 1if two of the
W-values are negative, line equations for lines connecting,
the vertex having a positive W-value and each of the
vertexes having negative W-values are flipped 1n operation
3206. If three of the W-values are negative, a cull condition
3207 occurs where the present mnvention culls the triangle.
Still yet, if none of the W-values are negative, no additional
action 1s taken.

FIGS. 32A-32C 1illustrate the manner 1n which flipping
line equations affects which portion of the screen 1s pro-
cessed. FIG. 32A shows the case where none of the
W-values are negative and the line equations are left unal-
tered. As shown, an interior portion of the primitive 1s filled
in such case.

FIG. 32B shows the case where one of the W-values 1s
negative and which of the line equations 1s flipped accord-
ingly. As shown, the portion of the primitive opposite the
vertex 1s filled 1n the present case. In particular, the area to
be drawn 1s bounded by two lines that are co-linear with the
two triangle sides sharing the -W vertex, and further
bounded by a side of the triangle that shares the two +W
vertexes.

FIG. 32C shows the case where two of the W-values are
negative and which of the line equations are flipped accord-
ingly. As shown, the portion of the primitive opposite the
vertexes 1s filled using the methods and/or processes set
forth heremnabove with reference to FIGS. 27-32. In other
words, the area to be drawn 1s bounded by two lines that are
co-linear with the two triangle sides sharing the +W vertex,
and further contiguous to the +W vertex.

The present invention 1s thus capable of handling all three
of the foregoing cases. If part of the triangle 1s beyond the
near and/or far plane, 1t draws only the portion within those
planes. If the triangle has one or two negative Z vertexes,
only the correct +Z portion 1s drawn.

Even if all vertexes are off-screen, and the triangle
extends from behind the eye to beyond the far plane,
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whatever pixels are 1nside the triangle and on the screen and
have Z between the near and far limits. The present inven-
tion ensures that little time 1s wasted exploring bad pixels.
This 1s possible because all clipping, by screen edge or the
necar or far plane, always results in a convex region
on-screen which can be explored easily.

A problem sometimes arises when the starting point 1s not
inside the area to be filled. This can occur if the top vertex

1s off-screen or 1s clipped by the near or far plane. In this
case, the traversal stage must search for the top point of the
drawn region, starting from above. It can do this efficiently
by being guided by the signs of the triangle edge slopes and
the Z slope. It can test the triangle line equations to discover
it 1s outside the drawn region and why. When 1t knows what
edge(s) and/or Z limit it is outside of, it knows what
direction(s) to step that brings it closer to that edge or limit.
By moving horizontally in preference to vertically (when
there 1s a choice), searching for the drawn region guarantees
it finds the top drawable pixel if there 1s one. This problem
also occurs with external (W) triangles that open up. In this
case, the drawn area extends above all three vertexes.

In one embodiment of the present invention, traversal

proceeds from top to bottom of the triangle. The starting
point 1s the top vertex of the triangle 1f none have a negative
W-value and the top vertex 1s 1n the scissor rectangle.
Otherwise, a poimnt on the top of the scissor rectangle 1s
chosen. Since traversal always begins within the scissor
rectangle and never ventures out of 1t, only the portion of the
triangle within the scissor rectangle 1s ever drawn, even if
the area enclosed by the edges extends far beyond the scissor
rectangle. In this way, simple scissor rectangle-edge clipping
1s effected.

While various embodiments have been described above,
it should be understood that they have been presented by
way of example only, and not limitation. Thus, the breadth
and scope of a preferred embodiment should not be limited
by any of the above-described exemplary embodiments, but
should be defined only 1n accordance with the following
claims and their equivalents.

What 1s claimed 1s:

1. Amethod for performing rasterization using alternating,
point traversal, comprising;:

receiving a primitive;

positioning a plurality of points on or near the primitive,

wherein the points define an enclosed convex region;

defining at least one boundary which divides the primitive
into a plurality of portions; and

moving the points 1n an alternating manner in the portions

via at least one of a plurality of contiguous rows and a
plurality of configuous columns for the purpose of
identifying an arca in the primitive.

2. The method as recited 1n claim 1, wherein the points are
moved 1n a boustrophedonic manner.

3. The method as recited 1n claim 1, wherein the convex
region 1s a polygon defined by the points.

4. The method as recited 1n claim 1, wheren the points are
also moved based on the evaluation of line equations for
lines that define the primitive.

5. The method as recited 1n claim 1, wherein the points are
moved 1n each of the portions separately.

6. The method as recited in claim 5, wherein the points are
moved through essentially an enfirety of a first one of the
portions before being moved 1n a second one of the portions.

7. The method as recited in claim 1, wherein a boundary
spacing 1s defined based on a memory size.

8. A computer program embodied on a computer readable
medium for performing rasterization using alternating point
traversal, comprising:
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a code segment for receiving a primifive;

a code segment for positioning a plurality of points on or
necar the primitive, wherein the points define an
enclosed convex region;

a code segment for defining at least one boundary which
divides the primitive 1nto a plurality of portions; and

a code segment for moving the points in an alternating
manner 1n the portions via at least one of a plurality of
contiguous rows and a plurality of contiguous columns
for the purpose of 1dentifying an area in the primitive.

9. The computer program as recited in claim 8, wherein

the points are moved 1n a boustrophedonic manner.
10. The computer program as recited 1n claam 8, wherein

the convex region 1s a polygon defined by the points.

11. The computer program as recited in claim 8, wherein
the points are also moved based on the evaluation of line
equations for lines that define the primitive.

12. The computer program as recited 1n claam 8, wherein
the points are moved 1n each of the portions separately.

13. The computer program as recited in claim 12, wherein
the points are moved through essentially an entirety of a first
one of the portions before being moved 1n a second one of
the portions.

14. The computer program as recited in claim 8, wherein
a boundary spacing 1s defined based on a memory size.

15. A system for performing rasterization using alternat-
ing point traversal, comprising:

(a) a set-up module for receiving a primitive, and posi-
tioning a plurality of points on or near the primitive,
wherein the points define an enclosed convex region;
and

(b) a traversal module coupled to the set-up module for
moving the points 1in an alternating manner for the
purpose of identifying an area in the primitive; wherein
at least one boundary i1s defined which divides the

primitive into a plurality of portions,:and the points are
moved 1n the portions via at least one of a plurality of

contiguous rows and a plurality of contiguous columns.
16. The system as recited 1n claim 15, wherein the points

are moved 1n a boustrophedonic manner.

17. The system as recited 1n claim 15, wherein the convex
region 1s a polygon defined by the points.

18. The system as recited 1n claim 15, wherein the points
are also moved based on the evaluation of line equations for
lines that define the primitive.

19. The system as recited 1n claim 15, wherein the points
are moved 1n each of the portions separately.

20. The system as recited in claim 19, wherein the points
are moved through essentially an entirety of a first one of the
portions before being moved 1n a second one of the portions.

21. The system as recited 1n claim 15, wherein a boundary
spacing 1s defined based on a memory size.

22. A method for performing rasterization, comprising:

receiving a primitive;

identifying pixels in the primitive for rendering purposes

by stepping along adjacent strings of adjacent pixels;
and

limiting a length of the strings of pixels which are

stepped;

wherein the length of the strings 1s limited by defining at

least one boundary which divides the primitive mto a
plurality of portions each including at least one of a
plurality of contiguous rows and a plurality of contigu-
ous columns.

23. The method as recited 1n claim 22, wherein a plurality
of points are moved through essentially an enfirety of a first
one of the portions before being moved 1n a second one of
the portions.
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24. The method as recited 1n claim 23, and further
comprising 1dentifying a starting position of the second
portion while moving through the first portion.

25. The method as recited 1n claim 22, wherein a bound-
ary spacing 1s defined based on a memory size.

26. The method as recited 1n claim 22, wherein the length
of the strings are each limited to be less than a dimension of
the primitive along which the string resides.

27. A system for performing rasterization, comprising:

(a) a set-up module for receiving a primitive; and

(b) a traversal module coupled to the set-up module for
identifying pixels in the primitive for rendering pur-
poses by stepping along adjacent strings of adjacent
pixels, wherein a length of the strings 1s limited;
wherein the length of the strings 1s limited by defining
at least one boundary which divides the primitive into
a plurality of portions each including at least one of a
plurality of contiguous rows and a plurality of contigu-
ous columns.

28. The system as recited 1n claim 27, wherein a plurality
of points are moved through essentially an entirety of a first
one of the portions before being moved 1n a second one of
the portions.

29. The system as recited 1n claim 28, and further com-

prising 1dentifying a starting position of the second portion
while moving through the first portion.

30. The system as recited 1n claim 29, wherein a boundary
spacing 1s defined based on a memory size.

31. The system as recited in claim 27, wherein the length
of the strings are each limited to be less than a dimension of
the primitive along which the string resides.

32. A method for performing rasterization, comprising;:

receiving a primifive;
identifying pixels in the primitive for rendering purposes

by stepping along adjacent strings of adjacent pixels;
and

limiting a length of the strings of pixels which are
stepped,;

wherein a length of the strings 1s limited by defining at
least one boundary which divides the primitive into a
plurality of portions, and a boundary spacing 1s defined
based on a memory size.

33. A system for performing rasterization using alternat-

ing point traversal, comprising:

(a) a set-up module for receiving a primitive, and posi-
tioning a plurality of points on or near the primitive,
wherein the points define an enclosed convex region;
and

(b) a traversal module coupled to the set-up module for
moving the points 1 an alternating manner for the
purpose of 1dentifying an area i the primitive;

wheremn a length of the strings 1s limited by defining at
least one boundary which divides the primitive 1nto a
plurality of portions, and a boundary spacing 1s defined
based on a memory size.

34. The method as recited 1in claim 1, wherein the at least
onc of a plurality of contiguous rows and a plurality of
contiguous columns includes a plurality of contiguous rows.

35. The method as recited 1n claim 1, wherein the at least
onc of a plurality of contiguous rows and a plurality of
contiguous columns includes a plurality of contiguous col-
umns.
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