US006643650B1
a2 United States Patent (10) Patent No.: US 6,643,650 B1
Slaughter et al. 45) Date of Patent: Nov. 4, 2003
(54) MECHANISM AND APPARATUS FOR USING EP 351 536 1/1990
MESSAGES TO LOOK UP DOCUMENTS EP 384 339 8/1990
STORED IN SPACES IN A DISTRIBUTED (List continued on next page.)
COMPUTING ENVIRONMENT OTHER PURI ICATIONS
(75) Inventors: Gregory L. Slaughter, Palo Alto, CA XP-002211482, “Federating and Administering Lookup
(US); Thomas E. Saulpaugh, San Jose, Services”, pp. 320-329, 405-419, 635-656, Jun. 1999.
CA (US); Bernard A. Traversat, San XP-002212130, “The Search API’s®, pp. 297-305,
Francisco, CA (US); Mohamed M. 320-329, 635656, Jun. 1999.
Abdelaziz, Santa Clara, CA (US); (List continued on next page.)
Michael J. Duigou, Fremont, CA (US) page.
Primary FExaminer—¥rantz Coby
(73) Assignee: Sun Microsystems, Inc., Palo Alto, CA (74) Attorney, Agent, or Firm—Robert C. Kowert;
(US) Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.
(*) Notice: Subject to any disclaimer, the term of this ~ (37) ABSTRACT
%atsel(ljt 1%2155113;%50{ gﬁ;l;?ted under 35 A system and method for searching for documents within
spaces 1n a distributed computing environment are provided.
(21) Appl. No.: 09/660,548 A client sends a lookup message to a space which stores
_ documents. The lookup message may specily desired
(22) Filed: Sep. 12, 2000 characteristics, such as a name or partial XML schema, of
Related U.S. Application Data the gtored dO(?umentS. The documentﬁs may inc:tlude XML
(60) Provisional application No. 60,202,975, filed on May 9, service advertisements and XML device advertisements as
2000, provisional application No. 60/208,011, filed on May well as general-purpose XML documents. A set of zero or
26, 2000, provisional application No. 60/209,430, filed on more documents which match the lookup message are
Jun. 2, 2000, provisional application No. 60/209,140, filed discovered. In one embodiment, the lookup message may
%Illeiluginzfuzfogj g%ggrwmonal application No. 60/209,525, include a desired name. If the lookup message includes both
- ' a desired name and a desired schema, the set of discovered
(51) Int. CL7 oo GO6F 17/30; GO6F 17/60; documents may include both discovered documents having
GOOF 15/00 a name that matches the desired name and discovered
(52) US.CL .. 707/10; 707/4; 707/104.1; documents having a schema that matches the desired
705/7; 705/14; 709/203; 709/218 schema. If the lookup message includes neither a desired
(58) Field of Search 705/14, 7; 707/3, name nor a desired schema, the set of discovered documents
707/4, 10, 104.1; 709/203, 218 may 1nclude substantially all the documents stored m the
_ space. After the matching documents are found, the space
(56) References Cited may send a lookup response message to the client. For each
U.S. PATENT DOCUMENTS discovered document, the lookup response message may
4401 046 A 1/1985 Kryshow, Jr. et al inclu@e :il gan}efand an adw—"-i]r‘tilslelinent. Elacl; ad;erti;ement
7 an ‘ may 1nclude mlformation which 1S usable by the client to
j’;ég’?gg i %ﬁggg ﬁzigingf gft al: obtain the respective discovered document or access the
S resource (€.g., a service) that the document advertises. The
(List continued on next page.) advertisements and messages may be expressed 1n a data
FORFIGN PATENT DOCUMENTS representation language such as XML.
EP 300 516 1/1989 46 Claims, 45 Drawing Sheets

XML advertisement

Client 11

N

Service 11

2. instantiate
1. publish

3. run

US 6,643,650 B1

Page 2
U.S. PATENT DOCUMENTS 5,787.431 A 7/1998 Shaughnessy
5,790,548 A 8/1998 Sistanizadeh et al.

4,823,122 A 4/1989 Mann et al. 5,802,367 A 0/1998 Held et al.
4,939,638 A 7/1990 Stephenson et al. 5,808,911 A 0/1998 Tucker et al.
4,956,773 A 9/1990 Saito et al. 5,809,507 A 9/1998 Cavanaugh, III
5,088,036 A 2/1992 Ellis et al. 5,813,013 A 9/1998 Shakib et al.
5,109,486 A 4/1992 Seymour 5,815,149 A 9/1998 Mutschler, I1I et al.
5,187,787 A 2/1993 Skeen et al. 5,815,709 A 9/1998 Waldo et al.
5,218,699 A 6/1993 Brandle et al. 5815711 A 9/1998 Sakamoto et al.
5,257,369 A 10/1993 Skeen et al. 5,818,448 A 10/1998 Katiyar
5,293,614 A 3/1994 Ferguson et al. 5829022 A 10/1998 Watanabe et al.
5,297,283 A 3/1994 Kelly, Ir. et al. 5832219 A 11/1998 Pettus
5,307,490 A 4/1994 Davidson et al. 5,832,529 A 11/1998 Wollrath et al.
5,311,591 A 5/1994 Fischer 5,832,593 A 11/1998 Waurst et al.
5,339.435 A 8/1994 Lubkin et al. 5,835,737 A 11/1998 Sand et al.
5,386,568 A 171995 Wold et al. 5,842,018 A 11/1998 Atkinson et al.
5,390,328 A 2/1995 Frey et al. 5844553 A 12/1998 Hao et al.
5,423,042 A 6/1995 Jalilt et al. 5,845,129 A 12/1998 Wendorf et al.
5,440,744 A 8/1995 Jacobson et al. 5,860,004 A 1/1999 Fowlow et al.
5,448,740 A 9/1995 Kir et al. 5,860,153 A 1/1999 Matena et al.
5,452,459 A 9/1995 Drury et al. 5,864,862 A 1/1999 Kriens et al.
5,455,952 A 10/1995 Gjovaag 5,864,866 A 1/1999 Henckel et al.
5,471,629 A 11/1995 Risch 5.872.928 A 2/1999 TLewis et al.
5,475,792 A 12/1995 Stanford et al. 5,872.973 A 2/1999 Mitchell et al.
5,475,817 A 12/1995 Waldo et al. 5,875.335 A 2/1999 Beard
5,481,721 A 171996 Serlet et al. 5,878,411 A 3/1999 Burroughs et al.
5,504,921 A 4/1996 Dev et al. 5,884.024 A 3/1999 Lin et al.
5,511,197 A 4/1996 Hill et al. 5,884,079 A 3/1999 Furusawa
5,524,244 A 6/1996 Robinson et al. 5,887,134 A 3/1999 Ebrahim
5,553,282 A 9/1996 Parrish et al. 5,890.158 A 3/1999 House et al.
5,555,367 A 9/1996 Premerlani et al. 5892904 A 4/1999 Atkinson et al.
5,955,427 A 9/1996 Aoe et al. 5,933,497 A 8/1999 Beetcher et al.
5,557,798 A 9/1996 Skeen et al. 5935249 A 8/1999 Stern et al.
5,560,003 A 9/1996 Nilsen et al. 5,940,827 A 8/1999 Hapner et al.
5,561,785 A 10/1996 Blandy et al. 5944793 A 8/1999 Islam et al.
5,577,231 A 11/1996 Scalzi et al. 5,046.485 A 8/1999 Weeren et al.
5,594,921 A 1/1997 Pettus 5,946,694 A 8/1999 Copeland et al.
5,603,031 A 2/1997 White et al. 5,966,531 A 10/1999 Skeen et al.
5,617,537 A 4/1997 Yamada et al. 5969967 A 10/1999 Aahlad et al.
5,628,005 A 5/1997 Hurvig 5,987,506 A 11/1999 Carter et al.
5,640,564 A 6/1997 Hamilton et al. 5,999.179 A 12/1999 Kekic et al.
5,644,768 A 7/1997 Periwal et al. 6,003,763 A 12/1999 Gallagher et al.
5,649,186 A 7/1997 Ferguson 6,009,103 A 12/1999 Woundy
5,652,888 A 7/1997 Burgess et al. 6,016,496 A 1/2000 Roberson
5,655,148 A 8/1997 Richman et al. 6,016,500 A 1/2000 Waldo et al.
5,659,751 A 8/1997 Heninger 6,026,414 A 2/2000 Anglin
5,671,225 A 9/1997 Hooper et al. 6,031,977 A 2/2000 Pettus
5,675,796 A 10/1997 Hodges et al. 6,061,699 A 5/2000 DiCecco et al.
5,680,573 A 10/1997 Rubin et al. 6,061,713 A 5/2000 Bharadhwaj
5,680,617 A 10/1997 Gough et al. 6,324,566 B1 * 11/2001 Himmel et al. 709/203
5684955 A 11/1997 Meyer et al. 6,332,062 B1 * 12/2001 Phillips et al. 399/12
5,689,709 A 11/1997 Corbett et al. 6,405,175 Bl * 6/2002 Ng .oovvveeiiiiiieieeieeennns 705/14
5,706,435 A 1/1998 Barbara et al. 2002/0004733 Al * 1/2002 Addanteceeoeeen..... 705/7
5,706,502 A 1/1998 Foley et al. 2002/0010757 Al * 1/2002 Granik et al. 709/218
5,724,588 A 3/1998 Hill et al. 2002/0032677 Al * 3/2002 Morgenthaler et al. 707/3
5,727,145 A 3/1998 Nessett et al. 2002/0038344 A1l * 3/2002 Ullman et al. 709/203
5,737,607 A 4/1998 Hamilton et al. 2002/0069105 Al * 6/2002 Do Rosario Botelho
5,745,678 A 4/1998 Herzberg et al. 8 Al eeeeeeeeeeeeeeee el 705/14
5,745,695 A 4/1998 Gilchrist et al. 2002/0080927 Al * 6/2002 Uppaluru 379/88.01
5,745,703 A 4/1998 Cejtin et al.,
5,745,755 A 4/1998 Covey FOREIGN PATENT DOCUMENTS
5,748,897 A 5/1998 Katiyar
5,754,849 A 5/1998 Dyer et al. EP 472 874 3/1992
5,757,925 A 5/1998 Faybishenko EP 474 340 3/1992
5,761,656 A 6/1998 Ben-Shachar EP 497 022 8/1992
5,764,897 A 6/1998 Khalidi EP 555 997 8/1993
5,768,532 A 6/1998 Megerian EP 565 849 10/1993
5,774,551 A 6/1998 Wu et al. EP 569 195 11/1993
5,778,187 A 7/1998 Monteiro et al. EP 625 750 11/1994
5,778,228 A 7/1998 Wei EP 651 328 5/1995
5,778,368 A 7/1998 Hogan et al. EP 660 231 6/1995
5,787.425 A 7/1998 Bigus EP 697 655 2/1996

US 6,643,650 B1
Page 3

EP 718 761 6/1996
EP 767 432 4/1997
EP 778 520 6/1997
EP 794 493 9/1997
EP 803 810 10/1997
EP 303 811 10/1997
EP 805 393 11/1997
EP 810 524 12/1997
EP 817 020 1/1998
EP 817 022 1/1993
EP 817 025 1/1998
EP 836 140 4/1998
EP 892 530 1/1999
GB 2 253 079 3/1992
GB 2 262 825 6/1993
GB 2 305 087 3/1997
JP 11-45187 10/1997
WO 92/07335 4/1992
WO 92/09948 6/1992
WO 93/25962 12/1993
WO 94/03855 2/1994
WO 96/03692 2/1996
WO 96/10787 4/1996
WO 96/18947 6/1996
WO 96/24099 3/1996
WO 08/02814 1/1998
WO 98/04971 2/1993

OTHER PUBLICAITONS

“Network Nirvana and the Intelligent Device”, Spotlight,
XP-002927392, pp. 16—19, Apr. 1999.

“Behavioral Specification Using XML”, Mckee and Mar-
shall, IEEE, pp. 53-59, 1999.

“JavaSpaces”, Chapter 15, XP-002212109, pp. 636657,
Jun. 1999.

“T Spaces”, Wycoll, et al., 8M Systems Journal, pp.
454-4774, 1998.

“Management of Advanced Services 1n H.323 Internet Pro-
tocol Telephony™, Pagurek, et al. IEEE pp. 91-100. Mar. 26,
2000.

“Service Location Protocol: Automatic Discovery of IP

Network Services”, Erik Guttman of Sun Microsystems,
IEEE Internet Computing, pp. 71-80, Jul. 1999.

Jaworski, “Java 1.1 Developer’s Guide, 2"¢ Edition,” Sams.
net, 1997.

Coulouris, et al., “Distributed Systems Concepts and
Designs,” Second Edition, Addison—Wesley, 1994.

Mullender, “Daistributed Systems,” Second Edition, Add-
1Ison—Wesley, 1993,

Lindholm, et al., “The Java ™ Virtual Machine Specifica-
tion,” Addison Wesley, 1996.

“SOAP: Simple Object Access Protocol,” msdn online Web
Workshop, Microsoft, Apr. 26, 2000, msdn.Microsoft.com/

xml/general/soapspec.asp, 34 pages.

Rob Guth, “Sun tries on JacaSpaces for Distributed OS,”
Aug. 1997, vol. 19, Issue 34, 2 pages.

Microsoft, “Microsoft. NET: Realizing the Next Generation
Internet,” A Microsoit White Paper, Jun. 2000, 8 pages.

K. F. Eustice, et al., “A Universal Information Appliance,”
IBM Systems Journal, vol. 38, No. 4, 1999, Pp. 575-601.

Wycoll et al., “T Spaces,” IBM Systems Journal, vol. 37,
No. 3—Java Technology, Aug. 1998, 36 pages.

“Java ™ Remote Method Invocation Specification,” Sun

Microsystems, Inc., <java.sun.com/products/ dkl.2betal>,
1997.

Agha, et al., “Actorspaces: An Open Distributed Program-

ming Paradigm,” University of Illinois, Report No.
UIUCDCS—R-92-1766, Open Systems Laboratory TR NO.

8, pp. 1-12, Nov. 1992.

Ahmed, et al.,, “A Program Building Tool for Parallel
Applications,” Yale University, pp. 1-23, Dec. 1, 1993.
Aldrich, et al., “Providing Easier Access to Remote Objects
in Client—Server Systems,” System Sciences, 1998, Pro-
ceedings of the 31° Hawaii Internat’l. Conference, Jan. 6-9,
1998, pp. 366-375.

Aldrich, et al., “Providing Easier Access to Remote Objects
in Distributed Systems,” Calif. Institute of Technology,
www.cs.Caltech.edu/%7Ejedi/paper.html, Nov. 21, 1997.
Anderson, et al., “Persistent Linda: Linda + Transaction +
Query Processing,” Proceedings of the 13”* Symposium on
Fault Tolerant Systems, pp. 93—-109, 1991.

“Transparent Network Computing,” Locus Computing Cor-
poration, Jan. 5, 1995.

Alexander, et al., “Active Bridging,” Proceedings of the

ACM/SIGCOMM’97 Conference, Cannes, France, Sep.,
1997.

Beech, et al., “Object Databases as Generalizations of Rela-
tional Databases,” Computer Standards & Interfaces, vol.
13, Nos. 1/3 pp. 221-230, Amsterdam, NL, Jan. 1991.
Bertino, et al., Object—Oriented Database Management Sys-
tems: Concepts and issues,: Computer, vol. 24, No. 4, pp.
33-47, Los Alamitos, CA, Apr. 1991.

Betz, et al, “Interoperable Objects: Laying the Foundation
for Distributed Object Computing,” Dr. Dobb’s Journal, vol.
19, NO. 11, p. 18(13), Oct. 1994.

Bevan, et al., “An Efficient Reference Counting Solution To
The Distributed Garbage Collection Problem,” Parallel
Computing, NL, Elsevier Science Publishers, Amsterdam,

vol. 9, No. 2, pp. 179-192, Jan. 1989.

Birrell, et al., “Daistributed Garbage Collection for Network
Objects,” Digital Systems Research Center, NO. 116, pp.
1-18, Dec. 15, 1993.

Birrell, et al., “Grapevine: An Exercise 1n Distributed Com-
puting,” Communications fo the ACM, vol. 25, No. 4, pp.
260-274, Apr. 1982.

Birrell, et al., “Network Objects,” DEC SRC Resecarch
Report 115, Feb. 28, 1995.

Birrell, et al., “Implementing Remote Procedure Calls,”
ACM Transactions on Computer Systems, vol. 2, No. 1, pp.
39-59, Feb. 1994.

Birrell, et al,, “Network Objects,” Operating Systems
Review, 27(5), pp. 217-230, Dec. 1993.

Cannon, et al., “Adding Fault—Tolerant Transaction Process-
ing to LINDA,” Software—Practice and Experience, vol.
24(5), pp. 449-466, May 1994.

Cardelli, “Oblig, A Lightweight Language For Network
Objects,” Digital SRC, pp. 1-37, Nov. 5, 1993.

Carriero, et al., “Distributed Data Structures in Linda,”
Principles of Programming Language, pp. 1-16, 1986.
Carriero, et al., “Distributed Data Structures 1n Linda,” Yale
Research Report YALEU/DCS/RR—438, Nov. 1985.
Chung, et al., “ATiny’ Pascal Compiler: Part 1: The P-Code
Interpreter,” BYTE Publications, Inc., Sep. 1978.

Chung, et al.,, “A Tiny’ Pascal Compiler: Part 2: The
P—Compiler,” BYTE Publications, Inc., Oct. 1978.

Dave, et al., “Proxies, Application Interface, And Distrib-
uted Systems,” Proceedings International Workshop On

Object Orientation In Operating Systems, pp. 212-220, Sep.
24, 1992,

US 6,643,650 B1
Page 4

Deux, et al., “The O2 System,” Communications Of The
Association For Computing Machinery, Col. 34, No. 10, pp.
3448, Oct. 1, 1991.

Dijkstra, “Seli—stabilizing Systems 1n Spite of Distributed
Control,” Communications of the ACM, Vol 17, No. 11, pp.
643—-644, Nov. 1974.

Dolev, et al., “On the Minimal Synchronism Needed for
Distributed Consensus,” Journal of the ACM, vol. 34, NO.
1, pp. 77-97, Jan. 1987.

Dollimore, et al., “The design of a System for Distributing
Shared Objects,” The Computer Journal, No. 6, Cambridge,
GB, Dec. 1991.

Dourish, “A Divergence—Based Model of Synchrony and
Distributed 1n Collaborative Systems,” Xerox Technical
Report EPC-1194-102, pp. 1-10, 1994.

Drexier, et al., “Incentive Engineering for Computational
Resource Management,” The Ecology of Computation,
Elsevier Science Publishers B.V.,, pp. 231-266, 1988.

Gelernter, et al., “Parallel Programming i Linda,” Yale
University, pp. 1-21, Jan. 1995.

Droms, “RFC 1541 Dynamic Host Configuration Protocol,”
<http://www.ci1s.ohio—state.edu.htbin/ric/rtc1541 .html>, pp.
1-33, Oct. 1993.

Emms, “A Definition Of AN Access Control Systems Lan-
cuage,” Computer Standards And Interfaces, vol. 6, No. 4,

pp. 443-454, Jan. 1, 1997.

Fleisch, et al., “High Performance Distributed Objects Using
Distributed Shared Memory & Remote Method Invocation,”
System Sciences, 1998, Proceedings of the 31% Hawaii

Internat’l. Conference, Jan. 6-9, 1998, pp. 574-578.

Gelernter, “Generative Communication in Linda,” ACM

Transactions on Programming Languages and Systems, vol.
7, No. 1, pp. 80-112, Jan. 1985.

Gottlob, et al., “Extending Object—Oriented Systems with

Roles,” ACM Transactions On Information Systems, vol.
14, NO. 3, pp. 268-296, Jul. 1996.

Gray, et al. “Leases: An Efficient Fault—Tolerant Mechanism
for Distributed File Cache Consistency,” ACM, pp.
202-210, 1989.

Guth, “JavaOne: Sun to Expand Java Distributed Computing
Effor,” <http://www.sunworld.com/swol-02—1998/

swol-02—sunspots.html>, XP-002109935, p.1, Feb. 20,
1998.

Guyennet, et al., “A New Consistency Protocol Imple-

mented 1n the CaliF System,” IEEE, 1094-7256/97, pp.
8287, 1997.

Guyennet, et al., “Distributed Shared Memory Layer for
Cooperative Work Applications,” IEEE, 0742-1303/97, pp.
7278, 1997.

Hamilton, et al., “Subcontract: A Flexible Base for Distrib-
uted Programming,” Proceedings of 14”7 Symposium of
Operating System Principles, Dec. 1993.

Hamilton, “Java and the Shift to Net—Centric Computing,”
Computer, pp. 31-39, Aug. 1996.

Harris, et al., “Proposal for a General Java Proxy Class for

Distributed Systems and Other Uses,” Netscape Communi-
cations Corp., Jun. 25, 1997.

Hartman, et al., “Liquid Software: A New Paradigm For
Networked Systems,” Technical Report 96—11, Dept. of
Comp. Sci., Univ. of Arizona, Jun. 1996.

Howard, et al., “Scale and Performance 1n a Distributed File

System,” ACM Transactions on Computer Systems, vol. 6,
No. 1, pp. 51-81, Feb. 1988.

Pier, “A Retrospective on the Dorando, A High—Perfor-
mance Personal Computer,” Xerox Corporation, Aug. 1983,
Pinakis, “Using Linda as the Basis of an Operating System
Microkernel,” University of Western Australia, Dept. of
Computer Science, pp. 1-165, Aug. 1993.

Riges, et al., “Picking State in the Java ™ System,”
USENIX, Association Conference on Object—Oriented
Technologies and Systems, CP-002112719, pp. 241-250,
Jun. 17-21, 1996.

Rosenberry, et al., “Understanding DCE,” Chapters 1-3, 6,
1992,

Sharrott, et al., “ObjectMap: Integrated High Performance
Resources 1into a Distributed Object—oriented Environment,”
[CODP, 1995.

Stevenson, “Token—Based Consistency of Replicated Serv-
ers,” IEEE, CH2686—4/89/0000/0179, pp. 179-183, 1989.
Thompson, “Regular Expression Search Algorithm,” Com-
munications of the ACM, vol. II, No. 6, p. 149 et seq., Jun.
1968.

Venners, “Jin1 Technology, Out of the Box,” JAVAWORLD,
Online!, pp. 1-4, Dec. 1998.

Waldo, et al., “Events 1n An RPC Based Daistributed Sys-
tem,” Proceedings Of The 1995 USENIX Technical Con-
ference, Proceedings USENIX Winter 1995 Technical Con-
ference, New Orleans, LA, USA, 1620, pp. 131-142, Jan.
1995.

Wilson, et al., “Design of the Opportunistic Garbage Col-
lector,” Proceedings of the Object Oriented Programming
Systems Languages And Applications Conference, New
Orleans, vol. 24, No. 10, Oct. 1989.

Wollrath, et al., “A Distributed Object Model for theJaca ™
System,” USENIX Association, Conference on Object—O-
riented Technologies and Systems, Jun. 17-21, 1996.

Wu, “A Type System For An Object—Oriented Database

Systems,” Proceedings of the International Computer Soft-
ware and Applications Conference (COMPSAC), Tokyo,

Japan, pp. 333-338, Sep. 11-13, 1991.

Yemini, et al., “Towards Programmable Networks,” IFIP/
IEEE International Workshop on Daistributed Systems:
Operations and Management, L’ Aquila, Italy, Oct. 1996.
Yin, et al., “Using Leases to Support Server Driven Con-
sistency 1n Large—Scale Systems,” Computer Services
Department, University of Texas at Austin, p. 285-294, May
2628, 1998.

Yin, et al., “Volume Leases for Consistency 1n Large—Scale
Systems,” IEEE Transactions on Knowledge & Data Engi-
neering, vol. 11, No. 4, pp. 563-576, Jul./Aug. 1999.

Mitchell, et al., “An Overview of the Spring System,” Feb.
1994,

Mitchell, et al., “Mesa Language Manual,” Xerox Corpora-
tion, Palo Alto Research Center, 1978.

McDaniel, “An Analysis of a Mesa Instruction Set,” Xerox
Corporation, May 1982.

McGrath, “Discovery and its Discontents: Discovery Pro-

tocols for Ubiquitous Computing,” Presented at Center for
Excellence in Space Data and Information Science, NASA

Goddard Space Flight Center, Apr. 5, 2000.

Mummert, et al., “Long Term Daistributed File Reference
Tracing: Implementation and Experience,” Carnegie Mellon

University School of Computer Science, pp. 1-28, Nov.
1994,

Orfali, et al., “The Essential Distributed Objects Survival
Guide,” Chapter 11: Corba Commercial ORBs, pp.
203-215, John Wiley & Sons, Inc., 1996.

US 6,643,650 Bl
Page 5

Ousterhout, et al., “The Sprite Network Operating System,”
Computer, IEEE, pp. 23-36, Feb. 1988.

Pier, “A Retrospective on the Dorando, A High—Perfor-
mance Personal Computer,” IEEE Conference Proceedings,
The 10” Annual International Symposium on Computer
Architecture, 1993.

Hunt, “IDF: A Graphical Data Flow Programming Language
for Image Processing and Computer Vision,” Proceedings of
the International Conference on Systems, Man, and Cyber-
netics, pp. 351-360, Los Angeles, Nov. 4—7, 1990.

IBM ™ Technical Disclosure Bulletin, “Object Location
Algorithm,” vol. 36, No. 09B, pp. 257-258, Sep. 1993.
IBM, “Chapter 6—Distributed SOM (DSOM),” SOMob-
jects Developer Toolkit Users Guide, Version 2.1, pp.
6—1-6—90, Oct. 1994.

Anonymous, “Change—Notification Service for Shared
Filed,” IBM Technical Disclosure Bulletin, vol. 36, No. §&,
pp. 7782, XP002109435 New York, US, Nov. 1973.
IBM ™ Technical Disclosure Bulletin, “Retrieval of Quali-
fied Variables Using Extendible Hashing,” vol. 36, No. 12,
pp. 301-303, Dec. 1993.

Anonymous, “Resource Preemption for Priority Schedul-
ing,” IBM Technical Disclosure Bulletin, vol. 16, No. 6, p.
1931, XP002109435 New York, US, Nov. 1973.

IBM ™ Technical Disclosure Bulletin, “Local Network
Monitoring to Populate Access Agent Directory,” vol. 36,
No. 09A, pp. 403*405, Sep. 1993.

MUX-FElektronik, Java 1.1 Interactive Course, www.lls.
se/~mux/javaic.html, 1995.

Jones, et al., “Garbage Collection: Algorithms for Automatic

Dynamic Memory Management,” pp. 165—175, John Wiley
& Sons, 1996.

Kambhatla, et al., “Recovery with Limited Replay: Fault—

Tolerant Processes 1n Linda,” Oregon Graduate Institute,
Technical Report CSIE 90-019, pp. 1-16, Sep. 1990.

Kay, et al., “An Overview of the Raleigh Object—Oriented

Database System,” ICL Technical Journal, vol. 7, No. 4, pp.
780-798, Oxford, GB, Nov. 1991.

Kougiouris, et al., “Support for Space Efficient Object
Invocation 1n Spring,” Sep. 1994.

Krasner, “The Smalltalk—80 Virtual Machine,” BYTE Pub-
lications, Inc., pp. 300-320, Aug. 1991.

Lamport, et al., “The Byzantine Generals Problem,” ACM

Transactions on Programming LLanguages and Systems, vol.
4, No. 3, pp. 382401, Jul. 1982.

LINDA Database Search, pp. 1-68, Jul. 20, 1995.

Liskov, et al., “Distributed Object Management in Thor,”
International Workshop on Distributed Object Management,
1992.

Gosling, et al., “The Java ™ Language Speciiication,”
Addison—Wesley, 1996.

* cited by examiner

U.S. Patent Nov. 4, 2003 Sheet 1 of 45 US 6,643,650 B1

The Jini Technology

e e ———ere sttt

Jini Apis / Java Spaces 12
“
TCP / IP Capable Networking 16

Fig.
(Prior Art)

Message Capable Networking |

Fig. 2

Distributed Computing Interface 102
06

U.S. Patent Nov. 4, 2003 Sheet 2 of 45 US 6,643,650 B1

104 MESSAGES
Reliable Messages Unreliable Messages
(e.g. java.net.Socket) (e.g. java.net.DatagramSocket) Others

106 P

Discovery xmi
Service messages Front-end

Discovery Search Facility

Fig. 4

U.S. Patent Nov. 4, 2003 Sheet 3 of 45 US 6,643,650 B1

Dynamic Client Profile

Claim and Release (a lease) Find (an object)

Write and Take (an object) Notify on Write
Public Apis

Dynamic XML to / from Obijects
Send / Receive Byte Messages
Connection Transport

Static Client Profile

Static XML Message Definitions

Send / Receive Byte Messages
Connection Transport

Fig. 5

U.S. Patent Nov. 4, 2003 Sheet 4 of 45 US 6,643,650 B1

XML -M
MessagV \Messages
110 Device 112
XML / Service

Messages

Fig. 6

Message Capable Network Transport

Device 120 Device 122 Device 124

!1103 !1123 !1100
Java Virtual :32;;911 gode
Machine 110b |

Environment

Fig. 7

U.S. Patent Nov. 4, 2003 Sheet 5 of 45 US 6,643,650 B1

XML advertisement

Client 11

N

Service 11

2. Instantiate
1. publish

3. run

Fig. 8

Client 11

-
N

Service 11

1. run

3. access 2. publish

XML Results

U.S. Patent Nov. 4, 2003 Sheet 6 of 45 US 6,643,650 B1

Message Capable Network Transport
Device 120 Device 122 Device 124
110a 110b
@‘ D Client Gate @‘
130a 130b
1122 N :
- Service Gate Native Code
ﬁvcah}ﬁrtual & 120¢ Runtime
achine Environment
Fig. 10
XML defining data
types
132
(Generate Service Access Code
Service
Generated
Call Send Messageand | Send Message
Data-Verify Code
Data
Reference

U.S. Patent Nov. 4, 2003 Sheet 7 of 45 US 6,643,650 B1

— Creation and Use Indirection

Creation Factory
Request 140

Client

110 Gate
130a
Fig. 11a
Service Client
Advertisement
110 (from space)
132
Creation Gate
Factory
140
XML

Use Gate Messages Gate
130a 130c

Fig. 11b

U.S. Patent Nov. 4, 2003 Sheet 8 of 45 US 6,643,650 B1

156
Message Gate

154 160

ED |
152
Dest. 153
GateName
¥

Message System Message System

Fig. 12

Client or Service

Web Server XML

3 HTTP /HTML Messages
rowser
400 or XML
- WAP
Generated
Code used

Browser client by serviet
SPACE
Client

Fig. 13

U.S. Patent Nov. 4, 2003 Sheet 9 of 45 US 6,643,650 B1

XML
defining
method

interface
170

Generate Service Access Code Service

Generated
Simple Method Send Message

Code
172

Call Method

Application | Generated
Proxy
Reference

Results
Proxy
(Generated)
178

Send Results URL

Results
180

Fig. 14

Find advertisements SPACE Filled with Add advertisements
Service, Client, or

Content Advertisements
114

Messages (@

Clients Service Providers

Fig. 15

U.S. Patent Nov. 4, 2003 Sheet 10 of 45 US 6,643,650 B1

Meta-Data Advertisement
500
Attribute
204

Attribute
Fig. 16
1 Drafted Published Persistent

Fig. 17

61 "B

US 6,643,650 Bl

1)
-F 10,077
p_m .
- 8| D4
- auo po|qeus eoedg Jayjo TaTa VA
5 (fop _n._m. SOINES S Jaylouy qo0c CITVEDS
o gem ‘bH°8) _ ut 8dlAIeS 8oeds jo 82INIBS _ 10 U8l
s 90IAIOG O juald JUBWIBSILBAPY 10 JUBI) Alenoosig .
awosg BIA £ BIA C BIA 'L JUBWIBSILBADY
eoedg
m B70g ooeds Ulim esuodsey
N — :Alen02sI(}
X NOS B s I
z sjusLLIBSIINPY sadedg
10} 1senbey
:AleA0DSI(]
T . — L1] e
SJUSWIBSSIIBAPY SJUSWIBSILUBAPY c0¢c

llllll juaby 1aus)si

ov0¢ (991M8S JO synsal 10))
aordg

A1en0osI(g

U.S. Patent

U.S. Patent Nov. 4, 2003 Sheet 12 of 45 US 6,643,650 B1

Client runs authentication service for space
300

Client constructs gate for accessing space

302

Client sends message to space to

run space service
304

Space runs authentication service to
identify client
306

Space determines client capabilities and
binds them to client identity (token)

308

Messaging proceeds between client and
space - client may access space facilities

310

Fig. 20

US 6,643,650 Bl

12 DI

JueAJebueyDaINquUIYS|IAPY JUSATSA0WSYINGQUNYS|JAPY

JusAgHesUleINGUNYEIIAPY

JUBAJUBSUJUBWS|JAPY

JUBAJUBSU|APY

Lf)
<t
- JUBATBINGUNYS|TAPY
2

JusAagabueyniuswa|gApPY JUBATOAOWIBHIUSWIS|JAPY
= _
< JUBAJIUBWIS|IAPY JUBAJOAOWBHADY
= l\\
2

JUBATIUSWISSIOADY
juenjeoeds

U.S. Patent

U.S. Patent

Nov. 4, 2003 Sheet 14 of 45

Client selects service advertisement

published in space
320

Client sends message to space requesting
instantiation of service
322

Space verifies request
324

Space obtains lease for service
326

Space sends lease and service
advertisement to client
328

Client runs authentication service specified
In advertisement
330

Client constructs gate to access service
332

Default Space
advertising
additional
spaces
320

US 6,643,650 Bl

Fig. 22

OtherSpace

US 6,643,650 Bl

Sheet 15 of 45

Nov. 4, 2003

U.S. Patent

pe "D

2154!
JUSWIBSILIBAPY

90IAISS

covl
a2oIAep ummmn-b_E_xEn_

Ol
JUBWISSIHBAPY

90IAIBS

oov i
82IAap paseq-Auwixoid

rivi

SUOIDaUUOD
Ajuwixold

1404
aoIna(g

11841
801N (]

434"
yodsuel |

BLy|
JUBWIBSILUBADY

80INBS

8011
82179 (]

OLYI
JUBSWIBSIBAPY

92IAIOS

U.S. Patent Nov. 4, 2003 Sheet 16 of 45 US 6,643,650 B1

Find advertisements | SPACE Filled with

Resource
Advertisements

Add advertisements

Henewal Messages

(f@ Cate < RENEWal Messages ((A(Ek(k‘

Clients Service Providers

Fig. 25

U.S. Patent Nov. 4, 2003 Sheet 17 of 45 US 6,643,650 B1

Client requests authentication credential from
authentication service
1000

Authentication service generates
authentication credential

1002 |

Authentication service sends authentication
credential to client

1004 FIG. 26a

1002

Authentication service obtains client token and
service token
1002a

Authentication service verifies client and

service
1002b

Authentication service generates
authentication credential
1002c

FIG. 26b

US 6,643,650 Bl

Sheet 18 of 45

Nov. 4, 2003

U.S. Patent

yioojen|g

14074

) G (=) (=

¢0cl
wisiueyossyy buibpug

)

/2 ‘b4

2990¢c |
JUBLLIBSIHUBAPY

80IA19S

qooct
JUSWIBSILBAPY

80IAI9S

eg0cl
JUSLWBSIBAPY

O0INIBS

002 @oeds

US 6,643,650 Bl

Sheet 19 of 45

Nov. 4, 2003

U.S. Patent

Vel
S92IM8S AIBA0DSIp

paiajsiba.
ym aoedqg

Gécl
JUSLIBSILBAPE.

90IAIeS
AIaA0oosI(

¢l
JUSWIBSILBAPY

PPY

vecl
s}insal 1o}

aoeds ajesaln)

0ccl
82IA18S AIBA0DsI()

Yioojenig

JUSWUONIAUT
bunndwon
painquisi

Lccl
juswasiueApe\ 9cci

90IN10S eoeds
80IA8(] s)insay
A1aA02sI(]

0cct
10)sibay

US 6,643,650 Bl

Sheet 20 of 45

Nov. 4, 2003

U.S. Patent

JUBWISSIUBADY
80IAI9S

62 ‘DI

S89IAIBS

J9G2 |
JLUIBWASILIBAPY

cGel
80IAIaS juaby Buibpug

0S¢l

Jusli|o
[euss}x3

qaGcl
JUBLUSSIUBADY

90IAIOS

€96l

9GS
80INIBS

uoljejuswe|dw)
¥Gel eoeds

SHIOMUOT
‘

>

vddi

2GS eoedg

o >

og b

US 6,643,650 Bl

Sheet 21 of 45

Nov. 4, 2003

U.S. Patent

citl

JUBWIBSILUBAPY
aJI\I8S

v1€1 2oedg

1€ ‘b1

00E1
jl u.:@__o

Oct|

cOf1
Aeidsi(

8ctl

1409
aJI\eg Aeldsi(

0LEl
22El SANIBS

9ctl

JUSWIBSILIAAPY

80IAIBS

US 6,643,650 Bl

Sheet 22 of 45

Nov. 4, 2003

U.S. Patent

cctl ¢atl

qeze b4 fejdsiq vee ‘b1 Aeidsi]

OceElL
(“"‘©@2IAIes ‘Jusl|D)
uonedddy

8ctl 0Et!l
ey e oomes

becel pcel
JUBWIBSSIBADY JUSWISSILOAPY
80IAI9S e0INIeS
ewayos Aejdsiqg eweyos Aeidsiq
OcEl 8doeds

U.S. Patent Nov. 4, 2003 Sheet 23 of 45 US 6,643,650 B1

1450

—Sungi

| ATBICIB[E[FIG[R[T[J][K[L]0
Fig. 33A \ ;
(Prior Art)

1452

R 454~ Singe

| ATB[CID[E[F[G[A[T[J[K[L[0[D[E[FIG[A]O
Fig. 33B
(Prior Art)

1452 1456

1460

Hﬁ%@ﬁﬂ Address(D) _
[Thddress)_| 4"ihmmwml

A[B|CIDIE[F|GIH|I[J]K[L
R Fig. 33C

1452

US 6,643,650 Bl

E
1) . _— SHET
N 0251 1G] Za]] ocsl
S 108lqo [> uone|idwo) > mmmmmmE Eme_m
M ARl 108lq0 ejep
m TNX
=
7 9051 y0St
9lek) glexn)
= 81G1
S OIStH 91G1
) 190100 C] uonejidwosa((- mmmmmE
A ool
. eAef 108140
-
—
rd

¢0S| 8dIABS 00S 1 WSO

U.S. Patent

US 6,643,650 B1

ase “Bi4 -
ccSl
weal)s
elep
0ESt
AV
Jo|idwodep
/1oidwod
0 TWX WAL
i
-
'y
)
3 ___
= ¢0S | 9diAeS
77
eGe b
= A
S VT MMM_W
- 8
< essowl [> B .
= TAX 0BS5St
rd SACT IdV
ww% mw sodwossp
/lendwiod
= AT TAX WNAP
- 9751 weons
- (] ebessaw K \
¥ TAX s
— JNX
P.. 205} soines | - 00S 1 sl
/)
-

o¢ DI

US 6,643,650 Bl

9091
\/ 80IAI8S

091
UsliO

Iy
<
S
—
NG
@\ |
3
7
9191 148°] ! AL]
sjnsey 810)S s)insey jusisuel |
Jusjsisiad 10} JuUsjsiSiad 10} 10} JUBWBSIUBAPY TNX
=2 JUBWIBSILBAPY | | Juswesianpy
S giol TNX TNX
< s)nsey a1
> jusjsisiad
z paje|nsdeous Sjinsey

juaisuel i
~TNX paje|nsdeosus

~TNX

¢091
810]S Judjsisiad

U.S. Patent

8091
Y 80IAI8S 10}

JUBWISSILBAPY
TAX

0091
810}S Jusisuel]

/€ D1

US 6,643,650 Bl

Sheet 27 of 45

Nov. 4, 2003

U.S. Patent

e9E9|

Y SS820id

8Ol
V $S8201d

JO 91e1S
pajejnsdesus

- TANX

PEIL
8J0)S Jud]sISiad

qog9l

V $S8201d

US 6,643,650 Bl

Sheet 28 of 45

Nov. 4, 2003

U.S. Patent

8¢ b1

Ocll
SJUSWIBSIISAPY

JuLIUOD)

BlLLI

SJUBWIASIIBAPY
90IAIBS

v1Z1 9oeds

OLLL
SJUBIBSILBAPY
Jusuo)

90L.L1
wsiueyosi
A1BA02SIq

801
SJUBWIBSILBADY
T LVELS

Y0Z1 eoeds

00.}
ed1neQ Juel|D

olIqoN

c0/L|
Sd9

US 6,643,650 Bl

ae6¢ b4
0GLIL
. soneQ JuslD
~r 9lIQON
-
-
&N
@\ |
3
=
o »
ol
—
—
@\
N 09/1
2 uonels
4 Bujooq

U.S. Patent

e6g b4

8G/1
SJUBWOSIOADPY
uonels bupjoo(

9G/1|
wisiueyosiy
ABA02SI(
10 dn)0o07

Q0
O
i

0SL|
eo1AeQ Jusi(D

o)IqoIN

O
O
O
O
O

c0LL
SdD

US 6,643,650 Bl

Sheet 30 of 45

Nov. 4, 2003

U.S. Patent

qoy b

08 |
92IA3p

PY081L
80IA9p

pappequ3 pappaqu3

c081
Jaulau|

|0J3UOD JUBI|D

ey "bi4

qr081 ey08l
8oINSp a0IAapD

peppaquii pappagui3

0181 0181

0081
WejsAg |05ju0)

¢081
jowisjuj

o081
IEN !

U.S. Patent Nov. 4, 2003 Sheet 31 of 45 US 6,643,650 B1

Client accesses first space

1900

Client or service requests creation of

second space
1902

Second space is created using same XML
schema and storage model as first space

1904

Client accesses second space

1906

FIG. 41

U.S. Patent Nov. 4, 2003 Sheet 32 of 45 US 6,643,650 B1

Requesting client accesses first space
1950

Creation of second space is requested

1952

Second space is created using same XML
schema and storage model as first space
1954

Root authentication token is created for

second space; authentication service of
second space is initialized to limit access
1956

Root authentication token is sent to

requesting client or service
1958

Requesting client accesses second space
using root authentication token

‘ 1960 I

FIG. 42

U.S. Patent

| 2012

Nov. 4, 2003 Sheet 33 of 45

Client sends XML search request, including

keywords, to search service
2000

Search service translates XML search request

into search request in format (e.g., text)
appropriate for search engine
2002

Search service sends formatted search

request to search engine
2004

Search engine performs search by finding
web pages with identifying keyword and other |
keywords |

2006

Search service receives search results from
search engine

2008

Search service formats search results into

XML and sends to client, either directly or by
reference

2010

Client uses service advertisements to access
spaces found in the search

FIG. 43

US 6,643,650 Bl

U.S. Patent Nov. 4, 2003 Sheet 34 of 45 US 6,643,650 B1

Client sends XML message to service
to request Invocation of function(s) of
service

2050

Service receives XML message;

| function(s) are invoked
2052

Service generates set of results
2054

Service stores results at location in
space
2056

Results are read from space
2058

FIG. 443

U.S. Patent Nov. 4, 2003 Sheet 35 of 45 US 6,643,650 B1

Client sends XML message to service
to request invocation of function(s) of

service
2050

Service receives XML message;

function(s) are invoked
2052

Service generates set of results
2054

Service stores results at location in
space
2056

Event is sent to client to notify client
that results are stored in space

2057

Results are read from space

2058

FIG. 44b

U.S. Patent Nov. 4, 2003 Sheet 36 of 45 US 6,643,650 B1

| Client sends XML message to service

to request invocation of function(s) of
service

2050

Service receives XML message;

function(s) are invoked
2052

Service generates set of results
2054

Service sends message including
results
to client

2055

FIG. 44c

U.S. Patent Nov. 4, 2003 Sheet 37 of 45 US 6,643,650 B1

Client sends XML message to service
to request invocation of function(s) of
service
2050

Service receives XML message;

function(s) are invoked
2052

Service generates set of results
2054

Service generates advertisement for
results, including location of resulis
2060

Results are read using advertisement
2068

FIG. 44d

U.S. Patent Nov. 4, 2003 Sheet 38 of 45 US 6,643,650 B1

Client sends XML message to service
to request invocation of function(s) of
| service

2050

Service receives XML message;
function(s) are invoked
2052

Service generates set of results
2054

Service generates advertisement for
results, including location of results
2060

Service sends message Including
advertisement to client

2061

Results are read using advertisement
2068

FIG. 44e

U.S. Patent Nov. 4, 2003 Sheet 39 of 45 US 6,643,650 B1

Client sends XML message to service
to request invocation of function(s) of
service
2050

Service receives XML message;
function(s) are invoked

2052

Service generates set of results
2054

Service stores results at location in
space
2056

Service generates advertisement for
results, including location in space

2060

Advertisement is stored in space
2062

Advertisement is read from space
2066

Results are read using advertisement
2068

FIG. 44f

U.S. Patent Nov. 4, 2003 Sheet 40 of 45 US 6,643,650 B1

Client sends XML message to service to I
' request invocation of function(s) of service

2050

Service receives XML message;
function(s) are invoked

2052

Service generates set of results
2054

Service stores results at location in space
2056

Service generates advertisement for results,

Including location in space
2060 l

Advertisement is stored in space
2062
Client is notified of advertisement via event
2064
Advertisement is read from space
2066

Results are read using advertisement
2068

FIG. 449

U.S. Patent Nov. 4, 2003 Sheet 41 of 45 US 6,643,650 B1

Client sends XML message to first service to
request invocation of function(s) of first
service and to request passage of results of

function(s) to a second service
2070

First service receives XML message:
function(s) are invoked
2072

First service generates set of results
2074

First service sends results to second service
without sending results directly to client
2076

FIG. 45

eEQY Ol

US 6,643,650 Bl

0CLC
aoedg _
_ POLC AV 4
m aulbug yosessg 90IAISS Youeasg
a
g OLlcC
= EITIE]
/A2 \\ SPINA PHOAA wmm@momvmmm_\,_
m TAX
@\
¥
" .
S 001¢
welbolid
q0z12 20212 A3
soBds 20edS plomAasy

U.S. Patent

US 6,643,650 Bl

Sheet 43 of 45

Nov. 4, 2003

U.S. Patent

A0¢1 ¢
aoedg

d0clc
a0edg

0L12

JaUIBJU/GOMN SPIM PHOA

49% Ol

eQclce
aoedqg

sabessa
TANX

001L¢
welboud

Alju3
PIOMASY

oLl
Jusi|o

U.S. Patent Nov. 4, 2003 Sheet 44 of 45 US 6,643,650 B1

-

Client sends lookup message to space
2200

Space discovers documents which
meet terms of lookup message
2202

Space returns advertisements for
| discovered documents to client

2204

FIG. 47

U.S. Patent Nov. 4, 2003 Sheet 45 of 45 US 6,643,650 B1

Service publishes advertisement,
iIncluding URI and schema, in space
2300

Client accesses space and finds
advertisement

2302

Client reads advertisement, including
URI and schema, from space

2304

Client accesses service by sending
message to service at URI and
according to schema

2306

One or more functions of service are

Invoked in response to message
2308

FIG. 48

US 6,643,650 B1

1

MECHANISM AND APPARATUS FOR USING
MESSAGES TO LOOK UP DOCUMENTS
STORED IN SPACES IN A DISTRIBUTED

COMPUTING ENVIRONMENT

PRIORITY INFORMAITON

This application claims benefit of priority to the following
provisional applications, each of which 1s hereby incorpo-
rated by reference 1n its entirety:

Serial No. 60/202,975 filed May 9, 2000 titled Distributed
Computing Environment;

Serial No. 60/208,011 filed May 26, 2000 titled Distrib-
uted Computing Environment;

Serial No. 60/209,430 filed June 2, 2000 titled Distributed
Computing Environment;

Serial No. 60/209,140 filed June 2, 2000 titled Distributed
Computing Environment; and

Serial No. 60/209,525 filed June 5, 2000 titled Distributed
Computing Environment.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This 1nvention relates to distributed computing environ-
ments including Web-centric and Internet-centric distributed
computing environments, and more particularly to a hetero-
geneous distributed computing environment based upon a
message passing model for connecting network clients and
SEIvices.

2. Description of the Related Art

Intelligent devices are becoming more and more common.
Such devices range from smart appliances, personal digital
assistants (PDAs), cell phones, lap top computers, desktop
computers, workstations, mainirames; even, super comput-
ers. Networks are also becoming an increasingly common
way to interconnect intelligent devices so that they may
communicate with one another. However, there may be large
differences 1n the computing power and storage capabilities
of various intelligent devices. Devices with more limited
capabilities may be referred to as small footprint devices or
“thin” devices. Thin devices may not be able to participate
in networks interconnecting more capable devices.
However, 1t may still be desirable to interconnect a wide
variety of different types of intelligent devices.

The desire to improve networking capabilities 1s ever
increasing. Business networks are expanding to include
direct interaction with suppliers and customers. Cellular
phones, personal digital assistants and Internet-enabled
computers arc commonplace 1 both business and the home.
Home networks are available for interconnecting audio/
visual equipment such as televisions and stereo equipment to
home computers, and other devices to control intelligent
systems such as security systems and temperature control
thermostats. High bandwidth mediums such as cable and
ASDL enable improved services such as Internet access
video on demand, e-commerce, etc. Network systems are
becoming pervasive. Even without a formal network, it 1s
still desirable for intelligent devices to be able to commu-
nicate with each other and share resources.

Currently, traditional networks are complex to set up,
expand and manage. For example, adding hardware or
software to a network often requires a network administrator
to load drivers and configure systems. Making small
changes to a network configuration may require that the
entire network be brought down for a period of time. Also,

10

15

20

25

30

35

40

45

50

55

60

65

2

certain 1ntelligent devices may not support the necessary
interfaces to communicate on a given network.

What 1s needed 1s a stmple way to connect various types
of mtelligent devices to allow for communication and shar-
ing of resources while avoiding the interoperability and
complex configuration problems existing in conventional
networks. Various technologies exist for improving the
addition of devices to a network. For example, many modern
[/O buses, such as the Universal Serial Bus, 1394 and PCI,
support plug and play or dynamic discovery protocols to
simplify the addition of a new device on the bus. However,
these solutions are limited to speciiic peripheral buses and
are not suitable for general networks.

A more recent technology, Jin1 from Sun Microsystems,
Inc., seeks to simplily the connection and sharing of devices
such as printers and disk drives on a network. A device that
incorporates Jini may announce 1itself to the network, may
provide some details about 1ts capabilities, and may 1imme-
diately become accessible to other devices on the network.
Jini1 allows for distributed computing where the capabilities
of the various devices are shared on a network. The Jini
technology seeks to enable users to share services and
resources over a network. Another goal of the Jini technol-
ogy 1s to provide users with easy access to resources
anywhere on the network while allowing the network loca-
tion of the user to change. Jin1 also seeks to simplify the task
of building, maintaining and altering a network of devices,
software and users.

Jin1 requires that each Jin1 enabled device has a certain
amount of memory and processing power. Typically, a Jin1
enabled device 1s equipped with a Java Virtual Machine
(JVM). Thus, Jini systems are Java technology centered.
Java 1s a high level object oriented programming language
developed by Sun Microsystems, Inc. Java source code may
be compiled 1nto a format called bytecode, which may then
be executed by a Java Virtual Machine. Since Java Virtual
Machines may be provided for most computing platforms,
Java and thus Jini provide for a certain amount of platform
independence. The Jini1 architecture leverages off the
assumption that the Java programming language 1s the
implementation language for the components of the Jini
system. The ability to dynamically download and run Java
code 1s central to many features of the Jini architecture.

The purpose of the Jini architecture 1s to federate groups
of devices and software components 1nto a single dynamic
distributed system. A key concept within the Jini architec-
ture 1s that of a service. A service 1s an entity that can be used
by a person, a program, or another service. Two examples of
services are printing a document and translating from one
word processor format to another. Jin1 allows the members
of a Jin1 system to share access to services. Services 1n a Jini
system communicate with each other by using a service
protocol, which 1s a set of interfaces written 1n the Java
programming language. Services are found and resolved 1n
a Jin1 system by a look-up service. A look-up service maps
interfaces indicating the functionality provided by a service
to sets of objects that implement the service.

Descriptive entries may also be associated with a service.
Devices and applications use a process known as discovery
to register with the Jin1 network. Once registered, the device
or application places itself in the look-up service. The
look-up service may store not only pointers to these services
on the network, but also may store the code for accessing
these services. For example, when a printer registers with
the look-up service, it loads 1ts printer driver and/or an
interface to the driver into the look-up service. When a client

US 6,643,650 B1

3

wants to use the printer, the driver and driver interface get
downloaded from the look-up service to the client. This code
mobility means that clients can take advantage of services
from the network without pre-installing or loading drivers or
other software.

Communication between services 1 a Jini system 1s
accomplished using the Java Remote Method Invocation
(RMI). RMI is a Java programming language enabled exten-
sion to traditional remote procedure call mechanisms. RMI
allows not only data to be passed from object to object
around the Jini network, but full objects including code as
well. Jin1 systems depend upon this ability to move code
around the network 1n a form that 1s encapsulated as a Java
object.

Access to services 1n a Jini system 1s lease based. A lease
1s a grant of guaranteed access over a time. Each lease is
negotiated between the user of the service and the provider
of the service as part of the service protocol. A service may
be requested for some period and access may be granted for
some period presumably considering the request period.
[eases must be renewed for a service to remain part of the
Jini system.

FIG. 1 1illustrates the basic Jini technology stack. The Jin1
technology defines a distributed programming model 12
(supported by JavaSpaces, leases, and objectm templates).
Object communication 1n Jini 1s based on an RMI layer 14
over a TCP/IP capable networking layer 16.

Jin1 1s a promising technology for simplifying distributed
computing. However, for certain types of devices, Jin1 may
not be appropriate. The computing landscape 1s moving
toward a distributed, Web-centric service and content model
where the composition of client services and content
changes rapidly. The client of the future may be a companion
type device that users take with them wherever they go.
Such a device may be a combination of a cell phone and a
PDA for example. It would be desirable for such devices to
be able to communicate and share resources with more
powerlul devices as well as thinner or less powertul devices.

Also, with the advent of the Internet and resulting explo-
sion of devices connected to the net, a distributed program-
ming model designed to leverage this phenomenon is
neceded. An enabling technology is needed that facilitates
clients connecting to services in a reliable and secure
fashion. Various clients from thick to thin and services need
to be connected over the Internet, corporate Intemets, or
even within single computers. It 1s desirable to abstract the
distance, latency and implementation from both clients and
SEIVICES.

The key challenge for distributed computing technology
1s to be scalable from powerful thick clients down to very
thin clients such as embedded mobile devices. Current
distributed computing technologies, such as Jini, may not be
scalable enough for the needs of all types of clients. Some
devices, such as small footprint devices or embedded
devices, may lack sufficient memory resources and/or lack
suificient networking bandwidth to participate satisfactorily
in current distributed computing technologies. The low end
of the client spectrum, including embedded mobile devices,
often have limited or fixed code execution environments.
These devices also may have minimal or no persistent
storage capabilities. Most small, embedded mobile devices
do not support a Java Virtual Machine. Most code-capable
small clients run native code only. Also, most small devices
have little more than flash memory or battery backed RAM
as their sole persistent storage media. The size of the storage
1s often very small and sometimes read-only i1n nature.

10

15

20

25

30

35

40

45

50

55

60

65

4

Furthermore, the access time of this type of storage media 1s
often an order of magnitude greater than hard disk access
fime 1n more powerful clients.

Existing connection technologies, such as Jini, may not be
as scalable as desired because they are too big. For example,
Jin1 requires that all participants support Java; however,
many small clients may not have the resources for a Java
Virtual Machine. Furthermore, due to 1ts use of RMI, Jini
requires that clients be able to download code and content.
Jini may augment the existing client platform by download-
ing new classes, which may pose security and size concerns
for small devices such as embedded devices. Jin1 works by
clients and resources communicating by passing code and
data. When a client activates a Jin1 service, the service may
return 1its results to the client, which may include a large
amount of code or content. In Jini, a client may call a method
and a large object may be returned, and thus downloaded.
The client may not have the resource to accept the returned
object. Also, RMI and Java itself require a lot of memory.
Many small foot print devices may not have the resources to
participate effectively or at all 1n current distributed com-
puting technologies.

Another concern with existing distributed computing
technologies 1s that they often require certain levels of
connection capability and protocols. For example, Jini
assumes the existence of a network of reasonable speed for
connecting computers and devices. Jin1 also requires devices
to support TCP/IP network transport protocol. However,
many smaller devices may have limited connection capa-
bilities. Small devices may have high latency or low speed
network connections and may not support TCP/IP.

As mentioned above, Jini requires devices to support Java
and thus include a Java Virtual Machine, which requires a
certain amount of processing and storage capabilities that
might not be present for many small devices. This also
restricts the flexibility of Jini 1n that non-Java devices may
not directly participate 1n a Jini1 system. Since Jini requires
Java, it may be deemed a homogenous environment.
However, it 1s desirable to have a distributed computing
facility for heterogencous distributed computing that scales
from extremely small embedded devices through PDA’s and
cell phones to laptops and beyond even to the most powerful
computers.

Other heterogeneous solutions exist, such as the Common
Object Request Broker Architecture (CORBA). CORBA is
an architecture that enables program objects to communicate
with one another regardless of the programming language
they were written 1n or what operating system they’re
running on. However, CORBA does not address all of the
connection 1ssues that are addressed by Jini. Also, CORBA
suifers from similar scalability problems as Jini.

Technology such as Jini and CORBA use a code-centric
programming model to define the interface between remote
components. A code-centric programming model defines
programmatic interfaces or API’s for communication
between remote clients or components. The API’s may be
defined m a particular programming language. The API’s
must be agreed to by all software components to ensure
proper 1nteroperability. Since all access to components 1s
through the use of these standards API’s, the code that
implements these API’s must be present 1n the client plat-
form. The code may be statically linked 1nto the platform or
dynamically downloaded when needed. Many embedded or
mobile devices simply cannot accept code dynamically from
a network due to the quality control 1ssues mnvolved as well
as the reliance on a single language and program execution

US 6,643,650 B1

S

environment. Data-centric models, such as networking
protocols, may avoid the dependence on moving code;
however, such protocols are not rich enough to ecasily
provide for distributed computing and they also lack the ease
of programming with code and other programming features,
such as type safety.

Conventional distributed computing systems rely on the
ability of a program executing on a first device to be able to
remotely call a program on a second device and have the
results returned to the first device. The Remote Procedure
Call (RPC) 1s a basic mechanism for remotely calling a
program or procedure. CORBA and Jin1 are both based on
the ability to remotely 1nvoke program methods. However,
communicating by passing code or objects, such as 1n Jini or
CORBA, may be somewhat complex. For example, as
mentioned above, Jin1 uses the Java Remote Method Invo-
cation (RMI) to communicate between services. In order for
a client to move Java objects to and from remote locations,
some means of serialization/deserialization 1s needed. Such
current facilities in the Java Development Kit (JDK) rely
upon the reflection API to determine the content of a Java
object, and ultimately that code must consult the Virtual
Machine. This code 1s quite large and ineflicient.

The fundamental problems with the current method for
doing serialization/deserialization include 1its size, speed,
and object traversal model. Code outside the JVM does not
know the structure or graph of a Java object and thus must
fraverse the object graph, pulling 1t apart, and ultimately
must call upon the JVM. Traditional serialization and reflec-
fion mechanisms for storing and moving Java objects are
just not practical for all types of devices, especially thinner
devices. Some of the difficulties with Java reflection and
serialization are that an object’s graph (an object’s transitive
closure) reflection is difficult to do outside the JVM. Seri-
alization 1s too large, requiring a large amount of code. Also,
serialization 1s a Java speciiic object interchange format and
thus may not be used with non-Java devices.

The Jin1 distributed computing model requires the move-
ment of Java objects between Java devices. Thus, the
serialization mechanism 1itself 1s not platform independent
since 1t may not be used by non-Java platforms to send and
receive objects. Serialization 1s a homogenous object
format—it only works on Java platforms. Serialization uses
the reflection API and may be limited by security concerns,
which often must be addressed using native JVM dependent
methods. The reflection API may provide a graph of objects,
but 1s inefficient due to the number of calls between the JVM
and the code calling the reflection methods.

The use of Java reflection to serialize an object requires an
application to ping pong 1n and out of the JVM to pick apart
an object one field at a time as the transitive closure of the
object 1s dynamically analyzed. Deserializing an object
using Java deserialization requires the application to work
closely with the JVM to reconstitute the object one field at
a time as the transitive closure of the object 1s dynamically
analyzed. Thus, Java serialization/deserialization 1s slow
and cumbersome while also requiring large amounts of
application and JVM code as well as persistent storage
space.

Even for thin clients that do support Java, the Jin1 RMI
may not be practical for thin clients with minimal memory
footprints and minimal bandwidth. The serialization associ-
ated with the Jim1 RMI 1s slow, big, requires the JVM
reflection API, and 1s a Java specific object representation.
Java deserialization 1s also slow, big and requires a
serialized-object parser. Even Java based thin clients may

10

15

20

25

30

35

40

45

50

55

60

65

6

not be able to accept huge Java objects (along with needed
classes) being returned (necessarily) across the network to
the client as required 1n Jini. A more scalable distributed
computing mechanism 1s needed. It may be desirable for a
more scalable distributed computing mechanism to address
security concerns and be expandable to allow for the passing
of objects, such as Java objects, and even to allow for
process migration from one network mode to another.

Object based distributed computing systems need persis-
tent storage. However, as discussed above, attempts at object
storage are often language and operating system specific. In
addition, these object storage systems are too complicated to
be used with many small, embedded systems. For example,
the Jini technology uses JavaSpaces as persistent object
containers. However, a JavaSpace can only store Java
objects and cannot be 1mplemented 1n small devices. Each
object 1n a JavaSpace 1s serialized and pays the above-
described penalties associated with Java serialization. It may
be desirable to have a heterogeneous object repository for
distributed computing that may scale from small to large
devices.

JavaSpaces from Sun Microsystems, Inc., draws from the
parallel processing work of David Gelernter, a computer
science professor at Yale Umversity. Gelernter’'s set of
functions named “Linda” create a shared memory space
called a TupleSpace, 1n which results of a computer’s
processes or the processes themselves may be stored for
access by multiple CPUs. Linda therefore provides a global
shared memory for multiple processors.

Another technology which extends Linda 1s TSpaces from
IBM Corporation. TSpaces extends the basic Linda
TupleSpace framework with real data management and the
ability to download new datatypes and new semantic func-
tionality. TSpaces provides a set of network communication
buffers and a set of APIs for accessing those buffers. Like
many of the solutions discussed above, TSpaces therefore
uses a code-centric programming model and shares the
drawbacks of such a model. Additionally, TSpaces 1s 1imple-
mented 1n the Java programming language and therefore
requires a Java Virtual Machine, or other means of executing
Java bytecode, such as a Java-capable microprocessor.
Therefore, TSpaces may be mappropriate for small-footprint
devices which cannot devote suflicient resources for execut-
ing Java bytecode.

It 1s desirable 1 object oriented distributed systems to be
able to locate object repositories and find particular objects
within those repositories. As mentioned above, the Jini
look-up server may not be practical for small devices with
small memory footprints. A more efficient mechanism for
locating object stores may be desirable.

Distributed object access also desires a fair and efficient
sharing mechanism. As described above Jini currently uses
a leasing mechanism to share objects. However, Jin1 leases
are time based which may result in a number of problems.
For example, the current object holder might have no idea
how long to lease an object and may hold 1t too long. Also,
the use of time-based leases may require that time be
synchronized between multiple machines. Moreover time
based leasing may require operating system support. Also,
Jini leases are established and released via RMI. Thus, the
Jini leasing mechanism suffers from the above-noted prob-
lems with using RMI. Other leasing mechanisms may be
desirable.

Generally speaking, it 1s desirable for small memory foot
print mobile client devices to be able to run a variety of
services, both legacy and new, 1n a distributed environment.

US 6,643,650 B1

7

The types of small clients may include cell phones and
PDA’s with a variety of different networking interfaces,
typically low bandwidth. Often these devices have very
small displays with limited graphics, but they could include
laptops and notebook computers, which may have a larger
display and more sophisticated graphics capabilities. The
services may be a wide range of applications as well as
control programs for devices such as printers. It 1s desirable
for a mobile client to be able to use these services wherever
they may be.

A mobile client will often be at a temporary dynamic
network address, so networking messages it sends cannot be
routed beyond that networking interface (otherwise there
may be collisions when two different clients on different
networks have the same dynamic address). Mobile clients
often do not have the capability for a full function browser
or other sophisticated software. The displays may limit the
client from running certain applications. Traditional appli-
cation models are based on predetermined user interface or
data characteristics. Any change to the application requires
recompilation of the application.

It may be desirable for such clients to have a mechanism
for finding and invoking distributed applications or services.
The client may need to be able to run even large legacy
applications which could not possibly fit in the client’s
memory footprint. As discussed above, current technology,
such as Jini, may not be practical for small footprint devices.
The pervasiveness of mobile thin clients may also raise
additional needs. For example, 1t may be desirable to locate
services based on the physical location of the user and his
mobile client. For example, information about the services
in a local vicinity may be very helpful, such as local
restaurants, weather, traffic maps and movie info.

A distributed computing model should provide clients
with a way to find transient documents and services. It may
be desirable to have a mechanism for finding general-
purpose documents (including services and/or service
advertisements), where the documents are expressed in a
platform-independent and language-independent typing
such as that provided by eXtensible Markup Language
(XML). Current approaches, including lookup mechanisms
for Jini, Universal Plug and Play (UPnP), and the Service
Location Protocol (SLP), do not support such a general-
purpose document lookup mechanism. For example, the Jin1
lookup mechanism 1s limited to Java Language typing and 1s
therefore not language-independent. UPnP and SLP support
a discovery protocol only for services, not for general-
purpose documents.

Similarly, information about computing resources, such
as printers 1n a particular location, may be helpful. Current
technologies do not provide an automatic mechanism for
locating services based on physical location of the client.
Another need raised by thin mobile clients 1s that of address-
ing the human factor. Thin mobile clients typically do not
contain ergonomic keyboards and monitors. The provision
of such human factor services and/or the ability to locate
such services 1n a distributed computing environment may

be desirable.
SUMMARY OF THE INVENTION

The problems outlined above are 1n large part solved by
various embodiments of a system and method for searching,
for documents within spaces within a distributed computing
environment. A distributed computing environment may rely
on “spaces” or object repositories to provide a rendezvous
mechanism or catalyst for the interaction between clients

10

15

20

25

30

35

40

45

50

55

60

65

3

and services. Service providers may advertise services 1n a
space. Clients may find the advertisements 1n a space and
use the information from an advertisement to access a
service using an XML (eXtensible Markup Language) mes-
saging mechanism of the distributed computing environ-
ment. Many spaces may exist, each containing XML adver-
tisesments that describe services or content. Thus, a space
may be a repository of XML advertisements of services
and/or XML data, which may be raw data or advertisements

for data, such as results.

In one embodiment, a space itself 1s a service. Like any
service, a space has an advertisement, which a client of the
space must first obtain 1n order to be able to run that space
service. A space’s own advertisement may include an XML
schema, a credential or credentials, and a URI (Uniform
Resource Identifier) which indicate how to access the space.
A client may construct a gate from a space service’s adver-
tisement 1n order to access the space. A client of a space may
itself be a service provider seeking to advertise in that space
or modily an existing advertisement. Or a client of a space
may be an application seeking to access a service or content
listed by the space. Thus, spaces may provide catalysts for
the 1interaction between clients and services in the distributed
computing environment.

A space may 1nclude a collection of named advertise-
ments. A space may be created with a single root advertise-
ment that describes the space itself. Additional advertise-
ments may be added to a space. An advertisement’s name
may locate the advertisement within the space, mcluding
specilying any necessary graphing information such as a
hierarchy of names. In a preferred embodiment, the structure
of a space 1s not dictated by the distributed computing
environment. That 1s, spaces may be structured as, for
example, a flat un-related set of advertisements or a graph of
related advertisements (e.g. commercial database). Since, in
a preferred embodiment, the distributed computing environ-
ment does not dictate how a space actually stores its content,
spaces may be supported by small to large devices. For
example, a simple space may be tailored to fit on small
devices, such as PDAs. More advanced spaces may be
implemented on large severs employing large commercial
databases.

As mentioned above, a space may contain advertisements
for services 1n the distributed computing environment. An
advertisement may provide a mechanism for addressing and
accessing services and/or content within the distributed
computing environment. An advertisement may specily a
URI for a service. In some embodiments, the URI may allow
for the service to be accessible over the Internet. An adver-
fissment may also mnclude an XML schema for the service.
The XML schema may specily a set of messages that clients
of the service may send to the service to invoke functionality
of the service. The XML schema may define the client-
service 1nterface. Together, the URI and the XML specified
in an advertisement may indicate how to address and access
the service. Both the URI and schema may be provided 1n
XML as an advertisement 1n a space. Thus, a mechanism for
addressing and accessing a service 1n a distributed comput-
ing environment may be published as an advertisement 1n a
space. Clients may discover a space and then lookup 1ndi-
vidual advertisement for services or content. Spaces and all
advertisements within a space may be addressed using URIs.
In one embodiment, space and advertisement names may
follow URL (Uniform Resource Locator) naming conven-
tions. The use of URIs, e.g. URLs, for addressing spaces
may allow spaces to be addressable throughout the Internet,
in some embodiments.

US 6,643,650 B1

9

Once a client of a space finds the advertisement of a space
service, that client of the space may run the space service, as
it would any other service. Note that the client of the space
service may be another service (e.g. a service seeking to
advertise in the space). In one embodiment, to run a space
service, the client of the space may first run an authentica-
tfion service for the space to obtain an authentication token.
The authentication service may be speciiied in the service
advertisement of the space service. The client of the space
uses the authentication token, the XML schema of the space
(from space’s service advertisement), and the URI of the
space (from space’s service advertisement) to construct a
cgate for the space. The client of the space may then run the
space service by using the gate to send messages to the space
SErvice.

For embodiments employing authentication, when the
space service receives the first message from the client, with
the authentication token embedded, the space service uses
the same authentication service (specified in the service
advertisement of the space service) to authenticate the client,
thus establishing its 1dentity. The space service may deter-
mine the client’s capabilities and bind them to the authen-
fication token.

A client of a space may run various space facilities by
sending messages to the space service. In one embodiment,
when a client of a space sends a request to the space service,
it passes 1ts authentication token 1n that request, so the space
service can check the request against the client’s speciiic
capabilities.

Each space 1s typically a service and may have an XML
schema defining the core functionality of the space service.
The XML schema may specify the client mterface to the
space service. In one embodiment, all space services may
provide a base-level of space-related messages. The base-
level space functionality may be the basic space function-
ality that 1s capable of being used by most clients, including
small devices such as PDAs. It may be desirable to provide
for additional functionality, e.g. for more advanced clients.
Extensions to the base-level space may be accomplished by
adding more messages to the XML schema that advertises
the space. For example, in one embodiment, the base-level
messages do not 1impose any relationship graph upon the
advertisements. Messages, for example, to traverse a hier-
archy of advertisements may be a space extension. Provid-
ing such additional functionality may be done by providing
one or more extended XML space schemas or schema
extensions for a space. The extended schemas may 1nclude
the base schema so that clients of an extended space may
still access the space as a base space.

In one embodiment, a space may provide a facility for a
client to 1nstantiate a service advertised in the space. Service
instantiation 1s the 1nitialization done that allows a client to
be able to run a service. To 1nstantiate a service, a client may
first select one of the service advertisements published 1n the
space. The client may use the various facilities, such as the
look up facility, provided by the space to look up the various
advertisements 1n the space. Then the client may request the
space to 1nstantiate the service.

In one embodiment, service instantiation may include the
following actions. After the client requests the space service
to 1nstantiate the selected service, the space service may then
verily the client 1s allowed to instantiate the requested
service. The space service may perform this verification by
examining the an authentication token included in the clients
message. The authentication token 1s the credential the client
received when 1t established a session with the space service.

10

15

20

25

30

35

40

45

50

55

60

65

10

The space service may verily if the client 1s allowed to
instantiate the requested service according to the client’s
authentication token and capabilities indicated for that cli-
ent.

Assuming the client 1s authorized, the space service may
also obtain a lease on the service advertisement for the client
with the lease request time specified by the client. The space
service may then send a message to the client which includes
the allocated lease and the service advertisement of the

service. In one embodiment, the client may run an authen-
tication service specified 1n the service advertisement and
obtain an authentication token. Next, the client may con-
struct a gate for the service (for example, using the authen-
tication token and the XML schema and service URI from
the advertisement). The above described communication
between the client and space service 1s performed using the
XML messaging of the distributed computing environment.
The client may then run the service using the constructed
cgate and XML messaging. The service may similarly con-
struct a service gate for XML message communication with
the client.

In one embodiment, a client may mteract with a space via
lookup messages to find documents within the space. A
client may send a lookup message to a space. The space may
comprise a network-addressable storage location which 1s
operable to store one or more documents. The stored docu-
ments may be expressed 1n a data representation language
such as eXtensible Markup Language (XML). The lookup
message may specily desired characteristics of the stored
documents. In one embodiment, the documents may include
XML service advertisements and XML device advertise-
ments as well as general-purpose XML documents. For
example, the XML documents in the space may include the
results of a service as expressed in XML.

A set of documents which match the lookup message may
be discovered. The discovered documents may include any
stored documents which meet the desired characteristics
specifled 1n the lookup message. Zero or more stored docu-
ments may match the desired characteristics. In one
embodiment, the lookup message may include a desired
name. In one embodiment, the desired name specified 1n the
lookup message may include one or more wildcards. Each of
the discovered documents may then have a name that
matches the desired name, and the names may identify the
discovered documents within the space. In one embodiment,
the lookup message may include a desired schema which 1s
expressed 1n the data representation language. Each of the
discovered documents may have a schema or part of a
schema that matches the desired schema. In one
embodiment, the lookup message may include both a
desired name and a desired schema. In this case, the set of
discovered documents may include both discovered docu-
ments having a name that matches the desired name and
discovered documents having a schema that matches the
desired schema. In one embodiment, the lookup message
may include neither a desired name nor a desired schema. In
this case, the lookup message 1s essentially a request for all
documents 1n the space, and the set of discovered documents
may 1nclude substantially all the documents that are stored
in the space.

After the matching documents are found, the space may
send a lookup response message to the client. In one
embodiment, the lookup response message may include the
names of the discovered documents. In one embodiment, the
lookup response message may include an advertisement for
cach of the zero or more discovered documents. Each
advertisement may include mmformation which is usable by

US 6,643,650 B1

11

the client to obtain the respective discovered document or
access the resource (e.g., a service) that the document
advertises. In one embodiment, each advertisement may
include a Uniform Resource Identifier (URI) at which the
respective discovered document (or resource, such as a
service, advertised by the document) is accessible. In one
embodiment, at least one of the discovered documents may
be an advertisement for a service. The advertisement for the
service may include a schema, wherein the schema specifies
one or more messages usable to mvoke one or more func-
tions of the service. The advertisements may be expressed in
the data representation language, such as XML. In one
embodiment, the lookup message and the lookup response
message are expressed m a data representation language

such as XML..
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s an 1illustration of a conventional distributed
computing technology stack;

FIG. 2 1s an 1illustration of a distributed computing envi-
ronment programming model according to one embodiment;

FIG. 3 1s an illustration of messaging and networking,
layers for a distributed computing environment according to
one embodiment;

FIG. 4 1s an illustration of a discovery service for finding,
spaces advertising objects or services 1n a distributed com-
puting environment according to one embodiment;

FIG. 5 illustrates client profiles supporting static and
formatted messages for a distributed computing environ-
ment according to one embodiment;

FIG. 6 1s an 1llustration of a distributed computing model
employing XML messaging according to one embodiment;

FIG. 7 1illustrates a platform independent distributing
computing environment according to one embodiment;

FIG. 8 1s an 1llustration of a distributed computing model
in which services are advertised 1n spaces according to one
embodiment;

FIG. 9 1s an 1llustration of a distributed computing model
in which results are stored 1n spaces according to one
embodiment;

FIG. 10 1s an 1llustration of client and service gates as
messaging endpoints 1 a distributed computing model
according to one embodiment;

FIG. 10b 1s an 1llustration a message endpoint generation
according to a schema for accessing a service according to
one embodiment.

FIG. 11a 1llustrates gate creation 1n a distributed comput-
ing environment according to one embodiment;

FIG. 11b 1illustrates gate creation and gate pairs 1n a
distributed computing environment according to one
embodiment;

FIG. 12 1s an illustration of possible gate components in
a distributed computing environment according to one
embodiment;

FIG. 13 1s an 1llustration of proxy client for a conventional
browser to participate 1n the distributed computing environ-
ment according to one embodiment;

FIG. 14 1llustrates the use of a method gate to provide a
remote method invocation 1nterface to a service in a distrib-
uted computing environment according to one embodiment;

FIG. 15 1s an 1illustration of the use of a space 1 a
distributed computing environment according to one
embodiment;

FIG. 16 1llustrates advertisement structure according to
one embodiment;

10

15

20

25

30

35

40

45

50

55

60

65

12

FIG. 17 1illustrates one example of advertisement state
transitions that an advertisement may undergo during its
lifetime according to one embodiment;

FIG. 18 1s an illustration various space location mecha-
nisms 1n a distributed computing environment according to
one embodiment;

FIG. 19 1s an 1illustration of space federations 1 a dis-
tributed computing environment according to one embodi-

ment,

FIG. 20 1s a flow diagram 1llustrating client formation of
a session with a space service 1n a distributed computing,
environment according to one embodiment;

FIG. 21 1s an illustration of a space event type hierarchy
for one embodiment;

FIG. 22 1s a flow diagram 1llustrating service instantiation
in a distributed computing environment according to one
embodiment;

FIG. 23 1s an 1llustration of a default space 1n a distributed
computing environment according to one embodiment;

FIG. 24 illustrates an example of a device bridging
proximity-based devices onto another transport mechanism
to allow the services provided by the proximity-based
devices to be accessed by devices outside the proximity
range ol the devices, according to one embodiment;

FIG. 25 1s an 1illustration of the use of lease renewal
messages 1n a distributed computing environment according
to one embodiment;

FIG. 26a 1s a flow diagram 1llustrating an authentication
service providing an authentication credential to a client
according to one embodiment;

FIG. 26b 1s a flow diagram expanding on step 1002 of
FIG. 26a and 1llustrating an authentication service generat-
ing an authentication credential according to one embodi-
ment,

FIG. 27 illustrates one embodiment of a bridging mecha-
nism;
FIG. 28 illustrates an example of a space discovery

protocol mapped to an external discovery service according
to one embodiment;

FIG. 29 1llustrates bridging a client external to the dis-
tributed computing environment to a space 1n the distributed
computing environment according to one embodiment;

FIG. 30 1s an 1llustration of a proxy mechanism according,
to one embodiment;

FIG. 31 illustrates one embodiment of a client with an
assoclated display and display service according to one
embodiment;

FIGS. 32A and 32B 1illustrate examples of using schemas
of dynamic display objects according to one embodiment;

FIG. 33A 1llustrates a typical string representation 1n the
C programming language;

FIG. 33B 1illustrates an example of a conventional string,
function;

FIG. 33C 1llustrates an efficient method for representing
and managing strings 1 general, and 1n small footprint
systems such as embedded systems 1n particular according
to one embodiment;

FIG. 34 1llustrates a process of moving objects between a
client and a service according to one embodiment;

FIGS. 35a and 35b are data flow diagrams illustrating,
embodiments where a virtual machine (e.g. JVM) includes
extensions for compiling objects (e.g. Java Objects) into
XML representations of the objects, and for decompiling
XML representations of (Java) objects into (Java) objects;

US 6,643,650 B1

13

FIG. 36 1llustrates a client and a service accessing store
mechanisms 1n the distributed computing environment,
according to one embodiment;

FIG. 37 1illustrates process migration using an XML
representation of the state of a process, according to one
embodiment;

FIG. 38 illustrates a mobile client device accessing spaces
in a local distributed computing network, according to one

embodiment;

FIG. 394 1llustrates a user of a mobile device discovering
the location of docking stations, according to one embodi-
ment,

FIG. 39b 1llustrates a mobile client device connecting to
a docking station, according to one embodiment;

FIG. 40a 1llustrates an embodiment of embedded devices
controlled by a control system and accessible within the
distributed computing environment, according to one
embodiment;

FIG. 40b 1llustrates a device control system connected via
a network (e.g. the Internet) to embedded devices accessible
within the distributed computing environment, according to
one embodiment;

FIG. 41 1s a flow diagram 1illustrating the spawning of a
new space 1n a distributed computing environment accord-

ing to one embodiment;

FIG. 42 15 a flow diagram 1llustrating the secure spawning,
of a new space 1n a distributed computing environment
according to one embodiment;

FIG. 43 1s a flow diagram 1illustrating a search for spaces
using a search service 1n a distributed computing environ-
ment according to one embodiment;

FIG. 44a 1s a flow diagram 1llustrating a method of storing,
results of a service 1in a space 1n a distributed computing
environment according to one embodiment;

FIG. 44b 1s a flow diagram 1llustrating a method of storing,
results of a service in a space and nofifying a client using an
event 1n a distributed computing environment according to
one embodiment;

FIG. 44c¢ 1s a flow diagram illustrating a method of
sending results of a service in a message to a client in a
distributed computing environment according to one
embodiment;

FIG. 44d 1s a flow diagram illustrating a method of
returning results of a service using an advertisement in a
distributed computing environment according to one
embodiment;

FIG. 44¢ 1s a flow diagram illustrating a method of
returning results of a service using an advertisement sent to
a client 1n a message 1n a distributed computing environment
according to one embodiment;

FIG. 44/ 1s a flow diagram illustrating a method of
returning results of a service using an advertisement stored
1n a space 1n a distributed computing environment according
to one embodiment;

FIG. 44¢ 1s a flow diagram illustrating a method of
returning results of a service using an advertisement stored
in a space and nofifying a client using an event in a
distributed computing environment according to one
embodiment;

FIG. 45 15 a flow diagram 1llustrating a method of sending,
results of one service to another service in a distributed

computing environment according to one embodiment;

FIGS. 46a and 46b are 1llustrations of a search service and
its 1nteraction with a client in a distributed computing
environment according to one embodiment;

10

15

20

25

30

35

40

45

50

55

60

65

14

FIG. 47 1s a flow diagram 1llustrating a search for docu-
ments within a space in a distributed computing environ-
ment according to one embodiment; and

FIG. 48 1s a flow diagram 1llustrating the addressing of a
service using an advertisement stored 1 within a space 1n a
distributed computing environment according to one
embodiment.

While the invention 1s susceptible to various modifica-
tions and alternative forms, specific embodiments thereof

arec shown by way of example in the drawings and will
herein be described 1n detail. It should be understood,

however, that the drawings and detailed description thereto
are not mtended to limait the invention to the particular form
disclosed, but on the contrary, the mtention 1s to cover all
modifications, equivalents and alternatives falling within the

spirit and scope of the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE INVENTION
Overview of Embodiments for Distributed Computing

Turning now to FIG. 2, a distributed computing environ-
ment programming model 1s 1llustrated. The model includes
API layer 102 for facilitating distributed computing. The
API layer 102 provides an interface that facilitates clients
connecting to services. The API layer 102 1s concerned with
the discovery of and the connecting of clients and services.
The API layer 102 provides send message and receive
message capabilities. This messaging API may provide an
interface for simple messages 1n a representation data or
meta-data format, such as 1n the eXtensible Mark-up Lan-
guage (XML). Note that while embodiments are described
herein employing XML, other meta-data type languages or
formats may be used in alternate embodiments. In some
embodiments, the API layer may also provide an interface
for messages to communicate between objects or pass
objects, such as Java objects. API’s may be provided to
discover an object repository or “space”, find a particular
object, claiam and release an object, and write or take an
object to or from the object repository. Objects accessible
through API layer 102 may be represented by a representa-
tion data format, such as XML. Thus, an XML representa-
fion of an object may be manipulated, as opposed to the
object itsell.

API layer 102 sits on top of a messaging layer 104. The
messaging layer 104 1s based on a representation data
format, such as XML. In one embodiment, XML messages
are generated by messaging layer 104 according to calls to
the API layer 102. The messaging layer 104 may provide
defined static messages that may be sent between clients and
services. Messaging layer 104 may also provide for dynami-
cally generated messages. In one embodiment, an object,
such as a Java object, may be dynamically converted into an
XML representation. The messaging layer 104 may then
send the XML object representation as a message.
Conversely, the messaging layer 104 may receive an XML
representation of an object. The object may then be recon-
stituted from that message.

In one embodiment, messages sent by messaging layer
104 may include several basic elements, such as an address,
authentication credentials, security tokens, and a message
body. The message system transmission and receive mecha-
nisms may be completely stateless. Any notion of state may
be embedded 1 the message stream between sender and
receiver. Thus, message transmission may be done asyn-
chronously. In a preferred embodiment, no connection
model 1s 1mposed. Thus, transports such as TCP are not
required. Also, error conditions may be limited to non-
delivery or security exceptions.

US 6,643,650 B1

15

Messaging layer 104 sits on top of a message capable
networking layer 106. In a preferred embodiment, messag-

ing layer 104 does not require that a particular networking
protocol be used. TCP/IP and UDP/IP are examples of

message capable protocols that may be used for message
capable networking layer 106. However, other more spe-
clalized protocols such as the Wireless Application Protocol
(WAP) may also be used. Other possible message protocols
are IrDA and Bluetooth network drivers beneath the trans-
port layer. Networking layer 106 1s not limited to a single
reliable connection protocol, such as TCP/IP. Therefore,
connection to a larger variety of devices 1s possible.

In one embodiment, message capable network layer 106
may be implemented from the networking classes provided

by the Java2 Micro Edition (J2ME) platform. The Java2
Micro Edition platform may be suitable for smaller footprint
devices that do not have the resources for a full Java
platform or 1n which i1t would not be efficient to run a full
Java platform. Since J2ME already provides a message
capable family of networking protocols (to support sockets),
it follows that for the small footprint cost of adding mes-
saging layer 104, distributing computing facilities may be
provided for small devices that already include J2ME.

Message capable networking layer 106 may also be
provided by the Java Development Kit’s (JDK) java.net
networking classes. Alternatively, any message capable net-
working facilities may be used for message capable net-
working layer 106. In a preferred embodiment, a reliable
transport 1s not required, thus embedded devices supporting
an unreliable data gram transport such as UDP/IP may still
support the messaging layer.

Thus, thin clients may participate in a distributed com-
puting environment by simply adding a thin messaging layer
104 above a basic networking protocol stack. As shown 1n
FIG. 3, a basic system 1ncludes messaging layer 104 on top
of a networking layer 106. The networking layer may
provide for reliable messages, e¢.g. TCP, or unreliable
messages, €.g. UDP. The Internet Protocol (IP) is shown in
FIG. 3 as an example of protocol that may be used in
networking layer 106. However, the distributed computing
environment does not require IP. Other protocols may be
used 1n the distributed computing environment besides IP. A
network driver such as for Ethernet, Token Ring, Bluetooth,
ctc. may also be part of the networking layer. Many small
clients already provide a network driver and transport pro-
tocol such as UDP/IP. Thus, with the addition of the thin
XML based messaging layer, the device may participate in
the distributed computing environment.

Thus, the foundation for the distributed computing envi-
ronment 1s a simple message passing layer implemented on
top of reliable connection and/or unreliable data grams. The
messaging technology 1s very different from communica-
tions technologies employed 1n other distribution computing
systems, such as Jin1 which employs the Java remote method
invocation (RMI). The message passing layer 104 supports
an asynchronous, stateless style of distributed programming,
instead of the synchronous, state-tull style predicated by
RMI. Moreover, message passing layer 104 1s based on a
data representation language such as XML and thus copies
data, but not code, from source to destination, unlike RMI.
By using a representation data language, such as XML,
messaging layer 104 may interoperate with non-Java and
non-Jin1 platforms 1n a seamless fashion because Java code
1s not assumed on the sending or receiving end of a message.
Moreover, unlike RMI, messaging layer 104 does not
require a reliable transport mechanism such as TCP/IP.

The message passing layer may provide simple send()
and receive() methods to send a message specified as an

10

15

20

25

30

35

40

45

50

55

60

65

16

array or string of bytes, for example. The send() method
may return immediately, performing the data transfer asyn-
chronously. For flow control purposes a callback method
may be supplied which is invoked in the event that the send(
) method throws an exception indicating it cannot handle the
send() request. The receive() method may be synchronous
and may return the next available message.

The message passing layer may also provide methods for
storing XML representations of objects, services and content
In “spaces”. A space 1s named and accessed on the network
using an URI (Uniform Resource Identifier). The URI may
be a URL (Uniform Resource Locator) or a simpler version
of a URL. In some embodiments, the URL class may be too
large. For such embodiments a simpler resource locator may
be used that specifies the protocol for moving the messages
between client and server, protocol dependent host ID,
protocol dependent port ID, and a space name.

An XML representation of an object may be added to a
space using a write() method provided by the messaging
layer. In one embodiment, the object and the client-specified
name may be supplied as parameters. In one embodiment,
the write method may translate the object into 1ts XML
representation. A take() method may be provided to return
the object and remove it from the space. A find() method
may be provided to return a specified object from 1ts XML
representation in a space. The find() method may also be
used to return an array of matching objects 1n a space given
a class. Each of these space methods 1s implemented using,
the message-passing layer. A lease mechanism may also be
provided, as described 1n more detail below.

A discovery service may be provided for clients as a
ogeneral search facility that may be used by a client to locate
a particular space. Rather than attempt to define a compli-
cated search protocol which may not be feasible for a thin
client to 1mplement, the discovery service may offload the
actual search to XML-based search facilities, leaving the
discovery service simply to provide interface functionality
to the client. The approach 1s illustrated 1n FIG. 4. In one
embodiment, the discovery service receive() a string speci-
fying something to locate, and 1t sends an XML message to
a known discovery front-end (perhaps found in a default
space), which then parses the string and makes a correspond-
ing XML query to a search facility (which may be an internet
search facility). The discovery front-end may parse what it
obtains from the search facility and repackage 1t as an array
of strings (each string may be a URI for each found space)
which 1t may send in an XML message to the client. It should
be noted that the discovery service does not require that the
messaging be atop a connection-oriented transport. Thus,
even very thin clients that do not have TCP could use such
a discovery service. The discovery front-end makes 1t pos-
sible for the client to discover spaces without a browser or
scarch facility on the client. The client only needs a simple
facility that sends a string that specifies keywords to the
front-end, which interfaces with a search facility.

A client may be any platform that can send a message
using at least a subset of the API and messaging layers. In
onc embodiment the API layer may provide for both static
(or raw) and formatted (or cooked) messages. A server may
be any platform capable of receiving and fulfilling message
requests. An explicit raw message send may be provided that
moves a series of bytes from a client to a server or to another
client. The message type may be specified as reliable (e.g.
TCP) or unreliable (e.g. UDP). The smallest of devices may
use raw unreliable message passing as their sole means of
participation in the distributed computing environment. The
device may use these messages to announce 1ts presence and

US 6,643,650 B1

17

its status. Such small devices may also receive raw messages
to 1mplement certain functions, such as turning a feature on
or off.

Message-based services such as spaces may send and
receive reliable formatted messages. A space message may
be formatted with a well-defined header and with XML. In
one embodiment, a formatted message send may occur when
a client uses a space method to claim, write, or take objects
from a space. The message contents may be dynamically
formatted 1n XML and contain well-defined headers. FIG. 5
illustrates client profiles supporting formatted and static
messages. By using static messages, small devices may use
a smaller profile of code to participate m the distributed
computing environment. For example, a small device could
just send basic pre-defined messages. Depending on the
client, the static pre-defined messages may consume a small
amount of memory (e.g. <200 bytes). Static messages may
also be an option even for larger devices. On the other hand,
the dynamic XML messages may be useful when object
values are not known at compile time.

Turning now to FIG. 6, a distributed computing model 1s
illustrated that combines a messaging system with XML
messages and XML object representation. The platform
independence of XML may be leveraged so that the system
may provide for a heterogenecous distributed computing
environment. Thus, client 110 may be implemented on
almost any platform 1nstead of a particular platform like
Java. The messaging system may be implemented on any
network capable messaging layer, such as Internet protocols
(¢.g. TCP/IP or UDP/IP). Thus, the computing environment
may be distributed over the Internet. In one embodiment, the
messaging system may also use shared memory as a quick
interprocess message passing mechanism when the client
and/or space server and/or service are on the same computer
system. The distributed computing model of FIG. 6 may also
be very scalable because almost any size client can be
configured to send and/or recetve XML messages.

As shown 1n FIG. 6, two kinds of software programs may
run 1n the distributed computing model: services 112 and
clients 110. Services 112 may advertise their capabilities to
clients wishing to use the service. The services 112 may
advertise their capabilities in spaces 114. As 1llustrated 1n
FIG. 7, clients 110 and services 112 may or may not reside
within the same network device. For example, devices 120
and 124 each support one client, whereas service 1124 and
client 1105 are 1implemented 1n the same device 122. Also,
as 1llustrated 1n FIG. 7, no particular platform is required for
the devices to support the clients and services. For example,
device 120 1s Java based, whereas device 124 provides a
native code runtime environment.

A device may be a networking transport addressable unit.
Example devices include, but by no means are limited to:
PDAs, cellular/mobile phones, notebook computers,
laptops, desktop computers, more powerful computer
systems, even supercomputers. Both clients and services
may be URI-addressable instances of software (or firmware)
that run on devices. Using the distributed computing envi-
ronment architecture, a client may run a service. A space 1S
a service that manages a repository of XML documents.
Even though 1t 1s redundant, the term, space service, may be
used herein for readability. A software component may be
both a client and service at different times. For example,
when a service uses a space (e.g. to advertise itself), that
service 15 a client of the space.

FIG. 8 illustrates the basic model of the distributed
computing environment 1n one embodiment. The distributed
computing environment may connect clients 110 to services

10

15

20

25

30

35

40

45

50

55

60

65

138

112 throughout a network. The network may be a wide area
network such as the Internet. The network may also be a
combination of networks such as a local area network
(LAN) connected to a wireless network over the Internet. As
shown 1n FIG. 8, a service 112 publishes an advertisement
132 for itself (represented in XML) 1n a space 114. The
advertisement 132 specifies the service’s XML schema and
URI address. Then, a client 110 may look up the advertise-
ment 132. The client 110 may use the advertisement 132 to
instantiate a gate 130. The gate 130 allows the client 110 to
run the service 112, by sending (and receiving) XML mes-
sages to (and from) the service 112.

Some results of running a service may be returned to the
client in an XML message. However, since other results may
be too large for a small client to receive and consume at
once, a service 112 may put those results or an XML
representation of the results 134 1n a space 114, as shown 1n
FIG. 9, and return them by reference (in an XML message)
to the client 110, rather than by value. Examples of methods
of returning a reference to results include, but are not limited
to: returning 1n the message a URI referencing the results in
a space, and: returning 1n the message an XML document
including the URI of the results. Later, the client 110 may
access the results, or pass them by reference to another
service. The space 1n which results may be stored may be
different from the space 1n which the service 1s advertised.

In one embodiment, the distributed computing environ-
ment uses XML for content definition, advertisement and
description. New content for the distributed computing
environment (messages and advertisements for example) are
defined in XML. Existing content types (e.g. developed for
other environments) may also be described using XML as a
level of indirection (meta-data). XML provides a powerful
means of representing data throughout a distributed system
because, similar to the way that Java provides universal
code, XML provides universal data. XML 1s language
agnostic and 1s self-describing. The XML content may be
strongly typed and validated using schemas. Using a pro-
vided XML schema, the system may ensure that only valid
XML content 1s passed 1n a message. XML content may also
be translated, into other content types such as HIML and
WML. Thus, clients that do not understand XML may still
use the distributed computing environment services.

In one embodiment, the distributed computing environ-
ment messages may delfine the protocol used to connect
clients with services, and to address content 1n spaces and
stores. The use of messages to define a protocol allows many
different kinds of devices to participate 1n the protocol. Each
device may be free to implement the protocol 1n a manner
best suited to its abilities and role. For example, not all
devices are capable of supporting a Java runtime environ-
ment. The distributed computing environment protocol defi-
nition does not require nor 1imply the use of Java on a device.
Nor does it preclude 1it.

A service’s capabilities may be expressed i terms of the
messages the service accepts. A service’s message set may
be defined using an XML schema. An XML message schema
defines each message format using XML typed tags. The tag
usage rules may also be defined in the schema. The message
schema may be a component of an XML advertisement
along with the service’s message endpoint used to receive
messages. The distributed computing environment may
allow clients to use all or some subset of a service’s
capabilities. Security policies may be employed to enforce
the set of capabilities given to a client. For example, once a
set of capabilities has been given to a client, the client may
not change that set without proper authorization. This model

US 6,643,650 B1

19

of capability definition allows for services levels that range
from a base set of capabilities to an extended set. Extensions
may be added to services by adding to the number of
recognized messages.

In one embodiment, all operations in the distributed
computing environment are embodied as XML messages
sent between clients and services. Storage (both transient
and persistent) providers are examples of services that
enable clients and services to store, advertise, and address
content. Clients and services may find each other and broker
content using a transient storage space. Services may place
a content or service advertisement 1n a space. The adver-
fissment may describe the content type or the capabilities of
the service. Clients may subsequently browse spaces look-
ing for advertisements that match a desired set of capabili-
ties. When a client finds a matching advertisement, a com-
munication channel may be established which may enable
bidirectional message passing to the service backing the
advertisement. In one embodiment, the communication
channel i1s authenticated. Results (which are just another
content type) from service operations may be returned
directly to the client 1n a response message, advertised and
stored 1n a space, or advertised 1n a space, but stored
persistently. Stored results may be addressed using a URI
(e.g. returned in the response message) and may have an
assoclated authentication credential.

Message Gates

As discussed above, the distributed computing environ-
ment leverages off the use of a data description language,
such as XML. XML may be used to describe a target entity
(e.g. document, service, or client) to an extent such that code
may be generated to access that entity. The generated code
for accessing the target entity may be referred to as a
message gate. Thus, 1n one embodiment, the distributed
computing environment differs from other distributed com-
puting environments 1n that instead of passing the necessary
code between objects necessary to access the other object,
the environment provides access to XML descriptions of an
object or target so that code may be generated based on the
XML description to access the target. The distributed com-
puting environment may use an XML schema to ensure type
safety as well as a programming model (e.g. supported
messages) without having to agree upon language specific
APIs, just XML schemas.

Code generated from an XML schema may also mcorpo-
rate the language, security, type safety, and execution envi-
ronment characteristics of the local platform. The local
platform may thus have control over the generated code to
ensure that it 1s bug-free and produces only valid data
according to the schema. The generated code may conform
to the client’s code execution environment (e.g. Java, C++,
Smalltalk), as well as its management and security frame-
work (Web-server and/or operating system).

Note that the distributed computing environment does not
require that code generated from an XML schema be gen-
erated “on the fly” at runtime. Instead, some or all of the
code may be pre-generated for categories (or classes) of
services, and then linked-in during the platform build pro-
cess. Pre-generation of code may be useful for some clients,
such as embedded devices, where certain XML schemas are
already known. In one embodiment, some or all of the code
doesn’t actually have to be generated at all. A private
code-loading scheme (within the client) might be used in
one embodiment to augment the generation process. In
addition, the distributed computing environment may
specily, in some embodiments, an interface to download
code for additional features in accessing a service (see, €.g.,

10

15

20

25

30

35

40

45

50

55

60

65

20

message conductors described below). Typically, such
downloaded code may be small and the client may have the
option to download the code or not.

The phrase “generated code” may refer to code that
originates within the client under the control of the client
code execution environment, or to code that 1s generated
elsewhere (such as on the service system or on a space
service system) and that may be downloaded to the client
system after generation. Binding time, however, may be at
runtime. At runtime, the generated code may be bound to a
service address (URI), so that a message may be sent to that
service 1nstance.

As discussed above, the interface to any service in the
distributed computing environment may be specified by an
XML schema, defining the set of messages that a client may
send (and receive from) that service. As illustrated in FIG.
10, the client 110 and service 112 may each construct a
message gate 130 for communicating according to the
specified XML schema. From the XML schema advertised
for the service 112 (and possibly other information in the
service advertisement), a message gate 130a or 1305 may be
constructed by the client 110a or 110b respectively. A
corresponding message gate 130c generated from the same
XML schema may also exist on the service 112a. A gate 130
1s a message endpoint that may send and/or receive type-safe
XML messages, and that may verily the type correctness of
XML messages when sending and/or receiving the mes-
sages. The message gate may also provide for authentication
and/or other security mechanisms to ensure that the message
endpoint 1s secure. In one embodiment, message gates are
always secure.

The distributed computing environment messaging layer
described above may be coupled to or may be part of the
cate. The messaging layer asynchronously delivers an
ordered sequence of bytes, using a networking transport,
from the sender to the receiver, maintaining the notion on
both the sender and receiver that this sequence of bytes 1s
onc atomic unit, the message. The distributed computing
environment does not assume that the networking transport
1s IP-based. Instead, the messaging layer may sit atop
whatever networking transport layer 1s supported by the
device.

Message gates may provide a mechanism to send and
receive XML messages between clients and services. The
XML messages may be “typed”. For example, the messages
may 1nclude tags to indicate if a message data field 1s, e.g.,
integer, floating point, text data, etc. A message gate may be
constructed to verify the type correctness of messages sent
or received. A message gate also may authenticate (e.g.
securely identify) the sender of a received message. An
XML schema may be provided for a service that describes
the set of messages accepted by the service and/or sent by
the service. A message gate may verily the correctness of
messages sent or received according to the XML schema for
which the gate 1s constructed.

A gate may be constructed as a single atomic unit of code
and data that performs type verification and/or message
correctness verification and/or sender identification for mes-
sages between a client and a service in the distributed
computing environment. In one embodiment, once the
atomic unit of code and data for a message gate has been
created, 1t cannot be altered as to its typing, message
descriptors, and sender 1dentification. In another
embodiment, the gate may be modified as to the contents of
the message schema after the gate i1s created, including
deleting, adding, or modifying messages in the message
schema.

US 6,643,650 B1

21

A message gate 15 the message endpoint for a client or
service 1n the distributed computing environment. A mes-
sage gate may provide a secure message endpoint that sends
and receives type-sate XML messages. Messages gates may
allow clients and services to exchange XML messages 1n a
secure and reliable fashion over any suitable message:
transport (e.g. HI'TP). For a client, a message gate may
represent the authority to use some or all of a service’s
capabilities. Each capability may be expressed 1n terms of a
message that may be sent to a service. Each such message
may be sent through a client message gate which may verily
the correctness of the message. The message may be
received by a service message gate which may authenticate
the message and verily 1ts correctness.

A message gate may provide a secure communication
endpoint that type checks XML messages. As further dis-
cussed below, a message gate may also provide a mechanism
to restrict the message flow between clients and services. In
one embodiment when a client desires to access a service, a
client and service message gate pair 1s created, 1f not already
existing. In one embodiment, the service message gate may
be created when the service receives a first message from the
client message gate. In one embodiment, one or more
service message gates may be created when the service 1s
initialized, and may be used to pair with client message gates
when created. The creation of a message gate may mvolve
an authentication service that may negotiate the desired level
of security and the set of messages that may be passed
between client and service. In one embodiment, the authen-
tication service may accept a client ID token (also referred
to as a client token), a service ID token (also referred to as
a service token), and a data representation language message
schema that describes the set of data representation language
messages that may be sent to or received from the service.
For example, messages may be described that may be sent
from a client to a service to invoke the service or to 1nvoke
aspects of the service. Messages may also be described that
are to be sent from the service, such as response messages
and event notification messages. Refer to the Authentication
and Security section below for a further discussion of how
the authentication service may be used 1n the construction
and use of message gates.

A client message gate and a service message gate pair may
allow messages to be sent between the client and the service.
In one embodiment, message gates may be created that only
send and/or receive a subset of the total set of messages as
described 1n the message schema for a service. This limited
access may be used within the distributed computing envi-
ronment to 1mplement a policy of least privilege whereby
clients are only given access to specific individual message
types, based on a security policy. Refer to the Authentication
and Security section below for a further discussion of
security checks for gate usage and gate creation.

Client and service gates may perform the actual sending
(and receiving) of the messages from the client to the
service, using the protocol specified 1n the service adver-
tissment (URI of service in the service advertisement). The
client may run the service via this message passing. A
message gate may provide a level of abstraction between a
client and a service. A client may access a service object
through a message gate instead of accessing the service
object directly. Since the gate abstracts the service from the
client, the service’s code may not need to be loaded, and
then started, until the client first uses the service.

The client gate may also perform verification of the
message against the XML schema, or verification of the
message against the XML schema may be performed by the

10

15

20

25

30

35

40

45

50

55

60

65

22

service gate, e.g. 1f the client indicates 1t has not yet been
verifled. In some embodiments, verification may not be
practical for simple clients and may thus not be required at
the client. In some embodiments, verification may be per-
formed by the service. The gates may also perform authen-
tication enablement and/or security schemes. In one
embodiment, 1f a client does not support the protocol speci-
fied 1n the service advertisement, then it may not be able to
construct the right gate. To avoid this problem, service
advertisements (used for gate construction) may include a
list of possible URIs for a service, so a variety of clients may
be supported.

A basic message gate may implement an API to send and
receive messages. The API moves data (e.g. XML messages)
in and out of the gate, validating messages before sending
and/ or upon receiving. In one embodiment, message gates
may support a fixed mimimum API to send and receive
messages. This APl may be extended to other features as
discussed below. As illustrated 1n FIG. 10b, a gate 130 may
be generated according to an XML schema 132. The gen-
erated gate code verilies messages based upon the XML
schema. The gate may verily correct message types and/or
content through the message API. As illustrated in FIG. 105,
through the message API a verified message may be sent to
a service. The message may be received by a corresponding,
cgate at the service. In response to the message, the service
may generate results 180. The service may return result data
182 through its gate. The results data may be the results
themselves or a reference to the results, such as a URI to
results stored 1n a space. In various embodiments, the
message API may support synchronous messages (request-
response), asynchronous messages (response is discon-
nected from request), unicast messages (point to point),
multi-cast messages (broadcast), and publish and subscribe
(event messages), for example. Other type of messages may
also be supported, such as remote method invocation mes-
Sages.

Each message sent by a gate may include an authentica-
tion credential so that the receiving gate may authenticate
the message. Each message may also include a token which
includes information allowing the receiving gate to verily
that the message has not been compromised or altered. For
example, the sender may compute a hash or checksum of the
message which may be verified by the receiver. The sender
may also encrypt this token and/or the entire message using
the sender’s private key and may include 1n the encrypted
message the corresponding public key so that the receiver
may verily that the token was not changed. See the section
below on Authentication and Security.

A pair of message gates may provide a mechanism for
communicating requests from clients to services and
response from services to clients. Two associated message
cgate endpoints may be used to create a secure atomic
bi-directional message channel for request-response mes-
sage passing. Thus, the distributed computing environment
may employ a message transport 1n which a message gate
exists on both the client and the service sides. The two gates
may work together to provide a secure and reliable message
channel.

Turning now to FIG. 1la, an illustration 1s provided for
one embodiment showing construction of a gate 130a 1n a
client 110 from a service advertisement or other service
description 132. The client may have a gate factory 140 that
1s trusted code on the client for generating gates based on
XML service descriptions. The use of the gate factory 140
may ensure that the gate 1t generates 1s also trusted code, and
that the code 1s correct with respect to the service adver-

US 6,643,650 B1

23

fissment. As shown 1n FIG. 11b, a gate 130c may also be
constructed at a service 112. The client gate 130a and the
service gate 130c provide message endpoints for communi-
cations between the client and service. In one embodiment,
the pieces the gate factory needs to construct a gate 130 are
the XML schema of the service (from the service
advertisement) and the URI of the service (from the service
advertisement). In another embodiment, an authentication
credential may also be obtained and used 1n gate construc-
fion by running an authentication service specified in the
service advertisement.

A gate factory may provide a trusted mechanism to create
message gates. In some embodiments, 1n order to ensure that
a message gate 1S a trusted message endpoint, the code used
to create the gate must be trusted code. A gate factory 140
may be a trusted package of code that 1s used to create gates.
In one embodiment, each client and service device platform
that desires to send and receive messages 1n the distributed
computing environment may have a gate factory. In some
embodiments, gates may be pre-constructed by a separate
gate factory so that a device with pre-constructed gates may
not need a full gate factory, or may include a partial gate
factory for binding a service URI and/or an authentication
credential to the pre-constructed gate at runtime (e.g. when
messaging is desired).

A gate factory for a device may generate gate code that
may 1ncorporate the language, security, type safety, and/or
execution environment characteristics of the local device
plattorm. By constructing gates itself, a device has the
ability to ensure that the generated gate code 1s bug-free,
produces only valid data, and provides type-safety. An
advantage of a device generating its own gate code as
opposed to downloading code for accessing a service 1s that
the client code management environment has the control.
The generated code may conform to the client’s code
execution environment (e.g. Java, C++, Smalltalk), as well
as its management and security framework (Web-server
and/or operating system). Generated code is also trusted
code, because the client’s runtime environment was
involved 1n 1ts creation. Trusted security information there-
fore may also be added by the trusted generated code. Thus,
a device may receive an XML message schema for a service
and then construct a gate based on that schema to access the
device. The XML schema may be viewed as defining the
contract with the service and the generated gate code as
providing a secure way to execute the contract. Note that
open devices, in which un-trusted (e.g. downloaded) code
may be run, may be configured so that gates may be
generated only by trusted code. Open devices may employ
a process model 1n which gates are enclosed 1n a protected,
1solated code container that 1s not accessible to tools, such
as debuggers, capable of discovering the gate’s
implementation, especially the gates authentication creden-
f1al.

A gate factory 140 may negotiate on behalf of a client
with a service to create a gate to send messages to the
service. Similarly, a gate may be constructed at the service
o receive messages from the client gate and send messages
to the client gate. Together, the client and service gates may
form a secure bidirectional communication channel.

A gate factory may provide a level of abstraction in gate
creation. For example, when a client desires to use a service,
instead of the client directly creating a gate to access the
service, the gate may be created by a gate factory as part of
instantiating the service.

The gate factory may create or may include its own
trusted message gate that 1s used to communicate with an

10

15

20

25

30

35

40

45

50

55

60

65

24

authentication service (e.g. specified by a service
advertisement) to receive an authentication credential for the
cate being constructed. For services that do not restrict
access, a gate may be constructed without an authentication
credential. The gates for such services may not need to send
an authentication credential with each message since the
service does not restrict access. The authentication service 1s
an example of a service that does not restrict access, 1n one
embodiment. Thus, a gate factory may be configured to
optimize gate construction by checking whether a service
restricts access. If the service does not restrict access, then
the gate factory may avoid running an authentication service
as part of gate construction and may avoid mcluded provi-
sions for an authentication credential as part of the con-
structed gate. The gate factory may also receive or download
an XML message schema (e.g. specified by a service
advertisement) to create a gate matching that schema. The
cgate factory may also receive or download a URI for the
service and/or for a service message gate for use 1n creating
the client message gate to communicate with the URI.

In addition, another gate construction optimization may
be employed for certain clients that do not desire to perform
checking of messages against a service’s XML schema. The
client may be too thin to perform the checking or may rely
on the service gate to perform the checking or may simply
choose not to perform the checking (e.g. to reduce gate
memory footprint). The gate factory may be configured to
receive an indication of whether or not a gate should be
constructed to verily messages against the provided XML
schema. In some embodiments, certain clients may have a
cgate factory that does not provide for message verification
against a schema for 1ts constructed gates. In some
embodiments, gates may be pre-constructed not to verily
messages. In some embodiments, a gate may be constructed
to verily outgoing messages only, or verily received mes-
sages only. Thus, 1n some embodiments, a client may avoid
or may chose to avoid building some or all of the gate code
that checks the messages against the XML schema.

In some embodiments, devices may maintain a cache of
gates to avoid constructing them each time the same service
1s run. For example, when a new gate 1s constructed by a gate
factory, the gate may be maintained 1n a gate cache. When
the gate 1s no longer being used, 1t 1s kept 1n the gate cache
instead of being deleted. If the gate cache becomes full, one
or more gates may be removed from the gate cache accord-
ing to a cache replacement algorithm, such as least recently
used. When the gate factory 1s called to construct a gate, 1t
first checks the gate cache to see if a matching gate already
exists so that construction of a new gate may be avoided.

The building of a gate may be made lightweight by
appropriate reuse of pieces used to construct other gates.
Certain portions of each gate may be the same, and thus may
be reused from gate to gate, such as parts of the message
verification code. Also, for some devices, common gate code
may be built into the system software for the device and
shared by all gates on that device. Thus, the gate factory may
avold rebuilding this common code for each gate. Instead,
the gate factory may simply bind the gate to this system
software portion. For example, a system software portion
may be provided to handle the message layer over whatever
transports are provided on the device.

Space services 1n particular may be good candidates for
many of the gate construction optimizations described above
since a service gate constructed for a space service may
perform many of the same functions as other service gates
for that space service. Refer to the Spaces section below for
more 1nformation on space services.

US 6,643,650 B1

25

In some 1nstances, a more eflicient form of method
invocation may exist. For example, if the target service runs
in the same Java Virtual Machine as the client application,
a more efficient form of method 1nvocation may be to create
a Java dynamic proxy class for the service. In such a case,
a java.ang.reflect. Method imvocation may be faster than
sending a message. A gate binding time procedure may
check for such an optimization and use 1t instead of running
the gate factory to create a gate or bind an existing gate.

In one embodiment, such as for special-purpose clients or
small embedded devices, the generation of gate code at
runtime may not be desirable due to memory consumption
and code generation time. Thus, instead of having a gate
factory that generates gates at runtime, in some embodi-
ments gates may be pre-generated and built into the device.
For example, message gates may be generated during the
build of embedded software as a means of including a
built-in secure message endpoint that does not have to be
constructed at runtime. Thus, a client with built-in gates may
not need a full gate factory, or may require only a partial gate
factory for performing certain runtime binding to a built-in
gate, such as for the URI and/or authentication credential.

A generation tool may be provided for the pre-
construction of gates. The generation tool may include an
XML parser, a code generator and a code compiler. In one
embodiment, the code generator may be a Java source code
ogenerator and the code compiler may be a Java code
compiler. During the build of the software for which built-in
message gates 1S desired, the generation tool i1s run with
input from all the relevant XML schemas for which gates are
desired.

As an example, 1f 1t 1s desired for a device to have a
built-in message gate that can send and receive messages
from a digital camera, the build of the device software may
include running the gate generation tool with the camera’s
XML message schema as input. The XML schema may be
parsed by the XML parser that may convert the XML
schema into an 1nternal form suitable for quick access during
a message verification process. The tool’s code generator
may provide source code for a gate corresponding to the
camera’s schema. In some embodiments, the generation tool
may also compile the source code and the gate code may be
linked into the software package for the device. At runtime,
the camera service may be discovered i1n the distributed
computing environment. The message URI for the camera
service may be bound to the built-in gate for the camera
within the device. The binding of the URI to the pre-
constructed gate may be performed by a gate constructor
within the device. This gate constructor may be a much
smaller, stmpler gate factory. When the camera service 1s
instantiated, the URI for the camera service 1s passed to the
gate constructor as an XML message. The gate constructor
may then bind the URI to the pre-constructed gate.

Thus, a gate may be partially or fully generated at
runtime, or a gate may be pre-generated before runtime with
a binding process (e.g. for a URI or credential) performed at
runtime. In one embodiment, a gate generation tool such as
the gate factory or the generation tool for pre-constructed
gates may be a Java-based tool to provide some level of
platform 1mndependence. Alternatively, gate generation tools
may be provided 1n any language, such as the native code for
a particular device in the distributed computing environ-
ment.

Note that the distributed computing environment does not
preclude a device from downloading part or all of a gate’s
code. For example, in some embodiments, a service may
provide gate code that may be downloaded by a client

10

15

20

25

30

35

40

45

50

55

60

65

26

wishing to access that service. However, downloaded code
may present size, security and/or safety risks.

A more detailed 1llustration of possible gate components
for one embodiment 1s shown 1n FIG. 12. A gate may include
its address (or name) 150, a destination gate address 152, a
valid XML schema (or internal form thereof) 154, and a
transport URI 153. In other embodiments, a gate may also
include an authentication credential 156. Some gates may
also mclude a lease 158 and/or a message conductor 160 to
verily message ordering.

A gate’s name 150 may be a unique ID that will (for the
life of the gate) refer only to it. A gate may be addressed
using 1ts gate name 150. In one embodiment, gate names
may be generated as a combination of a string from an XML
schema (e.g. from a service advertisement) and a random
number, such as a 128-bit random number. The name 150
may allow clients and services to migrate about the network
and still work together. In a preferred embodiment, the gate
address 1s 1ndependent of the physical message transport
address and/or socket layer. Thus, a gate name may provide
a virtual message endpoint address that may be bound and
un-bound to a message transport address. In one
embodiment, a gate’s name may be a Universal Unique
I[dentifier (UUID) that may, for the life of the gate, refer only
to 1it.

A gate name may persist as long as the gate persists so that
different applications and clients executing within the same
device may locate and use a particular gate repeatedly. For
example, a gate may be created for a first client process
executing within a device to access a service. After the first
client process has completed its activity with the service, 1t
may release the gate. Releasing the gate may involve
un-binding the gate from the first client process’s message
transport address (e.g. IP and/or Port address). The gate may
be stored 1n a gate cache or repository. A second client
process executing within the same device that desires to run
the same service may locate the gate by 1ts name and use 1t
to access the service. To use the gate, the second client
process may bind the gate to its message transport address,
so that the message endpoint for the second client process 1s
a combination of the gate name and the second client
process’s transport address. In another example, a client may
receive a dynamic IP address (e.g. a mobile client). When
the client’s transport address changes, a gate name (or gate
names) may be re-bound to the client’s new transport
address so that the client may still access a service(s) that
that 1t previously accessed without having to relocate the
service and recreate the gate. A gate name may also be useful
for process migration. A process and any associated gates
may be checkpointed or saved at one node 1n the distributed
computing environment and moved to another node. The
process may be restarted at the new node and the associated
cgates may be bound to the transport address for the new node
so that the process will still have access to the external
services to which 1t had access before being migrated. A gate
may track the current location of another gate to which it 1s
paired. Thus a service or client may be migrated and still be
accessible. For example, replicated or load-balanced service
implementations may be abstracted from clients of the
service by the gate.

Thus, a gate name 150 provides a flexible mechanism by
which to address a message endpoint i1n the distributed
computing environment. A gate name may be used to locate
and/or address a gate over a wide range of networks, from
a local network to the Internet. Gate names may be inde-
pendent of message transport so that a message endpoint
(gate) may be moved from transport to transport by unbind-

US 6,643,650 B1

27

ing and rebinding to different underlying transport addresses
(c.g. IP/Port address pairs).

In one embodiment, a gate may also be separated from a
service so that the same gate may be used to send requests
to different services over time. This may involve unbinding
the gate’s destination gate address 152 and binding a new
destination gate address to the gate.

A gate may be implemented as a layer above a device’s
transport layer (e.g. networking sockets). Each gate may
include a transport reference 153. The gate name 150 may be
bound to the transport reference 153 as described above.
Multiple gates may share the same message transport. For
example, multiple gates may have transport references 153
to the same TCP/IP socket. By sharing the same message
transport, the size and complexity of each gate may be
reduced. A device 1n the distributed computing environment
may have a large number of gates that need to send and
receive messages. The message handling complexity for
multiple gates may be reduced by sharing a common mes-
sage transport. The transport reference 153 may be a trans-
port URI (e.g. URL) or socket reference and may provide a
mechanism for naming an underlying transport and sharing
the transport with other gates. Multiple local gates may
include a reference 153 to the same transport, however, each
local gate may behave independently of the other local gates
sending and receiving messages to and from its paired
remote gate.

The schema 154 may be downloaded from a space 1nto the
cgate by the gate factory. The schema may be compiled into
an 1nternal form suitable for quick access during a message
verification process. In one embodiment, the schema may
specily two groups of messages: client service messages and
provider service messages. The client service messages
ogroup includes the description of all messages that the client
may send (that the provider supports), and the provider
service messages group includes the description of all mes-
sages that the provider may send (that the client receive()).
In one embodiment, either the client or provider may send
a particular request to the space service to obtain a response
message with either: the entire client service messages, the
entire provider service messages, the entire client and pro-
vider service messages, or a specific message of either the
client service messages or the provider service messages. In
addition, once a gate has been constructed, a client may
query as to the capabilities of the service without the gate
actually sending a message, but instead by inspecting the
cgate’s set of messages.

As described above, a message gate may verily the sender
of the message using an authentication credential, message
content for type safety and according to an XML schema.
However, it may also be desirable to verily that messages are
sent between a client and a service 1n the correct order. It
may be desirable to be able to provision applications
(services) for clients to run without any pre-existing specific
functionality related to the application on the client (e.g. no
GUI for the application on the client). For example, a Web
browser may be used on a client as the GUI for a service
instead of requiring an application-specific GUI. Of the
possible messages 1n the XML schema, the client may need
to know what message next to send to the service. It may be
desirable for the client to be able to determine which
message to send next without requiring the client to have
specific knowledge of the service. In one embodiment, the
service may continually send response messages indicating
the next mput 1t needs. The service would then accept only
the corresponding messages from the client with the
requested input specified. Other ad hoc scheme for message

ordering may also be employed.

10

15

20

25

30

35

40

45

50

55

60

65

23

In another embodiment, a message conductor 160 may be
employed 1n the gate or associated with the gate to verify the
correct sequence of messages, as opposed to verifying each
message’s syntax (which may already be performed in the
gate according to the schema). Message conductor 160 may
provide a more general approach for application provision-
ing. The message conductor 160 may be specified 1in a
service’s advertisement. The message conductor indication
in a schema may allow code to be generated on or down-
loaded to the client during gate construction, which may
provide the choreography needed to decide which message
to send next to the service. A message conductor may be
implemented as a Java application, a Java Script, WML
script, or 1n other programming or scripting languages.

In one embodiment, the message conductor may accept as
input an XML document (e.g. from a service advertisement)
that presents the valid order or choreography for messages
that may be sent between a client and the service. This XML
document may also specily user interface information and
other rules. The conductor may parse this XML document
into an internal form and enforce message ordering (and/or
other rules) according to the enclosed ordering information.
The conductor may prevent messages from being sent out of
order. Or, 1f a message 1s sent out of order, an exception may
be raised within the sending device. If a message 1s recerved
out of order, the conductor may send an automatic response
message back declaring the ordering error. The sender may
then resend messages 1n the correct order. Note that 1n some
embodiments, part or all of a conductor may be shared by
several gates. Thus, a conductor may be linked to multiple
gates.

In one embodiment of a distributed computing
environment, front ends for services (service interfaces) may
be built in to clients. In one embodiment, the service
interface may be a preconstructed user 1nterface provided to
the client by the service. In one embodiment, the service
interface may be provided to the client in the service
advertisement. The service interface may interact on the
client with the user of the service to obtain 1input for running
the service, and then may display results of running the
service on the client. A “user” may be a human, embedded
system, another client or service, etc. In one embodiment, a
client device may not be able to provision arbitrary services,
as the client device may only be able to run services for
which 1t has a front end built in. In one embodiment, a
service mnterface for a service may be implemented 1n a Web
browser on the client.

In one embodiment, a message conductor and/or service
interface may be external to the gate and thus abstracted
from the gate and client. The abstracted message conductor
may provide provisioning of arbitrary services to any client
device. In one embodiment, the message conductor may be
written 1n code that may run on substantially any platform.
In one embodiment, the message conductor may be written
in the Java language. In one embodiment, the message
conductor may not require the arbitrary downloading of
objects, for example, Java objects, returned to the client
device. For example, very large objects may be returned, and
the message conductor may choose to not download these
very large objects. In one embodiment, the message con-
ductor may send XML messages to services from the client
device on behalf of the client. The message conductor may
interact with the user of the service to receive input and
display results.

In one embodiment, a service mterface may be provided
that interacts with the client (e.g. thru a user interface) to
obtain all information to run the service, and then may

US 6,643,650 B1

29

display either results of running the service or imnformation
regarding the location of results, as appropriate. The service
interface may be either part of a message conductor 160 or
may be 1n addition to and work with message conductor 160.
The service interface may either be:

1. Built 1n to the client device and thus run on the client.

2. Downloaded to the client device from the space server.

3. Run on the space server.

4. Run on the service provider.

In one embodiment, to a client, the distributed computing,
environment space server must support #1 always, indicate
if #2 1s supported (by advertisement in space), indicate if at
least one of #3 and #4 1s supported. Note that whether or not
it supports #4 depends upon whether or not the service
provider supports #4. In one embodiment, to a service
provider, the distributed computing environment space
server must support #4 always and indicate if 1t supports #3.

Regardless of where the service interface runs, once a
service 15 activated, the service interface may interact with
the client, displaying (remotely) requests for input on the
client’s display, and then displaying (remotely) results of
running the service. Such interaction with the client is
implemented 1n terms of XML messages.

The service mterface and/or message conductor may meet
the needs of a client user that may have discovered a service,
but does not want to read a typically laree, dry computer
manual to figure out how to use the service. As the service
interface and/or message conductor interacts with the user to
request all 1nput that the service needs, they may even
provide short descriptions of the mput requested if the user
requests 1t. Once the service interface has obtained the
necessary information from the client, 1t may send XML
messages to the service provider that runs the service. The
ordering of the messages may be verified by the message
conductor 160 1n the gate.

In a preferred embodiment, all messages flow through a
cgate. A gate may be configured to provide a flow control
mechanism. For example, a service may need to handle a
larce amount of mcoming and outgoing messages. Flow
control may allow a service to keep up with high traffic
volume. Gates may be conifigured to monitor messages for
flow control tags. When a gate receives a message, 1t may
examine that message for a flow control tag. The flow
control tags may be XML tags. A message may 1nclude
cither an OFF tag or an ON tag, for example. If a received
message 1ncludes an OFF tag, the receiving gate will stop
sending messages to 1ts paired destination gate. If the gate
receives a message including an ON tag, 1t may resume
sending messages.

In some embodiments, a client may be too thin to support
a full gate, or a client may not include software to directly
participate 1n the distributed computing environment. In
such embodiments, a server (such as the space server in
which the service is advertised or another server) may be a
full or partial proxy gate for the client. The server may
instantiate a service agent (which may include a gate) for
cach service to be used by the client. The service agent may
verily permission to send messages; send messages to the
provider, possibly queuing them until the provider can
accept the next one; send messages to the client, possibly
queuing them until the client can accept the next one; and
manage the storing of results 1n a result or activation space.
Sce also the Bridging section herein.

For example, as 1llustrated in FIG. 13, a client may be a
conventional browser 400 that does not support gates to
participate directly 1n the messaging scheme described
above. The browser 400 may be aided by a proxy servlet

10

15

20

25

30

35

40

45

50

55

60

65

30

(agent) 402. The browser user may use a search engine to
find a Web page that fronts (displays the contents of) a space
advertising services within the distributed computing envi-
ronment. The user 1s able to point and click on the space Web
page and, with the help of the servlet, to access services. The
Web pages may include scripts, for example, Java or WML
scripts, which may be used 1n connecting the browser to the
proxy servlet. Scripts may also be used to send messages to
the proxy servlet. The servlet agent may translate Web page
actions 1nto messages on behalf of the browser client. These
actions may include navigating a space, starting services,
and returning results. Result page URIs (referencing pages
containing XML) may be returned directly (or translated
into HTML or WAP if needed) to the browser, for display to
the user. Thus, the browser-based client does not need to
know how to start services, nor which messages to send
during the service usage session. For example, a user of a
WAP browser (€.g. on a cell phone) may connect to a space
page, browse its contents (services), and then start a service,
all by pointing and clicking. The agent 402 provides the
client interface between the conventional client and the
distributed computing environment.

The distributed computing environment may 1nclude sev-
eral different types of message gates for communicating
between clients and services that support different features.
For example, as discussed above, some gates may support
flow control or billing. Another type of message gate may
support a form of remote method 1nvocation. This type of
cgate may be referred to as a method gate. FIG. 14 1llustrates
the use of a method gate to provide a remote method
invocation interface to a service. Method gates provide a
method 1nterface between clients and services. A method
cgate may be bidirectional, allowing remote method mvoca-
fions from client to service and from service to client. A
method gate 172 may be generated from XML schema
information 170 (e.g. from a service advertisement in a
space). The XML schema information 170 includes XML
defining a method interface(s). From this information, code
may be generated as part of the gate for interfacing to one
or more methods. Each method invocation (e.g. from a client
application 176) in the generated code may cause a message
to be sent to the service containing the marshaled method
parameters. The message syntax and parameters to be
included may be specified in the XML schema. Thus, the
method gate 172 provides an XML message interface to
remotely mnvoke a service method. The method gate may be
generated on the client or proxied on a server, such as the
space server where the service method was advertised or a
special gateway server.

A service may have a corresponding method gate that
implements or 1s linked to a set of object methods that
correspond to the set of method messages defined in the
service’s XML schema. There may be a one to one corre-
spondence between the object methods implemented by or
linked to the service’s method gate and the method messages
defined by the service’s XML schema. Once a service’s
corresponding method receives a message from a client to
mvoke one of the service’s methods, the service’s method
cgate may unmarshal or unpack the parameters of the mes-
sage 1nvocation and then 1nvoke the method indicated by the
received message and pass the unmarshalled parameters.

The method gate may provide a synchronous request-
response message interface 1n which clients remotely call
methods causing services to return results. The underlying
message passing mechanics may be completely hidden from
the client. This form of remote method invocation may deal
with method results as follows. Instead of downloading

US 6,643,650 B1

31

result objects (and associated classes) into the client, only a
result reference or references are returned in XML
messages, 1n one embodiment. An object reference 178 may
be a generated code proxy (e.g. result gate) representing the
real object result 180 (still stored out on the net, for
example). In other embodiments, the client may choose to
receive the actual result object. Also, once a client has
received a result object reference, the client may use this
reference to receive or manipulate the actual result object. In
one embodiment, the result reference includes one or more
URI’s to the real result.

The real result object(s) may be stored 1n a service results
space (which also may be created dynamically by a servlet
for example). This temporary results space may act as a
query results cache. The results cache (space) may be
patrolled by server software (garbage collector) that cleans-
up old result areas. Results returned from each method
invocation may be advertised in the results space. A result
itself may be or include a method that could then be
remotely instantiated by a client, thus generating its own
method gate. Therefore, the distributed computing environ-
ment may support recursive remote method invocation.

As mentioned above, when a client uses a method gate to
remotely mnvoke a service method, a reference to the method
results may be returned from the service method gate instead
of the actual results. From this reference, a result gate may
be generated to access the actual result. Thus, the client or
client method gate may receive a result URI and perhaps a
result XML schema and/or authentication credential for
constructing a gate to access the remote method results.

In one embodiment, a service gate may create a “child
cgate” for the results. This child result gate may share the
same authentication credential as its parent gate. In some
embodiments, results may have a different set of access
rigchts and thus may not share the same authentication
credential as its parent. For example, a payroll service may
allow a different set of users to initiate than to read the
payroll service’s results (paychecks).

A service method gate may return a child result gate to the
client gate as the result of the method. The client may then
use the result gate to access the actual results. In one
embodiment, the software program (client) receiving the
result gate cannot distinguish between the result gate and the
result itself 1n which case the result gate may be an object
proxy for the actual result object. The result gate may also
be a method gate that supports remote method mmvocation to
result objects. In this manner, a chain of parent and child
method/results gates may be created.

In one embodiment, the method gates and remote meth-
ods may be 1n Java. Method results are correctly typed
according to the Java typing system. When a Java method 1s
remotely mnvoked as described above, the result gate may be
cast into the Java type that matches the result type. In this
embodiment, method gates may be used 1n the distributed
computing environment to allow remote Java objects to
behave as local Java objects. The method 1nvocation and
result may appear the same to the client Java software
program whether the real object 1s local or remote.

See the Spaces section below for a further discussion on
the use of spaces for results.

Message gates may also support publish and subscribe
message passing for events. Message gates with event
support may be referred to as event gates. A service’s XML
schema may indicate a set of one or more events that may
be published by the service. An event gate may be con-
structed from the XML schema. The event gate may be
configured to recognize some or all of the set of events

10

15

20

25

30

35

40

45

50

55

60

65

32

published by a service, subscribe to those events, and
distribute each event as the event 1s produced by the service.

The set of events for a service may be described in the
service’s XML message schema. For each event message in
the XML schema, the event gate may subscribe itself as a
consumer of that event. In one embodiment, an event gate
subscribes to all events indicated by the XML schema. Each
event message may be named using an XML tag. The event
cgate may subscribe by sending a subscription message
including the XML tag for the event to be subscribed to.

When a corresponding event occurs with the service, the
service may send an event message to subscribers indicating
the occurrence of the event. The event message may contain
an XML event document and may be sent to each subscribed
cgate. When a subscribed gate receives the event message, the
XML event document 1s removed from the message and the
process ol distribution begins. Event distribution 1s the
process of handing out the event document within the client
platform. Each event consumer within the client platform
may subscribe with the event gate for each type of event. On
Java platforms, the typing system is Java (converted from
the XML event type).

The event consumer may supply an event handler call-
back method to the event gate. The event gate may store a
list of these subscriptions. As each event message arrives at
the gate (from the service producing the event), the gate
traverses the list of client consumers and calls each handler
method, passing the XML event document as a parameter. In
onc embodiment, the XML event document 1s the only
parameter passed to the handler callback method.

In one embodiment the event gate automatically sub-
scribes itself for events on behalf of the local consumer
clients. As clients register interest with the gate, the gate
registers interest with the event producer service. A client
may also un-subscribe interest, which causes the gate to
un-register 1tself with the service producing the event.

An event gate may type check the event document using
the XML schema just like a regular message gate does in the
standard request-response message passing style described
above. An event gate may also mclude an authentication
credential in messages it sends and verily the authentication
credentials of received event messages.

Note that any combination of the gate functionality
described above may be supported 1n a single gate. Each
type has been described separately only for clarity. For
example, a gate may be a message gate, a method gate and
an event gate, and may support flow control and resource
monitoring
Service Discovery Mechanisms

In one embodiment, the distributed computing environ-
ment may include a service discovery mechanism that
provides methods for clients to find services and to negotiate
the rights to use some or all of a service’s capabilities. Note
that a space 1s an example of a service. The service discovery
mechanism may be secure, and may track and match out-
cgolng client requests with 1ncoming service responses.

A service discovery mechanism may provide various
capabilities including, but not limited to:

Finding a service using flexible search criteria.

Requesting an authorization mechanism, for example, an
authentication credential, that may convey to the client
the right to use the entire set or a subset of the entire set
of a service’s capabilities.

Requesting a credential, document, or other object that
may convey to the client the service’s interface. In one
embodiment, the service’s interface may include inter-
faces to a requested set of the service’s capabilities.

US 6,643,650 B1

33

The tracking of discovery responses to the original
requests. In one embodiment, each client request may
include a collection of data that may also be returned 1n
matching responses, thus allowing the requests and
responses to be correlated.

In one embodiment of the distributed computing
environment, a service discovery mechanism may provide a
flexible search criteria based upon an extensible grammar. In
one embodiment, a service name, service type, and other
clements, 1f any, being searched for may be matched with
elements in an XML document. In one embodiment, the
XML document 1s the service advertisement for the service.
XML may provide a flexible, extensible grammar for search-
ing. XML also may provide type safety for matching ele-
ments. In one embodiment, the service names and service
types may be type checked with the element types in the
XML service advertisement.

In one embodiment, a distributed computing environment
may include a mechanism for clients to negotiate service
access rights. In one embodiment, the mechanism may be
used to negotiate for a subset of a service’s full capabilities.
The result of the negotiation may be an authorization such
as an authentication credential that conveys to the client the
right to use the requested subset of the service’s capabilities.

In one embodiment, the service discovery mechanism
may allow a client to request a security capability credential
from a service. In one embodiment, the client may present
to the service a set of desired capabilities 1n the form of a
protected (secure) advertisement. The service may then
respond with a capability credential that may convey to the
client the rights to use the requested capabilities described 1n
the protected advertisement.

In one embodiment, the distributed computing environ-
ment may include a mechanism for a client to negotiate
service access rights and to then obtain a security credential
or document that may be used to present the service’s access
interface to the set or subset of the service’s capabilities that
were requested by the client.

In one embodiment, a client that receives a capability
credential from a service may generate a custom service
access Interface document that may be referred to as a
“complete advertisement.” In one embodiment, the com-
plete advertisement may be an XML document. The gener-
ated advertisement may provide access to the service capa-
bilities as granted to the client by the received capability
credential. In one embodiment, an interface may be provided
by the advertisement only to the service capabilities to
which the client has been granted access by the capability
credential. In one embodiment, the client may be granted
access to only required capabilities and to which the client
has access privileges.

In one embodiment, the distributed computing environ-
ment may provide a mechanism by which a client may
negotiate capabilities with services. In one embodiment, the
client may negotiate its capabilities to the service. The
service may then customize results based on the parameters
negotiated with the client. For example, a client that is
capable of one bit display at a resolution of 160x200 may
negotiate these parameters to the service, thus allowing the
service to customize results for the client.

The following 1s included as an example of an XML
capabilities message and 1s not intended to be limiting in any
way:

<type name="“Capabilities” >

<element name="“display” type="“string”’/>
<element name=“memory” type="“string”/>
<element name=“"mime” type="string”/>

</type>

10

15

20

25

30

35

40

45

50

55

60

65

34

The distributed computing environment may include a
mechanism that may allow clients to negotiate how a service
1s to return results of a service 1nvocation. In one
embodiment, during a capability credential request, a means
by which to choose one of the results return methods may be
conveyed to the service. The service may then generate a
custom service advertisement that may convey to the client
the results mechanism to be used, as well as the service
interface.

In one embodiment, the distributed computing environ-
ment may include a mechanism for tracking service discov-
ery search requests and responses to the requests. In one
embodiment, search request and response messages may
include a field that may be used to include a string or an
XML document. In one embodiment, the string or XML
document included 1n the field of a request message 1s also
returned 1n the response message. In one embodiment, the
string or XML document 1s required to be returned in the
response message. In one embodiment, the string or XML
document may include additional information inserted 1n or
appended to the string or document when returned in the
response message. In one embodiment, this mechanism may
be used in debugging complex systems. In one embodiment,
this mechanism may also provide to clients a method for
choosing services to access by using the string or XML
document to pass custom search information between a

client and service that may only be understood by the client
and service.

Matching Component (Service) Interfaces

The distributed computing environment may provide a
mechanism for matching a component (for example, a
service) specification interface with a requested interface.
For example, a client (which may be a service) may desire
a service that meets a set of interface requirements. Each
component may have a description of the interface to which
it conforms. The specification interface matching mecha-
nism may allow a component that best matches a requestor’s
interface requirements to be located. The specification inter-
face matching mechanism may also allow for “fuzzy”
matching of interface requirements. In other words, the
mechanism may allow matching without requiring the exact
specification of all aspects of the interface, thus providing a
nearest match (fuzzy) mechanism. In one embodiment, the
specification interface matching mechanism may be 1mple-
mented as a multi-level, sub-classing model rather than
requiring specification at a single interface level.

In one embodiment, a component may use an XML
Schema Definition Language (XSDL) to describe its inter-
face. XSDL may provide a human-interpretable language for
describing the interface, simplifying activities requiring
human intervention such as debugging. In one embodiment,
the interface description may be provided as part of an
advertisement (for example, a service advertisement) as
described elsewhere 1 this document.

Using the specification interface matching mechanism, a
basic desired interface may be compared to a set of com-
ponent interface descriptions. One or more components
matching the basic desired interface may be 1dentified. The
interface descriptions may include subclass descriptions
describing more specifically the iterfaces provided by the
components. In the search process, the class type hierarchy
may be examined to determine 1f a given class 1s a subclass
of the search type. In one embodiment, subclasses may
inherit properties of the base class, and thus the subclass-
specific information may not be examined 1n this phase.

US 6,643,650 B1

35

Thus, the search may be performed generically. The 1den-
tified components may be searched at the next (subclass)
level. The search may become specific to the subclass and
may be performed by interpreting the subclass information
included 1n the interface description. The search may con-
finue through one or more subclasses until one or more
components 1s determined which may provide the nearest
match to the requestor’s desired interface.

In one embodiment, an interface matching mechanism
may provide the ability to distinguish among two or more
components that implement similar interfaces. In one
embodiment, the interface matching mechanism may pro-
vide the ability to distinguish among different revisions of
the same component.

In one embodiment, a component description may be
provided that includes a specification of the interface to
which the component conforms. The component description
may also include information about the component 1itself.
The interface description and/or the component information
may be used to differentiate among different 1implementa-
fions of a given interface. The component descriptions may
include a canonical identifier and version mnformation. The
version 1nformation may allow component revisions to be
distinguished. In one embodiment, the component descrip-
tion may be provided as part of an advertisement (for
example, a service advertisement) as described elsewhere in
this document.

In one embodiment, components may be searched for a
particular canonical identifier. Two or more components
may be 1dentified with matching canonical identifiers. One
or more components may be selected from among the
components with matching canonical identifiers. The selec-
fion procedure may use an interface specification version, a
component 1mplementation specification, a component
implementation speciiication version, other information or a
combination of information from the component description
to produce a set of one or more components that best match
the requestor’s requirements.

Spaces

As mentioned above, the distributed computing environ-
ment relies on spaces to provide a rendezvous mechanism
that brokers services or content to clients. FIG. 15 illustrates
the basic use of a space 114. Service providers may advertise
services 1n a space 114. Clients 110 may find the advertise-
ments m a space 114 and use the information from an
advertisement to access a service using the XML messaging
mechanism of the distributed computing environment. Many
spaces may exist, each containing XML advertisements that
describe services or content. Thus, a space may be a reposi-
tory of XML advertisements of services and/or XML data,
which may be raw data or advertisements for data, such as
results.

A space 1tself 1s a service. Like any service, a space has
an advertisement, which a client of the space must first
obtain 1n order to be able to run that space service. A space’s
own advertisement may mclude an XML schema, a creden-
t1al or credentials, and a URI which indicate how to access
the space. A client may construct a gate from a space
service’s advertisement in order to access the space. A client
of a space may itself be a service provider seeking to
advertise 1n that space or modily an existing advertisement.
Or a client of a space may be an application seeking to
access a service or content listed by the space. Thus, spaces
may provide catalysts for the interaction between clients and
services 1n the distributed computing environment.

A space may be a collection of named advertisements. In
one embodiment, naming an advertisement 1s the process of

10

15

20

25

30

35

40

45

50

55

60

65

36

assoclating a name string with an advertisement. The asso-
clation may take place upon storing an advertisement 1n a
space. Removing an advertisement from a space disassoci-
ates the name from the advertisement. A space may be
created with a single root advertisement that describes the
space 1tself. Additional advertisements may be added to a
space. An advertisement’s name may locate the advertise-
ment within the space, including specifying any necessary
oraphing information such as a hierarchy of names. In a
preferred embodiment, the structure of a space 1s not dic-
tated by the distributed computing environment. That 1is,
spaces may be structured as, for example, a flat un-related
set of advertisements or a graph of related advertisements
(c.g. commercial database). Since, in a preferred
embodiment, the distributed computing environment does
not dictate how a space actually stores its content, spaces
may be supported by small to large devices. For example, a
simple space may be tailored to fit on small devices, such as
PDAs. More advanced spaces may be implemented on large
severs employing large commercial databases.

As mentioned above, a space may contain advertisements
for services 1n the distributed computing environment. An
advertisement may provide a mechanism for addressing and
accessing services and/or content within the distributed
computing environment. An advertisement may specily a
URI for a service. In some embodiments, the URI may allow
for the service to be accessible over the Internet. An adver-
tissment may also include an XML schema for the service.
The XML schema may specily a set of messages that clients
of the service may send to the service to invoke functionality
of the service. The XML schema may define the client-
service 1nterface. Together, the URI and the XML specified
in an advertisement may indicate how to address and access
the service. Both the URI and schema may be provided in
XML as an advertisement in a space. Thus, a mechanism for
addressing and accessing a service 1n a distributed comput-
ing environment may be published as an advertisement 1n a
space. Clients may discover a space and then lookup 1ndi-
vidual advertisement for services or content.

FIG. 16 1illustrates advertisement structure according to
onc embodiment. An advertisement 500, like other XML
documents, may include a series of hierarchically arranged
clements 502. Each element 502 may include 1ts data or
additional elements. An element may also have attributes
504. Attributes may be name-value string pairs. Attributes
may store meta-data, which may facilitate describing the
data within the element.

In some embodiments, an advertisement may exist 1n
different distinct states. One such state may be a drafted
state. In one embodiment, advertisements may initially be
constructed 1n a drafted state that exists outside the bounds
of a space. The creator of an advertisement may construct 1t
in a variety of ways, including using an XML editor. Access
to elements and attributes in the drafted state may be at the
raw data and meta-data levels using any suitable means.
Typically, events are not produced for changes made to
advertisements 1n the drafted state. Therefore, the creator of
the advertisement may be free to add, change, or delete
clements as well as to achieve the desired attribute set, and
then publish the advertisement for the rest of the distributed
computing environment to sce.

In one embodiment, another possible state for advertise-
ments 1s a published state. Advertisements may move to the
published state when inserted 1nto a space. Once the adver-
fisement 1s 1n a space, mnterested clients, and services may
locate 1t, e.g. using its name and/or 1ts elements as search
criteria. For example, search criteria may be specified as an

US 6,643,650 B1

37

XML template document that may be compared (e.g. by the
space service) with the advertisements in the space. Pub-
lished advertisements may represent “on-line” services
ready for clients to use. The message address (URI) of the
service may be stored as an element 1n the advertisement.
Advertisements that are removed from the space may tran-
sition back to the drafted state where they may be discarded
or held. Removal may generate an event so interested
listeners may be made aware of the change. Message gates
are typically created from published advertisements.

In one embodiment, yet another possible state for adver-
fisements 15 a persistent archived state. An archival proce-
dure may turn a live published advertisement into a stream
of bytes that may be persistently stored for later reconstruc-
tion. Archived advertisements may be sent (e.g. in their raw
XML form) from the space to an archival service. The URI
for an advertisement’s archival service may be stored as an
clement in the advertisement. XML may provide a format
for storing and retrieving advertisements and representing
the state of advertisement elements sufficient to reconstruct
the advertisement object(s). Advertisements may be stored
in other formats as well, depending on archival service
implementation. The process of making a published adver-
fisement persistent may prepare the advertisement for the
persistent archived state. Persistent advertisements may be
stored (e.g. by an archival service) for future use in a
persistent storage location such as a file or a database. A
space through the archival procedure may enable advertise-
ments to be stored, however the space does not necessarily
play a role in how persisted advertisement entries are
actually stored. How persisted advertisements are stored
may be determined by the advertisement’s archival service.
Typically, no events are generated on behalf of archived
advertisements. Also, changes may not be allowed for
advertisements 1n the persistent archived state.

Advertisements may be archived and removed or just
archived. If an advertisement 1s archived without removing
it from the space, the space will store a shadow version of
the advertisement. Access to an archived service may cause
the advertisement to “fault-in” from 1its persistent backing
store on demand. This feature may allow advertisements to
be filled, from LDAP (Lightweight Directory Access
Protocol) entries for example, on demand.

FIG. 17 illustrates one example of advertisement state
fransitions that an advertisement may undergo during its
lifetime. First, an advertisement may be constructed, as
indicated at 1. During construction, the advertisement 1s in
the drafted state. Then, the advertisement may be mnserted in
a space, as indicted at 2. The advertisement may be inserted
as a published parent. The advertisement 1s in the published
state after being inserted in a space. An event (e.g.
AdvInsertEvent) may be generated when the advertisement
1s 1nserted 1n the space. Events are more fully discussed
below. The advertisement may be archived and made
persistent, as indicated at 3, which may transition the
advertisement to the persistent archived state. An advertise-
ment may also be published from the persistent archive state,
as 1indicated at 4. An advertisement may be removed from a
space and transition back to the drafted state, as indicated at
5. An event (¢.g. AdvRemoveEvent) may be generated when
the advertisement 1s removed.

In one embodiment, the archived, persistent state i1s not
used. In this embodiment, state changes 3 and 4 also are not
used. In this embodiment, an advertisement 1s either in the
drafted state or in the published state.

Advertisements stored 1n a space may have the following
standardized elements and/or attributes: version (may be an

10

15

20

25

30

35

40

45

50

55

60

65

33

element), creation date (may be an attribute), modification
date (may be an attribute), implementation service URI (may
be an element), and/or persistence archival service URI
(may be an element).

FIG. 48 1s a flow diagram 1llustrating the addressing of a
service using an advertisement stored 1n a space 1n a
distributed computing environment according to one
embodiment. In one embodiment, a service may publish a
service advertisement 1n a space, as indicated at 2300. The
space may be a network-addressable storage location which
stores documents such as eXtensible Markup Language
(XML) documents. The publishing of advertisements is
described 1n greater detail elsewhere 1n this detailed descrip-
tion. In one embodiment, the advertisement may include a
Uniform Resource Identifier (URI) and a schema for the
service. The URI may specily a network address at which
the service may be accessed, and the schema may specily
one or more messages which are usable to mmvoke one or
more functions of the service. In one embodiment, the
schema and the messages may be expressed mn a data
representation language such as XML. A client may access
the space and find the advertisement, as indicated at 2302.
For example, the client may use a discovery service to find
the space and then a lookup service to find the advertisement
within the space, such as illustrated by FIG. 47.

In one embodiment, the advertisement 1ncludes substan-
tially all the information needed by the client to access that
particular service. The client may read the advertisement
from the space, as indicated at 2304. In one embodiment, the
client may use the URI and the schema 1n the advertisement
to construct a gate for access to the service. As indicated at
23035, the client may send a first message to the service at the
URI, wherein the first message 1s specified 1n the schema, to
invoke one or more functions of the service. In response, the
function(s) of the service may be invoked, as indicated at
2308. In one embodiment, the service may send a second
message (€.g., a message including the results of the invoked
function(s)) to the client, wherein the second message is
specified 1n the schema for the service.

A space 1tself 1s typically a service. A space service may
provide the ability to search for advertisements in the space,
which may include searching the space by type of adver-
tisements. A space service may also provide facilities to read
advertisements, write (publish) advertisements, and take
(remove) advertisements. A space may also provide the
ability to subscribe for space event noftification messages.
Some spaces may provide extended facilities, such as facili-
fies to navigate space relationship graph by position; read,
write or take advertisement elements; read, write or take
advertisement attributes; and subscribe for advertisement
event notification messages. Space facilities are described in
more detail below. A space’s capabilities are embodied 1n a
space advertisement’s message schema. From the message
schema, space address, and authentication credential, a
client message gate may be created to access the space and
its facilities.

Spaces and all advertisements within a space may be
addressed using URIs. In one embodiment, space and adver-
fissment names may follow URL naming conventions. The
use of URIs, e.g. URLSs, for addressing spaces may allow
spaces to be addressable throughout the Internet, 1n some
embodiments.

The space message recipient (a space service) may be
specified using a URI which may have been received 1n a
service advertisement for the space. The URI may include a
protocol, host, port number, and name. The protocol may
name the protocol that may be used to move messages

US 6,643,650 B1

39

between clients and the space (reliable or un-reliable
sockets, for example). The host and port number may be
protocol dependent IDs. The name may be the space name
followed by advertisement, element and/or attribute name.
In one embodiment, a pathname may be used to identily an
advertisement 1n a space. Pathnames may be either absolute
or relative. Absolute pathnames name the space as well as an
advertisement. Relative pathnames are relative a designated
advertisement within an assumed space. In one embodiment,
the syntax rules governing the construction of pathnames 1is
that of the URI (Uniform Resource Identifier). In that
embodiment, advertisement and space names therefore may
not contain any URI reserved characters or sequences of
characters. Pathnames to elements and attributes may also
be specified using a URI. In general, element and attribute
names may be appended to the pathname of an
advertisement, such as:

http://java.sun.com/spacename/advertisement/element/
attribute.

In one embodiment, the distributed computing environ-
ment may include a mechanism that allows a client to
discover the URI of a space but restricts access to the service
advertisement for the space. In one embodiment, rather than
returning the full advertisement to the space, the URI of the
space and the URI of an authentication service for the space
may be returned. In order for the client to access the
documents or services advertised 1n the space, the client first
may authenticate itself to the authentication service at the
URI provided i1n the return message. The authentication
service may then return an authentication credential that
may allow the client partial or full access to the space. When
the client receives the authentication credential, the client
may attempt to connect to the space to access the documents
or service advertisements 1n the space.

The distributed computing environment may provide a
mechanism or mechanisms that may enable a client to
connect to a space. Embodiments of a connection mecha-
nism may provide for client-space addressing, client
authorization, security, leasing, client capabilities
determination, and client-space connection management. A
client-space connection may be referred to as a session. In
one embodiment, a session may be assigned a unique session
identification number (session ID). The session ID may
uniquely 1dentify a client-space connection. In one
embodiment, a session lease mechanism may be used to
transparently garbage collect the session if the client does
not renew the lease.

The following 1s an example of using such a connection
mechanism according to one embodiment. A client may
obtain an authentication credential. In one embodiment, the
space may provide an authenftication service 1n response to
a client’s request for access to the space. The client may
obtain the authentication credential through the authentica-
tion service. When the client receives the authentication
credential, the client may 1nitiate a connection to the space
by sending a connection request message. In one
embodiment, the connection request message may 1nclude
the URI address of the space service, the authentication
credential for the client and information about the connec-
tion lease the client 1s requesting. After the space receives
the connection request message, the space may validate the
message. In one embodiment, an XML schema may be used
to validate the message. The client may then be authenti-
cated using the authentication credential. In one
embodiment, the information received in the connection
request message may be used to determine the capabilities of
the client to use the space. In one embodiment, each client

10

15

20

25

30

35

40

45

50

55

60

65

40

of a space may be assigned 1ts own set of capabilities for
using the space. In one embodiment, an access control list
(ACL) that may include capability information about one or
more clients of the space may be used in client capabilities
determination. In one embodiment, the information received
in the connection request message may be used to look up
the client’s capabilities 1n the ACL.

After authenticating the client and determining the cli-
ent’s capabilities, the connection lease to grant the client
may be determined. After the lease 1s determined, the
structure for maintaining the client-space connection may be
oenerated. A session ID for the connection may be gener-
ated. In one embodiment, each client-space connection may
be assigned a unmique session ID. In one embodiment, an
activation space may be created and assigned to, or alter-
natively a pre-existing activation space may be assigned to,
the client-space session. In one embodiment, an activation
space may be used to store results of services for the client
when using the space. In one embodiment, a client’s capa-
bilities may be used to determine 1f an activation space 1s to
be created for the client. For example, a client may not have
capabilities to access an activation space to store and
retrieve results. A message or messages may be sent to the
client informing the client that the connection has been
established. The message or messages may include the
session ID and information about the lease. The client may
then use the space including, but not limited to: advertise-
ment lookup, advertisement registering, and advertisement
retrieval. In one embodiment, he connection may remain
open until the allocated lease expires or until the client sends
a message requesting lease cancellation to the space. In one
embodiment, the client may be responsible for renewing the
lease before the lease expires. If the lease expires before the
client renews the lease, the connection may be dropped,
causing the client to lose the connection to the space. In one
embodiment, to reconnect, the client may be required to
repeat the connection procedure.

In one embodiment, a client of a space may obtain a
space’s advertisement several different ways. Some of the
ways a client may obtain a space’s advertisement are 1llus-
trated 1n FIG. 18. For example, a space discovery protocol
may be provided as part of the distributed computing
environment. Space discovery 1s a protocol a client or
service may use to find a space. A listener agent 202 may be
coniligured associated with one or more spaces to listen for
discovery requests. The discovery listener agent 202 may
listen on various network interfaces, and may receive either
broadcast requests or unicast requests (at the URI of the
agent) from clients 200a looking for a space(s). The listener
agent 202 then responds with the service advertisement(s) or
URIs for the service advertisements of the requested space
(s). In one embodiment, the listener agent is, in general,
separate from the space, because 1ts functionality 1s orthogo-
nal to the functionality of a space service. However, the
listener agent may be implemented on the same device or a
different device as a space service.

In one embodiment, the discovery protocol may be a
service advertised 1n a default space. A client may instantiate
the discovery protocol from the client’s default space in
order to discover additional spaces. The discovery protocol
may be pre-registered with a client’s default space.
Alternatively, the discovery protocol may register itself with
the default space by placing an advertisement in that space,
¢.2., when a client connects to a local network serviced by
the discovery service.

In one embodiment, the space discovery protocol may be
mapped to underlying device discovery protocols for other

US 6,643,650 B1

41

platforms, such as SLP, Jini, UPnP, etc. Thus, a client may
use the discovery protocol of the distributed computing
environment to find services in other environments. A bridge
to these other environments may be provided and advertise-
ments provided services 1n these other environments so that
they may be accessed by clients of the distributed computing
environment described herein. Refer to the Bridging section.

For each advertised discovery protocol, the distributed
computing environment may create a subsequent results
space to hold the results of the discovery protocol. In one
embodiment, space services in the distributed computing
environment may use the Multicast Announcement Protocol
(multicast UDP) to announce themselves on a LAN. This
information may be recorded by a listener agent. A device
(either a client or service) may use the Multicast Request
Protocol (multicast UDP) to initiate discovery of a space
manager. In one embodiment, the space managers respond
with 1nformation indicating the URI of their respective
spaces. Alternatively, a listener agent may respond for
multiple spaces. The discovery response may also include a
short string that labels the each space (e.g. obtained from
keywords of the space), and information that can be used to
set up a TCP connection, for example, with each space
manager to perform operations on the respective space.
Since the requesting device may receive responses from
more than one space manager (or multiple space listings
from a listener agent), this information may help the client
select which space it wishes to connect to.

In addition to the multicast discovery described above, the
discovery service may also perform discovery using unicast
messaging (e.g. over TCP) that can be used to discover a
space manager at a known address on the network (e.g. the
Internet, other WAN, LAN, etc). The unicast discovery
message may include a request for a space service at a
known URI to provide 1ts service advertisement. The mul-
ficast and unicast discovery protocols are defined at the
message level, and thus may be used regardless of whether
the devices participating in the discovery support Java or
any other particular language.

The discovery protocol may facilitate the proliferation of
clients independently of the proliferation of server content
that supports those clients within the distributed computing
environment. For example, a mobile client may have its
initial default space built into 1ts local platform. In addition
to local services advertised 1n the default space, the mobile
client may have services that search for additional spaces,
such as a service to access the discovery protocol or a
service to access space scarch engines.

In one embodiment, the distributed computing environ-
ment space discovery protocol may define a set of XML
messages and their responses that may allow clients to:

Broadcast protocol-defined space discovery messages on
their network 1nterfaces.

Receive from listeners XML messages describing candi-
date spaces that those listeners represent.

Select one of those discovered spaces as default, without
the client needing to know the address of the selected
space.

Obtain 1nformation on the selected space, such as its
address, so the client may later find that same space via
means outside of the discovery protocol (useful if later
the client wants to access a space which 1s no longer
local, but which still is of interest to the client).

In some embodiments, the multicast and unicast discov-
ery protocols may require an IP network. Although these
discovery protocols meet the needs of devices that are IP
network capable, there are many devices that may not be

10

15

20

25

30

35

40

45

50

55

60

65

42

directly supported by these discovery protocols. To meet the
needs of such devices 1 discovering spaces 1n the distrib-
uted computing environment, a pre-discovery protocol may
used to find an IP network capable agent. The pre-discovery
protocol may include the device sending a message on a
non-IP network interface requesting a network agent. The
network agent may set up a connection between itself and
the device. Once the connection between device and agent
1s set up, the agent participates in the discovery protocol on
IP networks on behalf of the device for which 1t serves as
agent. The network agent may also provide an interface for
the device to the distributed computing environment in
ogeneral. For example, gates may be constructed 1n the agent
on behalf of the device for running services advertised 1n
discovered spaces. See the Bridging section.

Another way that clients may locate spaces 1n the distrib-
uted computing environment 1s by advertisement of a space
in another space. A space 1s a service, so like any other
service, 1t can be advertised 1n another space. As shown 1n
FIG. 18, a client 20056 may find an advertisement 206 1n a
first space 204a for a second space 204b. Space 204b may
in turn include advertisements to additional spaces. Because
a service (implementing a space) may also act as a client,
spaces may exchange advertisements or chain together to
provide a federation of spaces, as 1llustrated in FIG. 19. Any
number of spaces may be included in the distributed com-
puting environment. The number and topology of spaces
may be implementation dependent. For example, spaces
implemented on an IP network might each correspond to a
different subnet.

A third way a client may locate a space 1s through running
a service 208, as shown 1n FIG. 18. Aservice 208 may be run
which returns as its results the service advertisements of
space services. Since service advertisements are XML docu-
ments and since the distributed computing environment may
include the Internet, service 208 may be a Web-based search
tool. An example of such a service 1s the space look-up
service described 1n conjunction with FIG. 4. In one
embodiment, spaces within the distributed computing envi-
ronment may be implemented as Web pages. Each Web page
space may Include a keyword that may be searched upon to
identify the Web page as a space 1n the distributed comput-
ing environment. The space may include other searchable
keywords as well to further define the space. A client may
connect to a search service 208 and supply keywords to the
scarch service 1n the form of XML messages. The secarch
service may receive the keywords from the client and feed
the keywords to an Internet search engine, which may be a
conventional or third-party search engine. The search ser-
vice may return the results from the Internet search engine
to the client, either directly as XML messages or by refer-
ence to a results space. The results may be the URIs of
spaces matching the search request. Alternatively, the search
service may contact spaces 1dentified by the search, obtain
the service advertisement for each such space, and return the
space service advertisements to the client, either directly as
XML messages or by reference to a results space. The client
may then select a space from the search results and construct
a gate (by itself or through a proxy) to access the selected
space. Once the selected space 1s accessed, the client may
look up service advertisements within that space, which may
lead to additional spaces.

As described above, a space may be an XML-based
Website, and as such may be searched via Internet Web
scarch mechanisms. A space may include Internet searchable
keywords. Some devices, such as small client devices, may
not support an internet browser. However, such devices may

US 6,643,650 B1

43

still perform Internet searches for spaces within the distrib-
uted computing environment. A device may have a program
that accepts strings of keywords, which may be sent to a
proxy program on a server (e.g. a search service). The proxy
may send the strings to a browser-based search facility (e.g.
an internet search facility) to perform the search. The proxy
may receive the output of the search and parse 1t into strings
(c.g. XML strings) representing each URI for the search
results and send the response strings back to the client. Thus,
a client may locate spaces through the Internet without
having to support a program such as a Web browser. More
capable devices may avoid the use of a proxy and initiate an
Internet-based search service directly.

FIG. 43 1s a flow diagram 1illustrating a search for spaces
using a search service 1n a distributed computing environ-
ment according to one embodiment. In one embodiment, a
client on a device may interact with a search service on the
same or a different device to find spaces (i.e., network-
accessible object repositories) for storage and/or retrieval of
data. Embodiments of this interaction are further illustrated
in FIGS. 46a and 46b. The client 110 may send a search
request to the search service 2102, as mndicated at 2000. The
search request may include one or more desired character-
istics which are sought of a space. In one embodiment, the
search request 1s expressed 1n a data representation language
such as eXtensible Markup Language (XML). In one
embodiment, the desired characteristics in the search request
may 1nclude one or more keywords. The client may include
a program 2100 that accepts the keywords and sends them
to the search service 2102. In one embodiment, the key-
words may be sent as XML messages 2106 and/or using
cgates are described herein.

Based upon the search request, the search service 2102
may conduct a search. In an embodiment shown 1n FIG. 464,
in conducting the search, the search service 2102 may
interact with a search engine 2104 such as an Internet search
engine. In this manner, the search service may act as a proxy
between the client and the search engine. A proxy may be
particularly desirable for a client on a small device which
does not have the resources to interact with the search
engine, such as by using a web browser or by receiving a full
set of search results. The search engine may include a
network-accessible third-party search engine, such as a
browser-accessible Internet search engine. In an embodi-
ment shown 1n FIG. 46b, the scarch service 2102 may
include or otherwise be closely coupled to the search engine
2104. The search service 2102 may translate the search
request from the data representation language (e.g., XML)
into a text format which 1s usable by the search engine 2104,
as indicated at 2002. The search service 2102 may then send
the translated search request to the search engine 2104, as
indicated at 2004.

As indicated at 2006, the search may be performed by the
scarch engine 2104 to generate search results. The search
results may include locations (e.g., URIs) of one or more
resulting spaces such as 2120a, 2120b, and 2120c¢, for
example. In one embodiment, the spaces may include one or
more web pages which are accessible over the Internet 2110.
The web pages may include an 1dentifying keyword which
identifies the web pages as spaces within the distributed
computing environment. The search request may include
this keyword along with one or more other keywords which
describe the characteristics which are desired of the spaces.

As indicated at 2008, the search service 2102 may receive
the search results 1n the text format from the search engine
2104. The search service 2102 may then translate the search
results 1n the text format into search results in the data

10

15

20

25

30

35

40

45

50

55

60

65

44

representation language (e.g., XML) and send the results to
the client 110, as indicated at 2010. In one embodiment, the
scarch service 2102 may obtain a service advertisement for
cach of the resulting spaces 21204, 21205, and 2120c. Each
service advertisement mcludes mformation which 1s usable
to access the respective space. The search service 2102 may
send references (e.g., Uniform Resource Identifiers) to these
advertisements or the advertisements themselves as the
scarch results to enable the client to access the resulting
spaces at their respective locations, as indicated at 2012. In
one embodiment, the locations of the resulting spaces
include Uniform Resource Identifiers (URISs).

In one embodiment, 1 sending the search results to the
client 110, the search service 2102 may store the search
results in a results space (i.e., a network-accessible storage
repository) and send the address of the results space to the
client 110. The client 110 may then access the search results
in the results space at an appropriate time. The use of a
results space may be especially desirable for a small client
that does not possess the resources to receive and display a
full set of results. In this situation, the user may read the
results from the results space using a different client accord-
ing to one embodiment.

In some embodiments, a search service may limit or filter
spaces that may be found through the search service, or
constrain clients to searching only a few supported spaces
within the distributed computing environment. The extent of
scarching permitted may be determined according to the
client authentication.

A fourth way a client may locate a space 1s by obtaining
or rece1ving information about a newly created empty space
or a spawned space when an existing space 1s spawned. An
existing space may include an interface for spawning an
empty space with the same functionality (e.g. same XML
schema) as the space from which it is spawned. Spawning of
spaces 15 Turther described below.

Once a client of a space finds the advertisement of a space
service, that client of the space may run the space service, as
it would any other service. Note that the client of the space
service may be another service (e.g. a service seeking to
advertise 1n the space). In one embodiment, as illustrated in
FIG. 20, to run a space service, the client of the space may
first run an authentication service for the space to obtain an
authentication credential, as indicated at 300. The authenti-
cation service may be specified 1n the service advertisement
of the space service. The client of the space uses the
authentication credential, the XML schema of the space
(from space’s service advertisement), and the URI of the
space (from space’s service advertisement) to construct a
cgate for the space, as indicated at 302. The client of the space
may then run the space service by using the gate to send
messages to the space service. A first such message 1s
indicated at 304.

For embodiments employing authentication, when the
space service receives the first message from the client, with
the authentication credential embedded, the space service
uses the same authentication service (specified in the service
advertisement of the space service) to authenticate the client,
thus establishing its identity, as indicated at 306. The space
service may determine the client’s capabilities and bind
them to the authentication credential, as indicated at 308.

As 1ndicated at 310, a client of a space may run various
space facilities by sending messages to the space service. In
one embodiment, when a client of a space sends a request to
the space service, 1t passes its authentication credential in
that request, so the space service can check the request
against the client’s specific capabilities.

US 6,643,650 B1

45

Each space 1s typically a service and may have an XML
schema defining the core functionality of the space service.
The XML schema may specify the client interface to the
space service. In one embodiment, all space services may
provide a base-level of space-related messages. The base-
level space functionality may be the basic space function-
ality that 1s capable of being used by most clients, including
small devices such as PDAs. It may be desirable to provide
for additional functionality, e.g. for more advanced clients.
Extensions to the base-level space may be accomplished by
adding more messages to the XML schema that advertises
the space. For example, in one embodiment, the base-level
messages do not impose any relationship graph upon the
advertisements. Messages, for example, to traverse a hier-
archy of advertisements may be a space extension. Provid-
ing such additional functionality may be done by providing
one or more extended XML space schemas or schema
extensions for a space. The extended schemas may 1nclude
the base schema so that clients of an extended space may
still access the space as a base space.

In one embodiment, a base space service may provide a
transient repository of XML documents (e.g. advertisements
of services, results of running services). However, a base
space service 1n one embodiment may not provide for
advanced facilities to support persistence of space content,
navigation or creation of space structure (e.g. hierarchy), and
a transactional model. A mechanism for supporting
persistence, hierarchy, and/or transactions 1s by extending
the XML schema. Since extended spaces still include the
base XML schema, clients may still treat extended spaces as
base spaces, when just the base space functionality 1s all that
1s need or all that can be supported.

In one embodiment, the base space may be transient. The
base space may be acceptable for many purposes. Service
providers may register their services in various spaces. In
one embodiment, services must continuously renew leases
on the publishing of information in the spaces. By this
nature, the services advertisements may be transient in that
they may often be rebuilt and/or reconfirmed. However, it
may be desirable to provide for some persistence 1n a space.
For example, a space that has results may provide some
persistence for users that want to be sure that results are not
lost for some time. In one embodiment, persistence may be
provided for by specifying a space interface where the client
may control which objects 1n the space are backed by a
persistent store and manage the maintenance of that persis-
tence store. The persistence mterface may be specified with
extended XML schema for the space defining the interfaces
for persistence.

In one embodiment, a base space may provide an interface
where an XML document may be added to a space and
identified by a string. The base space may not provide any
hierarchy for the various so named XML documents in the
space. In embodiments where hierarchy support 1s desired,
additional interfaces may be defined (extending the XML
schema) where a hierarchy can be specified by the user.
Other mterfaces may be specified to navigate the hierarchy
or navigate a relationship graph by position. However, other
users may still use the base space interfaces to access those
same documents, without any hierarchy. Interfaces for other
space structure may be provided for as well mn extended
space schemas.

Extended XML space interfaces may also be provided for
space transaction models. For example, an extended space
XML schema may be provided speciiying an interface for
ACID transactions. ACID 1s an acronym used to describe
four properties of an enterprise-level transaction. ACID

10

15

20

25

30

35

40

45

50

55

60

65

46

stands for Atomicity, Consistency, Isolation, and Durability.
Atomicity means that a transaction should be done or
undone completely. In the event of a failure, all operations
and procedures should be undone, and all data should
rollback to 1its previous state. Consistency means that a
transaction should transform a system from one consistent
state to another consistent state. Isolation means that each
transaction should happen independently of other transac-
tions occurring at the same time. Durability means that
completed transactions should remain permanent, €.g. even
during system failure. Other transaction models may also be
specified 1n extended space schemas.

Extended space schemas may be XML documents that
specify the message interface (e.g. XML messages) for using
extended space features, functionality or facilities. A space
may have a base schema and multiple extended schema.
This may facilitate provided different levels of service to
different clients depending upon the client authentication.

Besides extensions for space persistence, structure, and
fransactions, other space extensions may also be specified as
desired. For example, extensions may be provided to
manipulate advertisements at the element or attribute level:
read, write or take advertisement elements; read, write or
take advertisement attributes; and subscribe for advertise-
ment event notification messages. A space may provide
virtually any number of facilities and arrange them 1n base
and extended schemas as desired. In one embodiment, all
base spaces must provide for advertisement reading, writing,
taking, and lookup facilities, and space event subscriptions.

Various space facilities may be provided. In some
embodiments, a facility may be provided for the establish-
ment of a session with the space. In one such embodiment,
the rest of the space functionality 1s not available until this
1s done. In other embodiments, the notion of a session 1s not
provided for, or 1s optional and/or implementation depen-
dent.

Another space facility may be to add or remove a service
advertisement to or from the space. A space facility may also
be provided for adding or removing an XML document (not
an advertisement, but perhaps a result in a space). The space
service may check for uniqueness of an 1item before allowing
the addition of the item. For example, each item added to the
space may be associated with a user-specified string that
identifies the 1tem and that may be used to check for the
uniqueness of the item.

In one embodiment, a client may request a listing, tree, or
other representation of all services advertised 1n the space.
The user may then scroll or maneuver through the adver-
tisesments and select the desired service. A space may also
provide a look-up facility that allows a client to search for
a service by providing keywords or string names. In one
embodiment, a space facility may provide a mechanism to
look up a space entry that has been added to the space. The
look up facility may search by string to match for name, or
wildcard, or even database query. The look up facility may
return multiple entries from which the client may select one
or perform a further narrowing scarch. In one embodiment,
the look-up facility may provide a mechanism to locate a
service advertisement matching a particular XML schema.
The client may indicate a particular XML schema, or part of
a particular XML, to be searched for within the space. Thus,
a service may be searched for within a space according to ifs
interface functionality.

FIG. 47 1s a flow diagram 1llustrating a search for docu-
ments within a space in a distributed computing environ-
ment according to one embodiment. In one embodiment, a
client may interact with a space via lookup messages to find

US 6,643,650 B1

47

documents within the space. A client may send a lookup
message to a space, as indicated at 2200. The space may
comprise a network-addressable storage location which 1s
operable to store one or more documents. The stored docu-
ments may be expressed in a data representation language

such as eXtensible Markup Language (XML). The lookup
message may specily desired characteristics of the stored
documents. In one embodiment, the documents may include
XML service advertisements and XML device advertise-
ments as well as general-purpose XML documents. For
example, the XML documents in the space may include the
results of a service as expressed mm XML.

A set of documents which match the lookup message may
be discovered, as indicated at 2202. The discovered docu-
ments may include any stored documents which meet the
desired characteristics specified in the lookup message. Zero
or more stored documents may match the desired charac-
teristics. In one embodiment, the lookup message may
include a desired name. In one embodiment, the desired
name specified 1 the lookup message may include one or
more wildcards. Each of the discovered documents may then
have a name that matches the desired name, and the names
may 1dentify the discovered documents within the space. In
one embodiment, the lookup message may include a desired
schema which 1s expressed in the data representation lan-
cuage. Each of the discovered documents may have a
schema or part of a schema that matches the desired schema.
In one embodiment, the lookup message may include both
a desired name and a desired schema. In this case, the set of
discovered documents may include both discovered docu-
ments having a name that matches the desired name and
discovered documents having a schema that matches the
desired schema. In one embodiment, the lookup message
may 1nclude neither a desired name nor a desired schema. In
this case, the lookup message 1s essentially a request for all
documents in the space, and the set of discovered documents
may 1nclude substantially all the documents that are stored
in the space.

After the matching documents are found, the space may
send a lookup response message to the client, as indicated at
2204. In one embodiment, the lookup response message may
include the names of the discovered documents. In one
embodiment, the lookup response message may include an
advertisement for each of the zero or more discovered
documents. Each advertisement may include information
which 1s usable by the client to obtain the respective
discovered document or access the resource (€.g., a service)
that the document advertises. In one embodiment, each
advertisement may include a Uniform Resource Identifier
(URI) at which the respective discovered document (or
resource, such as a service, advertised by the document) is
accessible. In one embodiment, at least one of the discov-
ered documents may be an advertisement for a service. The
advertisement for the service may include a schema, wherein
the schema specifies one or more messages usable to 1nvoke
one or more functions of the service. The advertisements
may be expressed 1n the data representation language, such
as XML.

In one embodiment, the lookup message and the lookup
response message are expressed 1 a data representation
language such as XML. A schema for the space may specily
the form of the lookup message and lookup response mes-
sage. In one embodiment, this pair of messages may be
expressed in XML as follows.

Lookup Message

<Space>
<LookupAdvertisement>

5

10

15

20

25

30

35

40

45

50

55

60

65

43

<AdvertisementName>Name</AdvertisementName:>
<AdvertisementSchema>AdvSchema</Adverti
sementSchemax

</LookupAdvertisement>
</Space>

Lookup Response Message
<Space>

<LookupAdvertisesmentResponse >
<Advertisement>Adv</Advertisement>

<AdvertisementName>Names</AdvertisementName >
</LookupAdvertisementResponse>

</Space>

In the XML lookup message, Name may be string-valued
and may specify a unique identifier within the space. If a
wildcard 1s used, then the identifier may not be unique.
AdvSchema 1s a schema which the lookup 1s expected to
match. In one embodiment, both fields are optional. In the
XML lookup response message, Adv 1s a group of zero or
more matching advertisements, and Names 1s a group of
names corresponding to the advertisements.

Another space facility that may be provided in the dis-
tributed computing environment 1s a mechanism that allows
services and clients to find transient documents based upon
a typing model such as XML. The mechanism may be a
general-purpose, typed document lookup mechanism. In one
embodiment, the lookup mechanism may be based upon
XML. The lookup mechanism may allow clients and ser-
vices to find documents 1n general, including services
through service advertisements.

In one embodiment, a space lookup and response message
pair may be used to allow clients and services to find XML
documents stored within a network transient document store
(space). The space may be a document space used to store
a variety of documents. In one embodiment, the documents
are XML documents or non-XML documents encapsulated
in XML. Spaces are further described elsewhere herein. The
lookup messages may work on any kind of XML document
stored 1n the space, mcluding service advertisements and
device driver advertisements. In one embodiment, a client
(which may be another service) may use a discovery mecha-
nism as described elsewhere to find one or more document
spaces. Then, the client may use space lookup messages to
locate documents stored 1n the space.

The distributed computing environment may include a
mechanism that allows services and clients to subscribe to
and receive events about the publication of XML docu-
ments. Events may include the publication of and removal of
XML documents to and from a transient XML document
repository such as a space. In one embodiment, an event may
be an XML document that refers to another XML document.

In one embodiment, a space event subscription and
response message pair may be used to allow clients and
services to subscribe for events regarding documents that are
added to or removed from a space. In one embodiment, an
event subscription may be leased using the leasing mecha-
nisms described elsewhere herein. In one embodiment, a
subscription may be cancelled when the lease 1s cancelled or
expires. In one embodiment, a subscription may be renewed
by renewing the lease to the subscription.

In one embodiment, an event subscription message may
include an XML schema that may be used as a document
matching mechanism. Documents that match the schema
may be covered by the subscription. In one embodiment, any
document added to a space and that matches the XML
schema may generate a space event message.

A space facility may also be provided to which a client
may register (or unregister) to obtain notification when

US 6,643,650 B1

49

something 1s added to or removed from the space. A space
may contain transient content, reflecting services that at
added and removed from the space. A mechanism may be
provided to notity a client when a service becomes available
or becomes unavailable, for example. A client may register
with an event service to obtain such nofification. In one
embodiment, a client may register to be notified when a
service having a name matching a specified string or a
schema matching a specified schema (or schema portion) is
added or deleted from the space. Thus, a query to register
with the space event notification facility may be the same as
or similar to that of the service look up facility described
above.

When a client of a space subscribes to be notified when an
XML document(s) (e.g. service advertisement) is added or
removed from the space, the client may obtain a lease on this
subscription to notifications. The lease may allow the space
service to know whether to continue sending notifications to
a particular client. For example, a lease to the notification
facility may expire after an amount of time 1f not renewed.
Note that a lease may not be required while a client has
established an active session with a space. Once, a client has
disconfinued an active session with a space, 1t may continue
to receive event notifications according to its event subscrip-
tfions as long as its corresponding leases remain active. Refer
to the Leases section below.

A client may subscribe to different types of events.
Examples are a service advertisement being added or
removed from a space, as described above. A client may also
be notified when results from a service initiated by the client
(or by someone else) are put in a space. For example, the
client and the service may mutually select a name {for
referring to the results of the service. The client may register
with the space service to which the results are to be posted
or advertised to receive an event when a result referenced by
the selected name 1s added to the space.

A space may generate different types of events to which
a client may subscribe. As the composition of a space
changes, events may be produced to those clients and
services that have subscribed for such events. In one
embodiment, there may be two major space event
categories, those that pertain to the space (insertion and
removal of advertisements), and those used that indicate
changes to an advertisement (adding, removing, changing an
element or attribute). Which events are supported may be
indicated in the XML message schema for the space.

The following events are examples of events that may be
produced by a space service to mdicate an space or adver-
fisement event:

™

TABLE 1
Space Events
Event Name Type Meaning
Advertisement AdviInsertEvent New advertisement
Insertion Event has been inserted into
a space
Advertisement AdvRemoveEvent Existing advertisement

Removal Event has been removed

from a space
Advertisement AdvElementInsertEvent A new element has
Element Insertion been added to an
Event advertisement
Advertisement AdvElementRemoveEvent Existing element has
Element Removal been removed from an
Event advertisement

5

10

15

20

25

30

35

40

45

50

55

60

65

50

TABLE 1-continued

Space Events

Event Name Type Meaning
Advertisement AdvElementChangeEvent Existing element has
Flement Change been changed 1n an
Event advertisement
Advertisement AdvElementAttributelnsert A new attribute has
Flement Event been added to an
Attribute element

[nsertion Event

Advertisement AdvElementAttributeRemove Existing attribute has
Flement Event been removed from an
Attribute element

Removal Event

Advertisement AdvElementAttributeChange Existing attribute has
Flement Event been changed 1n an
Attribute element

Change Event

Events may be typed. In some embodiments, the event
facilities supported by spaces may allow for event listeners
to take advantage of, e.g., Java class (or XML types)
hierarchies. For example, by listening {for
AdvElementEvent, the listener will receive events of type
AdvElementEvent and all of its sub-classes (XML types).
Thus, for this example all events pertaining to element
changes (though not advertisement insertion and removal)
are received.

By way of further example, subscribing to or listening for
a top-level event class or type, e¢.g. SpaceEvent, will result
in the reception of all space events. Event class types may
be distinguished via, for example, the Java instance of
operator or the XML typing system.

An event may include a URI to the affected advertisement
or element. For example, AdvertisementEvent and all its
sub-classes may contain a reference (e.g. URI or URL) to the
alfected advertisement. AdvElementEvent and 1ts subclasses
may be examined for the name of the affected element. The
previous element value (URI or URL), may be available, for
example, from AdvElementRemoveEvent and AdvEle-
ment ValueChangeEvent.

A space event type hierarchy for one embodiment is
illustrated 1n FIG. 21. Types may be defined in XML and
usable 1n Java or any other suitable object-oriented language
such as C++.

A space may provide a facility for a client to 1nstantiate a
service advertised 1n the space. Service instantiation 1s the
initialization done that allows a client to be able to run a
service. On embodiment of service 1nstantiation 1s 1llustrated
in FIG. 22. To instantiate a service, a client may first select
one of the service advertisements published in the space, as
indicated at 320. The client may use the various facilities,
such as the look up facility, provided by the space to look up
the various advertisements 1n the space. Then the client may
request the space to instantiate the service, as indicated at
322.

In one embodiment, service mstantiation may include the
following actions. After the client requests the space service
to 1nstantiate the selected service, as indicated at 322, the
space service may then verily the client 1s allowed to
instantiate the requested service, as indicated at 324. The
space service may perform this verification by examining an
authentication credential included in the clients message.
The authentication credential 1s the credential the client
received when 1t established a session with the space service.
The space service may verily if the client 1s allowed to
instantiate the requested service according to the client’s

US 6,643,650 B1

51

authentication credential and capabilities mdicated for that
client. See the Authentication and Security section herein.

Assuming the client 1s authorized, the space service may
also obtain a lease on the service advertisement for the client
with the lease request time specilied by the client, as
indicated at 326. Leases are further discussed below. The
space service may then send a message to the client which
includes the allocated lease and the service advertisement of
the service, as indicated at 328. In one embodiment, the
client may run an authentication service specified i1n the
service advertisement and obtain an authentication
credential, as indicated at 330. See the Authentication and
Security section herein for more 1nformation on an authen-
fication service. Next, as indicated at 332, the client may
construct a gate for the service (for example, using the
authentication credential and the XML schema and service
URI from the advertisement). Refer to the Gates section
herein. The above described communication between the
client and space service 1s performed using the XML mes-
saging of the distributed computing environment. The client
may then run the service using the constructed gate and
XML messaging. The service may similarly construct a
service gate for XML message communication with the
client.

To summarize, an example use of a space 1s discussed as
follows. A client may access (e.g., connect to) a space
service. (A service may act as a client for the purpose of
accessing or otherwise using a space.) The space service
may store one or more service advertisements and/or other
content 1n a space, and each of the service advertisements
may 1nclude information which 1s usable to access and
execute a corresponding service. The space service may
include a schema which specifies one or more messages
usable to invoke functions of the space service. For example,
the schema may specity methods for reading advertisements
from the space and publishing advertisements in the space.
The schema and service advertisements may be expressed in
an object representation language such as eXtensible
Markup Language (XML). In accessing the space service,
the client may send information such as an XML message
(as specified 1n the schema) to the space service at an
Internet address. In accessing the space service, the client
may search the one or more service advertisements stored 1n
the space. The client may select one of the service adver-
tisements from the space. In one embodiment, the client may
send an 1nstantiation request to the space after selecting the
desired service advertisements from the space. A lease may
be obtained for the desired service, and the lease and the
selected service advertisement may be sent by the space
service to the client. The client may then construct a gate for
access to the desired service. The desired service may be
executed on behalf of the client.

Another facility provided by a space service may be the
spawning or creation of an empty space. This space facility
may allow a client (which may be a service to another client)
to dynamically create a new space. In one embodiment, this
space facility may include an interface for spawning an
empty space with the same functionality (same XML
schema or extended schema) as the space from which it is
spawned. This facility may be useful for generating (e.g.
dynamically) spaces for results. For example, a client may
spawn a space a request a service to place results or advertise
results 1n the spawned space. The client may pass the
spawned space URI and/or authentication credential to the
service. Or a service may spawn a space for results and pass
the spawned space URI and/or authentication credential to
the client. In some embodiments, once a space 1s spawned,

10

15

20

25

30

35

40

45

50

55

60

65

52

it may be discovered just like other spaces using one or more
of the space discovery mechanisms described herein.

FIG. 41 1s a flow diagram 1llustrating the spawning of a
new space 1n a distributed computing environment accord-
ing to one embodiment. As indicated at 1900, a client may
access (i.e., connect to) a first space service. (A service may
act as a client for the purpose of accessing or otherwise using,
a space.) The first space service may store one or more
service advertisements and/or other content 1n a first space,
and each of the service advertisements may include infor-
mation which 1s usable to access and execute a correspond-
ing service. The first space service may include a first
schema which specifies one or more messages usable to
invoke functions of the first space service. For example, the
first schema may specily methods for reading advertise-
ments from the first space and publishing advertisements 1n
the first space. The first schema and service advertisements
may be expressed 1n an object representation language such
as eXtensible Markup Language (XML). In accessing the
first space service, the client may send information such as
an XML message (as specified in the first schema) to the first
space service at a first Internet address (e.g., URI). In
accessing the first space service, the client may search the
one or more service advertisements stored 1n the first space.

In one embodiment, spaces may include a facility for
spawning new spaces. As mdicated at 1902, the creation of
a second space may be requested, such as by the client
sending an appropriate request to an interface of the first
space. In one embodiment, the request may be formatted as
an XML message according to the first schema for the first
space. In response, a second space service with a second
space may be created, such as at a second Internet address
(e.g., URI), as indicated at 1904. As above, the second space
service may include a second schema which specifies one or
more messages usable to invoke functions of the second
space service. The second schema may include at least the
first schema, and the second schema may include additional
functionality as well. In one embodiment, the schema of the
second space may include a portion of the first schema, or
the second schema may be specified at the time of creation
of the second space. As indicated at 1906, the client may
then access the second space by sending to the second space
at least one of the messages specified 1n the second schema.

Spawning a space may 1nclude administration
initialization, such as for security. In one embodiment, when
a requestor has just spawned a space, only the requestor 1s
nitially allowed to access the spawned space. Such limiting
of access to the spawned space may be useful when a client
and service are using that spawned space to store results.
Refer to the Authentication and Security section for more
information on spawned space authentication and security.
Once a client has spawned a new space, 1t may build a gate
to access the spawned space.

By using a mechanism 1 which a space may be created
via an interface in another space (e.g. a space spawning
facility), new spaces may be created efficiently. For
example, 1n one embodiment, storage for the spawned space
may be allocated using the same facility used by the original
space for storage. In one embodiment, the first space may
store a first set of information, such as XML advertisements
or other content, according to a particular storage model.
Upon 1ts creation, the second space 1s operable to store a
second set of information according to the same storage
model. Also, a spawned space may share a common service
facility with its original (or parent) space. For example, a
new URI may be assigned to the new space. In one
embodiment, the new URI may be a redirection to a com-

US 6,643,650 B1

53

mon space facility shared with the original space. Thus, a
newly spawned space may use the same or some of the same
service code as that of the original space. In other words, the
first space service may include a set of program instructions
which are computer-executable to provide the first space.
The second space service may include substantially the same
set of program instructions, wherein the set of program
instructions are further computer-executable to provide the
second space.

Space facilities may also include security administration,
for example, to update the various security policies of the
space, and other administrative facilities. For example, the
number and age of advertisements may be controlled and
monitored by a root space service. Old advertisements may
be collected and disposed. See, e.g., the Leases section
herein for when an advertisement may be considered old.
The service implementing the space may be under the
control of an administrator. The administrator may set policy
in a service dependent manner.

Space facilities may also include a facility to delete an
empty space.

Certain spaces may include facilities or services to further
support the proliferation of certain clients, such as mobile
clients. For example, services 1n spaces that a mobile client
may discover, €.g. via the discovery protocol, may provide
support for mobile clients, such as:

Assigning and administering temporary network
addresses for the client.

Proxying message passing for the client.

Providing secarch facilities for additional spaces. For
example, a service may allow a client to specily key-
words through a stmple 1nterface. The service then uses

the keywords 1n conjunction with Web search engines

to search for spaces on the Web, as further described
herein. In other embodiments, a search service may
constrain clients to searching only a few supported
spaces within the distributed computing environment.

As mentioned earlier (see FIG. 9 and accompanying text),
spaces may provide a convenient mechanism for storing
results from a service run by a client. Using a space for
results may allow a small client to receive 1n pieces the
results of running a service. Some services may generate a
large amount of results. By using a space to store the results
from a service, clients that do not have the resources to
receive the full results at once may still use the service.
Moreover, by using a space to store results, a service running
on a fast busy server may be freed from interacting directly
with a slow client when returning large results. Thus, the
service may be freed sooner for use by other clients.

A space may provide a convenient mechanism for access-
ing a result by different clients and/or at different times. For
example, a client may not be able to use the entire result, but
a user may want to access the rest of the result later using
another client that can access it. For example, the result
could be stock quote information, showing the current price
of a stock (accessible by a PDA), and showing a chart of
stock prices (accessible by a laptop later). Also, using a
space 1n the distributed computing environment for results
may allow a client to feed the result of one service into
another service, without the necessity of downloading the
result first. For example, in the case of the stock quote
mmformation above, the PDA could feed the chart into
another service, which prints the chart, without the PDA
having to download the chart itself. Thus, a results space
may provide a mechanism for a client to pass to another
client or service without the client having to handle or
receive the results.

10

15

20

25

30

35

40

45

50

55

60

65

54

In different embodiments, the decision to use a space for
results may be mandated by the service, mandated by the
client, and/or requested by the client. A service may suggest
the use of a space for 1ts results, €.g., 1n 1ts advertisement. In
onc embodiment, either the client or the service may spawn
a new space for results or use an existing space for results.
See the description herein regarding spawning spaces.

In one embodiment, the use of a space for results does not
necessarily mean that the service must put all results in that
space. There may be alternatives for any result a service
generates. For example, part or all of the result may be sent
in-line 1n a message to the client. Alternatively, the result
may be put 1n the space, and then a notification message may
be sent to client, referencing the result (e.g. including a URI
to the result or to an advertisement for the result). Another
option may be to put the result 1n the space, with notification
via an event from the space. For example, the client and the
service may agree to call the result some particular name,
and then the client may register with the space (using a space
facility such as described above) to receive an event when a
result so named 1s added to the space. See the description
above on event nofification.

Thus, several different mechanisms may be employed
within the distributed computing environment for a service
to return results to a client. The actual results may be
returned to the client by value 1n an XML message, or results
may be returned to the client by reference with the actual
results (or advertisement for the actual results) put in a space
and the client receiving a message referencing the results 1n
the space. Moreover, results, or results advertisements, may
be placed 1n a space and the client notified by event.

In various embodiments, therefore, results may be
returned to a client 1n a plurality of ways: for example, 1n a
message, 1In a space, 1n a space wherein the client 1s notified
via an event, using an advertisement returned 1in a message,
using an advertisement returned 1n a space, and using an
advertisement returned in a space wherein the client 1s
notified via an event. These various methods of returning
results are 1llustrated 1n FIGS. 44a through 44g. The avail-
ability of these plurality of methods may enhance the
flexibility and adaptability of the distributed computing
environment for a variety of situations, such as for clients
having differing capabilities. For additional flexibility,
results may also be efficiently passed to another service, as
illustrated 1in FIG. 45.

FIG. 44a 1s a flow diagram 1llustrating a method of storing
result of a service 1n a space 1n a distributed computing
environment according to one embodiment. As indicated at
2050, a client may send a first message to a service to request
invocation of one or more functions of the service. A schema
for the service may specily a plurality of messages, includ-
ing the first message, which are usable to i1nvoke the
function(s) of the service. The messages and the schema
may be expressed 1n a platform-independent and/or
programming-language-independent data representation
language such as XML.

In response to the first message, the function(s) of the
service may be invoked, as indicated at 2052. The service
may then generate a set of results, as indicated at 2054. The
results may be expressed 1n the data representation language
(e.g., XML). As indicated at 2056, the service may store the
set of results at a location 1n a space, wherein the space
comprises a network-addressable storage location. In one
embodiment, the space may be created 1n preparation for
storing the set of results.

As indicated at 2058, a client may then access and read the
set of results from the space. In one embodiment, a second

US 6,643,650 B1

33

client (1.e., a different client than the one that sent the
message to invoke the function(s)) may read the set of
results from the space. In this manner, a user may ufilize a
second client to read and display results when the first client
may not have sufficient resources to accomplish such a task.
In one embodiment, the client may send a message to the
service to request that the service pass the address of the set
of results to a second service, so that the second service may
read the set of results from the address in the space. The
second message may include a Uniform Resource Identifier
(URI) of an advertisement for the second service, wherein
the advertisement for the second service comprises 1nfor-
mation which 1s usable to access the second service. In this
manner, the results may be efficiently passed from the first
service to the second service without being passed to the
client.

FIG. 44b 1s a flow diagram 1llustrating a method of storing
results of a service in a space and nofifying a client using an
event according to one embodiment. As indicated at 2050, a
client may send a first message to a service to request
invocation of one or more functions of the service. In
response to the first message, the function(s) of the service
may be invoked, as indicated at 2052. The service may then
ogenerate a set of results, as mdicated at 2054. The results
may be expressed in the data representation language (e.g.,
XML). As indicated at 2056, the service may store the set of
results at a location 1n a space, wherein the space comprises
a network-addressable storage location. As indicated at
2057, an event may be generated and sent to the client to
notify the client that the results are stored in the space. As
indicated at 2058, a client may then access and read the set
of results from the space 1n response to the event.

FIG. 44c 1s a flow diagram illustrating a method of
sending results of a service 1 a message to a client accord-
ing to one embodiment. As indicated at 2050, a client may
send a first message to a service to request invocation of one
or more functions of the service. In response to the first
message, the function(s) of the service may be invoked, as
indicated at 2052. The service may then generate a set of
results, as indicated at 2054. The results may be expressed
in the data representation language (e.g., XML). As indi-
cated at 2055, the service may then send to the client a
message 1ncluding the results. The message may be
expressed in the data representation language (e.g., XML)
and, 1n one embodiment, may be specified in the schema for
the service.

FIG. 44d 1s a flow diagram illustrating a method of
returning results of a service using an advertisement accord-
ing to one embodiment. As indicated at 2050, a client may
send a first message to a service to request invocation of one
or more functions of the service. In response to the first
message, the function(s) of the service may be invoked, as
indicated at 2052. The service may then generate a set of
results, as indicated at 2054. The results may be expressed
in the data representation language (e.g., XML). In one
embodiment, the service may store the set of results at a
location 1n a space, wherein the space comprises a network-
addressable storage location. As indicated at 2060, the
service may generate an advertisement for the results. The
advertisement may include information which is usable to
access and read the results, such as from the space. For
example, the advertisement may include a Uniform
Resource Identifier (URI) at which the results may be
accessed. In one embodiment, the advertisement may
include a schema (e.g., an XML schema) which specifies a
format of the results. In one embodiment, the advertisement
may be expressed 1n a data representation language such as

10

15

20

25

30

35

40

45

50

55

60

65

56

XML. As indicated at 2068, a client may then access and
read the set of results using the advertisement. In one
embodiment, a second client (i.e., a different client than the
one that sent the message to invoke the function(s)) may
read the results using the advertisement.

FIG. 44¢ 1s a flow diagram 1illustrating a method of
returning results of a service using an advertisement sent to
a client 1n a message according to one embodiment. As
indicated at 2050, a client may send a {irst message to a
service to request invocation of one or more functions of the
service. In response to the first message, the function(s) of
the service may be invoked, as indicated at 2052. The
service may then generate a set of results, as indicated at
2054. The results may be expressed in the data representa-
tion language (e.g., XML). In one embodiment, the service
may store the set of results at a location 1n a space, wherein
the space comprises a network-addressable storage location.
As 1ndicated at 2060, the service may generate an adver-

fissment for the results. The advertisement may include
imnformation which 1s usable to access and read the results,

such as from the space. For example, the advertisement may
include a Uniform Resource Identifier (URI) at which the
results may be accessed. In one embodiment, the advertise-
ment may include a schema (e.g., an XML schema) which
specifies a format of the results. In one embodiment, the
advertisement may be expressed in a data representation
language such as XML. As indicated at 2061, the service
may send a message including the advertisement to the
client. The message may be expressed 1n the data represen-
tation language (e.g., XML) and, in one embodiment, may
be specified 1n the schema for the service. As indicated at
2068, a client may then access and read the set of results
using the advertisement.

FIG. 44f 1s a flow diagram 1illustrating a method of
returning results of a service using an advertisement stored
in a space according to one embodiment. As indicated at
2050, a client may send a first message to a service to request
invocation of one or more functions of the service. In
response to the first message, the function(s) of the service
may be invoked, as indicated at 2052. The service may then
oenerate a set of results, as indicated at 2054. The results
may be expressed in the data representation language (e.g.,
XML). In one embodiment, the service may store the set of
results at a location 1n a space, wherein the space comprises
a network-addressable storage location. As indicated at
2056, the service may store the set of results at a location 1n
a space, wherein the space comprises a network-addressable
storage location. As indicated at 2060, the service may
cgenerate an advertisement for the results. The advertisement
may include information which is usable to access and read
the results, such as from the space. For example, the
advertisement may include a Uniform Resource Identifier
(URI) at which the results may be accessed. In one
embodiment, the advertisement may include a schema (e.g.,
an XML schema) which specifies a format of the results. In
onc embodiment, the advertisement may be expressed 1n a
data representation language such as XML. As indicated at
2062, the advertisement may be stored 1n a space. The space
may be the same as or different from the space in which the
results were stored 1 2056. A client may read the adver-
fissment from the space, as indicated at 2066. In one
embodiment, a second client (i.e., a different client than the
one that sent the message to invoke the function(s)) may
read the advertisement from the space. As indicated at 2068,
the client may then access and read the set of results from the
space using the advertisement.

FIG. 44g 15 a flow diagram 1illustrating a method of
returning results of a service using an advertisement stored

US 6,643,650 B1

S7

1in a space and notifying a client using an event according to
one embodiment. As indicated at 2050, a client may send a
first message to a service to request vocation of one or
more functions of the service. In response to the first
message, the function(s) of the service may be invoked, as
indicated at 2052. The service may then generate a set of
results, as mndicated at 2054. The results may be expressed
in the data representation language (e.g., XML). In one
embodiment, the service may store the set of results at a
location 1n a space, wherein the space comprises a network-
addressable storage location. As indicated at 2056, the
service may store the set of results at a location 1n a space,
wherein the space comprises a network-addressable storage
location. As indicated at 2060, the service may generate an
advertisement for the results. The advertisement may
include mnformation which 1s usable to access and read the
results, such as from the space. For example, the advertise-
ment may include a Uniform Resource Identifier (URI) at
which the results may be accessed. In one embodiment, the
advertisement may include a schema (e.g., an XML schema)
which specifies a format of the results. In one embodiment,
the advertisement may be expressed 1n a data representation
language such as XML. As indicated at 2062, the advertise-
ment may be stored 1n a space. The space may be the same
as or different from the space i1n which the results were
stored 1n 2056. As indicated at 2064, an event may be
ogenerated and sent to the client to notity the client that the
advertisement for the results 1s stored 1n the space. The client
may read the advertisement from the space, as indicated at
2066. As 1ndicated at 2068, the client may then access and
read the set of results from the space using the advertise-
ment.

FIG. 45 1s a flow diagram 1llustrating a method of sending
results of one service to another service 1n a distributed
computing environment according to one embodiment. As
indicated at 2070, a client may send a first message to a first
service to request invocation of one or more functions of the
service and to request passage of the results of the functions
to a second service. A schema for the first service may
specily a plurality of messages, including the first message,
which are usable to invoke the functions of the first service.
The messages and the schema may be expressed in a
platform-independent data representation language such as
XML. In one embodiment, the first message may include a
Uniform Resource Identifier (URI) of an advertisement for
the second service, wherein the advertisement for the second
service comprises information which is usable to access the
second service.

In response to the first message, the functions of the first
service may be invoked, as indicated at 2072. The first
service may then generate a set of results, as indicated at

2074. The results may be expressed in the data representa-
tion language (e.g., XML). As indicated at 2076, the first
service may send the results in a message to the second
service without sending the results directly to the client. In
this manner, the results may be efficiently passed from the
first service to the second service without being passed to the
client.

Result spaces and method gates may allow the distributed
computing environment to provide a simple remote method
invocation that i1s practical for thin clients with minimal
memory footprints and minmimal bandwidth, because 1t need
not have the adverse side eff

ects of huge program objects
(along with needed classes) being returned (necessarily)
across the network to the client as in conventional remote
method 1nvocation techniques. Instead, results may be
returned to a result space, and only if desired (and if they can
reside on the client) are the actual objects downloaded to the
client.

10

15

20

25

30

35

40

45

50

55

60

65

53

The mechanism by which the distributed computing envi-
ronment may provide for remote method 1nvocation 1s as
follows (refer also to the description of method gates in the
Gates section herein). An object may be advertised (e.g. as
a service or as part of a service) in a space. The advertise-
ment includes a reference that contains the URI (e.g. URL)
of the object, along with other access parameters, such as
security credentials and XML schema. A client may have or
may construct a client method gate for the object, which for
every method of the object (or service) itself may have a
wrapper method that takes the method parameters and
creates a request XML message to mmvoke a method of the
object. The XML message 1s sent to a service gate which
invokes the actual method on the service object. When that
method returns a result object, the service gate may post the
result object 1n a results space, and may return a message to
the client with a reference to the result object.

Thus, for a client to invoke a remote method, the client
first sends a message to instantiate an object (e.g. service),
such as described above. In one embodiment, instantiation
of an object may include the creation or spawning of a result
space. In another embodiment, result space creation may be
independent from the object instantiation. Instantiation may
return the object URI to the client, and the client and service
cgates may be dynamically created when a client requests
instantiation. In some embodiments, a result space may
already exist and be advertised by the object (service). Some
part or all of the gates may also have been pre-constructed
or reused.

Once a client has mitiated an object, a local call of the
appropriate client method gate will affect a remote call to the
actual remote object, as described above. The remote
method 1nvocation approach of the distributed computing
environment may be recursive, with object references
returned to the client, instead of the objects itself, when the
client gate 1s called. Note that such returned objects may
already be instantiated. In some embodiments, the client
may make a decision to download an entire object 1itself,
rather than just remotely invoke it.

A method or service invoked as described above may
oenerate a child gate that 1s associated with the results
document. The method may return a child gate (or the
schema, URI and credentials for the client to construct a
child gate) for the references instead of the references
themselves. The client may then access the references
through the child gate. The child gate may also be a method
gate.

As described above, this remote method 1nvocation pro-
vided by the distributed computing environment allows the
real result object(s) to be stored in a service results space
(which also may be created dynamically, by a servlet for
example). The results space may be temporary. The results
space may act as a query results cache. The results cache
may be patrolled by server software (garbage collector) that
cleans-up old result areas. Distributed garbage collection
may be employed, as result spaces may fill up until they are
destroyed by a client indicating it no longer needs the space,
or by an administrator on a server setting appropriate limits.

Turning now to FIG. 23, an 1llustration of a default space
350 1s provided. The distributed computing environment
may provide at least one default space so clients can find an
initial set of advertisements. A device may have a default
space that exists locally, with a built-in pre-constructed gate.
The services advertised i1n that default space may exist
locally on that device, and they may provide system soft-
ware that enables or facilitates the device’s participation in
the distributed computing environment.

US 6,643,650 B1

59

The default space 350 may include one or more mecha-
nisms 352 to locate external spaces, as shown 1n FIG. 23.
One service 1n the default space may run the space discovery
protocol described above to find external spaces. Also,
external spaces may be advertised in the default space.
Additionally, a service (e.g. a search engine or a proxy
service to a search engine) may be advertised in the default
space that determines or finds external spaces. Each space
may be analogous to a file system mount point. Thus, the
distributed computing environment may provide searchable,
dynamic mount points to services. A default space may be a
client’s initial mount point to the distributed computing
environment.

A default space or access to a default space may be built
in to a device. Through the default space and local services
that may exist on the device, a client execution environment
for the distributed computing environment may be provided.
A device’s local services and default space service may have
built-in pre-constructed gates. One of the built-in services
listed 1n the default space may be a service to run the
discovery protocol so that the client may locate additional
(e.g. external) spaces. A default space may include a built-in
service that provides an execution environment for clients
that allows the client user to browse spaces, select, and then
instantiate services. Such a service may provide a simple
user interface that allows a client to entire strings (e.g.
keyword for space searches), view or browse result refer-
ences (€.g. space listings, or service listings within a space),
select items (e.g. to chose and instantiate a service), efc.

Devices that primarily provide a service may also include
a default space and may include a built-in service in the
default space that allows a service to manage advertising
itself 1 various spaces. For example, a device, such as a
printer, may have a built-in default service that finds
(perhaps through the discovery protocol) a space on a local
arca network and adds an advertisement for the printer
service to that space. This service may also maintain the
printer service advertisement within the LAN space, for
example, by renewing its lease or updating the printer’s
XML schema, etc.

For some devices that provide a service, the overhead of
finding a space to advertise i1ts service and maintain that
advertisement 1S undesirable. In one embodiment, rather
than searching for and maintaining a space or spaces to
publish service advertisements, services on some devices
may transmit their advertisements 1n response to connection
requests. For example, a printer device with a printer service
that 1s available on a proximity basis may not maintain an
advertisement in a space (on the device or external to the
device). Instead, when another device establishes a connec-
tion with the printer device (for example, a user with a laptop
running a client desires to print a document), the printer
service may transmit the service advertisement to provide
the XML service schema for connecting to and running the
service that provides printing functionality on the printer
device. Also, some devices may only maintain advertise-
ments for their services 1n a certain vicinity or local network.
Such a device may not desire to support or may not have
access to transports for broader accessibility.

One example of a service device i which 1t may be
desirable for the device to avoild or limit maintaining service
advertisements 1n a space 1s a device whose functionality 1s
available on a proximity basis. Proximity-based services
may provide advertisements of their functionality upon
request. These advertisements may not be broadly acces-
sible. For example, proximity-based services may be pro-
vided 1n a wireless communications system. The term “wire-

10

15

20

25

30

35

40

45

50

55

60

65

60

less” may refer to a communications, monitoring, or control
system 1n which electromagnetic or acoustic waves carry a
signal through atmospheric space rather than along a wire.
In most wireless systems, radio-frequency (RF) or infrared
(IR) waves are used. Typically, in proximity-based wireless
systems, a device comprising a transceiver must be within
range (proximity) of another device to establish and main-
tain a communications channel. A device may be a hub to
connect other devices to a wireless Local Area Network
(LAN).

As mentioned, embodiments of the distributed computing
environment may provide a mechanism using a lookup
space that allows clients to rendezvous with services. In a
proximity computing environment, one embodiment of the
distributed computing environment may provide a service
discovery mechanism that clients may use to discover ser-
vices without using lookup spaces as rendezvous points. An
example of a proximity computing environment 1s an IrDA
point-to-point communications environment. In a proximity
computing environment, the proximity mechanism may find
the “physical” location of the service for the client. For
example, 1n an IrDA environment, the client device may be
physically pointed at the device including the service(s) that
the client desires to use.

The proximity service discovery mechanism may enable
the client to directly look for service advertisements rather
than sending a lookup request to a lookup space to look for
service advertisements. Since the client device may have
established a proximity connection to the service device, the
client may directly request the desired service. For example,
a PDA client device may establish a proximity connection to
a printer device; the client may “know” to request a printer
service connection on the printer device.

In one embodiment, the client may send a proximity
service discovery message to the service device. The mes-
sage may 1nclude mformation that may specily a desired
service on the service device to which the client device has
a proximity connection. In one embodiment, a service on the
service device may respond to the proximity service discov-
ery message, and may send to the client the service adver-
tissment that the client may use to connect to the desired
service. The proximity service discovery message may also
include information that may be used to authenticate the
client and to establish the client’s capabilities on the service.
Using the received service advertisement, the client may
establish a gate to establish communication with the desired
SETVICE.

Nevertheless, 1t may still be desirable to publish adver-
fisements for services that do not desire to or cannot main-
tain their advertisements 1in a space that 1s broadly acces-
sible. In one embodiment of a distributed computing
environment, a device that establishes a connection with a
device that does not publish its service advertisement(s),
such as a proximity-based device, may publish service
advertisements received from the non-publishing device.
For example, a device that establishes a connection with a
proximity-based device and that has an alternate transport
connection(s) may publish (or republish) service advertise-
ments received from the proximity-based device in the
alternate transport environment, thus allowing the
proximity-based device service(s) to be used by other

devices (through the (re)published service advertisements)
which are outside the normal proximity range of the device.

The publishing device may locate a locally published
service advertisement for the proximity-based device
through a discovery and/or lookup service, or alternatively
the service advertisement may not be published by the local

US 6,643,650 B1

61

service device, but instead may be sent to the publishing
device by the local device upon the establishment of a
connection, as described above. In one embodiment, the
republished service advertisement may be made available as
long as the device maintaining the advertisement 1s con-
nected to or able to connect to the local device. For example,
if the publishing device 1s disconnected from the local
device (for example, moves out of proximity range of the
device), the service advertisement may be made stale or
removed. A lease mechanism may be provided to allow the
space containing the advertisement to send lease renewal
messages to the publishing device. The publishing device
may verily 1ts connection to the local device, thus allowing
the space to detect when the local device 1s no longer
available. Rules for how the service advertisements are
republished may be provided by the local device or by an
administrative policy for the local vicinity (e.g. roximity
area) or local network.

FIG. 24 illustrates an example of a device bridging
proximity-based devices onto another transport mechanism
to allow the services provided by the proximity-based
devices to be accessed by devices outside the proximity
range ol the devices, according to one embodiment. A
publishing device 1404 may be connected to a network
1412, such as an Ethernet LAN or the Internet, etc., and may
establish and maintain proximity connections 1414 with
proximity devices 1400 and 1404. Proximity connections
may be wireless connections or wired LAN connections, for
example. Proximity devices 1400 and 1402 may each send
a service advertisement to the publishing device 1404 upon
connection, or, alternatively, the publishing device may
locate the service advertisements using a discovery and/or
lookup service for the proximity connections. The publish-
ing device 1404 may then make the services provided by the
proximity devices available to other devices 1408 and 1410
on the network 1412 by republishing the service advertise-

ments 1416 and 1418 1n space 1406. Space 1406 may be

stored on the publishing device or on other devices con-
nected to the LAN (including devices 1408 and 1410).
Other devices on the LAN including devices 1408 and

1410 may then discover space 1406 and look up the repub-
lished service advertisements 1416 and 1418 for the
proximity-based devices, establish gates to communicate to
those services (device 1404 may act as a proxy or bridge) on
the proximity-based devices 1400 and 1402 using the XML
message passing methods described previously, and send
requests and receive results to the proximity devices. Pub-
lishing device 1404 may act as a bridge between the network
1412 and the proximity connections 1414 to the proximity-
based devices.
Leases

Leases may be used in the distributed computing envi-
ronment to deal with partial failure, resource synchroniza-
tion (scheduling), and to provide an orderly resource clean-
up process. Leases may help the overall distributed system
manage independent clients and services that may come and
o0. The various resources that clients obtain from services
(including space services) may be leased from those ser-
vices. In general, not every resource can or needs to be
leased. In one embodiment, it 1s up to the implementation of
cach particular service to determine which of its resources
need to be leased. In particular, resources used by a large
amount of clients simultaneously may not need leasing or
instead may require custom leasing protocols. This class of
leasing may be left to the service provider. Custom
protocols, such as those to implement transactions for
example, may be built upon the base leasing scheme. In one
embodiment, the base leasing model 1s a relative time-based
model.

10

15

20

25

30

35

40

45

50

55

60

65

62

Services may 1ssue leases to clients and provide opera-
tions on those leases. In one embodiment, all such lease
functionality of a service i1s part of that service’s XML
schema. Thus, a client may use its gate (corresponding to the
service and constructed for the service’s XML schema) to
perform lease operations. In one embodiment, all services
that issue leases provide the following lease operations (only
allowed by the owner of the lease): (1) renewing a lease
(parameters specified: lease (e.g. lease ID, lease credential),
new lease time requested), and (i1) canceling a lease
(parameter specified: lease (e.g. lease ID, lease credential)).
In one embodiment, all leases are granted for a particular
amount of relative time (duration of lease) that may be
negotiated. The requester may specily a certain amount of
time (e.g. in seconds), and the grantor may grant the lease for
any amount up to that time. In one embodiment, a —1 value
may be used to specily an indefinite lease.

The leasing mechanism may provide a mechanism to
detect service and client failure. Leases may also provide a
mechanism to provide shared and exclusive resource access.
In one embodiment, all service resources either have no
lease (resource is not leased and therefore available), a
shared lease (resource accessed by multiple clients), or an
exclusive lease (resource is accessed by exactly one client at
a time). In one embodiment, all resources begin in the no
lease state. A no lease state signifies there 1s no current
access to the underlying resource, and 1ndicates that there 1s
an 1nterest 1n the resource remaining in existence and thus
available for leasing. The leasing level may be increased
from none to shared, none to exclusive, or shared to exclu-
sive. Lease 1solation levels may also be decreased from
exclusive to shared, exclusive to none, and shared to none.
In one embodiment, clients may voluntarily increase or
decrease the lease 1solation level, or may be requested by the
service to do so. A response message from the service may
indicate 1f the 1solation level change was accepted.

Request-response message pairs may be employed to
claim, release, and renew a lease. Each message may be
tagoged using a reserved XML tag to indicate that the
message 1s a leasing message. The complete composition of
the message 1sn’t necessarily defined by the distributed
computing environment. In such an embodiment, service
developers may append custom message content, as long as,
the message 1s tagged as a leasing message.

In one embodiment, clients that use leased resources may
be expected to: (1) claim the resource as shared or exclusive,
(11) release the resource claim (if requested or if finished with
resource), and (ii1) respond to renewal messages (with
another claim at same or different isolation level). Renewal
messages may be sent (e.g. in regular intervals) by services
to detect client failure cases. The interval (at which the
renewal message i1s sent) may be service specific. If a
response to the renewal message 1sn’t issued after a speciiic
amount of time (e.g. based on a time noted in the service
advertisement), a resource reclamation process may begin
within the service, revoking the lease completely. In such an
embodiment, renewal messages sent to clients should be
handled 1n a timely fashion. FIG. 25 illustrates the use of
renewal messages both between a client and an instantiated
service and between a service provider and a space service.
Note that both cases may be considered as the use of renewal
messages between a client and a service, since a service
provider may be a client to a space’s advertisement service.

Renewal messages may arrive 1n an “out of band” fashion
that may be inconvenient for the client to handle. That 1s, the
client cannot predict when a renewal message will be sent
from the service. Out of band message handling may com-

US 6,643,650 B1

63

plicate the client’s logic and increate 1ts complexity. To solve
this problem, an automatic lease renewal mechanism may be
implemented to relieve the client of the responsibility of
handling the out of band messages, and thus reduce client
complexity. In the automatic lease renewal mechanism, each
gate (message, method, and/or event gate) may receive
renewal messages and automatically respond to them with-
out help from the client. The default response to a renewal
request 1s to claim the lease at its current level. Each
message gate may contain a single, set-aside renewal
response message that 1s automatically sent to the adver-
fisement space service when the gate receives the renewal
message. This “out of band” message 1s handled on behalf
of the client, yielding a cleaner client programming model.
In one embodiment, the gate may allow clients to register
lease event handlers to specily different 1solation levels 1n
the response message.

The leasing mechanism may also provide a mechanism to
detect stale advertisements. When a service publishes its
advertisement 1n a space, that service obtains a lease on this
publishing of its advertisement. Each advertisement may
contain a time by which the service promises to renew the
advertisement. In one embodiment, all time-out values are
specified 1n seconds. If the service continues to renew its
lease, the space 1s provided some assurance that the service
advertised 1s still being offered. The renewal time may be
counted down towards zero by the space service. If the
service does not renew 1ts lease, the service may have failed,
or 1t may no longer wish to, or be able to provide the service.
When the lease 1s not renewed, the space service marks the
service advertisement stale, so 1t does not make 1t available
fo clients. Services renew advertisements by sending a
renewal message to the space. The space service receives

these messages and re-sets the advertisement renewal time
back to its initial value.

In one embodiment, stale advertisements are not auto-
matically deleted. Depending upon the policies of the space,
it may choose to delete stale service advertisements that
have expired for a reasonably long period of time. The
deletion policy may be set by the space service. The space
service may search for stale advertisements and either delete
them or bring them to the attention of an administrator, for
example.

In addition to detecting stale advertisements, the space
service may use leases to manage the resources 1its facilities
provide to clients (including other services) of the space. For
example, when a client desires to use a service, the space
service may request a lease for the client as part of service
instantiation. Service instantiation may be performed to
allow a client to run a service. To instantiate a service, a
client may first select one of the service advertisements
published 1n a space. The client may use the various facilities
provided by the space to look up advertisements i1n the
space. Then the client may request the space to instantiate
the service. The lease acquired during service instantiation 1s
on use of the service advertisement (not the same as the lease
on publishing of the service advertisement). It should be
noted that the space service may allow multiple clients to
have a lease on use of a service advertisement if the
advertisement has an indication 1t 1s shared. Otherwise, the
space service only allows one client at a time to have a lease
on the service advertisement (exclusive).

Another example of how a space service may uses leases
to manage the resources its facilities provide to clients 1s
when a client of the space registers to be notified when XML
documents (e.g. service advertisements) are added or
removed from a space. The registering client of the space

10

15

20

25

30

35

40

45

50

55

60

65

64

may obtain a lease on this subscription to notifications. This
lease enables the space service to know whether to continue
sending notifications. Such a lease may not be necessary
when a client has established an active session with the
space. Also, note that when a client of a space (could be a
service) establishes a session with the space, the client may
obtain a lease on the session. This allows the space to
manage any resources assoclate with the session.

In another embodiment, the distributed computing envi-
ronment may employ a leasing mechanism that 1s not
time-based. The lease may be generated when an object 1s
claimed for use. Instead of a time-based mechanism, the
claim method may accept a callback that notifies the current
leaseholder that some other party wishes access the same
object (e.g. service). Thus, as an alternative embodiment to
time-based leases, instead clients may make claims on space
objects (e.g. services).When another client desires a lease
that 1s i1ncompatible with the current leascholder’s, the
service may send a “callback message™ to the client. Upon
receiving the callback message, the client (i.e. client gate)
may 1mvoke a callback method to decide on a response to the
callback message (keep the lease, cancel the lease, change
the access level to shared, etc.). Once a response has been
determined, the client gate sends a response message to the
service. This distributed mechanism for managing leases
may be implemented using the XML message-passing layer.
Authentication and Security

The distributed computing environment provides for
spontaneous and heterogeneous distributed systems based
upon an asynchronous message passing model, where data
and/or objects may be represented 1n a representation lan-
cuage such as XML. In the distributed computing
environment, clients may connect to services throughout the
Internet, for example. The distributed computing environ-
ment may enable large numbers of network devices to work
together 1n a reliable, dynamic, and secure fashion. The
distributed computing environment may define a protocol
that substantially enables interoperability between compli-
ant software components (clients and services).

In the context of the distributed computing environment,
a device may be a networking transport addressable unit.
Clients and services may be implemented as Universal
Resource Identifier (URI) addressable instances of software
or firmware that run on devices.

Internet space 1s mhabited by many points of content. A
URI 1s a method used to 1dentity any of those points of
content, whether 1t be a page of text, a video or sound clip,
an 1mage, software, firmware or other Internet content. The
most common form of URI 1s the Web page address, which
1s a particular form or subset of URI called a Uniform
Resource Locator (URL). A URI typically describes the
mechanism used to access the resource, the specific com-
puter that the resource 1s housed in and the specific name of
the resource (typically a file name) on the computer.

Clients and services (both may be implemented on
devices as software and/or firmware) may be connected over
the Internet, a corporate intranet, a dynamic proximity
network, within a single computer, or by other network
connection models. The size and complexity of the devices
supporting clients and services may range, for example,
from a simple light switch to a complex, highly available
server. Example devices include, but are not limited to:
PDAs; cellular phones; notebook, laptop, and more powerful
PCs; and more powerful computer systems, up to and
including supercomputers. In some embodiments, the
distance, latency, and implementation of clients and services
may be abstracted, with a common discovery and commu-

US 6,643,650 B1

65

nication methodology, creating a “black box™ effect. This
definition approach allows software 1implementation 1ssues
to be dealt with by the underlying platform, yielding a
loosely coupled system that may be scaled to Internet
proportions.

The distributed computing environment may provide an
Internet-centric programming model including WEB and
XML content representation, dynamic device discovery, and
secure device communication that 1s accessible from a wide
range ol network devices. The distributed computing envi-
ronment may 1nclude a network programming model
abstracted above the CPU level. The programming model
may 1nclude the following properties:

URI addresses
Strongly typed data called content (addressed with URIs)

Substantially unlimited amount of persistent content stor-
age (e.g. stores), (containing XML and non-XML
content, such as that identified by MIME types)

Substantially unlimited amount of transient content
memory called spaces (containing XML content)

Descriptive XML metadata (data about data) content
advertisements that may be stored 1n a space to nofify
interested clients.

A substantially unlimited number of 1nstructions
(embodied as messages)

Secure message endpoints (gates) addressed by URIs

Data flow support (event messages) to coordinate work

flow between distributed software programs

Services and clients may run as programs within the
distributed computing environment. Services may advertise
their capabilities to clients wishing to use the service. Clients
may or may not reside within the same network device, and
that device’s code execution environment may or may not
support the Java platform.

Using URIs to address content and message endpoints
orves the distributed computing environment a powerful
addressing scheme. The address may specity the location of
the content or endpoint, and may specify the route (or
transport protocol) to be used. Items addressed using URIs
also may have an associated security credential. The security
credential may be used to control what clients are allowed
access to the 1tem, as well as which operations authorized
clients are allowed to perform on that 1tem.

The high degree of access provided by the distributed
computing environment may be controlled by appropriate
authorization and security systems and methods. Authenti-
cation and security in the distributed computing environ-
ment may include, but are not limited to: verifying the
typing correctness of XML content in a message; securely
identifying the sender to the receiver; a mechanism to check
the 1ntegrity of messages sent from a client to a service and
vice versa; and a mechanism of describing a service’s set of
accepted messages to a client and enforcing the message
requirements on messages received at the service. The above
listed security and authorization features may be leveraged
in a single, atomic unit of code and data. The atomic unit of
code and data may be dynamically created. In one
embodiment, once created, the atomic unit of code and data
may represent a message endpoint (gate), and may not be
altered as to the security and authorization policies imple-
mented during creation.

A gate may represent the authority to use some or all of
a service’s capabilities. Each capability may be expressed 1n
terms of a message that may be sent to a service. Gates may
also be used for failure case detection when a client leases
reSOurces.

10

15

20

25

30

35

40

45

50

55

60

65

66

Authorization and security may also include a mechanism
for verifying that a client attempting to use a service 1S
authorized to use the service; that the space from which the
client receives the service advertisement from 1s authorized
to provide the service advertisement; and/or that the service
advertisement 1tself 1s authorized.

Message passing may be implemented 1in a messaging,
layer as the means of communicating requests from clients
to services and of the services responding with results to the
clients. The messaging layer of the distributed computing
environment may substantially guarantee that valid XML
messages are sent, and may provide mechanisms enabling a
language-independent security model. In the messaging
layer, a sending message endpoint may be linked to a
receiving message endpoint. The two associated message
endpoints may provide a secure, atomic, bidirectional mes-
sage channel suitable for request-response message passing
between a client and a service.

In embodiments of a distributed computing environment,
an advertisement may be published 1n a space for a service.
An advertisement may be an XML document that includes
the XML schema and URI of the service. The service may
also include a service ID token or credential in the
advertisement, and may specify 1n the advertisement an
authentication service to be used by both the client and the
service. A client may then locate the service advertisement
on the space, and use the advertisement to instantiate a
message gate on the client. The client may use the authen-
tication service specified in the advertisement to obtain an
authentication credential for sending 1n messages to the
client. In one embodiment, the client may pass the service 1D
token or credential from the service advertisement to the
authentication service, and the authentication service may
then use the service token or credential to generate the
authentication credential for the client. In one embodiment,
the client may include a gate factory that receives the
necessary information to create the message gate, and the
cgate factory may construct the message gate and communi-
cate with the authentication service to obtain the authenti-
cation credential for the client. A corresponding service
message gate may be instantiated at the service.

The client, at some point, sends a first message to the
service. In one embodiment, the client message gate may
embed the client’s authentication credential constructed by
the authentication service 1n the message. When the service
receives the message, it may use the same authentication
service to verily the authentication credential received in the
message. By sharing the same authentication service, any of
a variety of authentication protocols may be employed, with
the details of generating the authentication credentials sepa-
rated from the client and the service. Thus, a client may use
different authentication credential protocols with different
SEIVICES.

In one embodiment, the authentication service may deter-
mine the capabilities of the client (e.g. what the client is
allowed to do on the service) upon first receiving the client
authentication credential from the service. The capabilities
of the client may be bound to the client’s identity. Then, the
client’s message gate may embed the authentication creden-
fial 1n every message sent from the client to the service. The
messages may be received by the service message gate and
then checked by the authentication service to ensure that the
message 15 from the client and that the message request 1s
within the capabilities of the client. In another embodiment,
capability determination and message checking for capabili-
ties may be handled by the service message gate without
using the authentication service.

US 6,643,650 B1

67

The client and service message gates may work together
to provide a secure and reliable message channel. The gates
may serve as secure message endpoints that allow the client
to run the service by sending and receiving secured, autho-
rized XML messages to and from the service.

Operations 1n the distributed computing environment may
be embodied as XML messages sent between clients and
services. The protocol used to connect clients with services,
and to address content 1n spaces and stores, may be defined
by the messages that can be sent between the clients and

services. The use of messages to define a protocol may
enable many different kinds of devices to participate 1n the
protocol. Each device may be free to implement the protocol
in a manner best suited to 1ts abilities and role.

A service’s capabilities may be expressed 1n terms of the
messages the service accepts. A service’s message set may
be defined using an XML schema. A XML message schema
may define each message format using XML typed tags. The
tag usage rules may also be defined 1n the schema. The
message schema may be a component of an XML adver-
tissment along with the service’s message endpoint (gate)
used to receive messages. Extensions (more capabilities)
may be added to services by adding messages to the XML
message schema.

In the distributed computing environment, authorized
clients may be able to use all of a service’s capabilities, or
may be limited to using a subset of the service’s capabilities.
In one embodiment, once a set of capabilities has been given
to a client, the client may not change that set without proper
authorization. This model of capability definition may allow
for services levels that run from a base set of capabilities to
an extended set.

Service mstantiation may be performed to allow a client
to run a service. To 1nstantiate a service, a client may {first
select one of the service advertisements published 1n a space.
The client may use the various facilities provided by the
space to look up advertisements in the space. Then the client
may request the space to instantiate the service. Service
instantiation may include, but 1s not limited to, the following
steps:

—t

. Client requests space service to instantiate a service.

Space service verifies client 1s allowed to instantiate the service.
Space service obtains a lease on the service advertisement for the
client with the lease request time specified by the client.
Alternatively, the service advertisement may be provided to the cli-

ent
without using the leasing mechanism.

4. Space service sends a message to the client that includes the lease

allocated 1n steps 3, and the service advertisement of the service.

5. Client runs the authentication service specified in the service
advertisement, and obtains an authentication credential.

6. Client constructs a client message gate for communicating with the
SETrvice.

el

In order to provide trust between clients and services in
the distributed computing environment, a series of dynami-
cally generated numbers (keys, or tokens) may be used as
securlty or authentication credentials for clients. One or
more credentials may be used to verily the right of a client
to use a service and to verily messages between the client
and the service. Each client and service may have a unique
credential.

The type of authentication credential needed to use a
service may be returned to the client conducting a service
search. In one embodiment, an authentication credential 1s
an opaque object that must be presented each time a client
uses a service. In one embodiment, the authentication cre-

10

15

20

25

30

35

40

45

50

55

60

65

63

dential may be presented by a message gate on behalf of a
client 1n every message sent to a service. No matter what

kind of authentication credential 1s required by a service, by
using an authentication service external to the client and the
service, the client and the service may not need to be aware
of the authentication credential structure or of the authenti-
catlon process.

An authentication credential may also include a transport-
specific ticket 1n addition to the service ticket. When running
a service, depending upon the networking transport specified
in the service advertisement, the transport may provide a
secure connection. In some cases, 1f the data link layer 1s
already secure, it may not be necessary to use a secure
transport over the already secure data link layer.

The concept of an authentication credential 1s abstract
enough to allow various levels of security based upon
credential implementation. Levels of security may include,
but are not limited to:

1. None (no message security - credential is empty or no credential)
Messages with empty credentials or no credentials may be sufficient
when security 1s enforced by the physical connectivity properties of
the transport. For instance, a smart light switch connected to just one
light switch controller i1s secure because the switches are wired in a
SECUre manner.

2. Signed messages (digital signatures)

Signed messages may include a digital signature that enables the
service (receiving the message) to verify the origin (client) of the
message.

3. Encrypted messages (transport may handle this)

Encrypted messages add another level of security by scrambling the
message contents so that another credential is required to unscramble
it.

4. Capability messages (service functionality and user aware)

This level of security may provide for security capabilities on a user-
by-user basis (e.g. what the user is allowed to do), and may allow

for
fine-grained access control to services and individual service

functions.

Multiple levels of security zones may be used, due to the
heavyweight implementation necessary to enforce the
higher levels of security (capabilities & encryption). If the
message transport supports (or helps support) these security
levels, the support may be leveraged to provide security
level bridge services that bridge one level of security to
another.

As mentioned above, services without any security model
may accept empty authentication credentials. For services
that do not restrict access, a gate may be built without an
authentication credential or with an “empty” authentication
credential. The gates for such services may not send an
authentication credential with each message, or may send an
empty credential. The authentication service 1s one example
of a service that may not restrict access. Other services may
require a user and password pair.

In some embodiments, a mechanism for verifying that a
client attempting to run a service, for verifying that the
service advertisement received by the client 1s an authorized
service advertisement, and for verifying that the space from
which the client received the service advertisement 1s autho-
rized may be based upon a public key/private key asym-
metric cryptographic mechanism. In this mechanism, an
authorized sending entity may embed a public key 1n a
message and encrypt the message including the public key
with 1ts private key. An enfity receiving the encrypted
message may decrypt the message using the public key and
find the same public key embedded i1n the decrypted
message, and thus verily that the message 1s from the

US 6,643,650 B1

69

authorized enfity, since only that enfity has the private key
necessary to encrypt the message. Thus, an entity may 1ssue
a credential that 1s substantially unforgeable, and that other
entities may decrypt (with the appropriate public key) to
verily messages sent by the entfity.

A Kerberos ticket 1s one example of a security credential
that may be used 1n the distributed computing environment.
Kerberos 1s a secure method for authenticating a request for
a service 1n a computer network. Kerberos lets a user request
an encrypted “ticket” from an authentication process that
can then be used to request a particular service. The user’s
password does not have to pass through the network.

Mechanisms may be provided by the distributed comput-
ing environment to substantially guarantee that messages
sent between clients and services are not compromised. In
one embodiment, a sender may embed a token containing
information that may be used by the receiver to verily that
the message has not been altered. There are several methods
for generating the information to embed 1n the message. In
one embodiment, a hash of the message may be computed
and sent with the message. Hashing may include the trans-
formation of a string of characters into a usually shorter
fixed-length value or key that represents the original string.
Upon receiving the message, the receiver may recompute the
hash and check it against the sent hash. If the message has
been altered, it 1s highly unlikely that the same hash will be
ogenerated. The sender may encrypt the hash and send the
corresponding public key 1n the encrypted message to sub-
stantially ensure that the hash i1s not compromised.

In other embodiments, an error detection scheme such as
cyclic redundancy checking may be used. Cyclic redun-
dancy checking 1s a method of checking for errors 1n data
that 1s transmitted on a communications link. In an embodi-
ment using cyclic redundancy checking, the sender applies
an n-bit polynomial to the message and appends the result-
ing cyclic redundancy code (CRC) to the message. The
receiver applies the same polynomial (which may also be
passed in the message) to the message and compares its
result with the result appended by the sender. If they agree,
the message has been received successtully. If not, the
sender may be notified to resend the message.

Gate factories may also play a role 1n security, since a gate
factory may be “trusted” code. Using a trusted gate factory
to generate gates may help to ensure that gates are trusted
code, and that the code 1s correct with respect to the service
advertisement. Clients may be required to present a client 1D
token or credential to the gate factory as a means of
authentication. Services may present a service ID token or
credential to clients (e.g. through an advertisement) when a
client wishes to create a gate. As discussed herein, a client
and service token pair may be used to create a third
credential that may be used to allow the client to send
messages to the service. This third credential may be
referred to as an authentication credential. An authentication
credential may be created by an authentication service
during the authentication process. In one embodiment, the
service may use any authentication policy at its disposal. In
one embodiment, the authentication service administers the
authentication policy on behalf of the service, and thus the
service does not have to be aware of the particular authen-
fication policy being used.

The client may construct 1ts gate using an authentication
credential that the client receives by running an authentica-
tion service specified 1n the service advertisement. This may
allow the constructed gate to send the authentication cre-
dential with each message to the service. When the service
receives the first authentication credential 1n a first message

10

15

20

25

30

35

40

45

50

55

60

65

70

from the client, the service may use the authentication
service specifled 1n the service advertisement to authenticate
the client, and thus may establish a binding of the authen-
fication credential to the identity of the client.

As previously discussed, some results produced by a
service may be advertised 1n a space and ultimately accessed
using a results gate. The results gate may or may not contain
the same security credential as the input gate used to
oenerate the results. Because imput to a service may be
asynchronous from its output (the results), the results may
have a different set of access rights associated with it. For
example, a payroll service may allow a different set of
clients to 1nitiate payroll than to read the payroll service’s
results (paychecks). Thus, a client may have to go through
a separate authentication process to obtain access rights to
the results, which may include receiving an authentication
credential for the results from an authentication service
specified 1n an advertisement for the results.

Message gates may offload most security checks from
services. Services may focus on providing capability and
authenticating clients. A principle of least privilege may be
supported by giving clients access to only those capabilities
that are requested (or assigned).

Security checks may occur when a gate 1s created and/or
when a gate is used (when messages are sent and/or
received). When a client requests access to an advertised
item (service), the process of gate creation may begin.
During this process, the client gate factory may work with
the service to mutually authenticate each other. The checks
performed at gate creation time may be extensive, and may
minimize the number of checks performed during gate
usage. After the service has authenticated the client, the
service may determine specific capabilities for the client
(e.g. what the client 1s allowed to do on the service), and
assoclate the capabilities with the client’s authentication
credential. These specilic capabilities may specily what
operations the client 1s allowed to perform on the service.
Since the gates may ensure that every message contains the
authentication credential, the service can then check each
request when 1t 1s received against the capabilities of the
authenticated client.

Gate creation checks may ensure that a client has permis-
sion to use some or all of the service capabilities designated
by the XML message schema. In one embodiment, these
checks may be implemented using access control lists
(ACLs) in conjunction with an authentication service such
as Kerberos. A challenge-response sequence (such as a
password) may also be used to authenticate a client.

In one embodiment, whatever means 1s used to authenti-
cate the client, the authentication may be 1nvisible to both
the client and service, the gate factory may be aware of
which authentication service to use, and the authentication
service handles the authentication mechanism and policies.
Gate factories may be product and environment dependent,
or may even be controlled by a configuration management
system. In one embodiment, the degree and method of client
1solation may be platform dependent, but 1s known to the
gate factory.

Message gates 1n the distributed computing environment
are typically associated with a single client. The means of
assoclation may be determined by the gate factory. The
checks performed at message send time may ensure that the
proper client 1s using the gate. In one embodiment, gates
may be passed 1n messages, and may be cloned 1f a new
client wishes to use the gate. The cloning process may
perform a new set of creation checks.

Once a client of a space (the client may be another
service) finds the advertisement of a space service, the client

US 6,643,650 B1

71

of the space may run the space service, as 1t would any other
service. Running a space service may involve using an
authentication mechanism. Running a space service may
include, but 1s not limited to:

1. The client of the space may first run an authentication service that
may be specified in the service advertisement of the space service
to obtain an authentication credential.

2. The client of the space may use the authentication credential, the
XML schema of the space (from space’s service advertisement), and
the URI of the space (from space’s service advertisement) to
construct a gate for the space. In one embodiment, the client
may pass the information to a gate factory to construct the gate.

3. The client of the space may run the space service by using the gate

to
send messages to the service.

4. When the space service receives the first message from the client,
with the authentication credential embedded, the space service may
use the same authentication service used by the client to obtain the
authentication credential to authenticate the client, thus establishing
the client’s 1dentity.

5. The space service may then determine the client’s capabilities (e.g.
what the client is allowed to do on the space service) and bind the
capabilities to the authentication credential.

As discussed 1n the Spaces section, a space’s facilities
may 1nclude an mterface for spawning an empty space with
substantially the same functionality (same XML schema) as
the space from which 1t 1s spawned. The spawning facility
may be useful, among other things, for dynamically gener-
ating spaces for results.

FIG. 42 1s a flow diagram 1llustrating the secure spawning,
of a new space 1n a distributed computing environment
according to one embodiment. As indicated at 1950, a client
may access (€.g., connect to) a first space service. (A service
may act as a client for the purpose of accessing or otherwise
using a space.) As indicated at 1952, the creation of a second
space may be requested, such as by the client sending an
appropriate request to an interface of the first space. A client
(including a service acting as a client of a space service)
which requests creation of the space may be referred to as
the requesting client. In response, a second space service
with a second space may be created at a second Internet
address, as indicated at 1954. As above, the second space
service may include a second schema which specifies one or
more messages usable to imnvoke functions of the second
space service. The second schema may include at least the
first schema, and the second schema may include additional
functionality as well.

The second space may 1nitially be configured to permit
access only to the requesting client. In one embodiment, as
mndicated at 1956, a root authentication token 1s created for
the second space. Also as indicated at 1956, an authentica-
fion service associated with the second space may be
initialized, whereby the second space 1s configured to permit
access only to a client holding the root authentication token.
As 1mdicated at 1958, the root authentication token may be
sent to the requesting client or service. As indicated at 1960,
the requesting client may then access the second space by
sending to the second space at least one of the messages
specified 1n the second schema and by using the root
authentication token.

In one embodiment, therefore, when a requester has
spawned a space, only the requestor may be allowed to
access the spawned space. For example, the spawned space
may be for storing results from a service that the client needs
to keep secured. In one embodiment, this security may be
ensured by:

As mdicated at 1956, creating an initial root authentica-
tion token, and initializing the authentication service of

5

10

15

20

25

30

35

40

45

50

55

60

65

72

the spawned space, so that the authentication service
only authenticates the root authentication token, and so
that it returns no other authentication tokens (no other
clients of the spawned space allowed initially).
Initializing the security policies of the spawned space so
that the root identity associated with the root authen-
tication token has access to all facilities of the space,
including the security administration facilities.

As 1ndicated at 19588, returning the root authentication
token and the service advertisement of the spawned
space to the requestor of the spawned space.

The requestor may build a gate to access the spawned
space, since 1t 1s returned the authentication credential and
the service advertisement of the spawned space. In one
embodiment, only the requestor and clients or services that
the requester passes the authentication credential and the
spawned space’s service advertisement may access the
spawned space. Such limiting of access to the spawned
space may be useful when a client and service are using that
spawned space to store results, for example, 1f the client and
service desire to keep the results private.

In one embodiment, the requesting client may send the
root authentication token to a second client (including a
service acting as a client of the space service). The second
client may then access the second space by sending to the
second space at least one of the messages specified 1n the
second schema along with the root authentication token.

After running a service, the client may change the authen-
tication policies of the spawned space using a security
administration space facility, and other clients or services
may then access the spawned space. The other clients may
then have access to the second space service, so that, for
example, the other clients may read service advertisements
from the second space. In addition, the spawned space’s
service advertisement may be made available to other clients
of the spawned space (the other clients may be services)
using the discovery protocol or other means.

The message transport layer 1n a distributed computing,
environment may include mechanisms for protecting the
security and integrity of communications among clients and
services during transport. This security may be referred to as
“wire security” or “transport security” to distinguish it from
the authentication security implemented by the messaging
system 1including gates. Encryption of messages may be
provided at the message transport layer of the distributed
computing environment. Services that request an encrypted
transport may do so by tagging the XML advertisement. The
gate factory may then create a gate (or gates) that uses a
secure message transport such as those provided by Blue-

tooth and HTTPS.

HTTPS (Secure Hypertext Transfer Protocol) is a Web
protocol that encrypts and decrypts user page requests as
well as the pages that are returned by the Web server.
HTTPS uses a 40-bit key size for the RC4 stream encryption
algorithm, which 1s considered an adequate degree of
encryption for commercial exchange. HI'TPS may be used
as a transport 1n the distributed computing environment.

Bluetooth 1s an emerging peer-to-peer wireless commu-
nications standard. The Bluetooth key generation algorithms
may be used in the distributed computing environment.
Bluetooth may support encryption keys. Encryption keys are
transport dependent, while client, service, and combination
keys may be transport independent.

FIG. 26a—An Authentication Service Providing an Authen-
tication Credential to a Client

FIG. 26a 1s a flow diagram 1llustrating an authentication
service providing an authentication credential to a client

US 6,643,650 B1

73

according to one embodiment. A client 1n the distributed
computing environment may desire a service to perform one
or more functions on behalf of the client. In one
embodiment, an authentication service may be provided for
use by the client and the service when setting up a secure
messaging channel. An authentication service may perform
functions for the client and/or service mncluding authenticat-
ing the client and/or service and negotiating the desired level
of security and the set of messages that may be passed
between the client and service. The authentication service
may be a process that 1s executing within the distributed
computing environment. The authentication service may be
executing on the same device as the service and/or the client,
or alternatively the authentication service may be executing
on a separate device such as an authentication server. In one
embodiment, the authentication service may be an Internet-
based service. The authentication service may have its own
address, for example, a Universal Resource Identifier (URI),
through which the client and/or service may communicate
with the authentication service. In one embodiment, the
address of the authentication service may be provided to the
client in the service advertisement for the service. The client
and service sharing an authentication service may help
insure that a secure messaging channel may be established
between the client and the service, as any of several security
and authentication protocols may be used 1n the messaging
channel.

In one embodiment, a client may present a client identi-
fication token or credential to an authentication service. The
client token or credential may be sufliciently unforgeable to
be used as proof of the client’s 1dentity. The authentication
service may then check the client identification token or
credential, and 1ssue to the client an authentication credential
that only the authentication service can create. The authen-
fication credential that 1s returned to the client 1s then sent 1n
every message by the client to the service. In one
embodiment, the client message gate 1s created by a gate
factory, which includes the authentication credential 1n the
message gate, and thus the message gate includes the
authentication credential in every message that 1t sends to
the service on behalf of the client. When receiving a
message, the service may then check the authentication
credential. Since only the authentication service can create
the authentication credential, the service knows that the
client did not forge the authentication credential. In one
embodiment, the service may pass the authentication cre-
dential to the same authentication service used by the client
to ensure the authentication credential 1s valid, to verity that
the client 1s an authorized client, and to find out the i1dentity
of the client.

All services, 1including space services and authentication
services, may authenticate their clients. Once a service
authenticates a client, the client may access the service. For
example, 1 the case of a space service, a client may then
obtain XML advertisements from the space.

In one embodiment, a service may have a prearranged
credential that all clients of the service are to use. In this
embodiment, the authentication may provide the prear-
ranged credential to a requesting client. Any client present-
ing the prearranged credential to the service may be
approved by the service.

In step 1000, the client may request an authentication
credential from the authentication service. In one
embodiment, the client may search for and locate a service
advertisement for the desired service. In one embodiment,
the service advertisement may include an advertisement for
the authentication service to be used to obtain an authenti-

10

15

20

25

30

35

40

45

50

55

60

65

74

cation credential to be used 1n accessing the service. In one
embodiment, the service advertisement may include an
address such as a URI for the authentication service. In one
embodiment, the client may send information to the authen-
fication service requesting the authentication credential. In
one embodiment, the client may send information to a gate
creation process, for example, a gate factory, and the gate
creation process may access the authentication service to
obtain the authentication credential.

In step 1002, the authentication service may generate an
authentication credential for the client. The authentication
credential may be a data element or data structure that may
be embedded 1n messages 1n a messaging system and that
may allow receivers of the messages to authenticate the
sender of the message, to verily the message 1s from an
authorized sender, and to verily that the message 1s a
message the sender 1s allowed to send to the receiver. In one
embodiment of a distributed computing environment, an
authentication credential may be unique to the messaging
channel set up between a particular client and a particular
service. Step 1002 1s further 1llustrated and described in FIG.
26b. In step 1004 of FIG. 264, the authentication service
may return the authentication credential to the client. In one
embodiment, the authentication credential may be returned
directly to the client. In one embodiment, the authentication
credential may be returned to a gate creation process, for
example, a gate factory, which may then use the authenti-
cation credential in generating a gate.

FIG. 26b—An Authentication Service Generating an
Authentication Credential

FIG. 26b 15 a flow diagram expanding on step 1002 of
FIG. 26a and 1llustrating an authentication service generat-
ing an authentication credential according to one embodi-
ment. In step 10024, in one embodiment, the authentication
service may obtain a client token and a service token. In
another embodiment, the authentication service may obtain
only a client token. In one embodiment, the client token may
be a unique identifier for the client 1n the distributed com-
puting environment. In one embodiment, the service token
may be a unique identifier for the service 1n the distributed
computing environment. For example, the public keys from
a public/private key encryption mechanism may be used as
unique 1dentifiers for the client and the service. In one
embodiment, the client may receive the service token in the
service advertisement, and the client may provide the client
token and the service token to the authentication service. In
another embodiment, the client may provide the client token
and the service advertisement URI to the authenftication
service, and the authentication service may retrieve the
service token from the service advertisement.

In step 1002b, the authentication service may verily the
client and/or the service. In one embodiment, the authenti-
cation service may use the client token and the service token
obtained 1n step 10024 to verily the client and/or service. In
another embodiment, only a client token was obtained 1n
step 10024, and thus only the client token 1s used to verily
the client in step 10025b. In one embodiment, the client may
have previously registered its client token with the authen-
fication service, and the authentication service may compare
the received client token to the registered client token to
verily the client as a valid client. In one embodiment, the
client may access the authentication service using a
challenge/response mechanism such as a logon account with
password and thus may be verified as a valid client. In one
embodiment, the service may have previously registered
with the authentication service, and may have provided its
service token to the authentication service. The authentica-

US 6,643,650 B1

75

fion service may then verify that the client 1s attempting to
access a valid service by comparing the received service
token to the previously registered service token. Other types
of client and service authentication may also be used. For
example, the client may provide a digital signature or digital
certificate that the authentication service may use to authen-
ficate the client and/or to authenticate the service the client
1s trying to access.

In step 1002¢, the authentication service may generate an
authentication credential. In one embodiment, the authenti-
cation credential may generate an authentication token that
only the authentication service can create. In one
embodiment, the authentication service may use the client
token and the service token in generating the authentication
credential. In another embodiment, the authentication ser-
vice may use just the client token to generate the authenti-
cation credential. In yet another embodiment, the authenti-
cation service may not use an obtained token in the
generation of the authentication credential, but may instead
use an authentication credential generation algorithm to
ogenerate a substantially unforgeable authentication creden-
fial. In one embodiment, the authentication service may
combine the service token and client token to create a unique
authentication credential. For example, the service token and
client token may be 64-bit values, and the two tokens may
be combined to generate a 128-bit authentication credential.
Other embodiments may use other methods to generate an
authentication credential.

Bridging Devices to the Distributed Network Environment

There may be devices, external to the distributed com-
puting environment, which do not support the message
passing model 1implemented by the distributed computing,
environment. These devices may provide services that may
be useful to clients 1n the distributed computing environ-
ment. The distributed computing environment may include
a mechanism to bridge such external devices to the distrib-
uted computing environment so that the services offered on
such devices may be accessed by clients 1n the distributed
computing environment. The distributed computing envi-
ronment may also leverage existing device discovery pro-
tocols for discovering such external devices for use 1n the
distributed computing environment.

Many technologies define discovery protocols for pub-
lishing and monitoring a network’s device composition.
These technologies include, but are not limited to: Jini, SLP,
Bluetooth, and UPnP. Furthermore, many I/O buses such as
LonWorks, USB and 1394 also support dynamic discovery
protocols. The distributed computing environment may
leverage device discovery technologies by wrapping their
implementations in an API. Leveraging other device discov-
ery protocols and providing a method to bridge to other
discovery protocols may allow the distributed computing
environment to discover devices or services on a wide
variety of network and I/O buses. Device discovery 1n the
distributed computing environment may thus be applicable
to a wide range of devices including small devices such as
PDAs, even 1if they do not participate directly 1n the distrib-
uted computing environment. Discovery protocols may be
defined at the message level.

A bridging mechanism may be provided for “wrapping”
one or more specilic device discovery protocols, such as
Bluetooth’s, in a messaging API for the distributed comput-
ing environment. Wrapping may include framing the device
discovery protocol with code and/or data (the API) so that
the protocol can be run by clients and/or services in the
distributed computing environment that would not otherwise
be able to run 1t. When run, the bridging mechanism may

10

15

20

25

30

35

40

45

50

55

60

65

76

allow for a discovery agent that discovers devices by a
specific device discovery protocol to publish services for
those devices 1n a space 1n the distributed computing envi-
ronment. The services present an XML message schema
interface to clients 1n the distributed network environment,
and are capable of operating the various devices discovered
by the specific device discovery protocol. Thus, service
advertisements may be published for the services that oper-
ate the wvarious devices discovered by the underlying
wrapped device discovery protocols. The advertised services
thus bridge devices (or services) external to the distributed
network environment to clients on the distributed network
environment.

FIG. 27 1llustrates one embodiment of a distributed com-
puting environment with a space 1200. One or more dis-
covery agents 1204 may participate 1n an external discovery
protocol and bridge to the distributed computing environ-
ment through bridging mechanism 1202. When the wrapped
device discovery protocols are run, discovery agents 1204
through bridging mechanism 1202 may publish service
advertisements 1206a—1206c¢ 1n space 1200, wherein each
one of advertisements 1206a—1206¢ corresponds to a device
or service discovered by one of discovery protocols 1204
outside the distributed computing environment. Clients may
then access the external devices using the service advertise-
ments 1206a—1206¢ 1n space 1200 to mstantiate services on
onc of the agents 1204 that operates the corresponding
external device or service.

Thus, clients of the distributed computing environment
may use discovery agents wrapping device discovery pro-
tocols to find devices. A service acting as a bridge to these
devices may be published in a space and advertised, so
clients of the distributed computing environment may access
the services provided by the external devices. The advertised
service 1s a service within the distributed computing envi-
ronment that 1s able to invoke a device outside the distrib-
uted computing environment via another protocol or
environment, thus bridging the outside device/service to the
distributed computing environment. A client within the
distributed computing environment “sees” only the adver-
tised service within the distributed computing environment
and may not even be aware of the outside device/service.

In one embodiment, the distributed computing environ-
ment may provide a version of a space discovery message
protocol, such as the discovery protocol described 1n the
Spaces section, that may be mapped to an underlying
external device discovery protocol, including the wrapped
device discovery protocols described above. The mapped
discovery protocol may register itself or be registered with
a space, €.g. a default space, by placing an advertisement 1n
that space. For each advertised discovery protocol, a sub-
sequent results space to hold the results of the discovery
protocol may be provided.

FIG. 28 illustrates an example of the space discovery
protocol mapped to a Bluetooth discovery service 1220
according to one embodiment. The Bluetooth discovery
service 1220 may first register 1230 with the distributed
computing environment. The Bluetooth discovery service
1220 may be wrapped 1n a bridging API, and an advertise-
ment 1225 for the discovery service 1220 may be added
1232 1n space 1224. A client or service may locate the
discovery service advertisement 1225 on space 1224. When
the discovery service 1220 is executed (utilizing the API
wrapper as a bridge between the discovery protocol 1220
and the distributed computing environment 1222), a new
space 1226 may be created 1234 to store the results of the
discovery process. The discovery service 1220 may store the

US 6,643,650 B1

77

results (again through the API wrapper) to discovery results
space 1226 as one or more advertisements, 1227.
Alternatively, results of executing discovery service 1220
may be stored to space 1224 or other pre-existing spaces 1n
the distributed computing environment. A similar method as
illustrated 1 FIG. 28 may be used to discover devices and
other services using other underlying discovery protocols.

As mentioned above, there may be devices, external to the
distributed network environment, which do not support the
message passing model implemented by the distributed
network environment. These devices may have clients that
may want to use services provided in the distributed com-
puting environment. The distributed computing environ-
ment may provide a mechanism to bridge the external clients
or client devices to the distributed computing environment
so that the clients on the external devices may access
services 1n the distributed computing environment.

Agents may be provided that serve as clients in the
distributed computing environment to bridge external clients
to the distributed computing environment, allowing the
external clients to access services published in the distrib-
uted computing environment. In one embodiment, an agent
may have an XML-enabled back end capable of communi-
cating with services 1n the distributed computing environ-
ment using the message passing model, and a proprictary
protocol (e.g. a protocol supported by the external device)
on the front end to interface to the external device, and thus
to the external client. Thus, a client external to the distrib-
uted computing environment may locate and access services
in the distributed computing environment through the bridg-
ing agent, and may send requests to the services and receive
responses from the services, mcluding results data. For
example, an external client may use the bridging agent to run
space discovery 1n the distributed computing environment,
look up advertised services, and invoke services in the
distributed computing environment.

In one embodiment, the distributed computing environ-
ment may provide a bridging mechanism for accessing Jini
services from a distributed computing environment client.
Since Jin1 services may require Remote Method Invocation
(RMI), and since clients in the distributed computing envi-
ronment may communicate to services using messages such
as XML messages, a protocol bridging mechanism may be
provided to enable the access of a Jin1 Service by a distrib-
uted computing environment client. In one embodiment, a
connector mechanism may be defined that enables the
dynamic advertisement of Jini1 services 1n distributed com-
puting environment spaces, and that also may enable the
accessing of a Jin1 service proxy from clients in the distrib-
uted computing environment. In one embodiment, there may
be Jin1 services that may not be bridged to the distributed
computing environment.

FIG. 29 illustrates bridging a client 1250 external to the
distributed computing environment to a space 1254 1n the
distributed computing environment. Bridging agent 1252
may serve as the go-between between client 1250 and space
1254. Bridging agent 1252 may communicate with client
1250 1n a communications protocol understandable by the
client 1250. Bridging agent 1252 may map the client’s
communications protocol 1into the XML messaging protocol
necessary to communicate with space 1254 perform the
facilities provided by space 1254. Bridging agent 1252, at
client 1250°s request, may locate and run services on space
1254. For example, client 1250 may request a list of all
services of a particular type from space 1254. Bridging agent
1252 may locate service advertisements 1256a—c and return
the results to client 1250. Alternatively, the results may be

10

15

20

25

30

35

40

45

50

55

60

65

78

posted 1n a results space, and the location of the results may
be returned to the client 1250. Client 1250 may then choose
to execute service advertisement 12564, and may send a
message (in the client 1250°s communications protocol) to
bridging agent 1252. Bridging agent 1252 may then send the
XML request message(s) necessary to execute the service
represented by service advertisement 12564, and may return
the results of the service to client 1250. Methods of handling
the results of the service other than directly returning the
results to the client 1250 may be used as described above in
the section titled Spaces. Bridging agent 1252 thus may act
as a service of the external client 1250 (via the external
client’s protocol) and as a client within the distributed
computing environment to bridge a service within the dis-
tributed computing environment to the external client.

Sometimes, even within the distributed computing
environment, clients and services cannot directly commu-
nicate with each other, only to a common space. In this case,
the space service will automatically create a service proxy
that bridges client to service. The proxy’s main job 1s to
route messages between client and service through the
space. The service proxy may be created dynamically. The
creation mechanism may be dependent upon space 1mple-
mentation. Refer to FIG. 30 for an illustration of a proxy
mechanism. A client 5354 and a service 556 may not be able
to communicate directly within the distributed computing
environment, €.g., because they support different transport
or network protocols. However, they both may be able to
communicate with a space 552 that supports both protocols.
The space service may create a proxy 550 to bridge the client
554 to the service 556. A common form of proxy is a
browser proxy. A browser proxy (most commonly imple-
mented as a servlet) may translate conventional Web page
requests 1nto messages. Refer also to the description of space
search services (and proxies therefore) in the Spaces section
herein.

In the computer industry, an enterprise may be a
corporation, small business, non-profit institution, govern-
ment enftity, or other kinds of organization. An enterprise
may utilize a enterprise computing environment for con-
ducting a portion of 1its business. The enterprise computing
environment may include various enterprise services. Cli-
ents 1n the distributed computing environment may desire to
use services 1n the enterprise computing environment.

The distributed computing environment may provide a
mechanism for bridging clients 1n the distributed computing
environment to enterprise services. In one embodiment of a
distributed computing environment, a method for bridging
clients to enterprise services may include a client within the
distributed computing environment, a bridge service within
the distributed computing environment, and an enterprise
service within the enterprise environment. The distributed
computing environment bridge service serves as a bridge
service between the client and the enterprise service.

The bridge service interacts with the client via XML
message passing to gather immput parameters necessary to
make requests to the enterprise service outside of the dis-
tributed network environment. For example, the bridge
service may be looked up and instantiated by the client just
as any other service in the distributed computing environ-
ment. The bridge service then may interact with the enter-
prise service to run the enterprise service. This interaction
may use an interprocess communications architecture that
the enterprise service can understand. As an example, if an
enterprise service 1s implemented with Enterprise JavaBeans
(EJB), a bridge service may communicate with the enter-
prise service using EJB. The bridge service may then receive

US 6,643,650 B1

79

results from the enterprise service and may return the results
directly to the client (in XML messages) or may place the
results 1n a space 1n the distributed network environment
(e.g. a results space). To the client, the bridge service
appears to be the only service (the enterprise service is
hidden to the client), so the client does not have to support
the architecture of the enterprise service. Multiple distrib-
uted network environment clients may use the same bridge
service (each using a unique gate pair) to interact with the
enterprise service.
Client Displays

There are several methods 1n which results from a service
run by a client may be displayed 1n a distributed computing
environment. Devices that may display results may include,
but are not limited to: CRTs on computers; LCDs on laptops,
notebooks displays, etc; printers; speakers; and any other
device capable of displaying results of the service 1n visual,
audio, or other perceptible format. The methods for display-
ing results may include, but are not limited to:

The service may return results to a client directly or by
reference, and the client may handle the display of the
results.

The service may return results to a client directly or by
reference, and the client may pass the results to a
display service directly or by reference, and the display
service may display the results.

The service may directly handle the displaying of the
results.

The service may pass the results to a display service
directly or by reference, and the display service may
display the results.

In the last method of displaying results, the display
service may be specified by the client. For example, there
may be a display service on or associated with the device on
which the client resides that the client wishes to use to
display the results of the service. When the client runs the
service, the client may send a message to the service
specifying the service advertisement of the client’s display
service. The service may then build a gate that allows 1t to
send messages to the client’s display service. Thus, when
displaying results, the service invoked by the client becomes
a client of the client’s display service and send its results
(directly or by reference) for display to that display service.
More detail on the client-service relationship, gates, and
messaging 1s ncluded 1n other sections of this document.

FIG. 31 1illustrates one embodiment of a client 1300 with
assoclated display 1302 and display service 1304 according
to one embodiment.

Conventional application models are typically based on
predetermined, largely static user interface and/or data char-
acteristics. Changes to conventional applications may
require code modification and recompilation. The mecha-
nisms described for advertising services and for specifying
XML message schemas for communicating with services 1n
the distributed computing environment may be used to
provide a mechanism for applications (clients, services, etc)
to describe dynamic display objects. Using the dynamic
display objects, application behavior may be altered without
having to download new code, recompile, or relink the
application.

FIGS. 32A and 32B illustrate examples of using schemas
of dynamic display objects according to one embodiment.

Display schemas may be provided for displaying the same
results 1 different formats, for extracting portions of the
results for display, and for displaying the results on different
display devices.

10

15

20

25

30

35

40

45

50

55

60

65

30

String Management

String handling 1n conventional systems 1s generally not
very ellicient, especially for variable sized strings, and may
be wasteful of memory space, €.g. as the string 1s copied
and/or moved 1n memory. This inefficiency 1n string han-
dling may be particularly problematic in small memory
footprint systems such as embedded systems. Thus, a more
ciiicient method of handling strings 1in programs executing
within small footprint systems such as embedded systems 1s
desirable.

FIG. 33A illustrates a typical string representation in the
C programming language.

FIG. 33B illustrates an example of the results of the
strncpy() function on string 1452, when strncpy() is called
with the following parameters:

strncpy(string2, stringl+3, 5);
where string2 1s character pointer 1454 pointing to the first
byte after the terminating character of string 1452, stringl+3
1s character pointer 1450 incremented by 3 bytes, and 5 1s the
number of characters (bytes) to be copied from the source
location stringl+3 to string2.

FIG. 33C 1llustrates an efficient method for representing,
and managing strings 1 general, and 1n small footprint
systems such as embedded systems 1n particular.

The string handling structures and methods as described
in FIG. 33C may be used, along with the hierarchical
structure of XML documents, to provide more efficient
handling of XML text (such as XML messages) in systems
with small memory footprints such as embedded systems.

The hierarchical structure of XML documents may allow
them to be processed 1n a recursive fashion with succes-
sively smaller portions of the document processed at each
level of recursion. References to various portions are
recorded and processed recursively. String structures as
described 1n regard to FIG. 33C may be used to record the
various portions. In this manner, the content of specific XML
tags, iIn one embodiment the smallest unit of the XML
document processed recursively, may be determined effi-
ciently. Documents with repeated tags 1n the same scope
may also be handled efficiently, as tags within a given scope
may be enumerated and processed etficiently.

Using the string structures with the recursive processing,
allows the processing to be done without creating copies of
the subsections for processing. Copying of subsections may
be particularly costly in recursive processing, because as the
recursion goes deeper, more and more copies of the same
data are made. Using the string structures, only the string
structure containing the pointers to the first and last bytes in
the subsection needs to be created and passed down to the
next level. Other operations, such as determining the length
of a subsection, may be performed efficiently using the
address information stored 1n the string structures. Also, by
using the string structures, terminating characters such as
those used to terminate C strings are not necessary, con-
serving memory 1n small footprint devices such as embed-
ded devices.

XML Representation of Objects

As previously mentioned, Jini RMI may not be practical
for some clients, such as thin clients with minimal memory
footprints and minimal bandwidth. The serialization associ-
ated with the Jim1 RMI 1s slow, big, requires the JVM
reflection API, and 1s a Java specific object representation.
Java deserialization 1s also slow, big and requires a
serialized-object parser. Even Java based thin clients may
not be able to accept huge Java objects (along with needed
classes) being returned (necessarily) across the network to
the client, as required 1n Jini.

US 6,643,650 B1

31

A more scalable distributed computing mechanism may
be provided by embodiments of a distributed computing
environment. A distributed computing environment may
include an API layer for facilitating distributed computing.
The API layer provides send message and receive message
capabilities between clients and services. This messaging
API may provide an interface for simple messages 1n a
representation data or meta-data format, such as in the
eXtensible Mark-up Language (XML). Note that while
embodiments are described herein employing XML, other
meta-data type languages or formats may be used 1n alter-
nate embodiments. In some embodiments, the API layer may
also provide an interface for messages to communicate
between objects or to pass objects, such as Java objects.
Objects accessible through API layer 102 are represented by
a representation data format, such as XML. Thus, an XML
representation of an object may be manipulated, as opposed
to the object itsell.

The API layer may sit on top of a messaging layer. The
messaging layer may be based on a representation data
format, such as XML. In one embodiment, XML messages
are generated by the messaging layer according to calls to
the API layer. The messaging layer may provide defined
static messages that may be sent between clients and ser-
vices. Messaging layer may also provide for dynamically
ogenerated messages. In one embodiment, an object, such as
a Java object, may be dynamically converted (compiled)
into an XML representation. The object may include code
and/or data portions. The object’s code and/or data portions
may be compiled mto code and data segments 1dentified by
XML tags 1in the XML representation. The messaging layer
may then send the XML object representation as a message.
Conversely, the messaging layer may receive an XML
representation of an object. The object may then be recon-
stituted (decompiled) from that message. The reconstitution
may examine the XML representation for tags identifying
code and/or data segments of the XML representation, and
use mformation stored 1n the tags to 1dentify and decompile
the code and/or data portions of the object.

Creating and Sending an XML Representation of an Object

FIG. 34 illustrates a process of moving Java objects
between a client 1500 and a service 1502 according to one
embodiment of the invention. Service 1502 may be any
service supported 1n the distributed computing environment,
including space services. Client 1500 employs a gate 1504,
which may have been created using an XML schema
received from a service advertisement for service 1502, to
communicate with a corresponding gate 1506 for service
1502. At some point, client 1500 may need to send Java
object 1510 to service 1502. Java object 1510 may reference
other objects, which may reference other objects, and so on.
Java object 1510 and 1ts referenced objects, the objects they
reference, and so on, may be referred to as an object graph.

Java object 1510 may be passed to a Java object compi-
lation process 1512 to be compiled to produce an XML
representation of the object graph. The XML representation
of the object graph may be passed as an XML data stream
1514 to gate 1504. The XML data stream 1514 may include
an XML representation of all the objects 1n the object graph.
In one embodiment, the objects 1n the object graph may be
stored recursively 1n the XML data stream 1514.

Gate 1504 may then package the XML data stream 1514
in a message 1516 and send the message 1516 to gate 1506
of service 1502. Gate 1506 may extract the XML data stream
1514 from XML message 1516 and send the XML data
stream 1514 to an XML data stream decompilation process
1518 to be decompiled to produce the object(s) comprising

10

15

20

25

30

35

40

45

50

55

60

65

32

the object graph, including Java object 1510. In one
embodiment, the objects 1n the object graph may be stored
recursively 1 the XML data stream 1514, and thus a
recursive decompilation process may be used.

When service 1502 needs to send a Java object to client
1500, a substantially similar process may be used. Java
object 1520 may be passed to a Java object compilation
process 1512 to be compiled to produce an XML represen-
tation of the object graph. The XML representation of the
object graph may be passed as an XML data stream 1522 to
cate 1506. Gate 1506 may then package the XML data
stream 1522 1n a message 1524 and send the message 1524
to gate 1504 of client 1500. Gate 1504 may extract the XML
data stream 1522 from XML message 1524 and send the
XML data stream 1522 to an XML data stream decompila-
tion process 1518 to be decompiled to produce the object(s)
comprising the object graph, including Java object 1520.

In another embodiment, the gates may be responsible for
the compilation and decompilation of Java objects. In this
embodiment, Java object 1510 may be passed to gate 1504.
Gate 1504 may then pass object 1510 to a Java object
compilation process 1512 to be compiled to produce an
XML representation of the object graph in an XML data
stream 1514. Gate 1504 may then package the XML data
stream 1514 1n a message 1516 and send the message 1516
to gate 1506 of service 1502. Gate 1506 may extract the
XML data stream 1514 from XML message 1516 and send
the XML data stream 1514 to an XML data stream decom-
pilation process 1518 to be decompiled to produce the
object(s) comprising the object graph, including Java object
1510. Sending a Java object from service 1502 to client 1500
may be substantially similar.

In one embodiment, object compilation process 1512 and
object decompilation process 1518 may both exist on the
client 1500 and the service 1502, and may be programmed
to perform compilation and decompilation substantially
similarly on the two devices, thus ensuring the object(s)
output on one end are substantially identical to the object(s)
input on the other end. In one embodiment, XML schemas
including descriptions of Java objects may be used on both
the client and/or the service 1n the compilation and decom-
pilation processes. In one embodiment, XML schema(s) to
be used 1n the compilation and decompilation of Java objects
may be passed by the service to the client in the service
advertisement.

XML provides a language- and platform-independent
object representation format. Thus, the process as 1llustrated
in FIG. 34 where an object 1s compiled mto an XML
representation of the object and decompiled to reproduce the
object may not be limited to moving Java objects, but in
some embodiments may be applied to moving objects of
other types between entities 1n a network.

JVM Compilation/Decompilation API

FIGS. 35a and 35b are data flow diagrams illustrating
embodiments where a virtual machine (e.g. JVM) includes
extensions for compiling objects (e.g. Java Objects) into
XML representations of the objects, and for decompiling
XML representations of (Java) objects into (Java) objects.
The JVM may supply an Applications Programming Inter-
face (API) to the compilation/decompilation extensions. The
client 1500 and service 1502 may be executing within

JVMs. The JVMs may be on the same device or on different
devices.

In both FIG. 354 and FIG. 35b, the JVM XML compiler/
decompiler API 1530 may accept a Java object 1510 as
input, and output an XML representation of the object 1510
and all its referenced objects (the object graph of object

US 6,643,650 B1

33

1510) in an XML data stream 1514. In addition, the JVM
XML compiler/decompiler API 1530 may accept an XML
data stream 1522, which includes an XML representation of
object 1520 and all its referenced objects (the object graph
of object 1520), and output Java object 1520 (and all the
objects in its object graph).

FIG. 35a 1llustrates one embodiment where, when send-
ing Java object 1510, the JVM XML compiler/decompiler
API 1530 1s called by the client. The client 1510 passes Java
object 1510 to the API 1530, which compiles the object to
produce 1ts XML representation, stores the XML represen-
tation mn XML data stream 1514, and outputs XML data
stream 1514. XML data stream 1514 may then be passed to
cgate 1504 by the client. Gate 1504 may then package the
XML data stream 1514 1n an XML message 1516 and send
message 1516 to service 1502.

Upon receiving XML message 1524 from service 1502,

cgate 1522 may extract XML data stream 1522 from message
1524 and pass data stream 1522 to client 1500. Client 1500

may then call the JVM XML compiler/decompiler API
1530, passing API 1530 the XML data stream 1522. The API
1530 may then decompile the XML data stream 1522 to
produce Java object 1520 and other objects 1n its object
oraph, returning the objects to client 1500.

FIG. 35b 1illustrates another embodiment where, when
sending Java object 1510, the JVM XML compiler/

decompiler API 1530 1s called by the gate. The client 1510
passes Java object 1510 to gate 1504. Gate 1504 then passes
object 1510 to API 1530, which compiles the object to
produce 1ts XML representation, stores the XML represen-
tation mn XML data stream 1514, and outputs XML data
stream 1514. Gate 1504 may then package the XML data
stream 1514 1in an XML message 1516 and send message
1516 to service 1502.

Upon receiving XML message 1524 from service 1502,
cgate 1522 may extract XML data stream 1522 from message
1524 and pass data stream 1522 to the JVM XML compiler/
decompiler API 1530. The API 1530 may then decompile
the XML data stream 1522 to produce Java object 1520 and
other objects 1n 1its object graph. The gate may then send
Java object 1520 and the other objects to client 1500.

In one embodiment, the JVM XML compiler and decom-
piler may be implemented as integrated functions of the
JVM. In another embodiment, the XML compiler and
decompiler may be embodied in API method 1invocations in
standard extensions to the JVM; thus, the core JVM does not
have to be modified. The JVM may supply the JVM XML
compiler/decompiler API 1530 to processes (clients and/or
services) executing within the JVM to allow the processes to
access the Java object compilation/decompilation function-
ality provided by the JVM. In one embodiment, for a process
to utilize the object compilation/decompilation, the JVM
within which the process 1s executing must have the JVM
XML compiler/decompiler functionality and API 1530.

Methods using reflection and serialization to transform
and send objects are typically implemented 1n applications
separate from the JVM. The application must repeatedly
access the JVM to pick apart an object one field at a time as
the transitive closure of the object 1s dynamically analyzed.
This tends to be a slow and cumbersome process, while also
requiring large amounts of application and JVM code.

Implementing the Java object compilation/decompilation
functionality within the JVM 1s advantageous because the
JVM already understands the concept of, and contents of, an
object graph. Thus, the compilation/decompilation functions
may leverage the knowledge (and reuse code) of the JVM in
parsing the object graph to produce the XML representation,

10

15

20

25

30

35

40

45

50

55

60

65

34

and 1n parsing the XML representation to produce the object
oraph. Thus, the compilation/decompilation functions may
not have to duplicate functionality that 1s provided by the
JVM, as do object sending methods using retlection and
serialization. This may allow the code footprint of the
compilation/decompilation functions to be smaller than that
of object sending methods using reflection and serialization.
Also, an object may be complied or decompiled by a single
call to the JVM XML compiler/decompiler API.

In addition, integrating the compilation/decompilation of
objects with the JVM may allow the compilation and
decompilation of objects to be performed faster than meth-
ods using reflection and serialization because, 1n the object
traversal model implemented with reflection and
serialization, the code outside the JVM does not know the
structure or graph of the Java object, and thus must traverse
the object graph, pulling i1t apart, and ultimately must
repeatedly call upon the JVM to do the compilation (and the
reverse process for decompilation). This process may be
slowed by the necessity of making repeated calls to the
JVM, outside the code. Having the compilation and decom-
pilation functionality integrated with the JVM, as described
herein, avoids having to make repeated calls from code
outside the JVM to the JVM. In one embodiment, an object
may be complied or decompiled by a single call to the JVM
XML compiler/decompiler API.

In one embodiment, the compilation/decompilation func-
tionality may be implemented as a service 1n the distributed
computing environment. The service may publish a service
advertisement 1n a space. A process 1n the distributed com-
puting environment may use a search or discovery service to
locate the compilation/decompilation service. The process (a
client of the service) may then use the service by passing
Java objects to be compiled mto XML representations and/or
XML representations to be decompiled into Java objects to
the service.

Java objects may include code (the object’s methods) and
data. An object’s code may be non-transient; the code does
not change once the object 1s created. An object’s data,
however, may be transient. Two objects created from the
same Java class may include identical code, but the data in
the two objects may be different. In one embodiment, the
compilation function may compile a Java object’s data into
an XML representation of the object, but may not include the
object’s actual code 1n the XML representation. In one
embodiment, information about the object may be included
in the compiled XML representation to indicate to the
receiver how to recreate the code for the object. The XML
representation may then be stored in an XML data stream
and sent (e.g., 1n a message) to a receiving process (client or
service). The receiving process may then pass the XML data
stream to the decompilation function. The decompilation
function may then decompile the XML data stream to
produce the Java object including 1ts data. In one
embodiment, the code for the object may be reproduced by
the decompilation function using information about the
object 1n the XML representation, as the code for an object
may be statically defined and the JVM receiving the object
may be able to reproduce the code (if necessary) using its
knowledge of the object.

In one embodiment, the XML representation of the object
produced by the compilation function may include the Java
object’s data and information about the Java object. The
information may include class mformation for the Java
object. An object signature may be included in the informa-
tion and may be used to i1dentify the object’s class, etc. The
decompilation function may recreate the code for the Java

US 6,643,650 B1

35

object using the mformation about the Java object and may
decompile the data from the XML data stream into the Java
object. Thus, a complete object including 1ts code and data
may be reproduced on the JVM executing the receiving
client or service from the decompiled data and the informa-
fion describing the object. In one embodiment, the informa-
tion describing the object may be stored 1n one or more XML
tags. In one embodiment, the client or service receiving the
XML data stream may include an XML schema that
describes the object, and the XML schema may be used to
reconstruct the Java object from the decompiled data and
from the mnformation about the Java object. The decompi-
lation process may proceed recursively through the object
ograph, reconstructing the objects referenced by the object by
decompiling the referenced objects” data from the XML data
stream and recreating the referenced objects” code from
information about the referenced objects 1n the XML data
stream.

In one embodiment, the XML representation of the object
produced by the compilation function may include the
object’s data and information that identifies the code of an
object. In one embodiment, the information 1dentifying the
code of the object may be stored 1n one or more XML tags
in the XML data stream. When received, the decompilation
function may recreate the code for the Java object using the
information about the code from the XML data stream and
decompile the data for the object from the XML data stream.
Thus, a complete object including 1ts code and data may be
reproduced on the JVM executing the receiving client or
service from the decompiled data and the information
describing the code of the object.

Several scenarios of using XML representations of
objects to transfer objects between entities (typically clients
and services) in a distributed computing environment are
included for clarification. These scenarios are exemplary
and are not mtended to be limiting.

In a first scenario, a service may use the XML compiler/
decompiler to compile a Java object into an XML represen-
tation of the object and send the XML representation to a
client. The client may the use the XML compiler/decompiler
to decompile the XML representation and perform opera-
tions on the data within the object, and later may use the
XML compiler/decompiler to compile the object mto an
XML representation of the object and return the XML
representation of the object to the service.

In a second scenario, a service may use the XML
compiler/decompiler to compile a Java object into an XML
representation of the object and send the XML representa-
fion to a client. The client may then send the XML repre-
sentation to another service, which may use the XML
compiler/decompiler to decompile the XML representation
to reproduce the object, perform operations on the object at
the request of the client (possibly modifying the data), use
the XML compiler/decompiler to recompile the modified
object 1nto 1ts XML representation, and send the XML
representation of the object to the client.

In a third scenario, a service may use the XML compiler/
decompiler to compile a Java object into an XML represen-
tation of the object and send the XML representation to an
object repository or store space. The service may then send
a message to a client informing the client of the location of
the XML representation. The message may include a Uni-
versal Resource Identifier (URI) for the XML representa-
tion. The client may then retrieve the XML representation of
the object from the store space, and may use the XML
compiler/decompiler to decompile the representation to
reproduce the object. Alternatively, the client may send the

10

15

20

25

30

35

40

45

50

55

60

65

36

location of the XML representation of the object to another
service, along with a request for operations to be performed
on the object. The other service may then retrieve the XML
representation from the store space, use the XML compiler/
decompiler to decompile the XML representation to repro-
duce the object, and perform the requested operations on the
object.

In a fourth scenario, a process (could be a client or
service) may locate an object repository or store space in the
distributed computing environment by searching for and
finding a service advertisement for the store space. The
process may, during execution, create or obtain a plurality of
Java objects. The process may use the XML compiler/
decompiler to compile one or more of the objects mnto XML
representations of the objects, and may send, as a client of
the store space service, the XML representations of the
objects to the store space to be stored for possible later
access, or for access by other processes.

Security Issues 1n the Decompilation of XML Representa-
tions of Objects

Spaces, as described herein, may serve as a file system 1n
the distributed computing environment. Security may be
provided for files in the system in the form of access rights.
Access rights may be checked each time a file 1s accessed
(opened, read, or written to). Thus, a method for providing
file access security 1n the distributed computing environment
may be desirable. This method may also be applied to the
XML representations of Java objects that may be stored 1n
spaces and transmitted between clients and services 1n the
distributed computing environment.

In one embodiment, a user of a client on a device 1n the
distributed computing environment may be identified and
authenticated when first accessing the client. In one
embodiment, the user may supply a physical 1dentification
such as a smart card for identification and authorization. In
another embodiment, a challenge-response mechanism
(such as user ID and password) may be used for identifica-
tion and authorization. Yet another embodiment may use
clectronic 1dentification such as a digital signature for 1den-
fification and authorization. Any other method of 1dentifi-
cation and authorization may be used.

Once 1dentified and authorized, the user may then perform
various operations on the client, including accessing one or
more services 1n the distributed computing environment.
During these operations, as described above, one or more
objects may be created or acquired elsewhere. The objects
may be modified and may be compiled into XML represen-
tations of the objects and stored locally by the client or sent
to a space service for (transitive or persistent) store. Some of
the objects may be received from services (store services or
other services) in the form of XML representations of the
objects, which may be decompiled by the XML compiler/
decompiler to recreate the objects on the client.

In one embodiment, during the decompilation of the XML
representation of objects, each XML message may be
checked to verify that the user has access rights to the object.
If the user does not have the proper access rights, the XML
compiler/decompiler may not decompile the object for the
user. In one embodiment, a security exception may be
thrown by the XML compiler/decompiler. In one
embodiment, the user may be mnformed of the access vio-
lation.

Access right information, such as the creator and access
levels allowed (creator-only access, read only, read/write,
delete, copy, etc.) for the object may be embedded in the
XML message(s) containing the XML representation of the
object. Access authorization may be determined during the

US 6,643,650 B1

37

identification and authorization of the user. For example, the
object may allow “read only” access for most users, and
“read/write” access for the creator of the object. If the user
fries to access an object using read/write access rights, and
the object was not created by the user, the decompilation
process may detect this as an access violation, and may
disallow the access and notily the user.

In one embodiment, when the user 1s done using the
client, the user may log off or otherwise signal the user is
finished with the client (e.g. remove a smart card). Objects
created on the client by decompilation may be automatically
deleted when the client detects that the user 1s finished. This
may prohibit future users from intentionally or accidentally
accessing the user’s objects. In one embodiment, all objects
created by decompilation may be deleted upon detecting that
the user 1s finished. In another embodiment, a method may
be provided to store at least some of the objects created on
the client persistently (e.g. with access rights information),
so that the client may later access the objects, or provide the
objects to other users for access.

In one embodiment, the user may have a “smart card” or
other physical device to gain access to the client. The user
may 1nsert the smart card into the client device to begin the
session. When the client 1s finished, the client may remove
the smart card. The client may detect the removal of the
smart card, and thus detect that the client 1s finished, and
may then proceed to delete objects created by decompilation
of XML representations.

XML-based Object Repositories

In the distributed computing environment, processes
(services and/or clients) may desire transient and/or persis-
tent storage of objects such as XML schemas, service
advertisements, results generated by services, XML repre-
sentations of Java objects and/or objects implemented in
other languages, etc. Existing object storage technologies
tend to be language and/or operating system speciiic. These
storage systems also tend to be too complicated to be used
with small footprint systems such as embedded systems.

JavaSpaces 1n Jin1 1s an existing object repository mecha-
nism. A JavaSpace may be only capable of storing Java
objects and may be too large to be implemented 1n small
devices with limited amounts of memory. Each object in a
JavaSpace may be serialized as previously described, and
thus has the same limitations as previously described for the
reflection and serialization techniques.

A store mechanism may be provided for the distributed
computing environment that may be heterogeneous (not
language or operating system dependent), that may scale
from small to large devices, and that may provide transient
or persistent storage of objects. In one embodiment, the store
mechanism 1n the distributed computing environment may
be 1implemented as an Internet Web page or set of pages
defined 1n the XML markup language. XML provides a
language- and platform-independent object representation
format enabling Java and non-Java software to store and
retrieve language-independent objects. Since the store
mechanism 1s on the Web, devices of all types and sizes
(small to large) may access the store mechanisms. Web
browsers may be used to view the store mechanism 1mple-
mented as Web pages. Web search engines may be used to
scarch for contents 1n the store mechanism 1implemented as
Web pages. Internet administration mechanisms (existing
and future) and XML tools may be used to administer the
XML-based store mechanisms.

In one embodiment, the store mechanisms may be used to
store objects created, represented or encapsulated in XML.
Examples of objects that may be stored in the store mecha-

10

15

20

25

30

35

40

45

50

55

60

65

33

nisms may include, but are not limited to: XML schemas,
XML representations of objects (for example, Java objects
compiled into XML representations as described above),
service advertisements, and service results (data) encapsu-
lated 1n XML. In one embodiment, to prevent unauthorized
access of an XML object, an authorization credential such as
a digital signature or certificate may be included with the
XML object, and a client wishing to access the XML object
may be required to have the proper authorization credential
to access the XML object. In one embodiment, the store
mechanism may be a space as described i1n the Spaces
section herein.

Store mechanisms may be services in the distributed
computing environment. A store mechanism implemented as
a service may be referred to as a “store service”. A store
service may publish an advertisement in a space. The space
itself 1s an example of a store service. Some store services
may be transient. For example, a space service that stores
service advertisements may be a transient store. Other store
services may be persistent. For example, a store service that
stores results from services may be a persistent store.

FIG. 36 1llustrates a client 1604 and a service A 1606
accessing store mechanisms 1600 and 1602 in the distrib-
uted computing environment according to one embodiment.
This 1llustration 1s intended to be exemplary and is not
intended to be limiting to the scope of this invention. In one
embodiment, store mechanisms 1600 and 1602 may each be
an Internet Web page or set of Web pages defined in XML
and accessible by a Web browser and other Internet tools.
Store mechanism 1600 is a transient store capable of storing
objects implemented using XML. Store mechanism 1602 1s
a persistent store also capable of storing objects 1mple-
mented using XML. Service A 1606 may publish an XML
service advertisement 1608 1n transient store 1600. Persis-
tent store may also publish an XML service advertisement in
transient store 1600 (or on another transient store in the
distributed computing environment). At some point, client
1604 may require functionality provided by Service A 1606.
Client 1604 may use a discovery and/or lookup service to
locate service advertisement 1608. Client 1604 may then
construct a message gate, as described herein, and begin
communications with Service A 1606. Client 1604 may send
onc or more XML request messages to Service A 1606.
Service A 1606 may perform one or more functions in
response to the one or more request messages. One or more
of the functions performed by Service A 1606 may produce
results to be provided to client 1604.

For transient results 1610, Service A 1606 may encapsu-
late the results in an XML advertisement 1612 and publish
the advertisement 1612 in transient store 1600 (or on another
transient store in the distributed computing environment).
Service A 1606 may then notify client 1604 that the results
1610 are stored in advertisement 1612 on transient store
1600, or client 1604 may be notified by other mechanisms
as described herein. Client 1604 may then retrieve transient
results 1610 from advertisement 1612. The advertisement
1612 may 1nclude an XML schema describing the
formatting, contents, type, etc. of the transient results 1610.
The results may be encapsulated in XML. For example,
XML tags may be used to describe portions of the data:

<XML tagl><datal>
< XML tag2><datal>

For persistent results 1618, Service A 1606 may use a
service or other mechanism as described herein to locate
XML service advertisement 1616 for persistent store 1602,
and thus locate persistent store 1602 for storing persistent

US 6,643,650 B1

39

results. Alternatively, client 1604 may have previously
located persistent store 1602 by locating 1ts service adver-
fissment 1616, and then may send a Universal Resource
Identifier (URI) for a storage location for persistent results
1618 to Service A in an XML message. In one embodiment,
persistent results 1618 may be stored 1mn an Internet Web
page or set of Web pages defined in XML and accessible by
a Web browser. Service A 1606 may then store persistent
results 1618 1n persistent store 1602. Service A 1606 may
then publish an XML advertisement 1616 for the persistent
results 1618 1n transient store 1600 (or on another transient
store in the distributed computing environment) and return
the location of the advertisement 1616 to client 1604. The
advertisement 1616 may include an XML schema describing
the formatting, contents, type, etc. of the persistent results
1618. The results may be encapsulated 1n XML as previ-
ously described. The advertisement may also include the
URI of the persistent results 1618. The client 1604 may then
retrieve the advertisement 1616 and use 1t to locate and
retrieve persistent results 1618. Alternatively, Service A
1606 may not publish an advertisement for persistent results
1618, but instead may return a URI for the persistent results
1618 to client 1604 so client 1604 may access the results
without looking up an advertisement. Note 1n some
embodiments, the various advertisements shown 1n transient
store 1600 may each be stored 1n different transient stores or
spaces.

Thus, store mechanisms may be implemented as XML-
based Internet Web pages 1n the distributed computing
environment. These store mechanisms may be implemented
on a variety of devices in the environment, and may provide
service advertisements to allow clients (which may be other
services) to locate and use the store mechanisms. Existing
and future Web and XML tools may be used to manage the
store mechanisms. The store mechanisms may store objects
of various types implemented or encapsulated 1n XML.
Clients on devices of substantially any size, from small
footprint devices to supercomputers, may access the store
mechanisms to store and retrieve the various objects on the
Internet. The clients may be Java or non-Java applications,
as XML provides a language-independent storage format.
The transient or persistent object repositories may provide
for a file system 1n the distributed computing environment
and may include access checks and other security mecha-
nism as described herein.

Dynamically Converting an XML Document into a Java
Object

In one embodiment, the distributed computing environ-
ment may provide a mechanism to convert and represent an
object class instance mto an XML document. In order to
send representation of a class instance to another service, the
object may be converted and represented as a XML docu-
ment. In one embodiment, when receiving an XML
document, a program may instantiate a class instance cor-
responding to the object represented by the document. In one
embodiment, the objects may be Java objects, and the
program may be a Java program.

XML-Based Process Migration

The distributed computing environment may enable the
distribution and management of distributed applications. For
example, the distributed computing environment may
include mobile clients that are dockable with stations that
provide monitors, printers, keyboards, and various other
input/output devices that are typically not provided on
mobile devices such as PDAs, cell phones, etc. These mobile
clients may run one or more applications, and may migrate
from one station to another in the distributed computing

10

15

20

25

30

35

40

45

50

55

60

65

90

environment. Thus, one embodiment of the distributed com-
puting environment may provide a method for migrating an
executing application (process) with its entire current state
from a mobile client on one node to the same mobile client
or another mobile client at another node within the distrib-
uted computing environment.

FIG. 37 illustrates process migration using an XML
representation of the state of a process according to one
embodiment. Process A 1636 a may be executing on node
1630. Process A 1636 a may be a client or service. At some
point during the execution of Process A 16364, the state of
execution of Process A 1636a may be captured and stored in
an XML-encapsulated state of Process A 1638. The execu-
tion of Process A 16364 on node 1630 may then be stopped.
Later, node 1632 may locate the XML-encapsulated state of
Process A 1638 and use 1t to resume Process A 1636b on the
node 1632. Resuming Process A may include using the
stored state 1638 to resume thread execution, recalculate
fransient variables, re-establish leased resources, and per-
form any other functions necessary to resume execution as
recorded 1n the stored XML state of the process 1638.
Applications

Technologies exist that allow a user to access network
data from remote locations, making the remote data appear
as local data to the user, provided the user has access to a
browser. However, such technologies do not provide an
automatic infrastructure to query networks near a client
device’s location. A mechanism for discovering information
about networks and services near a client device may be
desirable. For example, such a mechanism may be used to
locate information about restaurants, weather, maps, traffic,
movie information, etc within a certain distance (radius) of
the client device, and to display desired information on the
client device. An example of using this mechanism may be
a cell phone that can be used to automatically locate services
in a local environment, for example, 1n a movie theater to
display the fitles and show times of current features in the
movie theater or 1n a restaurant to view menu selections and
prices. In the distributed computing environment as
described herein, such a mechanism may be used to discover
spaces 1ncluding local information and/or services proxi-
mate to the client device. The mechanism may also be
applied 1n other distributed computing environments, for
example, the Jini system from Sun Microsystems, Inc.

In one embodiment, a mobile client device may include
Global Positioning System (GPS) capability and wireless
connection technology. Local distributed computing net-
works may be provided. For example, a city may provide a
citywide distributed computing environment. Another
example may be a shopping mall with a local distributed
computing environment. A local distributed computing net-
work may include a discovery mechanism to allow client
devices to connect to the distributed computing environment
and to discover services and data in the local environment.
For example, one or more devices 1 the environment may
include wireless connection technology to allow mobile
client devices to connect to the network and to access the
discovery mechanism via the XML messaging system as
described previously. A local distributed computing envi-
ronment may include one or more spaces with advertise-
ments for services and/or data to be made available to
mobile clients. For example, a citywide distributed comput-
ing environment may include spaces that represent entities
such as malls, movie theaters, local news, local weather,
traffic, etc. A space may include individual service and/or
data advertisements for accessing services of and informa-
tion about the enfity the space represents. The discovery

US 6,643,650 B1

91

mechanism may 1nclude a GPS location or locations of the
local distributed computing environment, entities repre-
sented by space services within the environment, and/or the
various services advertised 1n the spaces 1n the environment.

In one embodiment, wired connections may be provided
to a local distributed computing network. In this
environment, a user with a mobile client device may “plug
in” directly to the network using a wired connection “dock-
ing station”. Examples of wired connections include, but are
not limited to: Universal Serial Bus (USB), FireWire, and
twisted-pair Internet. In one embodiment, a docking station
may also provide input/output capabilities such as a
keyboard, mouse, and display for the mobile client device.
In this embodiment, the location of the mobile client device
may be provided to the lookup or discovery mechanism by
the docking station.

In one embodiment, a mobile client device may connect
to a distributed computing network. As the user of the
mobile client device navigates within wireless communica-
fions range of the distributed computing network, the mobile
client device may constantly, or at various intervals, provide
a location vector as input to the local lookup or discovery
mechanism. The mobile client device may obtain the loca-
tion vector from a GPS system built into or associated with
the mobile client. In one embodiment, the client may send its
location information (e.g. via XML messaging) to a local
service discovery mechanism, such as one of the space
location mechanisms described heremn. For example, the
client may run the space discovery protocol specifying
discovery for spaces offering services within a certain range
of the clients location, or the client may instantiate a space
scarch service to search for spaces advertising services
provided for the client’s vicinity.

As the mobile client device moves 1nto a specified range
of a space within the distributed computing environment, the
services and/or data stored i1n the space may be made
available to the mobile client device. In embodiments where
the client device regularly provides 1ts location to a discov-
ery mechanism, local services and/or data may automati-
cally be made available to the client’s user. In one
embodiment, the specified range of a space may be deter-
mined by the user of the mobile client device. For example,
the user may choose to display all restaurants within one
mile of a current location. Alternatively, the range may be
specifled 1n the configuration of the local distributed com-
puting network. For example, a citywide distributed com-
puting network may be configured to provide its services to
all users within three miles of the city limits. In one
embodiment, visual indicators, for example icons, represent-
ing the various services and/or data offered by the space may
be displayed on the mobile client device. The client may
then access one or more of the displayed services and/or
data. In one embodiment, information from two or more
spaces may be displayed simultaneously on the mobile client
device. In one embodiment, the user may select what
services and/or data are to be detected. For example, 1n a
shopping mall, a user with a mobile client device may
choose to display all shoe stores 1n the mall.

In one embodiment, executable code and/or data used 1n
the execution of the code may be downloaded to the mobile
client device to allow the user to execute an application
provided by a service 1n the space. For example, moviegoers
with mobile client devices may download interactive movie
reviews from services 1n a space for the movie theater, and
may thus perform real-time feedback about the movie they
are watching. In one embodiment, an XML object
compilation/decompilation mechanism, e.g. as described

10

15

20

25

30

35

40

45

50

55

60

65

92

clsewhere herein, may be used to compile the code and/or
data to produce XML representations of the code and/or
data, and to decompile the XML representations to repro-
duce the code and/or data on the mobile client device. In one
embodiment, an executable version of a process may pre-
viously exist on the mobile client device, and a stored state
of the process may be downloaded to the mobile client
device to allow the user to execute the process using the
stored state. In one embodiment, an executable version of a
process may previously exist on the mobile client device,
and data for the process may be downloaded to the mobile
client device. For example, data may be downloaded for
viewing with a viewer program on the mobile client device.
In one embodiment, an executable version of a process,
including the code and data for executing the process, may
be downloaded for execution on the mobile client device. In
onc embodiment, the service may execute the application
remotely on behalf of the mobile client device, and the
service and client may pass to each other XML messages
including data and optionally XML schemas describing the
data. In one embodiment, some code may be executed on the
service and some on the client. For example, the service may
execute code to perform operations on a set of data such as
numerical calculations. The mobile client device may
execute code that may display portions of the data passed to
the client from the service in XML messages and allow the
user of the mobile client device to enter and/or select data
and send the data to the service for performing one or more
operations on the data.

In one embodiment, a mobile client device may be
connected to two or more services 1n the distributed com-
puting network simultaneously. The services may be used
independently or 1in conjunction for performing a series of
tasks. For example, one service may be used by a remote
client device to locate and/or perform operations on a set of
data, and a second service may be used to print the set of
data.

FIG. 38 1llustrates a mobile client device accessing spaces
in a local distributed computing network, according to one
embodiment. A user of GPS-enabled mobile computing
device 1700 may move mto proximity of a local distributed
computing environment. The mobile client device 1700 may
provide 1its location provided by GPS 1702 to one or more
discovery mechanisms 1706 1n the local distributed com-
puting network. The discovery mechanism 1706 may use the
provided GPS location of the mobile client device and
predetermined locations of spaces within the environment to
determine when the user moves within a specified range of
one or more spaces or a vicinity served by one or more
spaces within the environment. For example, discovery
mechanism 1706 may determine that mobile client device
1700 has moved within range of space 1704. Discovery
mechanism 1706 may then provide one or more advertise-
ments 1710 from space 1704 to the mobile client device
1700. Alternatively, discovery mechanism 1706 may pro-
vide a Universal Resource Identifier (URI) for space 1704,
or for one or more advertisements 1n space 1704, to mobile
client device 1700. Icons representing the various services
advertised by service advertisements 1708 and/or data rep-
resented by content advertisements 1710 may then be dis-
played on mobile client device 1700. The user may then
select one or more of the advertised services and/or data for
execution and/or display on the mobile client device. The
mobile computing device 1700 may establish a wireless
connection with the device offering the service and com-
municate with the device to execute the service using the
XML-based messaging system as previously described

US 6,643,650 B1

93

herein. Alternatively, the user of the mobile computing
device 1700 may connect the device at a docking station.
The location of the docking station may have been discov-
ered by the user using the lookup or discovery mechanism
1706, and spaces containing advertisements for the docking
stations to discover the location and availability of docking
stations within a specified range of the user.

Discovery mechanism 1706 may also detect when mobile
client device 1700 moves mto a selected range of space
1714. The various service advertisements 1718 and content
advertisements 1720 may then be made available to the user
of the mobile client device 1700. When the mobile client
device moves out of the specified range of one of the spaces,
the advertisements offered by that space may be removed
from the mobile client device 1700°s display.

In one embodiment, advertisements on a space may
include location mnformation for the services or data that
they provide. Thus, discovery mechanism 1706 may deter-
mine when mobile client device 1700 moves within a
specifled range of a particular service advertised on space
1718, and may provide (or remove) the service advertise-
ment based upon the location of the mobile client device
1700.

Computing devices are shrinking while at the same time
cgaining power and functionality. Storage devices, CPUs,
RAM, I/O ASICS, power supplies, etc. have been reduced 1n
size to where small, mobile client devices may include much
of the functionality of a full-sized personal computer.
However, some components of a computer system are not
casily shrinkable because of the human factor and other
factors. These components include, but are not limited to:
keyboards, monitors, scanners, and printers. The limits on
reducing the size of some components may prevent mobile
client devices from truly assuming the role of personal
computers.

In one embodiment, docking stations may be provided
that allow users with mobile client devices to connect to and
use components that are not available on the mobile client
device because of human or other factors. For example,
docking stations may be provided in public places such as
airports or libraries. The docking stations may provide
monitors, keyboards, printers or other devices for users with
mobile client devices. In one embodiment, the docking
stations may not fully function without help from a real
computing device such as a mobile client device connected
by a user. The docking station may provide services such as
various 1nput/output functions to the client using the com-
puting power of the mobile client device.

A docking station may provide one or more connection
options to a mobile client device. The connection options
may 1nclude wireless connections and wired connections.
Examples of wireless connections include, but are not lim-
ited to: infrared such as IrDA and wireless network connec-
fions similar to those provided by a network interface card
(NIC) in a notebook computer. Examples of wired connec-
tions 1nclude, but are not limited to: USB, FireWire, and
twisted-pair Ethernet.

A mobile client device may discover the location of
docking stations using a method substantially similar to that
described above for mobile client devices. The location of
one or more docking stations 1n a local distributed comput-
ing network may be discovered using a discovery mecha-
nism to discover spaces with advertisements for docking
stations. The mobile client device may provide a location to
the discovery mechanism. In one embodiment, the discovery
mechanism or a lookup mechanism may return the location
of one or more docking stations closest to the location of the

10

15

20

25

30

35

40

45

50

55

60

65

94

mobile client device. Alternatively, the discovery mecha-
nism or lookup mechanism may return a URI of the space
containing the advertisements for the docking stations, and
the mobile client device may then connect with the space to
provide the location of the one or more docking stations near
the device. In one embodiment, the mobile client device may
supply information to the lookup or discovery mechanism to
specily requirements such as monitor resolution, screen size,
oraphics capabilities, available devices such as printers and
scanners, etc. In one embodiment, information about the one
or more docking stations may be supplied to the user on the
mobile client device including availability (is another user
using the docking station), components and capabilities of
the various docking stations.

When a user approaches a docking station, a claiming
protocol may be mitiated. When the claim 1s accepted by the
docking station, secure input and output connections may be
established between the mobile client device and the dock-
ing station. Alternatively, the user may select the docking
station from one or more docking stations discovered using
the lookup or discovery mechanism displayed on the mobile
client device. When the user selects the docking station, the
claiming protocol may be 1nitiated to give the user secure,
exclusive connection to the docking station for the duration
of the claim. A docking station release method may also be
provided to allow the user to terminate the session on the
docking station and release the docking station for use by
other users. In one embodiment, the claiming protocol may
be a lease on the docking station service as described
previously herein.

FIG. 39a 1llustrates a user of a mobile device discovering
the location of docking stations according to one embodi-
ment.

FIG. 39b 1llustrates a mobile client device 1750 connect-
ing to a docking station 1760, according to one embodiment.

In one embodiment, a user may connect a mobile client
device to a docking station without using the discovery
mechanism. For example, a user 1n an airport may visually
detect a docking station and connect a mobile client device
to 1t. Another example may be a library providing a docking
station room with a plurality of docking stations for use,
where users may access any of the docking stations that are
available.

Small Footprint and/or Embedded Devices

Simple embedded or small footprint devices may have
limited amounts of memory for storing and executing pro-
ogram 1nstructions. A simple embedded device may need to
understand a limited set of control inputs for initiating
functionality of the device and outputs for reporting the
status of the device. An example of a simple embedded
device 1s a “smart” switch (such as a light switch) with
embedded circuitry for controlling the switch and thus the
device controlled by the switch. The smart switch may only
need to understand two control requests (change the state of
the device, request the state of the device) and to send one
status message (the state of the device). The smart switch
may manage the device to which it 1s connected by receiving
its control requests from one or more control systems and
reporting status messages to the one or more control sys-
tems.

In one embodiment, the distributed computing environ-
ment may provide a framework (protocol) for including
small devices that may not have the resource footprint (such
as memory) necessary to implement the full protocol of the
distributed computing environment. In one embodiment, an
agent may be provided as a bridge between the small
device-capable protocol and the full protocol. The agent may

US 6,643,650 B1

95

perform the full protocol discovery for the small device, so
the device may not be required to implement the full
discovery protocol and service activation. In one
embodiment, the small device may only need to send
service-speciiic messages. In one embodiment, these mes-
sages may be pre-cooked on the small device, so the small
device may only have to send messages that are part of the
service activation to the agent. The agent may perform the
service activation via the full protocol to the service and
forward mncoming message from the device to the service,
and/or may forward replies from the service to the client.
Thus, the agent may act as a service connector for the small
client.

In one embodiment of the distributed computing
environment, an embedded device may be configured to
receive a specific set of control requests in the form of XML
messages. and to send a specific set of XML messages to
make requests, report status, etc. In one embodiment, a
control system may be configured to manage a variety of
devices by sending XML request messages speciiic to each
device or category of device that 1t controls and by receiving
XML messages from the devices. In one embodiment, one
or more XML schemas may be used to define an embedded
device’s specific set of XML messages; the schema may be
used by the embedded device and/or the control system in
sending and receiving XML messages.

An embedded device may include a “thin” implementa-
tion of the XML messaging system as previously described
herein that supports the specific set of messages for con-
trolling and monitoring the simple embedded device. The
implementation of the XML messaging system may be
taillored for use with small footprint, simple embedded
devices, and thus may {it in the limited memory of the small
footprint devices. In one embodiment, the XML messaging
system may be implemented 1n a small footprint with a
virtual machine targeted at small footprint embedded
devices (e.g. KVM). A networking stack (to support the
transport protocol for communications with one or more
control systems) may be associated with the virtual machine
and the XML messaging layer may “sit on top” of the
networking stack. It 1s noted that this implementation of the
messaging system may be used 1n other devices than small
footprint or embedded devices.

In one embodiment, static or pre-generated messages may
be used for requests from control systems to embedded
devices. The static messages may be precompiled and stored
in the embedded devices. An incoming message may be
compared with the stored static messages to find a match for
the message and thus to perform the function requested by
the message, thus reducing or eliminating the need for code
fo parse 1ncoming messages. Outgoing messages may be
read directly from the stored static messages, thus reducing
or eliminating the need to dynamically compile outgoing
messages. Thus, static messages may be used to reduce the
code footprint of the messaging layer in embedded systems.
For example, static Java objects (Java op codes) may be used
for request and status messages.

FIG. 40a 1llustrates an embodiment of embedded devices
18042 and 1804bH controlled by a control system 1800,
according to one embodiment. Control system 1800 may be
networked with the devices 1804a and 1804bH 1t controls 1n
any ol a variety of ways. The network 1810 may be wired
(Ethernet, coaxial, twisted pair, power grid, etc.) and/or
wireless (IrDA, microwave, etc.). In one embodiment,
embedded devices 1804a and 18045 may include a thin
implementation of the XML messaging system for commu-
nicating with control system 1800 over network 1810.

10

15

20

25

30

35

40

45

50

55

60

65

96

Control system 1800 may have an Implementation of the
XML messaging system for sending requests to and receiv-
ing responses from embedded devices 1804a and 1804b. In
one embodiment, control system 1800 may include software
and hardware configured to present an interface to allow a
user to display the status of and remotely control the
embedded devices 1804a and 1804H. In one embodiment,

control system 1800 may include software and/or hardware
for automatic control of embedded devices 1804a and

18045.

In one embodiment, embedded devices 1804a and 18045
may be part of another environment. The devices may not
support the message passing model implemented by the
distributed network environment. For example, the devices
may be nodes 1 a networked automation and control system
such as a LonWorks network. Control system 1800 may
include a control system hardware and/or software for
controlling devices 1n the other environment. Control system
1800 may serve as a bridge between the distributed com-
puting environment and the other environment. The distrib-
uted computing environment may also provide a method or
methods to wrap existing device discovery protocols for
discovering the devices for access from the distributed
network environment. Bridging and wrapping protocols are
further described herein 1n the Bridging section.

Control system 1800 may be connected remotely or
locally to one or more other systems in the distributed
computing environment. FIG. 40a shows control system
1800 connected to client 1806 via the Internet 1802. Client
1806 may indirectly request the status of, and send control
requests to, embedded devices 1804a and 18045 through
control system 1800. Thus, control system 1800 may serve

as a proxy or bridge for embedded devices 1804a and 18045b.

See the Bridging section herein. To enable sophisticated
communication between the client 1806 and the control
system 1800, the client and the control system may have
different 1mplementations of the XML messaging system
than the thin implementation on the embedded devices
18042 and 1804b. In one embodiment, client 1806 may
include software and hardware configured to present an
interface to allow a user of client 1806 to display the status
of and remotely control the embedded devices 18044 and
18045. In one embodiment, client 1806 must present the
correct authorization credentials to control system 1800 to
enable the client 1806 to access embedded devices 18044
and 1804b. In one embodiment, client 1806 may be granted
access at different levels. For example, client 1806 may only
be able to view the status of embedded devices 18044 and
18045 but not be allowed to remotely control the devices. In
onc embodiment, control system 1800 may be a service,
may have a service advertisement published 1n the distrib-
uted computing environment, and thus may be accessed by
client 1806 using the client-service method as described
previously 1n this document. In one embodiment, client 1806
may be able to view the status of, and to remotely control,
control system 1800.

FIG. 40b 1illustrates client control system 1808 connected
via the Internet 1802 to embedded devices 1804¢ and 18044,
according to one embodiment. In one embodiment, embed-
ded devices 1804¢ and 1804d may include a thin implemen-
tation of the XML messaging system for communicating
with client control system 1808 over the Internet 1802.
Client control system 1808 may have an implementation of
the XML messaging system for sending requests to and
receiving responses from embedded devices 1804c¢ and
18044. In one embodiment, client control system 1808 may
include software and hardware configured to present an

US 6,643,650 B1

97

interface to allow a user to display the status of and remotely
control the embedded devices 1804c and 1804d. In one

embodiment, client control system 1800 may include soft-
ware and/or hardware for automatic control of embedded

devices 1804¢ and 1804d.

A difference between FIG. 40a and FIG. 405 1s that, 1n the
embodiment 1llustrated in FIG. 405, the embedded devices
1804c¢ and 1804d may be accessed by one or more clients 1n
the distributed computing environment without requiring a
proxy (e.g. control system). Embedded devices 1804¢ and
18044 may include services for accessing the functionality
of the devices, may have published service advertisements
in the distributed computing environment, and thus may be
accessed via the client-service method as described previ-
ously 1n this document.

The distributed computing environment may include a
mechanism for a resource-limited client to retrieve Univer-
sal Resource Identifier (URI) addressed resources. For
example, a client that 1s only capable of sending and
receiving messages via an IrDA connection may not be able
to establish a URI connection to retrieve results from a
results space. In one embodiment, a service may be provided
as a bridge between the client and the URI resource. The
bridge service may interact with the client via XML mes-
sages to gather input parameters. The following 1s included
as an example of an XML input message syntax and 1s not
intended to be limiting 1n any way:

<type name="HttpGet”>

<element name="urlstring”’type="“string”’/>

</type>

Then, outside the distributed computing environment, the
bridge service may establish a URI connection and retrieve
the resource. The resource may then be encapsulated as a
payload 1n one or more XML messages and sent to the client
by the bridge service.

The following 1illustration of one possible use of embed-
ded devices with thin implementations of the XML messag-
ing system 1s 1ncluded for exemplary purposes and 1s not
intended to be limiting. A building may include a plurality
of electronic devices that consume energy (e.g. lights, air
conditioners, office equipment), and thus may require a
system for maintaining an optimum energy consumption
level. The plurality of devices may each include an embed-
ded device for controlling the electronic devices. The
embedded devices may include the thin implementation of
the XML messaging system. One or more control systems
may be coupled to the devices 1n a network, for example, a
building LAN or even the Internet. A control system may
store and execute a building management software package
and an implementation of the XML messaging system
coniigured to be used by the software package for monitor-
ing and controlling the devices. The control system may
accept 1nput from users, and may display and otherwise
output status information for the building energy consump-
fion system, including status information for each of the
plurality of devices. Energy consumption may be monitored
by receiving XML status messages from each of the plurality
of devices. When energy consumption levels need to be
adjusted, XML control messages may be sent to one or more
of the devices to cause the energy consumption to change.
Implementing Services

In one embodiment, the distributed computing environ-
ment may provide a mechanism for implementing services
as serviets. The mechanism may provide functionality for
developing services for the distributed computing environ-
ment.

In one embodiment, an Application Programming Inter-
face (API) may be provided that provides the functionality

10

15

20

25

30

35

40

45

50

55

60

65

98

to allow the service to be initialized and registered 1n a
space. In one embodiment, the API may be used to invoke
the 1nitialization of the service and to generate an 1nitializa-
tion status page, for example, an HTML page, that may
define the status of the service. A user may access the status
of the service by accessing the status page from a browser.
In one embodiment, the API may be used to process incom-
ing messages and to generate documents 1n response to the
Messages.

An embodiment of the servlet mechanism may provide
several functions including, but not limited to:

Management of the client connection to the service
(unique session ID)

Management of an activation space that may be used to
store results advertisements

Management of leases on connections sessions and results
In activation spaces

Garbage collection of sessions and results
Authentication of clients

Generation of client capabilities on a per session basis
Conclusion

Various embodiments may further include receiving or
storing 1nstructions and/or data implemented 1n accordance
with the foregoing description upon a carrier medium.
Suitable carrier media may include storage media or
memory media such as magnetic or optical media, e.g., disk
or CD-ROM, as well as transmission media or signals such
as electrical, electromagnetic, or digital signals, conveyed
via a communication medium such as network and/or a
wireless link.

Various modifications and changes may be made as would
be obvious to a person skilled 1n the art having the benefit
of this disclosure. It 1s intended that the invention embraces
all such modifications and changes and, accordingly, the
specifications, appendices and drawings are to be regarded
in an 1llustrative rather than a restrictive sense.

What 1s claimed 1s:

1. A method, comprising:

a client sending a lookup message to a network-
addressable location of a space, wherein the space 1s
operable to store one or more advertisements expressed
in a data representation language, wherein each adver-
tissment comprises information which is usable by the
client to access a particular content or service over a
network, and wherein the lookup message specifies
desired advertisement characteristics;

finding a set of discovered advertisements, wherein the
discovered advertisements comprise zero or more of
the stored advertisements which meet the desired char-
acteristics; and

the space sending a lookup response message to the client,
wherein the lookup response message comprises the set
of discovered advertisements.

2. The method of claim 1,

wherein each advertisement comprises a Uniform
Resource Identifier (URI) at which the respective con-

tent or service 1S accessible.
3. The method of claim 1,

wherein at least one of the discovered advertisements

comprises an advertisement for a service.
4. The method of claim 3,

wherein the advertisement for the service comprises a
schema, wherein the schema specifies one or more
messages usable to mvoke one or more functions of the
SeTviICe.

US 6,643,650 B1

99
S. The method of claim 1,

wherein the lookup message comprises a desired name,
wherein each of the discovered advertisements com-
prises a name that matches the desired name, and

wherein each name 1dentifies the respective discovered
advertisement within space.

6. The method of claim 5,

wherein the desired name comprises a wildcard.
7. The method of claim 1,

wherein the lookup message comprises a desired schema
which 1s expressed 1n the data representation language,
and wheremn each of the discovered advertisements
comprises a schema that matches the desired schema.

8. The method of claim 1,

wherein the lookup message comprises a desired name
and a desired schema, wherein the set of discovered
advertisements comprises discovered advertisements
having a name that matches the desired name and
discovered advertisements having a schema that
matches the desired schema.

9. The method of claim 1,

wherein the lookup message comprises a request for all
advertisements 1n the space, and wherein the set of
discovered advertisements includes substantially all the
stored advertisements.

10. The method of claim 1,

wherein the data representation language comprises
¢Xtensible Markup Language (XML).
11. The method of claim 1,

wherein the lookup message and the lookup response
message are expressed in the data representation lan-

guage.
12. A system, comprising:

a client; and

a space which 1s communicatively coupled to the client,
wherein the space 1s operable to store one or more
advertisements expressed in a data representation
language, wherein each advertisement comprises infor-
mation which 1s usable by the client to access a
particular content or service over a network;

wherein the client 1s operable to send a lookup message to
the space, and wherein the lookup message specifies
desired advertisement characteristics; and

wherein the space 1s operable to:
find a set of discovered advertisements, wherein the
discovered advertisements comprise zero or more of
the stored advertisements which meet the desired
characteristics; and
send a lookup response message to the client, wherein
the lookup response message comprises the set of
discovered advertisements.
13. The system of claim 12,

wherein ecach advertisement comprises a Uniform
Resource Identifier (URI) at which the respective con-
tent or service 1S accessible.

14. The system of claim 12, further comprising:

a service which 1s communicatively coupled to the client,
wherein at least one of the discovered advertisements

comprises an advertisement for the service.
15. The system of claim 14,

wherein the advertisement for the service comprises a
schema, wheremn the schema specilies one or more
messages usable to mvoke one or more functions of the
SeTviIce.

10

15

20

25

30

35

40

45

50

55

60

65

100
16. The system of claim 12,

wherein the lookup message comprises a desired name,
wherein each of the discovered advertisements com-
prises a name that matches the desired name, and
wherein each name 1dentifies the respective discovered
advertisements within the space.

17. The system of claim 16,

wherein the desired name comprises a wildcard.
18. The system of claim 12,

wherein the lookup message comprises a desired schema
which 1s expressed 1n the data representation language,
and wherein each of the discovered advertisements
comprises a schema that matches the desired schema.
19. The system of claim 12,

wherein the lookup message comprises a desired name
and a desired schema, wherein the set of discovered
advertisements comprises discovered advertisements
having a name that matches the desired name and
discovered advertisements having a schema that

matches the desired schema.
20. The system of claim 12,

wherein the lookup message comprises a request for all
advertisecments 1n the space, and wherem the set of
discovered advertisements includes substantially all the

stored advertisements.
21. The system of claim 12,

wherein the data representation language comprises

eXtensible Markup Language (XML).
22. The system of claim 12,

wherein the lookup message and the lookup response
message are expressed in the data representation lan-

guage.
23. A carrier medium comprising program instructions,

wherein

the program i1nstructions are computer-executable to
implement:

a client sending a lookup message to a network-
addressable location of a space, wherein the space 1s
operable to store one or more advertisements
expressed 1n a data representation language, wherein
cach advertisement comprises information which 1s
usable by the client to access a particular content or
service over a network, and wherein the lookup
message speciiies desired advertisement characteris-
tics;

finding a set of discovered advertisements, wherein the
discovered advertisements comprise zero or more of
the stored advertisements which meet the desired char-
acteristics; and

the space sending a lookup response message to the client,
wherein the lookup response message comprises the set
of discovered advertisements.

24. The carrier medium of claim 23,

wherein each advertisement comprises a Uniform
Resource Identifier (URI) at which the respective con-
tent or service 1s accessible.

25. The carrier medium of claim 23,

wherein at least one of the discovered advertisements
comprises an advertisement for a service.
26. The carrier medium of claim 235,

wherein the advertisement for the service comprises a
schema, wherein the schema specifies one or more
messages usable to mvoke one or more functions of the
SeTviICe.

US 6,643,650 B1

101

27. The carrier medium of claim 23,

wherein the lookup message comprises a desired name,
wherein each of the discovered advertisements com-
prises a name that matches the desired name, and
wherein each name 1dentifies the respective discovered
advertisements within the space.

28. The carrier medium of claim 27,

wherein the desired name comprises a wildcard.
29. The carrier medium of claim 23,

wherein the lookup message comprises a desired schema
which 1s expressed 1n the data representation language,
and wherein each of the discovered advertisements
comprises a schema that matches the desired schema.
30. The carrier medium of claim 23,

wherein the lookup message comprises a desired name
and a desired schema, wherein the set of discovered
advertisements comprises discovered advertisements
having a name that matches the desired name and
discovered advertisements having a schema that
matches the desired schema.

31. The carrier medium of claim 23,

wherein the lookup message comprises a request for all
advertisements 1n the space, and wherein the set of
discovered advertisements includes substantially all the
stored advertisements.

32. The carrier medium of claim 23,

wherein the data representation language comprises
eXtensible Markup Language (XML).
33. The carrier medium of claim 23,

wherein the lookup message and the lookup response
message are expressed in the data representation lan-
guage.

34. A method, comprising;:

a client sending a lookup message to a space, wherein the
lookup message 1s expressed 1n a data representation
language, wherein the space 1s operable to store one or
more documents expressed 1n the data representation

language, and wherein the lookup message specifies
desired characteristics of the stored documents;

finding a set of discovered documents, wherein the dis-

covered documents comprise zero or more of the stored
documents which meet the desired characteristics; and

the space sending a lookup response message to the client,
wherein the lookup response message 1s expressed in
the data representation language and comprises the set

of discovered documents.
35. The method of claim 34,

wherein each of the discovered documents comprises
information usable by the client to access a respective
content or service.

36. The method of claim 35,

wherein the 1information usable by the client to access a
respective content or service comprises a Uniform

10

15

20

25

30

35

40

45

50

102

Resource Identifier (URI) at which the respective con-
tent or service 1s accessible.

37. The method of claim 35,

wherein at least one of the discovered documents com-

prises mnformation for accessing a service.
38. The method of claim 37,

wherein the information for accessing a service Comprises
a schema, wherein the schema specifies one or more

messages usable to mnvoke one or more functions of the
SETVICE.

39. The method of claim 34,

wherein the lookup message comprises a desired name,
wherein each of the discovered documents comprises a
name that matches the desired name, and wherein each
name 1dentifies the respective discovered document
within the space.

40. The method of claim 39,

wherein the desired name comprises a wildcard.
41. The method of claim 34,

wherein the lookup message comprises a desired schema
which 1s expressed 1n the data representation language,
and wherein each of the discovered documents com-

prises a schema that matches the desired schema.
42. The method of claim 34,

wherein the lookup message comprises a desired name
and a desired schema, wherein the set of discovered
documents comprises discovered documents having a
name that matches the desired name and discovered

documents having a schema that matches the desired
schema.

43. The method of claim 34,

wherein the lookup message comprises a request for all
documents 1n the space, and wherein the set of discov-
ered documents includes substantially all the stored
documents.

44. The method of claim 34,

wherein the data representation language comprises
eXtensible Markup Language (XML).
45. The method of claim 34, further comprising:

the client sending an event subscription message to the
space, wherein the event subscription message 1ndi-
cates a desired document for which the client 1s

requesting to receive notification if the desired docu-
ment 1s added to or removed from the space; and

the space sending an event notification message to the
client when a document matching the desired document
1s added to or removed from the space.

46. The method of claim 45, wherein the event subscrip-

tion message and the event notification message are
expressed 1n the data representation language.

	Front Page
	Drawings
	Specification
	Claims

